
DOI: 10.1007/s00453-004-1117-y

Algorithmica (2005) 41: 73–87 Algorithmica
© 2004 Springer Science+Business Media, Inc.

Graph Searching, Elimination Trees, and a
Generalization of Bandwidth1

Fedor V. Fomin,2 Pinar Heggernes,2 and Jan Arne Telle2

Abstract. The bandwidth minimization problem has a long history and a number of practical applications.
In this paper we introduce a natural extension of bandwidth to partially ordered layouts. We consider this
extension from three main viewpoints: graph searching, tree decompositions, and elimination orderings. The
three graph parameters pathwidth, profile, and bandwidth related to linear layouts can be defined by variants
of graph searching using a standard fugitive. Switching to an inert fugitive, the two former parameters are
extended to treewidth and fill-in, and our first viewpoint considers the analogous tree-like extension that
arises from the bandwidth variant. Bandwidth also has a definition in terms of ordered path decompositions,
and our second viewpoint extends this in a natural way to ordered tree decompositions. In showing that both
extensions are equivalent we employ the third viewpoint of elimination trees, as used in the field of sparse matrix
computations. We call the resulting parameter the treespan of a graph and prove some of its combinatorial and
algorithmic properties.

Key Words. Bandwidth, Graph searching, Elimination tree, Tree decomposition, Chordal graph.

1. Motivation through Graph Searching Games. Different versions of graph search-
ing has been attracting the attention of researchers from Discrete Mathematics and Com-
puter Science for a variety of elegant and unexpected applications in different and seem-
ingly unrelated fields. There is a strong resemblance of graph searching to certain pebble
games [17] that model sequential computation. Other applications of graph searching
can be found in VLSI theory since this game-theoretic approach to some important pa-
rameters of graph layouts such as the cutwidth [23], the topological bandwidth [22],
the bandwidth [9], the profile [10], and the vertex separation number [8] is very useful
for the design of efficient algorithms. There is also a connection between graph search-
ing, pathwidth, and treewidth, parameters that play an important role in the theory of
graph minors developed by Robertson and Seymour [3], [7], [26]. Furthermore, some
search problems have applications in problems of privacy in distributed environments
with mobile eavesdroppers (“bugs”) [13].

In the standard node-search version of searching, a single searcher is placed at a
vertex of a graph G at every move, while from other vertices searchers are removed
(see, e.g., [17]). The purpose of searching is to capture an invisible fugitive moving
fast along paths in G. The fugitive is not allowed to run through the vertices currently
occupied by searchers. So the fugitive is caught when a searcher is placed on the vertex
it occupies, and it has no possibility of leaving the vertex because all the neighbors are
occupied (guarded) by searchers. The goal of search games is to find a search strategy
to guarantee the fugitive’s capture while minimizing some resource usage.

1 This research was supported by the Research Council of Norway through the SPECTRUM project.
2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway. {fomin,pinar,telle}@ii.uib.no.

Received May 15, 2003; revised November 25, 2003, and June 8, 2004. Communicated by T. Nishizeki.
Online publication September 8, 2004.

74 F. V. Fomin, P. Heggernes, and J. A. Telle

Because the fugitive is invisible, the only information the searchers possess are the
previous search moves that may give knowledge about subgraphs where the fugitive
cannot be present. This brings us to the interesting interpretation of the search problem
[3] as the problem of fighting against damage spread in complex systems, e.g., the spread
of a mobile computer virus in networks. Initially all vertices are viewed as contaminated
(infected by a virus or damaged) and a contaminated vertex is cleared once it is occupied
by a searcher (checked by an anti-virus program). A clear vertex v is recontaminated
if there is a path without searchers leading from v to a contaminated vertex. In some
applications it is required that recontamination should never occur and in this case we
are interested in the so-called “monotone” searching. For most of the search game vari-
ants considered in the literature it can be shown, sometimes by very clever techniques,
that the resource usage does not increase in spite of this constraint [4], [7], [12], [17],
[18]. The “classical” goal of the search problem is to find the search program such that
the maximum number of searchers in use at any move is minimized. The minimum
number of searchers needed to clear the graph is related to the parameter called path-
width. Dendris et al. [7] studied a variation of the node-search problem with an inert,
or lazy, fugitive. In this version of the game the fugitive is allowed to move only just
before a searcher is placed on the vertex it occupies. The smallest number of searchers
needed to find the fugitive in this version of searching is related to the parameter called
treewidth [7].

