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Abstract

A disk graph is the intersection graph of a set of disks in the plane. kewple (p1, ..., pr)
of positive integers, a distance constrained labeling of a g@&phan assignment of labels to the
vertices ofG such that the labels of any pair of vertices at graph distaic& differ by at leastp;,
fori=1,..., k. Inthe case wheh=1 andpq =1, this gives a traditional coloring 6. We propose
and analyze several online and offline labeling algorithms for the class of disk graphs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In traditional coloring of a graph, any pair of vertices in the graph gets distinct col-
ors whenever they are adjacent by an edge, i.e. at graph distance one. For a long time
coloring of simple graph classes, e.g. paths, cycles, grids, interval graphs, planar graphs,
and etc., has been considered as a general model for the frequency assignment problem
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in radio network418,19,21,25,28]assuming that only frequencies used in “near” regions
should be well separated. However, due to the rapid development of mobile networks, new
theoretical approaches have emerged to model the problem assuming that frequencies used
in both “near” and “distant” regions should be properly separated. One of these is distance
constrained labeling, see e[f,2,5,11-13,20,29,24]

1.1. Clique, independent set, coloring, and labeling

Let G = (V, E) be a simple graph. A subs&t C V is acliqueif every two vertices
in V' are joined by an edge iB. A maximum cliqués, naturally, a clique whose number
of vertices is at least as large as that for any other clique in the graph, and ite&izg,
is called theclique numbeof G. A subsetV’ C V is anindependent seéf no its vertices
are adjacent. Similarly, maximum independent gstan independent set whose number of
vertices is atleast as large as that for any other clique in the graph, and itg §izgs called
theindependence numbef G. A (vertex)k-coloring of G is a functionc: V — {1, ..., k}
such thatc(u) # ¢(v) whenever vertices andv are joined by an edge ig, i.e. at graph
distance 1. If &-coloring of G exists, ther is calledk-colorable. Theechromatic number
of Gis defined as

%(G) = min{k: G is k-colorablg.

There are two simple facts. L&t be a subset o¥’. If V' is an independent set, then
the vertices ofV’’ can be colored in one color. if’ is a clique, the vertices df’ must be
colored in|V’| distinct colors. There is a trivial bound as

maxm(G), |VI/a(G)}< x(G). 1

Letk> 1 besomeinteger.Let > po> - - - > pr be anon-increasing sequence of positive
integers, calledlistance constraintAn L ,, .., -labeling or adistance constrained la-
beling of agraphG = (V, E) isafunctionc: V — {1, ..., L} suchthatc(u) — c(v)|> p;
whenever the graph distance betwesandv is at least, fori = 1,... k. Ifa L, -
labeling ofG exists, therG is calledL ;.. ,,)-labeled. Thepy, ..., pi)-labeling number
of Gis defined as

Lipr,pi)(G) = min{L: G is L,,,..., p,)-labeled.
First, we can observe the following simple factsk K= 1 andp; = 1, then
11 (G) = 2(G), 2
wherey(G) is the chromatic number @&. If p; = po =--- = pr = 1, then
1@....n(G) = 2(GY), (3

whereG* is thekth power ofG, i.e. a graph which arises fro@by adding the edges which
connect all the vertices at the graph distance at rkoBurthermore, as it was shown in
[9,13], for any integet it holds

Litprootp) (G =1 Ly, pp) (G) — 1)+ 1 (4)
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Hence, we can assume w.l.o.g. that all integesfs..., pr have no common divisor.
Combining @) and @), we can bound

X(lenpk)(G) < L(pt,....
= 14 p1(xa,.. 1(G) -1
= 14 p1(z(GH - D). (5)
Accordingly, fork = 2 and(p1, p2) = (2, 1) we have

121(6) < %@2,2(G)
= 2(11,n(G)-D+1
211)(G?)
21(G?). (6)

In [23] it was shown that for any fixe@> 2 finding the value of¢(G*) is an NP-hard
problem. Furthermore, even if one restricts to a planar g@ptomputingy (G2) is still

an NP-hard problem. There is the long-standing Wegner’s conjef@0feFor any planar
graphG with the maximum degred(G)> 8, the chromatic number of the second power
grath2 is at Ieasu'%’zﬂ + 1. There are a number of recent results coming closer and closer
to the conjectured bound. The current best regit?) < :%A + 78 is due td24].

The mostintensively studied case of distance-constrained labetinrg Band(p1, p2) =
(2,1). The existence of aiL 1)-labeling was explored for different graph classes in
[2,5,12,13,29]The exact value of , ;, can be derived focycles and there are polynomial-
time algorithms which compute the valueyg$ ;, for treesandco-graphg5]. For any fixed
L> 4, the problem of recognizing grapkssuch thaty, ;,(G)< L is NP-completg10].

For a planar grapt, the problem of deciding whethgp, 1)(G)< 9 was shown to be NP-
complete in[2]. In [24] it was presented an approximation algorithm which produces an
L (py, pp)-labeling of a planar grapfs with the largest label at mo§(2p2 - 1AG) +

12py + 144p, — 78.

It is expected that for every-tuple of distance constrain{gs, ..., px) and a grapi,
there exists a bounHg such that for every.> Lg the decision probler;rg(pl .... oGS L
is NP-complete. So far, this conjecture has been prover fer 2 and(p1, p2), where
p1=>2p2 [8].

N

1.2. Disk graphs

LetD be a set of disks in the Euclidian plane. Any diskiis defined by its center and the
value of its diameter. Then, the intersection gr&pbf the disks irD is called adisk graph
andD is called itsdisk representatian_et dmin anddmax be the minimum and maximum
diameter values of the disks i Then, the value afmax/dmin is called thediameter ratio
of D, denoted also by (D). Lets be some constant. A disk graghs called as-disk graph
if there exists its representatihwhose diameter ratia(D) € (1, o]. If a(D) = 1, then
G is called aunit disk graph In the latter case, we assume w.l.0.g. that all the disk3 in
have unit diameter.

Interestingly, every planar graph igain graph that is, the intersection graph of interior-
disjoint disks[17]. Hence, the class of disk graphs is more general than the class of planar
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Fig. 1. Coloring-disk grapli-(2 1)-labeling.

graphs. The recognition problem of a (unit) disk graph is NP-har{B,4,15] Hence, an
algorithm that works on the set of graph’s disks as the input is substantially weaker than
one which works only on the sets of graph’s vertices and edges. From this point of view, the
requirement of a set of disks as the input is very strong. From another side, when dealing
with real-world applications, e.g. in constructing interference graphs for radio and mobile
telephony networks, some disk representation can be derived in a natural way.

There are a number of results on coloring of disk graphs. For a unit disk graph, the
3-coloring is NP-complete even when its disk representation is djermhere are a 3-
approximation algorithnfi3,26] and a 5-competitive algorithfi21,26] These algorithms
are given a set of unit disks as the input, but they can be also easily adjusted to the general
case[7]. Regarding disk graphs, there is a 5-approximation algorithm which also works
with a set of disks as the inp[#1]. On the other hand, there is no online coloring algorithm
with a constant competitive ratio for planar graghd]. Hence, there is no such online
algorithm for general disk graphs as well.

