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Abstract

A disk graph is the intersection graph of a set of disks in the plane. For ak-tuple (p1, . . . , pk)

of positive integers, a distance constrained labeling of a graphG is an assignment of labels to the
vertices ofG such that the labels of any pair of vertices at graph distancei in G differ by at leastpi ,
for i= 1, . . . , k. In the case whenk= 1 andp1 = 1, this gives a traditional coloring ofG. We propose
and analyze several online and offline labeling algorithms for the class of disk graphs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In traditional coloring of a graph, any pair of vertices in the graph gets distinct col-
ors whenever they are adjacent by an edge, i.e. at graph distance one. For a long time
coloring of simple graph classes, e.g. paths, cycles, grids, interval graphs, planar graphs,
and etc., has been considered as a general model for the frequency assignment problem
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in radio networks[18,19,21,25,28], assuming that only frequencies used in “near” regions
should be well separated. However, due to the rapid development of mobile networks, new
theoretical approaches have emerged to model the problem assuming that frequencies used
in both “near” and “distant” regions should be properly separated. One of these is distance
constrained labeling, see e.g.[1,2,5,11–13,20,29,24].

1.1. Clique, independent set, coloring, and labeling

Let G = (V ,E) be a simple graph. A subsetV ′ ⊆ V is aclique if every two vertices
in V ′ are joined by an edge inE. A maximum cliqueis, naturally, a clique whose number
of vertices is at least as large as that for any other clique in the graph, and its size,�(G),
is called theclique numberof G. A subsetV ′ ⊆ V is anindependent setif no its vertices
are adjacent. Similarly, amaximum independent setis an independent set whose number of
vertices is at least as large as that for any other clique in the graph, and its size,�(G), is called
theindependence numberof G. A (vertex)k-coloring ofG is a functionc :V → {1, . . . , k}
such thatc(u) 	= c(v) whenever verticesu andv are joined by an edge inE, i.e. at graph
distance 1. If ak-coloring ofG exists, thenG is calledk-colorable. Thechromatic number
of G is defined as

�(G) = min{k: G is k-colorable}.
There are two simple facts. LetV ′ be a subset ofV . If V ′ is an independent set, then

the vertices ofV ′ can be colored in one color. IfV ′ is a clique, the vertices ofV ′ must be
colored in|V ′| distinct colors. There is a trivial bound as

max{�(G), |V |/�(G)}� �(G). (1)

Letk� 1 be some integer. Letp1�p2� · · ·�pk be a non-increasing sequence of positive
integers, calleddistance constraints. An L(p1,...,pk)-labeling, or adistance constrained la-
beling, of a graphG = (V ,E) is a functionc :V → {1, . . . , L} such that|c(u)−c(v)|�pi
whenever the graph distance betweenu andv is at leasti, for i = 1, . . . , k. If a L(p1,...,pk)-
labeling ofG exists, thenG is calledL(p1,...,pk)-labeled. The(p1, . . . , pk)-labeling number
of G is defined as

�(p1,...,pk)
(G) = min{L: G isL(p1,...,pk)-labeled}.

First, we can observe the following simple facts. Ifk = 1 andp1 = 1, then

�(1)(G) = �(G), (2)

where�(G) is the chromatic number ofG. If p1 = p2 = · · · = pk = 1, then

�(1,...,1)(G) = �(Gk), (3)

whereGk is thekth power ofG, i.e. a graph which arises fromG by adding the edges which
connect all the vertices at the graph distance at mostk. Furthermore, as it was shown in
[9,13], for any integert it holds

�(tp1,...,tpk)
(G) = t · (�(p1,...,pk)

(G)− 1)+ 1. (4)
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Hence, we can assume w.l.o.g. that all integersp1, . . . , pk have no common divisor.
Combining (3) and (4), we can bound

�(p1,...,pk)
(G) � �(p1,...,p1)

(G)

= 1 + p1(·�(1,...,1)(G)− 1)

= 1 + p1(�(1)(G
k)− 1). (5)

Accordingly, fork = 2 and(p1, p2) = (2,1) we have

�(2,1)(G) � �(2,2)(G)
= 2(�(1,1)(G)− 1)+ 1

� 2�(1)(G
2)

= 2�(G2). (6)

In [23] it was shown that for any fixedk� 2 finding the value of�(Gk) is an NP-hard
problem. Furthermore, even if one restricts to a planar graphG, computing�(G2) is still
an NP-hard problem. There is the long-standing Wegner’s conjecture[30]: For any planar
graphG with the maximum degree�(G)� 8, the chromatic number of the second power
graphG2 is at least�3

2��+1. There are a number of recent results coming closer and closer
to the conjectured bound. The current best result�(G2)� 5

3� + 78 is due to[24].
The most intensively studied case of distance-constrained labeling isk = 2 and(p1, p2) =

(2,1). The existence of anL(2,1)-labeling was explored for different graph classes in
[2,5,12,13,29]. The exact value of�(2,1) can be derived forcycles, and there are polynomial-
time algorithms which compute the value of�(2,1) for treesandco-graphs[5]. For any fixed
L� 4, the problem of recognizing graphsG such that�(2,1)(G)�L is NP-complete[10].
For a planar graphG, the problem of deciding whether�(2,1)(G)� 9 was shown to be NP-
complete in[2]. In [24] it was presented an approximation algorithm which produces an
L(p1,p2)-labeling of a planar graphG with the largest label at most53(2p2 − 1)�(G) +
12p1 + 144p2 − 78.

It is expected that for everyk-tuple of distance constraints(p1, . . . , pk) and a graphG,
there exists a boundL0 such that for everyL�L0 the decision problem�(p1,...,pk)

(G)�L
is NP-complete. So far, this conjecture has been proven fork = 2 and(p1, p2), where
p1� 2p2 [8].

1.2. Disk graphs

LetD be a set of disks in the Euclidian plane.Any disk inD is defined by its center and the
value of its diameter. Then, the intersection graphG of the disks inD is called adisk graph,
andD is called itsdisk representation. Let dmin anddmax be the minimum and maximum
diameter values of the disks inD. Then, the value ofdmax/dmin is called thediameter ratio
of D, denoted also by�(D). Let� be some constant. A disk graphG is called a�-disk graph
if there exists its representationD whose diameter ratio�(D) ∈ (1,�]. If �(D) = 1, then
G is called aunit disk graph. In the latter case, we assume w.l.o.g. that all the disks inD
have unit diameter.

Interestingly, every planar graph is acoin graph, that is, the intersection graph of interior-
disjoint disks[17]. Hence, the class of disk graphs is more general than the class of planar
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Fig. 1. Coloring-disk graph-L(2,1)-labeling.

graphs. The recognition problem of a (unit,�-) disk graph is NP-hard[3,4,15]. Hence, an
algorithm that works on the set of graph’s disks as the input is substantially weaker than
one which works only on the sets of graph’s vertices and edges. From this point of view, the
requirement of a set of disks as the input is very strong. From another side, when dealing
with real-world applications, e.g. in constructing interference graphs for radio and mobile
telephony networks, some disk representation can be derived in a natural way.

There are a number of results on coloring of disk graphs. For a unit disk graph, the
3-coloring is NP-complete even when its disk representation is given[6]. There are a 3-
approximation algorithm[3,26] and a 5-competitive algorithm[21,26]. These algorithms
are given a set of unit disks as the input, but they can be also easily adjusted to the general
case[7]. Regarding disk graphs, there is a 5-approximation algorithm which also works
with a set of disks as the input[21]. On the other hand, there is no online coloring algorithm
with a constant competitive ratio for planar graphs[14]. Hence, there is no such online
algorithm for general disk graphs as well.

1.3. Our results

Here we consider the problem of distance-constrained labeling of�-disk graphs, both
given the disk representation and not. We present several offline and online algorithms for
the case of general distance constraints(p1, . . . , pk) and for the case whenk = 2 and
(p1, p2) = (2,1). (For an illustration see Fig.1.) We also derive several lower bounds.
These provide the first step in the study of the distance-constrained labeling problem for
disk graphs.

First, we deal with a fixedk-tuple of distance constraints(p1, . . . , pk). We give a simple
onlineL(p1,...,pk)-labeling algorithm which is given a sequence of disks as the input. The
algorithm is based on the so-calledhexagonal tiling, circular labeling, andfirst-fit tech-
niques. We derive an upper bound on its competitive ratio. We show for any fixedk-tuple
(p1, . . . , pk) and any fixed diameter ratio� the algorithm is constant competitive. As an
example, we demonstrate the algorithm in the case whenk = 2 and(p1, p2) = (2,1). We
show that for�-disk graphs with at least one edge and��

√
7/2 the competitive ratio of

the algorithm is bounded by 16.67. The ratio also tens to 12.5 as the clique number of an
input graph tens to infinity.

Next, we derive lower bounds for online coloring and labeling. We start with simple lower
bounds for unit disk graphs. We consider the case when the input is given as a sequence of
disks. We show that no online coloring algorithm can be better than 2-competitive, and no
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onlineL(2,1)-labeling algorithm can be better than 5-competitive. Then, we consider�-disk
graphs. We prove that in the case when an algorithm is given a�-graph in an online manner
but neither its disk representation nor a bound on� is given, the algorithm cannot achieve
a constant competitive ratio. In addition, we give a lower bound on any generalL(p1,...,pk)-
labeling algorithm for�-disk graphs. By using this result we show that our online labeling
algorithm is asymptotically optimal for the class of disk graphs with at least one edge.

Finally, we deal with the offline setting. We explore the casek = 2 and(p1, p2) = (2,1).
We present two approximation algorithms for unit disk graphs. The first algorithm is given
a set of unit disks as the input, and it is based on the so-calledcuttingtechnique. The second
algorithms isrobust, what is, the algorithm is given a set of graph’s vertices and a set of
graph’s edges as the input, and it either outputs a feasible labeling or shows that the input
is not a unit disk graph. The approximation ratio of thecuttingalgorithm is bounded by 12,
whereas the approximation ratio of therobustalgorithm is bounded by 10,67. The bounds
also tend to 9 and to 10 as the clique number of an input graph tens to infinity, respectively.
Finally, we present a simple general offlineL(p1,...,pk)-labeling algorithm for�-disk graphs.
For any fixed� andk the algorithm approximation ratio is constant O(k2�2).

The following table summarizes known and new results for (online, offline) coloring and
labeling of unit disk graphs (UDG),�-disk graphs (�-DG), and general disk graphs (DG).

Offline Online

+ − + −

Coloring
UDG 3 [26] 3 [26] 5 [21,26] 5 [21,26]
�-DG 5 [21] 5 [21] YES [∗] YES[7]
DG 5 [21] 5 [21] NO [7] NO [14]

L(2,1)-labeling
UDG 12[∗] 10.6 [∗] 16.67 [∗] NO [∗]
L(p1,...,pk)-labeling
UDG YES[∗] YES [∗] YES [∗] NO [∗]
�-DG YES[∗] YES [∗] YES [∗] NO [∗]
DG ? ? NO[∗] NO [∗]

Here, “+/−” shows either the disk representation of graphs is given or not; “YES” means
a constant competitive algorithm; “NO” means that no constant competitive algorithms can
exist; “?” shows an open problem; “[∗]” means a result presented in this paper; “number”
corresponds to the approximation ratio or the competitive ratio of the respective algorithm.

1.4. Last remarks

We say that an algorithmA is anofflineL(p1,...,pk)-labeling algorithmif for any given
graphG it runs in polynomial time and outputs a properL(p1,...,pk)-labeling ofG. If the
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maximum label used is at most� · �(p1,...,pk)
(G), thenA is called an�-approximation

algorithm. The value� is called theapproximation ratioof A. We say that an algorithmA
is anonlineL(p1,...,pk)-labeling algorithmif for any graphG it properly labels the vertices
of G one by one in an externally determined order≺. If the maximum label used is at most
� · �(p1,...,pk)

(G), thenA is called an�-competitivealgorithm. The value� is called the
competitive ratioof A. With respect to disk graphs, we always say whether disks are given
the input or not.

The rest of this paper is organized as follows. In Section2 we give some preliminary
results. In Section3 we introduce acircular labeling. In Section4 we present a general
online algorithm and derive an upper bound on its competitive ratio. In Section5we present
lower bounds for online coloring and labeling. In Section6 we present two offlineL(2,1)-
labeling algorithms. In Section7 we derive a general offline labeling algorithm. In the last
section we give some concluding remarks.

2. Preliminaries

In this section we give some preliminary results which will be used throughout the paper.
First, we introduce hexagonal cells on the plane and cell cliques in a disk graph. Then, we
introduce the plane-mesh distance, and derive some simple results.

Let E be the Euclidean plane. Letx, y be coordinates inE . For a graphG we will
write V (G) andE(G) to denote the sets ofG’s vertices and edges. For a�-disk graphG,
we will useD = {D1, . . . , Dn} to denote a disk representation ofG. Then, for eachDi
(i = 1, . . . , n) we will usedi ∈ R+ and(xi, yi) to denote the diameter and center ofDi ,
respectively. For each vertexv ∈ V (G), we will useDv to denote the disk ofv. Thus, an
edgee = {u, v} ∈ E(G) iff Dv ∩Du 	= ∅. We will also write�(D) to denote the value of
max di/min di , that is, the diameter ratio ofD. We always assume�(D) is at most�. For
simplicity, we associate a class of�-disk graphs with its ratio bound�. In many cases we
assume that� is given in the input.

2.1. Cells

We will use the following partition of the planeE into hexagons. Fori, j ∈ Z we define
a unit hexagonCi,j as the set of all points(x, y) ∈ E such that:

2i − j − 1< 4
3

√
3x� 2i − j + 1,

i + j − 1< 2
3(

√
3x + 3y)� i + j + 1,

−i + 2j − 1< 2
3(−

√
3x + 3y)� − i + 2j + 1.

Here,Ci,j contains exactly two adjacent corners of the bounding simplex, see Fig.2. The
cell side is equal to1

2. The largest diameter ofCi,j is equal to 1. So, the plane distance
between every two points insideCi,j is at most 1. The smallest diameter ofCi,j is equal to√

3/2. This value is called the size ofCi,j . Furthermore, each point of planeE belongs to
exactly one hexagonCi,j , see Fig.3. For simplicity, anyCi,j will be called acell, andC
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1

Fig. 2. A simplexCij .

will denote the set of all cellsCi,j , for i, j ∈ Z. We will say that a diskDi belongs to a cell
Ci,j iff the center(xi, yi) of Di belongs toCi,j .

2.2. Cell cliques

For a disk graphG given by a setD of disks, and a cellCi,j let

D(i, j) := {Dk |Dk ∈ D and(xk, yk) ∈ Ci,j }
be the set of all disks which belong toCi,j , and let

V (i, j) := {v ∈ V (G) |Dv ∈ D(i, j)}
be the set of all vertices whose disks are inCi,j . Then, we can prove the following simple
result.