1.3. Our results

Here we consider the problem of distance-constrained labelirmgdi$ék graphs, both
given the disk representation and not. We present several offline and online algorithms for
the case of general distance constrais, ..., px) and for the case wheh = 2 and
(p1, p2) = (2,1). (For an illustration see Fidl.) We also derive several lower bounds.
These provide the first step in the study of the distance-constrained labeling problem for

disk graphs.
First, we deal with a fixe#-tuple of distance constraintgs, . .., pr). We give a simple
online L(,,. ... »,)-labeling algorithm which is given a sequence of disks as the input. The

algorithm is based on the so-calledxagonal tiling circular labeling andfirst-fit tech-
nigues. We derive an upper bound on its competitive ratio. We show for anyKitgue
(p1, ..., pr) and any fixed diameter ratio the algorithm is constant competitive. As an
example, we demonstrate the algorithm in the case wher? and(p1, p2) = (2, 1). We
show that foro-disk graphs with at least one edge and +/7/2 the competitive ratio of
the algorithm is bounded by 167. The ratio also tens to 2as the cligue number of an
input graph tens to infinity.

Next, we derive lower bounds for online coloring and labeling. We start with simple lower
bounds for unit disk graphs. We consider the case when the input is given as a sequence of
disks. We show that no online coloring algorithm can be better than 2-competitive, and no
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online L 2 1)-labeling algorithm can be better than 5-competitive. Then, we considesk
graphs. We prove that in the case when an algorithm is givegraph in an online manner
but neither its disk representation nor a boundsas given, the algorithm cannot achieve
a constant competitive ratio. In addition, we give a lower bound on any gebggal. ,,)-
labeling algorithm fots-disk graphs. By using this result we show that our online labeling
algorithm is asymptotically optimal for the class of disk graphs with at least one edge.
Finally, we deal with the offline setting. We explore the case 2 and(p1, p2) = (2, 1).
We present two approximation algorithms for unit disk graphs. The first algorithm is given
a set of unit disks as the input, and it is based on the so-aalfigidigtechnique. The second
algorithms isrobust what is, the algorithm is given a set of graph’s vertices and a set of
graph’s edges as the input, and it either outputs a feasible labeling or shows that the input
is not a unit disk graph. The approximation ratio of thittingalgorithm is bounded by 12,
whereas the approximation ratio of ttebustalgorithm is bounded by 1&7. The bounds
also tend to 9 and to 10 as the clique number of an input graph tens to infinity, respectively.
Finally, we present a simple general offlihg,, .. ,,)-labeling algorithm for-disk graphs.
For any fixeds andk the algorithm approximation ratio is constant®s?).
The following table summarizes known and new results for (online, offline) coloring and
labeling of unit disk graphs (UDG}-disk graphs €-DG), and general disk graphs (DG).

Offline Online

+ - + -
Coloring
UDG 3[26] 3[26] 5[21,26] 5[21,26]
o-DG 5[21] 5[21] YES [%] YES[7]
DG 5[21] 5[21] NO[7] NO [14]
L2, 1)-labeling
UDG 12[%] 10.6 [%] 16.67 [*] NO [x]
L(p,,....py-labeling
UDG YES[x] YES [%] YES [%] NO [*]
o-DG YES[%] YES [%] YES [%] NO [*]
DG ? ? NO[x] NO [*]

Here, “+/—"shows either the disk representation of graphs is given or not; “YES” means
a constant competitive algorithm; “NO” means that no constant competitive algorithms can
exist; “?” shows an open problem[«]” means a result presented in this paper; “hnumber”
corresponds to the approximation ratio or the competitive ratio of the respective algorithm.

1.4. Last remarks

We say that an algorithrA is anoffline L(,,, . ,,)-labeling algorithmif for any given
graphG it runs in polynomial time and outputs a propky,, ... ,,)-labeling of G. If the

.....



266 J. Fiala et al. / Theoretical Computer Science 326 (2004) 261—-292

algorithm. The valug is called theapproximation ratioof A. We say that an algorithi

is anonlineL(,,. .. »,)-labeling algorithmif for any graphG it properly labels the vertices

of G one by one in an externally determined ordeif the maximum label used is at most

P Aipu,...p(G), thenA'is called anp-competitivealgorithm. The valug is called the
competitive ratioof A. With respect to disk graphs, we always say whether disks are given
the input or not.

The rest of this paper is organized as follows. In Secfiame give some preliminary
results. In Sectior8 we introduce ircular labeling In Section4 we present a general
online algorithm and derive an upper bound on its competitive ratio. In Sesti@present
lower bounds for online coloring and labeling. In Sectibwe present two offlind. 2,1)-
labeling algorithms. In Sectionwe derive a general offline labeling algorithm. In the last
section we give some concluding remarks.

2. Preliminaries

In this section we give some preliminary results which will be used throughout the paper.
First, we introduce hexagonal cells on the plane and cell cliques in a disk graph. Then, we
introduce the plane-mesh distance, and derive some simple results.

Let £ be the Euclidean plane. Leat y be coordinates it€. For a graphG we will
write V(G) and E (G) to denote the sets @'s vertices and edges. Foreadisk graphG,
we will useD = {D, ..., D,} to denote a disk representation®f Then, for eachD;

(i =1,...,n) we will used; € R; and(x;, y;) to denote the diameter and centeraf,
respectively. For each vertexe V(G), we will use D, to denote the disk of. Thus, an
edgee = {u, v} € E(G) iff D, N D, # @. We will also writea(D) to denote the value of
maxd;/ min d;, that is, the diameter ratio &. We always assume(D) is at mosts. For
simplicity, we associate a class @fdisk graphs with its ratio bound. In many cases we
assume that is given in the input.

2.1. Cells

We will use the following partition of the planginto hexagons. Fat, j € Z we define
a unit hexagort; ; as the set of all pointéy, y) € £ such that:

2i —j—1<3V3x<2 —j+1,
i+j-1<3W3x+3)<i+j+1,
—i+2j-1<3(-V3x+3)< —i+2j+1

Here,C; ; contains exactly two adjacent corners of the bounding simplex, se@.Fige
cell side is equal to}. The largest diameter af; ; is equal to 1. So, the plane distance
between every two points insidg ; is at most 1. The smallest diameter@f; is equal to
V/3/2. This value is called the size ¢6f ;. Furthermore, each point of pladebelongs to
exactly one hexagog; ;, see Fig3. For simplicity, anyC; ; will be called acell, andC
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Fig. 2. A simplexC;;.

will denote the set of all cell§; ;, fori, j € Z. We will say that a diskD; belongs to a cell
C, ; iff the center(x;, y;) of D; belongs taC; ;.