Lemma 2.1. For any disk graph G, any setV (i, j) induces a clique. Hence, |D(i, j)| =
|V (i, j)| is at most the clique number�(G).

Proof.The distance between every two points inside cellCij is at most one. Hence, the disks
of any pair inD(i, j) intersect. This means that{u, v} ∈ E(G) for any twou, v ∈ V (i, j).
Hence,V (i, j) induces a clique inG. �

2.3. Plane and mesh distance

Let distE (p, p′) be the standard plane distance between two pointsp, p′ ∈ E . Then, the
plane distancebetween two cellsC andC′ is defined as

distE (C,C′) = inf {distE (p, p′) : p ∈ C,p′ ∈ C′}.
We define an infinite triangular meshM. With every cellCi,j ∈ C we simply associate

a vertex(i, j), and connect any two vertices by an edge if the corresponding cells are
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Fig. 4. Cells fori = 0 andj = 0 andt = m+ 1.

neighbors. For an illustration see Fig.3. Accordingly, we will write distM(Ci,j , Cs,t ) to
denote themesh distancebetween two cellsCi,j andCs,t . This is measured as the number
of edges in some shortest path connecting(i, j) and(s, t) in the meshM.

Lemma 2.2. For m� 2 and i, j ∈ Z, each of cellsCi+t,j , Ci,j+t , Ci+t,j+t , where
t ∈ {m+ 1,−m− 1}, have mesh distancem+ 1 and plane distance(m

√
3/2) fromCi,j .

Furthermore, any cell at mesh distancem + 1 from Ci,j has plane distance at least
�m2 � + 1

2�m2 �.

Proof.Recall that every cell has size
√

3/2, see Fig.2. For simplicity, we consider the case
wheni = 0 andj = 0 andt = m+ 1, see Fig.4. Clearly,Cm+1,0, C0,m+1 andCm+1,m+1
are at mesh distancem+1, see Fig.4(b). Furthermore, there aremcells on the shortest line
fromC0,0, see Fig.4(a). Hence, the plane distance ism · (√3/2).

Now consider all the cells which are mesh distancem+ 1 fromC0,0. From one side, the
“corner” cellsCm+1,0 andCm+1,m+1 are at the maximum plane distance fromC0,0. So, we
need to consider some “middle” cells. One can see that, the “middle” cells,Cm+1,m/2 if
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Fig. 5. Middle cells.

m is even andC�(m+1)/2�,m+1, Cm+1−�(m+1)/2�,m+1 if m is odd, are at the minimum plane
distance fromC0,0. For an illustration see Fig.5. Then, the minimum plane distance can
be bounded as�m2 � times cell’s diameter 1 and�m2 � times the cell’s side12. This is equal to
�m2 � + 1

2�m2 �. �

Corollary 2.3. For m� 2 and i, j ∈ Z, cellsCi,j , Ci+m+1,j , Ci,j+m+1, Ci+m+1,j+m+1

have pairwise mesh distancem+ 1 and plane distancem
√

3/2.

Corollary 2.4. Let a = �2k�√
3
�, wherek� 2 and �� 1. Then, cellsCi,j , Ci+t,j , Ci,j+t ,

Ci+t,j+t , wheret ∈ {a+1,−a−1}, have pairwise mesh distancea+1 and pairwise plane
distance greater thank · �.

2.4. Patterns

Let k� 2 and�� 1. As in Corollary2.4, we definea = �2k�√
3
�. Then, the set ofa2 cells

Cs,t with s, t ∈ {0, . . . , a} is called a pattern. We say that a cellCi,j ∈ C belongs to the
(s, t)th classif

i − 1 = smoda

and

j − 1 = t moda.

In total, there area2 classes. Informally, by shifting the pattern around the plane, we “copy”
its cells, see Fig.6. Then, a cellCi,j belongs to the(s, t)th class if it is a “copy” of the
(s, t)th cell in the pattern. Now we can prove the following simple result.

Lemma 2.5. Any two cells in the same class have plane distance greater thank · �.

Proof. The proof follows the definition of classes and Corollary2.4. �
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C0,0

Fig. 6. Shifting the pattern and copies ofC0,0.

3. Circular labeling

Here we introduce and prove the existence of a specialcircular labeling for the cells in
C. This will be used later in Section4.

Let �� 1 be some constant. Let(p1, . . . , pk) be ak-tuple of distance constraints, where
p1�p2� · · ·�pk. Let C be the set of cellsCij , wherei, j ∈ Z. We say that a mapping
� : C → {1,2, . . . , �} is an�-circular labelingof C with respect to(p1, . . . , pk) and� if
for any two cellsC′ andC′′ in C at plane distance distE (C,C′)� i · � it holds

min{|�(C)− �(C′)|, �− |�(C)− �(C′)|}�pi,

for all i ∈ {1, . . . , k}.
For an illustration see Fig.7. Informally, we take a circle with vertices 1,2, . . . , �. Then,

every cellC is assigned to a vertex�(C) ∈ {1,2, . . . , �}. The “circular distance” between
any two cellsC andC′ is equal to the number edges between vertices�(C) and�(C′). This
can be defined as

min{|�(C)− �(C′)|, �− |�(C)− �(C′)|}.

Then, we require any two cellsC andC′ at plane distance at mosti · � to be at “circular
distance” at leastpi , for all i ∈ {1, . . . , k}.

The existence of such a circular labeling is guaranteed by the following result.
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Fig. 7. A circle with� vertices, and two cellsC, C′.

C

(a) (b)

Fig. 8. Labeling ofC.

Theorem 3.1. For every k-tuple(p1, . . . , pk) and�� 1, an �∗-circular labeling ofC can
be found inO(�∗�4k4) time, where

�∗ := 1 + 6

(
3(2p1 − 1)+

a∑
m=2

(m+ 1) · (2p�(3m−4)/4�� − 1)

)
.

Proof. Given k and�� 1, we definea = �2k�√
3
�, and define a pattern with all cellsCs,t ,

wheres, t ∈ {0, . . . , a}.
We select the cells in the pattern one by one while labeling with an initial sequence of

labels 1,2,3, . . . in a first-fit manner. For a selected cellCs,t from the pattern we first find
the least feasible label�s,t , and then we define�(C) = �s,t for any cellC in the (s, t)th
class. By Lemma2.5, any two cells in the same class have plane distance greater thank · �.
Hence, at the end of the procedure we find a feasible circular labeling ofC.

In the following we show that�∗ is a upper bound on the largest�s,t label used in the
pattern, and the labeling procedure takes at most O(�∗�4k4) steps. This will complete the
proof of the theorem.

Consider a cellC in the pattern, see Fig.8. By Corollary2.4, every cell which is at mesh
distance at leasta+1 is at plane distance greater thank ·�. Hence, in order to find a feasible
label forC we need to check all already labeled cells at mesh distance at mosta.

There are six cells at mesh distance 1 fromC, see Figs.8(a) and (b). Each of these six
cells has plane distance at most 1· � from C. In the worst case, all six cells are labeled,
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and any two of the labels differ by 2p1 − 1. Hence, in order to select a feasible label for
C we will “skip” at most 6(2p1 − 1) “forbidden” numbers. Similarly, for 12 cells at mesh
distance 2 fromC, we will “skip” at most 12(2p1 − 1) “forbidden” numbers.