2.2. Cell cliques

For a disk grapl given by a seD of disks, and a cell’; ; let
D(i, j) :={Dx | Dr € D and(xk, ) € Ci j}
be the set of all disks which belong @@ ;, and let
Vi, j)={veV(G)|Dy € DG, j)}

be the set of all vertices whose disks areirn;. Then, we can prove the following simple
result.

Lemma 2.1. For any disk graph Gany setV (i, j) induces a clique. Hen¢eéD (i, j)| =
|V (i, j)| is at most the clique number(G).

Proof. The distance between every two points insideCglis at most one. Hence, the disks
of any pair inD(i, j) intersect. This means that, v} € E(G) for any twou, v € V (i, j).
Hence,V (i, j) induces a clique is. [

2.3. Plane and mesh distance

Let diste(p, p’) be the standard plane distance between two pginis € £. Then, the
plane distancéetween two cell€ andC’ is defined as

diste(C, C") = inf{diste(p, p)) : p € C, p' € C'}.

We define an infinite triangular medh. With every cellC; ; € C we simply associate
a vertex(i, j), and connect any two vertices by an edge if the corresponding cells are
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(b)

Fig. 3. Cells-Mesh: (a) cells i@ and (b) mestM.

CO,m+l 1,m+1

m+1

(a) Co0 Cmizo () m+1

Fig. 4. Cells fori = 0andj = 0 andr = m + 1.

neighbors. For an illustration see F@.Accordingly, we will write disis(C;,;, Cs,;) t0
denote thenesh distancbetween two cell€; ; andCy ;. This is measured as the number
of edges in some shortest path connecting) and(s, ¢) in the mesh\.

Lemma 2.2. For m>2 and i, j € Z, each of cellsCiy, j, Ci j4s, Cits,j+:, Where
t € {m + 1, —m — 1}, have mesh distanae + 1 and plane distancén+/3/2) from Cij.
Furthermore any cell at mesh distance + 1 from C; ; has plane distance at least

151+ 3151

Proof. Recall that every cell has sizé3/2, see Fig2. For simplicity, we consider the case
wheni = 0 and; = 0 andr = m + 1, see Fig4. Clearly,C,,+1.0, Co.m+1 andCpyy1,m+1
are at mesh distanee+ 1, see Fig4(b). Furthermore, there arecells on the shortest line
from Co,0, see Fig4(a). Hence, the plane distancesis (+/3/2).

Now consider all the cells which are mesh distamcé 1 from Cg 0. From one side, the
“corner” cellsCy, 41,0 andC,,+1,,+1 are at the maximum plane distance fraigg. So, we
need to consider some “middle” cells. One can see that, the “middle” €&jlsy /2 if
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Cmimtt
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Fig. 5. Middle cells.
mis even andC| (u+1)/2),m+1r Cm+1—(m+1)/2),m+1 if Mis odd, are at the minimum plane

distance fromCp 0. For an illustration see Fig. Then, the minimum plane distance can
be bounded ap7 | times cell's diameter 1 anf; ] times the cell’s sid(%. This is equal to

151+30%1. O
Corollary 2.3. Form>2 andi, j € Z, cellsC; j, Cizm+1,j, Ci,j4m+1s Citm+1, j4m+1
have pairwise mesh distanee+ 1 and plane distance:/3/2.

Corollary 2.4. Leta = (Z"Tgl wherek>2 and 6> 1. Then, cellsC; ;, Ciy¢,j, Ci,j1+,
Cit1,j+1,Wheret € {a+1, —a — 1}, have pairwise mesh distanee- 1 and pairwise plane

distance greater thah - o.

2.4. Patterns

Letk>2 ando> 1. As in Corollary2.4, we defineu = [2"7‘;1. Then, the set of? cells

Cs, with s, 7 € {0, ..., a} is called a pattern. We say that a c€}l; € C belongs to the
(s, )th classif

i —1=smoda
and
j —1=tmoda.
In total, there are? classes. Informally, by shifting the pattern around the plane, we “copy”
its cells, see Fig6. Then, a cellC; ; belongs to thds, r)th class if it is a “copy” of the
(s, t)th cell in the pattern. Now we can prove the following simple result.

Lemma 2.5. Any two cells in the same class have plane distance greaterkthan

Proof. The proof follows the definition of classes and Corollarg. [
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Fig. 6. Shifting the pattern and copies@ o.

3. Circular labeling

Here we introduce and prove the existence of a speuiallar labelingfor the cells in
C. This will be used later in Sectich

Let o> 1 be some constant. Lépy, ..., px) be ak-tuple of distance constraints, where
p1= p2> --- = pr. LetC be the set of cell€;;, wherei, j € Z. We say that a mapping
¢:C— {1,2,...,¢}is ant-circular labeling of C with respect tap1, ..., px) andg if
for any two cellsC’ andC” in C at plane distance distC, C')<i - ¢ it holds

min{|p(C) — @(CHI, £ — 1p(C) — p(CH}= pi,

foralli e {1,...,k}.

For an illustration see Fig. Informally, we take a circle with vertices 2, ..., £. Then,
every cellC is assigned to a vertex(C) € {1, 2, ..., £}. The “circular distance” between
any two cellsC andC’ is equal to the number edges between vertig@s) andg(C’). This
can be defined as

min{|p(C) — @(CN|, £ — [p(C) — p(C)]}.

Then, we require any two celld andC’ at plane distance at most ¢ to be at “circular
distance” at leasp;, for alli € {1, ..., k}.
The existence of such a circular labeling is guaranteed by the following resuilt.
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Fig. 8. Labeling ofC.

Theorem 3.1. For every k-tuple(ps, ..., pr) ande> 1, an ¢*-circular labeling ofC can
be found inO(¢*a*k*) time, where

a
*:=1+6 (3(21)1 D+ Y (m+1)- (2pr@Em—a /401 — 1)) .
m=2

Proof. Givenk ando> 1, we definen = f%}, and define a pattern with all cels ;,
wheres, r € {0, ..., a}.

We select the cells in the pattern one by one while labeling with an initial sequence of
labels 12, 3, ... in afirst-fit manner. For a selected cé€l| ; from the pattern we first find
the least feasible label, ,, and then we define(C) = ¢, , for any cellC in the (s, 1)th
class. By Lemma.5, any two cells in the same class have plane distance greater than
Hence, at the end of the procedure we find a feasible circular labelifig of

In the following we show that* is a upper bound on the largest , label used in the
pattern, and the labeling procedure takes at mast€¥«*) steps. This will complete the
proof of the theorem.

Consider a celC in the pattern, see Fi§. By Corollary2.4, every cell which is at mesh
distance at least+ 1 is at plane distance greater thiamw. Hence, in order to find a feasible
label forC we need to check all already labeled cells at mesh distance atamost

There are six cells at mesh distance 1 frGyrsee Figs8(a) and (b). Each of these six
cells has plane distance at mostd from C. In the worst case, all six cells are labeled,
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and any two of the labels differ byyg2 — 1. Hence, in order to select a feasible label for
C we will “skip” at most §2p1 — 1) “forbidden” numbers. Similarly, for 12 cells at mesh
distance 2 fronC, we will “skip” at most 122p; — 1) “forbidden” numbers.

Form> 2, there are 6n + 1) cells at mesh distanee + 1 from C. By Lemma2.2, the
plane distance fror@ is at mostn+/3/2 but at least

51+ 03]

By the definition of a circular labeling, we need to find the least intéger such that

31+3[5)<t-m

We can bound it as follows:
= 2(15)+303)

1/m m
> (= — _
G ( 2 1+ 4)
(Bm — 4)
40
Then, in the worst case, alla + 1) cells are labeled, and any two of the labels differ by

2p1@Em-4/401 — L.

As before, in the worst case we will “skip” at most
6(m + 1)(2pram—a/461 — 1)

“forbidden” numbers.
In total, summing up for mesh distance 1, 2 and over @lh8+ 1< a at most

a
6 <3(2P1 =D+ > (m+1) - 2pram—a/40 — 1)) =" -1
m=2
numbers are “forbidden” be selected as a label forCefi the pattern.
There arez? = O(k%6?) cells in the pattern. For each c€llin the pattern we have to
check all cells at mesh distance at masand each cell for at mogt numbers. Thus, the
labeling procedure finds ati-circular labeling of in at most Q¢*k*¢*) time steps. [

3.1. Acircular 25-labeling foK p1, p2) = (2, 1)

Considerk = 2 and(p1, p2) = (2, 1). We take a pattern with 25 cells, and label the
cells of C as it is depicted in Fig9. One can see that any two cells with the same label

are at the plane distance at leasf® Furthermore, any two cells withand¢ + 1 labels

(¢ =1,...,24)are at the plane distance at Ie@t If we defines = 4 then & < 2V/3.

Hence, the depicted labeling is a 25-circular labeling with respegiftop,) = (2, 1) and
V7

O':T.
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Fig. 9. A 25-circular labeling wittip1, p2) = (2,1), 0 = g

4. General online labeling ofg-disk graphs

LetGbe ag-disk graphsgivenbyasét = {D1, ..., D,} of ndisksin€. In the following
we assume, w.l.o.g., that the coordinates of pl&aee scaled such that minimum diameter
is equal to 1 and the diameter ratiodfis at mosts. For a fixedk-tuple (p1, ..., pr) of
distance constraints, whepe> p>> - -- > pi, and afixedr> 1, we describe the following
online labeling algorithm:

ONLINE DISK LABELING (ODL):
Input: A k-tuple(ps, ..., pr),o0>1,andan ordered sequence ofdigks< - -- < D,,.
Output: An L, . ,-labelingc.
1. Find a circula*-labelingp : C — {1, ..., £*}.
2. For all cellsC;,; € C defineD(, j) :=#.
3. Select the disks one by one in the given order.
4. For a diskD,, perform

4a. FindC,-,j such tha’(xv, Yy) € Cl"j.

4b. Definev € V(G).

4c. Definec(v) := @(C; ;) + £ - |D(, j)I.

4d. PutD, into D(i, j).

Informally, for every new disk the algorithm assigns a label which consists two parts:
(1) the label of the cell which will contain this disk; (2§ times the number of the disks
which are already in the cell. The last part insures that all disk labels are properly separated.
So, we can prove the following result.

Lemma 4.1. The maximum label used BDL is most¢* - max; ; |D(, j)|.

Proof. The first disk inD (i, j) will get a label equal to

P(Ci < Lr.
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The last disk inD(i, j) will get a label equal to

@(Cij) + - (DG, HH< L - FTIJ?XID(i, DI

Since, ODL handles alb(i, j) separately, the maximum label used is bounded by
¢ -max|DG, j)l. O
LJ

Furthermore, we can prove the following result.

Lemma 4.2. Let G be the disk graph given by a set D of disks. Thienany ktuple
(p1, ..., pr) of distance constraints it holds that

Lippon (@)= 14 pr(@(G) — D=1+ py (ng?x{w(i, D - 1) :

Proof. LetK be a clique inG. Assume that one vertex K has the least label 1, and other
|K| — 1 vertices have larger labels. By the definition di@, ... ,,)-labeling, the labels of
any two vertices irk should differ by at leasp1. Thus, the minimum label fdf is at least

1+ p1(IK| = 1D).
By Lemma2.1for any setD(i, j) of disks, the vertices o¥ (i, j) form a clique inG and
|D(i, j)| = |V, j)| is at most the clique numbes(G). Thus, the(py, ..., px)-labeling
number ofG is at least 1 p1(w(G) —1). O
Combining the above results, we can prove the following main theorem:
Theorem 4.3. Forevery(ps, ..., pr) ande> 1,the algorithmODLisanonlineL ,, .. .-
labeling algorithm for the class af-disk graphs provided that it reserves a sequence of

disks as the inpufor anyo-disk graph Gthe competitive ratio o®DL is bounded by

o(G) - £* <o @)
1+ (w(G)—=1D-p1

Proof. Let G be theo-disk graph given by a disk s&. Notice that the value ofD(, j)|
does not depend on an order in which the diskB giresented to ODL. Hence, ODL is an
online Ly, ... py-labeling algorithm. Furthermore, by Lemméd and4.2, we can bound
its competitive ratio as it is defined i) This completes the proof. (I

Corollary 4.4. The algorithmODL is 2¢*/(1 4+ p1)-competitive for the class aef-disk
graphs with at least one edge. Furthermotike bound on its competitive ratio tens to
£*/ p1 as the clique number of an inpatdisk graph grows to infinity
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Proof. If a disk graphG has at least one edge, thexiG)> 2. From (7), for w(G) =
2,3,4,...we have

20* 3¢* 4% 0*
> > >
1+p1” 14+2p1” 14+3;m P1

This completes the proof. [

Corollary 4.5. For (p1, p2) = (2,1) ando = 4 there is an onlineL 2 1)-labeling
algorithm which competitive ratio is bounded B9 for the class ofo-disk graphs by
%) ~ 16.67 for the class ofs-disk graphs of with at least one edgand the bound on
its competitive ratio tens t&2.5 as the cligue number of an inputdisk graph grows to

infinity.

Proof. We use the algorithm ODL combined with a 25-circular labeling depicted ingFig.
O

5. Lower bounds: online coloring and labeling

Here we present some lower bounds for online coloring and labeling of disk graphs.
5.1. Coloring of unit disk graphs

We start with a simple lower bound for online coloring of unit disk graphs.

Lemma 5.1. There is na(2 — ¢)-competitive coloring algorithm for the class of unit disk
graphs even if every unit disk graph occurs as a sequence of unit disks in the online input

Proof. Let A be an algorithm with competitive ratio 2 ¢, for somes > 0. Consider a
unit disk graphGpaq depicted in Figl0(a). Let the vertices ofipaq be ordered as shown
in Fig. 10(b).