Form� 2, there are 6(m+ 1) cells at mesh distancem+ 1 from C. By Lemma2.2, the
plane distance fromC is at mostm

√
3/2 but at least⌊m

2

⌋
+ 1

2

⌈m
2

⌉
.

By the definition of a circular labeling, we need to find the least integeri� k such that⌊m
2

⌋
+ 1

2

⌈m
2

⌉
� i · �.

We can bound it as follows:

i � 1

�

(⌊m
2

⌋
+ 1

2

⌈m
2

⌉)

� 1

�

(m
2

− 1 + m

4

)
= (3m− 4)

4�
.

Then, in the worst case, all 6(m+ 1) cells are labeled, and any two of the labels differ by

2p�(3m−4)/4�� − 1.

As before, in the worst case we will “skip” at most

6(m+ 1)(2p�3m−4/4�� − 1)

“forbidden” numbers.
In total, summing up for mesh distance 1, 2 and over all 3�m+ 1� a at most

6

(
3(2p1 − 1)+

a∑
m=2

(m+ 1) · (2p�(3m−4)/4�� − 1)

)
= �∗ − 1

numbers are “forbidden” be selected as a label for cellC in the pattern.
There area2 = O(k2�2) cells in the pattern. For each cellC in the pattern we have to

check all cells at mesh distance at mosta, and each cell for at most�∗ numbers. Thus, the
labeling procedure finds an�∗-circular labeling ofC in at most O(�∗k4�4) time steps. �

3.1. A circular 25-labeling for(p1, p2) = (2,1)

Considerk = 2 and(p1, p2) = (2,1). We take a pattern with 25 cells, and label the
cells of C as it is depicted in Fig.9. One can see that any two cells with the same label
are at the plane distance at least 2

√
3. Furthermore, any two cells with� and� + 1 labels

(� = 1, . . . ,24) are at the plane distance at least
√

7
2 . If we define� =

√
7

2 , then 2� < 2
√

3.
Hence, the depicted labeling is a 25-circular labeling with respect to(p1, p2) = (2,1) and

� =
√

7
2 .
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Fig. 9. A 25-circular labeling with(p1, p2) = (2,1),� =
√

7
2 .

4. General online labeling of�-disk graphs

LetGbe a�-disk graphs given by a setD = {D1, . . . , Dn} of ndisks inE . In the following
we assume, w.l.o.g., that the coordinates of planeE are scaled such that minimum diameter
is equal to 1 and the diameter ratio ofD is at most�. For a fixedk-tuple (p1, . . . , pk) of
distance constraints, wherep1�p2� · · ·�pk, and a fixed�� 1, we describe the following
online labeling algorithm:

ONLINE DISK LABELING (ODL):
Input: A k-tuple(p1, . . . , pk),�� 1, and an ordered sequence of disksD1 ≺ · · · ≺Dn.
Output: An L(p1,...,pk)-labelingc.
1. Find a circular�∗-labeling� : C → {1, . . . , �∗}.
2. For all cellsCi,j ∈ C defineD(i, j) := ∅.
3. Select the disks one by one in the given order.
4. For a diskDv perform

4a. FindCi,j such that(xv, yv) ∈ Ci,j .
4b. Definev ∈ V (G).
4c. Definec(v) := �(Ci,j )+ �∗ · |D(i, j)|.
4d. PutDv intoD(i, j).

Informally, for every new disk the algorithm assigns a label which consists two parts:
(1) the label of the cell which will contain this disk; (2)�∗ times the number of the disks
which are already in the cell. The last part insures that all disk labels are properly separated.
So, we can prove the following result.

Lemma 4.1. The maximum label used byODL is most�∗ · maxi,j |D(i, j)|.

Proof. The first disk inD(i, j) will get a label equal to

�(Ci,j )� �∗.
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The last disk inD(i, j) will get a label equal to

�(Ci,j )+ �∗ · (|D(i, j)|)� �∗ · max
i,j

|D(i, j)|.

Since, ODL handles allD(i, j) separately, the maximum label used is bounded by

�∗ · max
i,j

|D(i, j)|. �

Furthermore, we can prove the following result.

Lemma 4.2. Let G be the disk graph given by a set D of disks. Then, for any k-tuple
(p1, . . . , pk) of distance constraints it holds that

�(p1,...,pk)
(G)� 1 + p1(�(G)− 1)� 1 + p1

(
max
i,j

{|D(i, j)|} − 1

)
.

Proof. Let K be a clique inG. Assume that one vertex inK has the least label 1, and other
|K| − 1 vertices have larger labels. By the definition of aL(p1,...,pk)-labeling, the labels of
any two vertices inK should differ by at leastp1. Thus, the minimum label forK is at least

1 + p1(|K| − 1).

By Lemma2.1 for any setD(i, j) of disks, the vertices ofV (i, j) form a clique inG and
|D(i, j)| = |V (i, j)| is at most the clique number�(G). Thus, the(p1, . . . , pk)-labeling
number ofG is at least 1+ p1(�(G)− 1). �

Combining the above results, we can prove the following main theorem:

Theorem 4.3. For every(p1, . . . , pk)and�� 1,the algorithmODL is an onlineL(p1,...,pk)-
labeling algorithm for the class of�-disk graphs, provided that it reserves a sequence of
disks as the input. For any�-disk graph G, the competitive ratio ofODL is bounded by

�(G) · �∗
1 + (�(G)− 1) · p1

� �∗. (7)

Proof. Let G be the�-disk graph given by a disk setD. Notice that the value of|D(i, j)|
does not depend on an order in which the disks ofD presented to ODL. Hence, ODL is an
onlineL(p1,...,pk)-labeling algorithm. Furthermore, by Lemmas4.1and4.2, we can bound
its competitive ratio as it is defined in (7). This completes the proof. �

Corollary 4.4. The algorithmODL is 2�∗/(1 + p1)-competitive for the class of�-disk
graphs with at least one edge. Furthermore, the bound on its competitive ratio tens to
�∗/p1 as the clique number of an input�-disk graph grows to infinity.
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Proof. If a disk graphG has at least one edge, then�(G)� 2. From (7), for w(G) =
2,3,4, . . . we have

2�∗

1 + p1
� 3�∗

1 + 2p1
� 4�∗

1 + 3p1
� · · ·� �∗

p1
.

This completes the proof. �

Corollary 4.5. For (p1, p2) = (2,1) and � =
√

7
2 , there is an onlineL(2,1)-labeling

algorithm which competitive ratio is bounded by25 for the class of�-disk graphs, by
50
3 ≈ 16.67 for the class of�-disk graphs of with at least one edge, and the bound on

its competitive ratio tens to12.5 as the clique number of an input�-disk graph grows to
infinity.

Proof.We use the algorithm ODL combined with a 25-circular labeling depicted in Fig.9.
�

5. Lower bounds: online coloring and labeling

Here we present some lower bounds for online coloring and labeling of disk graphs.

5.1. Coloring of unit disk graphs

We start with a simple lower bound for online coloring of unit disk graphs.

Lemma 5.1. There is no(2 − ε)-competitive coloring algorithm for the class of unit disk
graphs, even if every unit disk graph occurs as a sequence of unit disks in the online input.

Proof. Let A be an algorithm with competitive ratio 2− ε, for someε > 0. Consider a
unit disk graphGbad depicted in Fig.10(a). Let the vertices ofGbad be ordered as shown
in Fig. 10(b).