From one side, vertices 1-6 form an independent set. The algo#itias to color them
by the same color. Ifit is not the case, th&is not(2 — ¢)-competitive. From another side,
vertices 1-12 form a bipartite graph. To color them properly, the algotimeeds exactly
two more colors. Then, vertices 13-15 require three extra colors. These vertices form a
triangle, so they cannot share the same color, and each of them is adjacent to three vertices
among 1-12 that are colored by three distinct colors.

In other wordsA is forced to use at least six colors for online coloringf,g However,
the graph is 3-colorable. Henokjs not an(2 — ¢)-competitive algorithm. O

5.2. Labeling of unit disk graphs

Now we present a simple lower bound for onlibg,,, ,,)-labeling of unit disk graphs.
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@)

Fig. 10. GraphGpgagfor coloring.

Fig. 11. GraphGpaqfor L2, 1)-labeling.

Lemma 5.2. For any 2-tuple (p1, p2) of distance constraints and > 0, there is no
(4p2 + 1 — e)-competitiveL ,,, »,)-labeling algorithm for the class of unit disk graphs
even if every unit disk graph occurs as a sequence of unit disks in the online input

Proof. Consider a unit disk grapfipag given by five “outer” unit disks 1, 2, 3, 4, 5 depicted
in Fig. 11. No two of these five disks intersect. Hence, in the offline case, one needs exactly
one label forGpad. Hence, we have that, 1)(Gpad) = 1.
LetAbe an onlinel,,, 5, -labeling for the class of unit disk graphs. For any online input
of a unit diskG, A always outputs a feasiblg,,,, ,,)-labeling ofG.
Itis not a matter in which order we present the disk&gfg, any two labels assigned by
A must differ by at leasp,. If it is not the case, then adding the “central” unit disk 6 leads
to a non-feasible labeling of the unit disk graph given by all disks 1, 2, 3, 4, 5, 6. This gives
a contradiction.
Thus, the maximum label assignedAyo the disks 0iGpaqis at least

1+ po+po+p2+p2=1+4po.

However,y; 1,(Gbad) = 1. Hence, the competitive ratio éfis at least 42 +1.  [J
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Fig. 12. A setD of disks.

5.3. General labeling of disk graphs

Letk = 2 and(p1, p2) be a 2-tuple of distance constraints. The following simple result
demonstrates the importance of information received in the online input.

Lemma 5.3. There is no constant competitive onlihg,, ,,-labeling algorithm for the
class ofg-disk graphsunless there is an upper bound erand anys-disk graph occurs
as a sequence of disks in the online input

Proof. Let D be a set oh mutually disjoint disks. For an illustration see Fik. LetG a
disk graph given by. Then, there are no edges@ andy,, ,,(G) = 1.

LetAbe a general onling,, ,,-labeling algorithm. We present the vertiae V(G)
in an arbitrary order. Assume that there exists a pair of verticEg@) which are assigned
the same label bj. Then we simply add a new disk B such that these two vertices get
connected by a path of length 2. The new set of disks gives an “extended” disk graph. In
this caseA outputs a non-feasible labeling for it. This gives a contradiction. Hehomyst
use|D| distinct labels for all the vertices ii(G).

Thus, the maximum label used Byfor G is at leastD| = n. However,(,, ,,(G) = 1.
Hence, the competitive ratio éfis bounded by from below. [

Notice that this result can be generalized for &yple (p1, p2, ..., pr) of distance
constrains. Now we are ready to present a general lower bound.

Theorem 5.4. Let (p1, ..., pr) be a fixed k-tuple of distance constrainds> 1 be some
constantand let

02 2
p=1+— max {i“p;}.
P + 9 i:2,...,k{l pi)
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Fig. 13. The seD of a? unit disks.
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Then there is no(p — &)-competitive onlineL(,,. .. ,,)-labeling algorithm for the class
of g-disk graphseven if there is an upper bound enand anys-disk graph occurs as a
sequence of disks in the online input

Proof. Take anyr € (1, v/2) and definey = [(((k — 1)o + 1)/1+/2) + 1]. Next, define a
setD = {D11, D12, ..., Dy 4} Of a,f unit disks, where each disR; ; is defined by its
centerin(j - t,1 - t), and all j, I are integers from{l, 2, ..., a;}. All disks are mutually
disjoint and the centers of any two closest disks are at plane distalRgean illustration
see Figl3.

Consider the unit disk grapgh given byD. Clearly,G consists oh,f independent vertices
(disks). In the offline case, we only need one labelGoi.e.,

L(prremn ) (O) = 1

Now consider two disk®; ; and D ; in D with coordinateg, / and;’, I, respectively.
Leta; = [(((i — 1o+ 1)/t/2) + 1] fori = 2, ..., k. Leti be the minimum such that
lj —j'|<a; and|l —I'|<q;. Then,D;; andDj ; are at plane distance at m@st- 1) - o.
We constructa sed(j, [, j/, 1) of (i — 1) disks of diametes which will connectD; ; and
D by a path of length at most For an illustration see Fid.4. In other words, in the
o-disk graphG(j, I, j’,1") givenbyD U D(j, 1, j',I') the vertices of disk®;; andD ;. ;
are at graph distande

Let A be a required onlin& ,,, .. »,)-labeling algorithm for the class ef-disk graphs.
We present the disks @F in an arbitrary order té. For somé from {2, ..., k},letD;; and
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Dy be any two disks i such thatj — j'|<a; and|l — I'|< ;. If Aassigns the labels
to D;; and Dy which differ by at mosp; — 1, then we add the disks @i(j, 7, j’,1’) to
D. In this caseA outputs a non-feasible labeling fowadisk graphG(j, 7, j', I’) given by
DUD(j,1, j,1l'). This is a contradiction.

In total, for eachi = 2, ..., k, and for any two disks from sd¥; = {D; ;1< j, I< a;)
of al? disks, A assigns the labels which differ by at least As in Lemmab.2, for each
i =2,...,kthe maximum label used is at least

(i —Do+1 2
14 pi- (@ -1 =1+ L——————+1 —-1).
pi - ( ) ( 2 |

In total, the maximum label used Byfor a o-disk graphG given byD is at least

(i —Do+1 2
1 Ty —1)p
e (| e <)

and forr =

3
22

2 2
p=1+— max {i“- p;}.
P + 9 i:2,...,k{l pi)

From another sidg;,, . ,,(G) = 1. HenceAcannot be better thagp — ¢)-competitive,
foranye > 0. O

From Theoremg.3and5.4we have the following result.

Corollary 5.5. For any fixed k-tupléps, ..., px) of distance constraint&> 2), the com-
petitive ratio of the algorithnODL is at mostO(log k) times larger than the competitive
ratio of any onlineL ..., -labeling algorithm for the class af-disk graphs with at least
one edge. Therefore, the algoritf@DL is asymptotically optimal

Proof. Take a seD of unit disks as described in the proof of Theorm. Add a pair of
new intersecting disks. These two disks intersect no digk in

Let G be ag-disk graph given byp and the new disks. There is only one edg&iwe
can use label 1 for all disks D, and use labels 1 angh + 1 for the new disks. Hence, we
can show that

Then, following the proof of Theore®.4we can show that a lower bound on the com-
petitive ratio of any online algorithm is at least

1+ (/9 max—a  ili’pi} o®max=z kli’pi)
1+p -

(8)

wherec is some suitable constant which neither depends oar (p1, .. ., pk).
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From another side, by using Theoret$and4.3, we can show that an upper bound on
the competitive ratio of our algorithm ODL is at most

2% 5. 1+6(42p1— 1)+ Y ;_om+1) - 2pram—a)/401 — 1)

1+p1 1+p1
2wk
o c_ i
< o TP o, ©)
1+p1
wherec’ is some suitable constant which also neither dependsrar (p1, ..., pr).

Lets> 2 be such thap; < (s2/i%) - ps foralli = 2, ..., k. Heres € {2, ..., k} delivers
the maximum ta? - p;. Then,

k k /2 k 1
> ipis< ) ( )p =52 py (2 ) < max (i’p;}-O(og k). (10)
i=2 i=2 1=5

1 i=21

Indeed, we can combin&)~(10). This will show that the competitive ratio of our algo-
rithm OLD is at most Qlog k) times the competitive ratio of any onliig,, . ,,)-labeling
algorithm. [

yeees

6. Offline labeling of unit disk graphs

Here we explore the offline version of the distance-constrained labeling problem in the
case whert = 2 and distance constrailig1, p2) = (2, 1). We deal with unit disk graphs.
First, we consider the case when the disk representation of unit disk graphs is given, and
present a simple approximation algorithm which is based on the so-calfé@ytechnique.
Then, we present arobustalgorithm, i.e., itdoes not require the disk representation and either
outputs a feasible labeling, or shows that the input graph is not a unit disk graph.

6.1. Cutting technique and strip graphs

The main idea of our cutting technique is rather simple: We “cut” the plane into strips of
small width. Then, we take a unit disk graph and split it into several “strip” unit disk graphs
which are induced by the strips. Finally, we label each strip disk graph, and combine all
these together into one labeling for the original unit disk graph.

A unit disk graphG is called a\/ié—strip unit disk graplif there is a mapping: V(G) —

R x [O, %] such thatu, v) € E(G) iff distg(f(u), f(v))< 1. Informally,G is given by a

setD of unit disks such that each disk frommhas its center in atrip of width iz For an

illustration see Figl5. vz

We will use the following simple properties which were mentioned in the introduction.
Let G be a graph. LeG? be the second power @, i.e. a graph which arises fro@ by
adding the edges which connect all vertices at graph distance 2. Then, a colo6ifidsof
an L, 1)-labeling of G and vise versa, i.e.

21.1)(G) = 1(GH).
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X(22(G) =8 X(G?) = 4

Fig. 16. AnL  »)-labeling of G and a coloring o2,

Furthermore, by multiplying all labels in a1, 1)-labeling forG by 2 we can obtain an
L 2,2 -labeling forG, i.e.

1(2’1)(G)< X(z,z)(G)< 2. X(l,l)(G)-

For an illustration see Fid.6.

6.2. Coloring and labeling of strip graphs
We start with the following result.

Lemma 6.1. Let G be a%z-strip unit disk graph and let be a vertex such that the unit disk

corresponding ta has the least x-coordinate. Thear G2, the cardinality of the vertex set
Ng2(v) = {u € V(G) — {v}:distg (u, v)< 2}
is at most3w(G) — 1.

Proof. There is astrip of width % and each vertex in G corresponds to a unit disk,

with the center in this strip. Let be a vertex inG which unit disk D, has the smallest
x-coordinate. For an illustration see Fidg.

Consider all verticest in V(G) which are at graph distance at most 2 frami.e.
dist; (1, v)< 2. Then, for each such, the x-coordinate of diskD, and diskD, differ
by at most 2, see Fig4.7(a) and (b).
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. i_ . . .
Fig. 17. A 7 strip unit disk graph.

Consider all disks in a square of si%, see Fig17(b). Clearly, all of them intersect in

pairs. This forms a clique i®. Hence, we can bound the maximum number of the disks in
a square by (G).

Consider all disk®D,, in a rectangldr of width 1

/2
covered by three squares of wid%. Hence the maximum number of disksRris at most
3w(G).

Consider vertices from Ns2(v). Eachu is at graph distance at most 2 framn G.
Hence, each disb, is in a rectanglék having the center of disk, on its left side. For
an illustration see Figl8. Excepting diskD, the number of such diskB, in Ris at most
3w(G) — 1. Hence, we can bour@/;2(v)| by 3w(G) — 1. [

and length 2, see Fig.7(c). It can be

LetG be iz-strip unit disk graph. LeD, be the disk ofv € V(G). We order vertices

in V(G) such that the-coordinate of disk®, does notincrease. |V (G)| = n, then such
andecreasingrder< for the vertices oV (G) can be found in @: log n) time.
Informally, given a vertexo and all verticesu in V(G) such thatv < u, disk D, has
the leastx-coordinate within all disksD,. For an illustration see Fid.8. Then, by using
Lemmaé.1, for each vertex we can bound the number of such verticei® Ns2(v) by
3w(G) — 1.
This helps in the following coloring algorithm:

FIRST FIT COLORING(FFC):

Input: A \/iz-strip unit disk graplG,

Output: A coloring of G2.

Select vertices from G (V) in adecreasingrder< while coloring with an initial
sequence of colors, 2, ... . Assign the vertex the least color that has not already

been assigned to any vertesadjacent ta in G2.




J. Fiala et al. / Theoretical Computer Science 326 (2004) 261—-292 283

Fig. 18. A vertexv € V(G) and a vertex € N2 (v).

Lemma 6.2. The maximum color used by the algoritiRCis bounded bBw(G).

Proof. For the first vertex in the order the algorithm FFC uses color 1. Then, for each next
vertexv the algorithm FFC assigns the least color which is not used for vetticeS ;2 (v).

As we know, the number of colored vertioed N;2(v) is bounded by &(G) — 1. Hence,

FFC only uses colors froffl, 2, ..., 3w(G)}. O

Now we can give the following simple labeling algorithm:

STRIP LABELING (SL):

Input: A Jiz-strip unit disk graplG,
Output: An L2 1)-labeling ofG.

1. Find anLy 1)-labeling forG.

2. Multiply all labels by 2.

Lemma 6.3. The maximum label used by the algoritBiis bounded bgw(G). Further-
more all labels used are even

Proof. By Lemma6.2 we can colorG? with at most 3»(G) colors. This gives a feasible
L1,1)-labeling forG. Then, we multiply all labels by 2. This gives a feasiblg »)-labeling

for G which is also a feasiblé ,,1)-labeling forG. Thus, all labels used are even, and the
maximum label used is at most 23w (G)) = 6w (G). O
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—1+60(G)

—1+12(G)

6.3. Cutting of unit disk graphs

Now we are ready to describe an approximation algorithm for labeling of unit disk
graphs. W.l.o.g. we assume that a unit disk gr@gh connected and has at least one edge,
i.e.w(G)>2.