From one side, vertices 1–6 form an independent set. The algorithmA has to color them
by the same color. If it is not the case, thenA is not(2− ε)-competitive. From another side,
vertices 1–12 form a bipartite graph. To color them properly, the algorithmA needs exactly
two more colors. Then, vertices 13–15 require three extra colors. These vertices form a
triangle, so they cannot share the same color, and each of them is adjacent to three vertices
among 1–12 that are colored by three distinct colors.

In other words,A is forced to use at least six colors for online coloring ofGbad. However,
the graph is 3-colorable. Hence,A is not an(2 − ε)-competitive algorithm. �

5.2. Labeling of unit disk graphs

Now we present a simple lower bound for onlineL(p1,p2)-labeling of unit disk graphs.
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Fig. 10. GraphGbad for coloring.
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Fig. 11. GraphGbad for L(2,1)-labeling.

Lemma 5.2. For any 2-tuple (p1, p2) of distance constraints andε > 0, there is no
(4p2 + 1 − ε)-competitiveL(p1,p2)-labeling algorithm for the class of unit disk graphs,
even if every unit disk graph occurs as a sequence of unit disks in the online input.

Proof.Consider a unit disk graphGbadgiven by five “outer” unit disks 1, 2, 3, 4, 5 depicted
in Fig.11. No two of these five disks intersect. Hence, in the offline case, one needs exactly
one label forGbad. Hence, we have that�(2,1)(Gbad) = 1.

LetA be an onlineL(p1,p2)-labeling for the class of unit disk graphs. For any online input
of a unit diskG, A always outputs a feasibleL(p1,p2)-labeling ofG.

It is not a matter in which order we present the disks ofGbad, any two labels assigned by
A must differ by at leastp2. If it is not the case, then adding the “central” unit disk 6 leads
to a non-feasible labeling of the unit disk graph given by all disks 1, 2, 3, 4, 5, 6. This gives
a contradiction.

Thus, the maximum label assigned byA to the disks ofGbad is at least

1 + p2 + p2 + p2 + p2 = 1 + 4p2.

However,�(2,1)(Gbad) = 1. Hence, the competitive ratio ofA is at least 4p2 + 1. �
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Fig. 12. A setD of disks.

5.3. General labeling of disk graphs

Let k = 2 and(p1, p2) be a 2-tuple of distance constraints. The following simple result
demonstrates the importance of information received in the online input.

Lemma 5.3. There is no constant competitive onlineL(p1,p2)-labeling algorithm for the
class of�-disk graphs, unless there is an upper bound on� and any�-disk graph occurs
as a sequence of disks in the online input.

Proof. Let D be a set ofn mutually disjoint disks. For an illustration see Fig.12. Let G a
disk graph given byD. Then, there are no edges inG, and�(p1,p2)

(G) = 1.
Let A be a general onlineL(p1,p2)-labeling algorithm. We present the verticesv in V (G)

in an arbitrary order. Assume that there exists a pair of vertices inV (G)which are assigned
the same label byA. Then we simply add a new disk toD such that these two vertices get
connected by a path of length 2. The new set of disks gives an “extended” disk graph. In
this case,A outputs a non-feasible labeling for it. This gives a contradiction. Hence,A must
use|D| distinct labels for all the vertices inV (G).

Thus, the maximum label used byA for G is at least|D| = n. However,�(p1,p2)
(G) = 1.

Hence, the competitive ratio ofA is bounded byn from below. �

Notice that this result can be generalized for anyk-tuple (p1, p2, . . . , pk) of distance
constrains. Now we are ready to present a general lower bound.

Theorem 5.4. Let (p1, . . . , pk) be a fixed k-tuple of distance constraints, �� 1 be some
constant, and let

�̄ = 1 + �2

9
max
i=2,...,k

{i2pi}.
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ak

t

Fig. 13. The setD of a2
k

unit disks.

D( j,l )

i 1 σ

D j l

Fig. 14. DisksDj,l andDj ′,l′ .

Then, there is no(�̄ − ε)-competitive onlineL(p1,...,pk)-labeling algorithm for the class
of �-disk graphs, even if there is an upper bound on� and any�-disk graph occurs as a
sequence of disks in the online input.

Proof. Take anyt ∈ (1,√2) and defineak = �(((k − 1)� + 1)/t
√

2)+ 1�. Next, define a
setD = {D1,1,D1,2, . . . , Dak,ak } of a2

k unit disks, where each diskDj,l is defined by its
center in(j · t, l · t), and allj, l are integers from{1,2, . . . , ak}. All disks are mutually
disjoint and the centers of any two closest disks are at plane distancet. For an illustration
see Fig.13.

Consider the unit disk graphG given byD. Clearly,G consists ofa2
k independent vertices

(disks). In the offline case, we only need one label forG, i.e.,

�(p1,...,pk)
(G) = 1.

Now consider two disksDj,l andDj ′,l′ in D with coordinatesj, l andj ′, l′, respectively.
Let ai = �(((i − 1)� + 1)/t

√
2) + 1� for i = 2, . . . , k. Let i be the minimum such that

|j − j ′|� ai and|l − l′|� ai . Then,Dj,l andDj ′,l′ are at plane distance at most(i − 1) · �.
We construct a setD(j, l, j ′, l′) of (i − 1) disks of diameter� which will connectDj,l and
Dj ′,l′ by a path of length at mosti. For an illustration see Fig.14. In other words, in the
�-disk graphG(j, l, j ′, l′) given byD ∪D(j, l, j ′, l′) the vertices of disksDj,l andDj ′,l′
are at graph distancei.

Let A be a required onlineL(p1,...,pk)-labeling algorithm for the class of�-disk graphs.
We present the disks ofD in an arbitrary order toA. For somei from {2, . . . , k}, letDj,l and
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Dj ′,l′ be any two disks inD such that|j − j ′|� ai and|l − l′|� ai . If A assigns the labels
toDj,l andDj ′,l′ which differ by at mostpi − 1, then we add the disks ofD(j, l, j ′, l′) to
D. In this case,A outputs a non-feasible labeling for a�-disk graphG(j, l, j ′, l′) given by
D ∪D(j, l, j ′, l′). This is a contradiction.

In total, for eachi = 2, . . . , k, and for any two disks from setDi = {Dj,l |1� j, l� ai}
of a2

i disks,A assigns the labels which differ by at leastpi . As in Lemma5.2, for each
i = 2, . . . , k the maximum label used byA is at least

1 + pi · (a2 − 1) = 1 +
(⌊
(i − 1)� + 1

t
√

2
+ 1

⌋2

− 1

)
.

In total, the maximum label used byA for a�-disk graphG given byD is at least

1 + max
i=2,...,k

{(⌊
(i − 1)� + 1

t
√

2
+ 1

⌋2

− 1

)
pi

}

and fort = 3
2
√

2

�̄ = 1 + �2

9
max

i= 2,...,k
{i2 · pi}.

From another side,�(p1,...,pk)
(G) = 1. Hence,A cannot be better than(�̄ − ε)-competitive,

for anyε > 0. �

From Theorems4.3and5.4we have the following result.

Corollary 5.5. For any fixed k-tuple(p1, . . . , pk) of distance constraints(k� 2), the com-
petitive ratio of the algorithmODL is at mostO(logk) times larger than the competitive
ratio of any onlineL(p1,...,pk)-labeling algorithm for the class of�-disk graphs with at least
one edge. Therefore, the algorithmODL is asymptotically optimal.

Proof. Take a setD of unit disks as described in the proof of Theorem5.4. Add a pair of
new intersecting disks. These two disks intersect no disk inD.