Given a unit disk graplt, we partition the plane inté = O(|V(G)|) strips So, S1,

..., S of width % Strip Sp contains a disk with the mogtcoordinate and; contains a
disk the leasy-coordinate. All other strips are numbered from top to bottom, respectively.
For an illustration see Fidl9. This partition induces a partition @ into Jié-strip unit

disk graphsGo, ..., Gi. In the case of disks with centers in two strips ties are broken
arbitrarily.

Our main idea is as follows. Consider consecutive stffsS1, S> and Sz, Sg, Ss. The
width of each strip i%, and the width of two consecutive stripé2 is larger than the
diameter of a unit disk. Thus, two disks $g, S1, S2 or S3, Sa, S5 can intersect. However,
no disk inSp (S1,52) can intersect with a disk ifiz (S4, Ss), see Fig19.

We are interested in ah 1)-labeling. Hence, any two verticest'uf:lGi orin U?:BG,-
may require their labels be different by 2, and any verte&#(G1,G2) and any vertex in
G3 (G4, Gs) may require their labels be different by 1. By using the algorithm SL we find
an L 1)-labeling for eachG;,i =0, ..., 5. By Lemma6.3, we can bound the maximum
label used as maxu(G;)< w(G). Furthermore, all labels are even.
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To obtain a feasibld. 2 1)-labeling foruleG,-, we let the labels of5¢ be the same
(increase by 0), and increase the label§efand G, by 6w (G) and 120(G), respectively.
This defines all labels be even, and any two labels be different by at least 2. To obtain a
feasibleL (2 1)-labeling forUl.5:3Gi, we decrease the labels@g by 1 (increase by-1), and
increase the labels @f4 andGs by 6k (G) — 1 and 120(G) — 1, respectively. (Remember
w(G)>2.) This defines all labels be odd, and any two Iabelsl;rggG,- be different by at
least 2. Finally, we simply combine both parts. Since the Iabel§’gG,- are even and the
labels ofU?_,G; are odd, it holds that any vertex @&y (G1,G2) and any vertex itGz (G,
Gys) differ by 1. Hence, we have found a feasilile 1)-labeling forU?ZOG,».

By generalizing this idea we present the final algorithm:

CUTTING DISTANCE LABELING (CDL):

Input: A unit disk graphG,

Output: An L 1)-labeling forG.

1. Partition the plane intd = O(V (G)) stripsSo, .. ., Sx of width \%
2. Foreach € {0, ..., k} find anL 2 1)-labeling ofG;.

3. Change the labels of gragh by adding integer #mnod ¢, Where

(#o,...,#s5) = (0, 6w(G), 12w(G), —1, 6w(G) — 1, 12w(G) — 1).

Theorem 6.4. The maximum label used by the algoriti@DL is at mostl8uw(G).

Proof. By Lemma6.3, the maximum label used on evey; (i = 1,...,k) is at
most Go(G). Hence, the maximal label assigned by the algorithm CDL is at most
120(G) + 6w(G). O

Corollary 6.5. The approximation ratio of the algorith®@DL is bounded by.2, and the
bound tens t® as the clique numben(G) of unit disk graphs grows to infinity

Proof. W.l.o.g. we can assume tha{G)> 2. Then, in order to label a clique of siz&G)
we must use the maximum label at least-1p1(w(G) — 1), wherep; = 2. Thus, by
Theoremg.4, the approximation ratio of CDL is bounded by
18w(G)
20(G) — 1

For w(G) = 2, the bound is equal to 12. b(G) grows to infinity, then the bound
tensto 9. [

As the last note, it is not hard to observe tloz%t—strips were used in the description
of the algorithm to simplify the explanation. To avoid irrational numb%a—,strips in the
algorithm can be replaced laystrips, where is any rational number betwe%nnd%i.
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6.4. Robust algorithms

Here we present an approximation labeling algorithm which does not need the disk
representation of a unit disk graph as a part of the input. (Recall that it is NP-hard to
recognize unit disk graphs.)

An algorithm which solves an optimization problem on a clas$inputs is calledobust
if it satisfies the following conditionf27]:

1. Whenever the input is i, the algorithm finds the correct solution.
2. Ifthe inputis notirC, then the algorithm either finds the correct solution, or reports that
the inputis not irC.

Based on the ideas {8], a robust algorithm computing the maximal clique of a unit disk
graph is given if27]. Every unit disk graph has an edge ordering<, --- <. e, such
that for every edge; the neighbors of its endpoints induce a cobipartite subgéaphe.,
the complement of a bipartite graph) of a graph inducegby. . ., ¢;}. If such an ordering
<. exists, then each clique is contained in the cobipartite géapior some edge;. The
robust algorithm first constructs (if any exists) an edge ordexipn time O(m?n), and
then the algorithm finds a maximal clique in each graphThis is equivalent to finding
the maximum independent set in a bipartite graph which can be dongig/®) time by
using the matching techniqui#6]. Therefore, the running time of the entire algorithm is
O@m*“n).

Let G be a unit disk graph and l€t” be the second power &, i.e. a graph which arises
from G by adding the edges which connect all vertices at graph distance 2. Then, we can
prove the following simple result:

Lemma 6.6. Every unit disk graph G has a vertex v such that the set

NG () = {u # v:{u, v} € E(G)} 11)

contains at mos8w(G) — 3 vertices and the set

Ng2(v) — Ng(v) 12)

contains at most 1w (G) vertices

Proof. Let G be a unit disk graph. Ldb, be the unit disk ob € V(G). Then, we can select

a vertexv such thatD,, has the least coordinate. For an illustration see F2).
Now consider the sector partition aroundlepicted in Fig21. There are 14 sectot%,

i =1,...,14. Consider avertexin V(G). We sayD, isin S; (i =1, ..., 14) ifits center

in S;. To break ties, any disk on a border of two sectors is in the sector with smaller index.
Then, we have the following property.df € N (v), i.e. D, intersectsD,, thenD,, in

one of sectors;, i =1,2,3. If u € Ng2(v) — Ng(v), i.e. there is a disk which intersects

D, andD,, thenD, in one of sectors;,i =4, ..., 14.
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'

Fig. 21. The sector partition around a veriex

The sectors are constructed such that any two unit disks in one sector intersect. Thus,

for each sectos§;, i = 1, ..., 14, verticesu from V (G) with disks D, in S; form a clique.
Hence, for each sectst, i = 1, 2, 3, we can bound the number of the disksdG) — 1
(excepting ourD,), and for each sectd$;, i = 4, ..., 14, we can bound the number of

disks byw(G). In total, we can bountiVg (v)| by 3(w(G) — 1), andNg2(v) — Ng(v) by
14-3w(G). O

We say that a vertex orderingg < --- < v, of G is good if for every 2<i<n:

() ING (vi) N{v1, ..., vi—1 IS Bw(G) = 35 (i) [(Ng2(vi) — Ng(vi) N {vg, ..., vi—1}|<
11w(G).