Let G be a�-disk graph given byD and the new disks. There is only one edge inG. We
can use label 1 for all disks inD, and use labels 1 andp1 + 1 for the new disks. Hence, we
can show that

�(p1,...,pk)
= p1 + 1.

Then, following the proof of Theorem5.4we can show that a lower bound on the com-
petitive ratio of any online algorithm is at least

1 + (�2/9)maxi=2,...,k{i2pi}
1 + p1

� c · �2 maxi=2,...,k{i2pi}
1 + p1

, (8)

wherec is some suitable constant which neither depends on� nor (p1, . . . , pk).
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From another side, by using Theorems3.1and4.3, we can show that an upper bound on
the competitive ratio of our algorithm ODL is at most

2�∗

1 + p1
= 2 · 1 + 6(4(2p1 − 1)+∑a

m=2(m+ 1) · (2p�(3m−4)/4�� − 1))

1 + p1

� c′ · �2∑k
i=2 ipi

1 + p1
+ O(1), (9)

wherec′ is some suitable constant which also neither depends on� nor (p1, . . . , pk).
Let s� 2 be such thatpi� (s2/i2) · ps for all i = 2, . . . , k. Heres ∈ {2, . . . , k} delivers

the maximum toi2 · pi . Then,

k∑
i=2
i · pi�

k∑
i=2

(
s2

i

)
· ps = s2 · ps

(
k∑
i=2

1

i

)
� max

i=2,...,k
{i2pi} · O(log k). (10)

Indeed, we can combine (8)–(10). This will show that the competitive ratio of our algo-
rithm OLD is at most O(log k) times the competitive ratio of any onlineL(p1,...,pk)-labeling
algorithm. �

6. Offline labeling of unit disk graphs

Here we explore the offline version of the distance-constrained labeling problem in the
case whenk = 2 and distance constrains(p1, p2) = (2,1). We deal with unit disk graphs.
First, we consider the case when the disk representation of unit disk graphs is given, and
present a simple approximation algorithm which is based on the so-calledcuttingtechnique.
Then, we present a robust algorithm, i.e., it does not require the disk representation and either
outputs a feasible labeling, or shows that the input graph is not a unit disk graph.

6.1. Cutting technique and strip graphs

The main idea of our cutting technique is rather simple: We “cut” the plane into strips of
small width. Then, we take a unit disk graph and split it into several “strip” unit disk graphs
which are induced by the strips. Finally, we label each strip disk graph, and combine all
these together into one labeling for the original unit disk graph.

A unit disk graphG is called a 1√
2
-strip unit disk graphif there is a mappingf :V (G) →

R × [0, 1√
2
] such that(u, v) ∈ E(G) iff distE (f (u), f (v))� 1. Informally,G is given by a

setD of unit disks such that each disk fromD has its center in astrip of width 1√
2
. For an

illustration see Fig.15.
We will use the following simple properties which were mentioned in the introduction.

Let G be a graph. LetG2 be the second power ofG, i.e. a graph which arises fromG by
adding the edges which connect all vertices at graph distance 2. Then, a coloring ofG2 is
anL(1,1)-labeling ofG and vise versa, i.e.

�(1,1)(G) = �(G2).



J. Fiala et al. / Theoretical Computer Science 326 (2004) 261–292 281

1 2

Fig. 15. A 1√
2

-strip unit disk graph.
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Fig. 16. AnL(2,2)-labeling ofG and a coloring ofG2.

Furthermore, by multiplying all labels in anL(1,1)-labeling forG by 2 we can obtain an
L(2,2)-labeling forG, i.e.

�(2,1)(G)� �(2,2)(G)� 2 · �(1,1)(G).

For an illustration see Fig.16.

6.2. Coloring and labeling of strip graphs

We start with the following result.

Lemma 6.1. Let G be a 1√
2
-strip unit disk graph and letv be a vertex such that the unit disk

corresponding tov has the least x-coordinate. Then, forG2, the cardinality of the vertex set

NG2(v) = {u ∈ V (G)− {v}: distG(u, v)� 2}

is at most3�(G)− 1.

Proof. There is astrip of width 1√
2
, and each vertexv in G corresponds to a unit diskDv

with the center in this strip. Letv be a vertex inG which unit diskDv has the smallest
x-coordinate. For an illustration see Figs.17.

Consider all verticesu in V (G) which are at graph distance at most 2 fromv, i.e.
distG(u, v)� 2. Then, for each suchu, the x-coordinate of diskDu and diskDv differ
by at most 2, see Figs.17(a) and (b).
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Fig. 17. A 1√
2

-strip unit disk graph.

Consider all disks in a square of side1√
2
, see Fig.17(b). Clearly, all of them intersect in

pairs. This forms a clique inG. Hence, we can bound the maximum number of the disks in
a square by�(G).

Consider all disksDu in a rectangleRof width 1√
2

and length 2, see Fig.17(c). It can be

covered by three squares of width1√
2
. Hence the maximum number of disks inR is at most

3�(G).
Consider verticesu from NG2(v). Eachu is at graph distance at most 2 fromv in G.

Hence, each diskDu is in a rectangleR having the center of diskDv on its left side. For
an illustration see Fig.18. Excepting diskDv the number of such disksDu in R is at most
3�(G)− 1. Hence, we can bound|NG2(v)| by 3�(G)− 1. �

Let G be 1√
2
-strip unit disk graph. LetDv be the disk ofv ∈ V (G). We order verticesv

in V (G) such that thex-coordinate of disksDv does not increase. If|V (G)| = n, then such
andecreasingorder≺ for the vertices ofV (G) can be found in O(n log n) time.

Informally, given a vertexv and all verticesu in V (G) such thatv ≺ u, diskDv has
the leastx-coordinate within all disksDu. For an illustration see Fig.18. Then, by using
Lemma6.1, for each vertexv we can bound the number of such verticesu in NG2(v) by
3�(G)− 1.

This helps in the following coloring algorithm:

FIRST FIT COLORING(FFC):
Input: A 1√

2
-strip unit disk graphG,

Output: A coloring ofG2.
Select verticesv fromG(V ) in adecreasingorder≺ while coloring with an initial
sequence of colors 1,2, . . . .Assign the vertexv the least color that has not already
been assigned to any vertexu adjacent tov in G2.
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v

uv

R

Fig. 18. A vertexv ∈ V (G) and a vertexu ∈ NG2(v).

Lemma 6.2. The maximum color used by the algorithmFFC is bounded by3�(G).

Proof. For the first vertex in the order the algorithm FFC uses color 1. Then, for each next
vertexv the algorithm FFC assigns the least color which is not used for verticesu inNG2(v).
As we know, the number of colored verticesu inNG2(v) is bounded by 3�(G)− 1. Hence,
FFC only uses colors from{1,2, . . . ,3�(G)}. �

Now we can give the following simple labeling algorithm:

STRIP LABELING (SL):
Input: A 1√

2
-strip unit disk graphG,

Output: An L(2,1)-labeling ofG.
1. Find anL(1,1)-labeling forG.
2. Multiply all labels by 2.

Lemma 6.3. The maximum label used by the algorithmSL is bounded by6�(G). Further-
more, all labels used are even.

Proof. By Lemma6.2 we can colorG2 with at most 3�(G) colors. This gives a feasible
L(1,1)-labeling forG. Then, we multiply all labels by 2. This gives a feasibleL(2,2)-labeling
for G which is also a feasibleL(2,1)-labeling forG. Thus, all labels used are even, and the
maximum label used is at most 2· (3�(G)) = 6�(G). �
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Fig. 19. StripsS0, S1, . . . , Sk .

6.3. Cutting of unit disk graphs

Now we are ready to describe an approximation algorithm for labeling of unit disk
graphs. W.l.o.g. we assume that a unit disk graphG is connected and has at least one edge,
i.e.�(G)� 2.

Given a unit disk graphG, we partition the plane intok = O(|V (G)|) stripsS0, S1,
. . ., Sk of width 1√

2
. StripS0 contains a disk with the mosty-coordinate andSk contains a

disk the leasty-coordinate. All other strips are numbered from top to bottom, respectively.
For an illustration see Fig.19. This partition induces a partition ofG into 1√

2
-strip unit

disk graphsG0, . . . ,Gk. In the case of disks with centers in two strips ties are broken
arbitrarily.

Our main idea is as follows. Consider consecutive stripsS0, S1, S2 andS3, S4, S5. The
width of each strip is 1√

2
, and the width of two consecutive strips

√
2 is larger than the

diameter of a unit disk. Thus, two disks inS0, S1, S2 or S3, S4, S5 can intersect. However,
no disk inS0 (S1,S2) can intersect with a disk inS3 (S4, S5), see Fig.19.

We are interested in anL(2,1)-labeling. Hence, any two vertices in∪3
i=1Gi or in ∪5

i=3Gi
may require their labels be different by 2, and any vertex inG0 (G1,G2) and any vertex in
G3 (G4,G5) may require their labels be different by 1. By using the algorithm SL we find
anL(2,1)-labeling for eachGi , i = 0, . . . ,5. By Lemma6.3, we can bound the maximum
label used as maxi �(Gi)��(G). Furthermore, all labels are even.
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To obtain a feasibleL(2,1)-labeling for∪3
i=1Gi , we let the labels ofG0 be the same

(increase by 0), and increase the labels ofG1 andG2 by 6�(G) and 12�(G), respectively.
This defines all labels be even, and any two labels be different by at least 2. To obtain a
feasibleL(2,1)-labeling for∪5

i=3Gi , we decrease the labels ofG3 by 1 (increase by−1), and
increase the labels ofG4 andG5 by 6�(G)− 1 and 12�(G)− 1, respectively. (Remember
�(G)� 2.) This defines all labels be odd, and any two labels of∪5

i=3Gi be different by at
least 2. Finally, we simply combine both parts. Since the labels of∪3

i=1Gi are even and the
labels of∪5

i=3Gi are odd, it holds that any vertex inG0 (G1,G2) and any vertex inG3 (G4,
G5) differ by 1. Hence, we have found a feasibleL(2,1)-labeling for∪5

i=0Gi .
By generalizing this idea we present the final algorithm:

CUTTING DISTANCE LABELING (CDL):
Input: A unit disk graphG,
Output: An L(2,1)-labeling forG.
1. Partition the plane intok = O(V (G)) stripsS0, . . . , Sk of width 1√

2
.

2. For eachi ∈ {0, . . . , k} find anL(2,1)-labeling ofGi .
3. Change the labels of graphGi by adding integer #(imod 6), where

(#0, . . . ,#5) = (0, 6�(G), 12�(G), −1, 6�(G)− 1, 12�(G)− 1).

Theorem 6.4. The maximum label used by the algorithmCDL is at most18�(G).

Proof. By Lemma 6.3, the maximum label used on everyGi (i = 1, . . . , k) is at
most 6�(G). Hence, the maximal label assigned by the algorithm CDL is at most
12�(G)+ 6�(G). �

Corollary 6.5. The approximation ratio of the algorithmCDL is bounded by12,and the
bound tens to9 as the clique number�(G) of unit disk graphs grows to infinity.

Proof.W.l.o.g. we can assume that�(G)� 2. Then, in order to label a clique of size�(G)
we must use the maximum label at least 1+ p1(�(G) − 1), wherep1 = 2. Thus, by
Theorem6.4, the approximation ratio of CDL is bounded by

18�(G)
2�(G)− 1

.

For �(G) = 2, the bound is equal to 12. If�(G) grows to infinity, then the bound
tens to 9. �

As the last note, it is not hard to observe that1√
2
-strips were used in the description

of the algorithm to simplify the explanation. To avoid irrational numbers,1√
2
-strips in the

algorithm can be replaced byc-strips, wherec is any rational number between23 and 1√
2
.
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6.4. Robust algorithms

Here we present an approximation labeling algorithm which does not need the disk
representation of a unit disk graph as a part of the input. (Recall that it is NP-hard to
recognize unit disk graphs.)

An algorithm which solves an optimization problem on a classC of inputs is calledrobust
if it satisfies the following conditions[27]:
1. Whenever the input is inC, the algorithm finds the correct solution.
2. If the input is not inC, then the algorithm either finds the correct solution, or reports that

the input is not inC.
Based on the ideas of[6], a robust algorithm computing the maximal clique of a unit disk

graph is given in[27]. Every unit disk graph has an edge orderinge1 ≺e · · · ≺e em such
that for every edgeei the neighbors of its endpoints induce a cobipartite subgraphCi (i.e.,
the complement of a bipartite graph) of a graph induced by{e1, . . . , ei}. If such an ordering
≺e exists, then each clique is contained in the cobipartite graphCi for some edgeei . The
robust algorithm first constructs (if any exists) an edge ordering≺e in time O(m2n), and
then the algorithm finds a maximal clique in each graphCi . This is equivalent to finding
the maximum independent set in a bipartite graph which can be done in O(m

√
n) time by

using the matching technique[16]. Therefore, the running time of the entire algorithm is
O(m2n).

Let G be a unit disk graph and letG2 be the second power ofG, i.e. a graph which arises
from G by adding the edges which connect all vertices at graph distance 2. Then, we can
prove the following simple result:

Lemma 6.6. Every unit disk graph G has a vertex v such that the set

NG(v) = {u 	= v: {u, v} ∈ E(G)} (11)

contains at most3�(G)− 3 vertices and the set

NG2(v)−NG(v) (12)

contains at most11�(G) vertices.

Proof. Let G be a unit disk graph. LetDv be the unit disk ofv ∈ V (G). Then, we can select
a vertexv such thatDv has the leasty coordinate. For an illustration see Fig.20.

Now consider the sector partition aroundv depicted in Fig.21. There are 14 sectorsSi ,
i = 1, . . . ,14. Consider a vertexu in V (G). We sayDu is inSi (i = 1, . . . ,14) if its center
in Si . To break ties, any disk on a border of two sectors is in the sector with smaller index.

Then, we have the following property. Ifu ∈ NG(v), i.e.Du intersectsDv, thenDu in
one of sectorsSi , i = 1,2,3. If u ∈ NG2(v)− NG(v), i.e. there is a disk which intersects
Dv andDu, thenDu in one of sectorsSi , i = 4, . . . ,14.
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y

v

Fig. 20. A vertexv with the leasty-coordinate.
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Fig. 21. The sector partition around a vertexv.

The sectors are constructed such that any two unit disks in one sector intersect. Thus,
for each sectorSi , i = 1, . . . ,14, verticesu from V (G) with disksDu in Si form a clique.
Hence, for each sectorSi , i = 1,2,3, we can bound the number of the disks by�(G)− 1
(excepting ourDv), and for each sectorSi , i = 4, . . . ,14, we can bound the number of
disks by�(G). In total, we can bound|NG(v)| by 3(�(G)− 1), andNG2(v)− NG(v) by
(14− 3)�(G). �

We say that a vertex orderingv1 ≺ · · · ≺ vn of G is good if for every 2� i� n:
(i) |NG(vi) ∩ {v1, . . . , vi−1}|� 3�(G) − 3; (ii) |(NG2(vi) − NG(vi)) ∩ {v1, . . . , vi−1}|�
11�(G).