Notice, that by Lemma.6 every unit disk graph has a good vertex ordering. Also,
for a graphG one can either find a good vertex ordering, or conclude that there is
no good ordering foiG. Furthermore, ifG hasn vertices, this can be done in(&)
time.

Now we are ready to present a robligi 1)-labeling approximation algorithm for unit disk
graphs. The algorithm described below, called RDL, does not require the disk representation.
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It either concludes that a grais not a unit disk graph, or it finds a» 1)-labeling ofG.

ROBUST DISTANCE LABELING (RDL):

Input: A graphG given as an adjacency list.

Output: An L2 1y-labelingc of V (G), or the conclusion thds is not a unit
disk graph.

1. Run the robust algorithm to computéG). This algorithm either computes(G)
or concludes thab is not a unit disk graph.

2. Find a good vertex ordering < ... < v,. If there is no such ordering, then
conclude thaG is not a unit disk graph.

3. Label vertices sequentially in the orderas follows:
3a. Let vertices, ..., v;_1 be already labeled.
3b. Let4> 1 be the smallest integer which is neither a label of vertices in

Nga2(vi) N{vy, ..., vi—1}
nor a member of the set
Uj<i:vjeNG(v,-){C(vj) =1 c(j)), c(vj)+1}.

3c. Labely; by c(v;) = 4.

Theorem 6.7. For any graph Gthe algorithmRDL either produces ai (2 1)-labeling for
G with the maximum label at ma&w(G) — 8, or concludes that G is not a unit disk graph

Proof. Suppose that the algorithm RDL outputs tkais not a unit disk graph. If it occurs
after the first step, the@ has no edge ordering, and therefore is not a unit disk graph. If
the algorithm halts at the second step, then its conclusion is verified by Lé&@ma

Suppose that RDL outputs a labeling. Let us first show that the maximum label used
by the algorithm is not larger than 20G) — 8. We proceed by induction. The vertex
is labeled by 1, hence both sets declared in 3b are empty. Suppose that we have labeled
verticesvy, ..., v;—1. We need to assign a label #p If a neighbor ofv; has a labek then
labelsx — 1, x andx + 1 are “forbidden” forv;. If a vertex at distance two fromy has a
labelx thenx is “forbidden” for v;. By (11),v; has at most 3(G) — 3 labeled vertices in
Ng (v;). By (12), there are at most &XG) labeled vertices iN;2(vi) — Ng(v;i). Hence,
the total number of “forbidden” labels faf is at most

3- (Bw(G) — 3) + 11w(G) = 20w(G) — 9.
Since there are 20(G) — 8 labels, it holds:(v;) < 20w(G) — 8. [

Corollary 6.8. The approximation ratio of the algorithRDL is bounded b%z ~ 10.67,
and the bound tens to 10 as the clique number of an input graph grows to infinity
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Proof. W.l.o.g. we can assume that(G)>2. Then, in order to label a clique of
sizew(G), the maximum label used is at least-1p; (w(G) — 1), wherep; = 2. Thus, by
Theorem 6.7, the performance ratio of RDL is bounded by

200(G) — 8
20(G) — 1"

Forw(G) = 2, the bound is equal t%g ~ 10.67. If w(G) grows to infinity, then the bound
tensto 10. O

7. General offline labeling ofo-disk graphs

Here we discuss an offline labeling algorithm #odisk graphs. We assume that the disk
representation of-disk graphs is not given. We will need the following simple result:

Lemma 7.1. For each vertex v in @&-disk graph Gthe set
NO () = {u # v: distg (. v)< k)

consists of at mosBk)2a2w(G) vertices

Proof. Let D, be the disk fow € V(G). Assume w.l.0.g. that the smallest disk diameter is
equal to 1, and the largest disk diameter is equal.to

Take a vertexw € V(G) and considen € N((;k)(v). The centers oD, and D,, are at
plane distance at mokt from each other. For illustration see FRR.

Consider a squars of width 4ke. We put the center db at the center oD,.. Then, all
disks D, u € Ng‘)(v), fall into S. Next, we partitionSinto (4)2(2)2k2¢2 small squares
of width 1/2. For an illustration see Fi®3. Any two disks that fall into a small square
intersect. Hence, the set of vertices Ng‘)(v) which have disk9, in one small square
form a clique. Thus, the number of vertices in any such set is bounded by the maximum
cliqgue number(G). In total, we can bound\’g‘)(vﬂ by (8)2k%c%w(G). O

Fig. 22. Verticesy andv’.
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4ko

Fig. 23. A squar&at a vertex.

Consider the following algorithm:

FIRST FIT LABELING (FFL):

Input: A g-graphG in an adjacency list, andlatuple (p1, p2, ..., px) of distance
constraints.

Output: An Lp,..... py-labeling forG.

For eactw € V(G) find Ng‘)(v). Select vertices from G (V) in an arbitrary order

while labeling with an initial sequence of labels2l . .. . Assign the vertex the
least feasible label which respe¢isi, . . ., px).

Now we can prove the following main result.

Theorem 7.2. The algorithm FFL is an (kzaz)—approximateL(,,l,__.,,,k)—labeling algo-
rithm for the class of-disk graphs.

Proof. Let G be ac-disk graph. Assume w.l.0.g. that the clique numbeé6) > 2.

By Lemma7.l, for any vertexv the number of vertices inNg‘)(v) is bounded by
(8k)252w(G). Even if any two labels for e N(G")(v) differ by 2p1, that is more than
p1= p2> - -- = pk, the label assigned toby FFL is most

1+ 2p1((86)°c*w(G)).

From another side, in labeling a clique of sizéG) the maximum label is at least

14+ pi(w(G) = 1).
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Sincew(G)> 2, the approximation ratio of FFL is bounded by

1+ 2p1((8k)%26?w(G))

_ 2 2
1+ po@G) =1 - o®e O

8. Conclusions

The distance constrained labeling problem, which is a natural generalization of the color-
ing problem, has only recently received increasing attention. In this paper, we considered the
distance constrained labeling problem for the class of disk graphs. We presented a number
of approximation and online algorithms for different variants of disk graphs and distance
constraints, obtaining the first results in this direction. The techniques used, e.g. hexagonal
tiling, circular labeling, plane cutting and neighborhood sectoring, are quite general and
can be used in the design of online and offline algorithms for many other variants of the
labeling problem. Furthermore, these techniques are very simple and do not require larger
computational resources, see a realizatiof2#j.

Indeed, there are still many open questions. We name just a few of them. Concerning
the complexity, there is a need to understand the status of the general labeling problem,
previously studied i8], andL,,, »,)-labeling for planar graphs. Regarding disk graphs,
there is a need to clarify the importance of disk representation, robustness. Regarding
distance constrains, one can consitlgy» 1)-labeling for simple graph classes. Notice also
that even in the case @f(2,1)-labeling of unit disk graphs, only very simple lower bounds
have been found so far. It is highly interesting to see any improvement on their values.
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