Notice, that by Lemma6.6 every unit disk graph has a good vertex ordering. Also,
for a graphG one can either find a good vertex ordering, or conclude that there is
no good ordering forG. Furthermore, ifG has n vertices, this can be done in O(n3)

time.
Now we are ready to present a robustL(2,1)-labeling approximation algorithm for unit disk

graphs.The algorithm described below, called RDL, does not require the disk representation.
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It either concludes that a graphG is not a unit disk graph, or it finds anL(2,1)-labeling ofG.

ROBUST DISTANCE LABELING(RDL):
Input: A graphG given as an adjacency list.
Output: An L(2,1)-labelingc of V (G), or the conclusion thatG is not a unit

disk graph.
1. Run the robust algorithm to compute�(G). This algorithm either computes�(G)

or concludes thatG is not a unit disk graph.
2. Find a good vertex orderingv1 ≺ . . . ≺ vn. If there is no such ordering, then

conclude thatG is not a unit disk graph.
3. Label vertices sequentially in the order≺ as follows:

3a. Let verticesv1, . . . , vi−1 be already labeled.
3b. Let�� 1 be the smallest integer which is neither a label of vertices in

NG2(vi) ∩ {v1, . . . , vi−1}

nor a member of the set

⋃
j<i: vj∈NG(vi ){c(vj )− 1, c(vj ), c(vj )+ 1}.

3c. Labelvi by c(vi) = �.

Theorem 6.7. For any graph G, the algorithmRDL either produces anL(2,1)-labeling for
G with the maximum label at most20�(G)−8,or concludes that G is not a unit disk graph.

Proof. Suppose that the algorithm RDL outputs thatG is not a unit disk graph. If it occurs
after the first step, thenG has no edge ordering≺e and therefore is not a unit disk graph. If
the algorithm halts at the second step, then its conclusion is verified by Lemma6.6.

Suppose that RDL outputs a labeling. Let us first show that the maximum label used
by the algorithm is not larger than 20�(G) − 8. We proceed by induction. The vertexv1
is labeled by 1, hence both sets declared in 3b are empty. Suppose that we have labeled
verticesv1, . . . , vi−1. We need to assign a label tovi . If a neighbor ofvi has a labelx then
labelsx − 1, x andx + 1 are “forbidden” forvi . If a vertex at distance two fromvi has a
labelx thenx is “forbidden” for vi . By (11),vi has at most 3�(G) − 3 labeled vertices in
NG(vi). By (12), there are at most 11�(G) labeled vertices inNG2(vi)− NG(vi). Hence,
the total number of “forbidden” labels forvi is at most

3 · (3�(G)− 3)+ 11�(G) = 20�(G)− 9.

Since there are 20�(G)− 8 labels, it holdsc(vi)� 20�(G)− 8. �

Corollary 6.8. The approximation ratio of the algorithmRDL is bounded by32
3 ≈ 10.67,

and the bound tens to 10 as the clique number of an input graph grows to infinity.
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Proof. W.l.o.g. we can assume that�(G)� 2. Then, in order to label a clique of
size�(G), the maximum label used is at least 1+ p1(�(G)− 1), wherep1 = 2. Thus, by
Theorem 6.7, the performance ratio of RDL is bounded by

20�(G)− 8

2�(G)− 1
.

For�(G) = 2, the bound is equal to32
3 ≈ 10.67. If �(G) grows to infinity, then the bound

tens to 10. �

7. General offline labeling of�-disk graphs

Here we discuss an offline labeling algorithm for�-disk graphs. We assume that the disk
representation of�-disk graphs is not given. We will need the following simple result:

Lemma 7.1. For each vertex v in a�-disk graph G, the set

N
(k)
G (v) = {u 	= v: distG(u, v)� k}

consists of at most(8k)2�2�(G) vertices.

Proof. LetDv be the disk forv ∈ V (G). Assume w.l.o.g. that the smallest disk diameter is
equal to 1, and the largest disk diameter is equal to�.

Take a vertexv ∈ V (G) and consideru ∈ N
(k)
G (v). The centers ofDv andDu are at

plane distance at mostk� from each other. For illustration see Fig.22.
Consider a squareSof width 4k�. We put the center ofSat the center ofDv. Then, all

disksDu, u ∈ N
(k)
G (v), fall into S. Next, we partitionS into (4)2(2)2k2�2 small squares

of width 1/2. For an illustration see Fig.23. Any two disks that fall into a small square
intersect. Hence, the set of verticesu ∈ N(k)G (v) which have disksDu in one small square
form a clique. Thus, the number of vertices in any such set is bounded by the maximum
clique number�(G). In total, we can bound|N(k)G (v)| by (8)2k2�2�(G). �

v

u

Fig. 22. Verticesv andv′.
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1
2

4kσ

u

v

Fig. 23. A squareSat a vertexv.

Consider the following algorithm:

FIRST FIT LABELING (FFL):
Input: A �-graphG in an adjacency list, and ak-tuple(p1, p2, . . . , pk) of distance
constraints.
Output: An L(p1,...,pk)-labeling forG.
For eachv ∈ V (G) findN(k)G (v). Select verticesv fromG(V ) in an arbitrary order
while labeling with an initial sequence of labels 1,2, . . . .Assign the vertexv the
least feasible label which respects(p1, . . . , pk).

Now we can prove the following main result.

Theorem 7.2. The algorithm FFL is an O(k2�2)-approximateL(p1,...,pk)-labeling algo-
rithm for the class of�-disk graphs.

Proof. Let G be a�-disk graph. Assume w.l.o.g. that the clique number�(G)� 2.
By Lemma 7.1, for any vertexv the number of vertices inN(k)G (v) is bounded by

(8k)2�2�(G). Even if any two labels foru ∈ N
(k)
G (v) differ by 2p1, that is more than

p1�p2� · · ·�pk, the label assigned tov by FFL is most

1 + 2p1((8k)
2�2�(G)).

From another side, in labeling a clique of size�(G) the maximum label is at least

1 + p1(�(G)− 1).
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Since�(G)� 2, the approximation ratio of FFL is bounded by

1 + 2p1((8k)2�2�(G))
1 + p1(�(G)− 1)

= O(k2�2). �

8. Conclusions

The distance constrained labeling problem, which is a natural generalization of the color-
ing problem, has only recently received increasing attention. In this paper, we considered the
distance constrained labeling problem for the class of disk graphs. We presented a number
of approximation and online algorithms for different variants of disk graphs and distance
constraints, obtaining the first results in this direction. The techniques used, e.g. hexagonal
tiling, circular labeling, plane cutting and neighborhood sectoring, are quite general and
can be used in the design of online and offline algorithms for many other variants of the
labeling problem. Furthermore, these techniques are very simple and do not require larger
computational resources, see a realization in[22].

Indeed, there are still many open questions. We name just a few of them. Concerning
the complexity, there is a need to understand the status of the general labeling problem,
previously studied in[8], andL(p1,p2)-labeling for planar graphs. Regarding disk graphs,
there is a need to clarify the importance of disk representation, robustness. Regarding
distance constrains, one can considerL(3,2,1)-labeling for simple graph classes. Notice also
that even in the case ofL(2,1)-labeling of unit disk graphs, only very simple lower bounds
have been found so far. It is highly interesting to see any improvement on their values.
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