Another criteria of optimality in node-searching, namely search cost, was studied in
[10]. The cost of a search program is defined as the sum of the number of searchers in
use over all moves of this program. Then the goal is to find a search program of the
minimum cost. The search cost of a graph is equal to the interval completion number,
or profile, which is the smallest number of edges in any interval supergraph of the given
graph. Looking at the monotone search cost version but now with an inert fugitive, it is
easy to see that this parameter is equal to the smallest number of edges in the chordal
supergraph of a given graph, so called fill-in, and we give a formal proof of this fact in The-
orem 7.1. We thus have the following elegant relation: the parameters related to standard
node searching (pathwidth, profile) expressible in terms of interval completion prob-
lems, correspond in inert fugitive searching to chordal completion problems (treewidth,
fill-in).

In this paper we want to minimize the maximum length of time (number of interme-
diate moves) during which a searcher occupies a vertex. A similar problem for pebbling
games (that can be transferred into search terms) was studied by Rosenberg and Sud-
borough [27]. In terms of monotone pebbling (i.e., no recontamination allowed) this
becomes the maximum lifetime of any pebble in the game. It turned out that this pa-
rameter is related to the bandwidth of a graph G, which is the minimum over all linear
layouts of vertices in G of the maximum distance between indices of adjacent vertices.
The following table summarizes the knowledge about known relations between graph
monotone searching and graph parameters:

Number of searchers Cost of searching Occupation time

Standard search Pathwidth [17] Profile [10] Bandwidth [27]
Inert search Treewidth [7] Fill-in [11] ?

Graph Searching, Elimination Trees, and a Generalization of Bandwidth 75

One of the main questions answered in this paper concerns the entry labeled “?” in
this table: What kind of graph parameter corresponds to the minimum occupation time
(mot) for monotone inert fugitive search? In Section 2 we introduce a generalization
of bandwidth to tree-like layouts, called treespan, based on what we call ordered tree
decompositions. In Section 3 we give the formal definition of the parameter mot(G), and
then in Section 4 we show that it is equivalent to a parameter arising from elimination
trees, as used in the sparse matrix computation community. In Section 5 we obtain the
equivalence also between this elimination tree parameter and treespan, thereby show-
ing that the entry labeled “?” above indeed corresponds to a natural generalization of
bandwidth to partially ordered (tree) layouts. In Section 6 we obtain some algorithmic
and complexity results on the treespan parameter. In Section 7 we conclude with some
discussion and three open problems.

2. Motivation through Tree Decompositions. We assume simple, undirected, con-
nected graphs G = (V, E), where |V | = n. We let N (v) denote the neighbors of vertex
v, and d(v) = |N (v)| is the degree of v. For a set of vertices U ⊆ V , N (U) = {v �∈ U |
uv ∈ E and u ∈ U }. H ⊆ G means that H is a subgraph of G. For a rooted tree T and
a vertex v in T , we let T [v] denote the subtree of T with its root in v.

A chord of a cycle C in a graph is an edge that connects two non-consecutive vertices
of C . A graph G is chordal if every cycle of length ≥ 4 in G has a chord. Given any
graph G = (V, E), a triangulation G+ = (V, E+) of G is a chordal graph such that
E ⊆ E+.

A tree decomposition of a graph G = (V, E) is a pair (X, T), where T = (I,M) is
a tree and X = {Xi | i ∈ I } is a collection of subsets of V called bags, such that:

1.
⋃

i∈I Xi = V .
2. uv ∈ E ⇒ ∃i ∈ I with u, v ∈ Xi .

3. For all vertices v ∈ V , the set {i ∈ I | v ∈ Xi } induces a connected subtree of T .

The width of a tree decomposition (X, T) is tw(X, T) = maxi∈I |Xi | − 1. The
treewidth of a graph G is the minimum width over all tree decompositions of G. A
path decomposition is a tree decomposition (X, T) such that T is a path. The pathwidth
of a graph G is the minimum width over all path decompositions of G. We refer to
Bodlaender’s survey [5] for further information on treewidth.

For a chordal graph G, the treewidth is one less than the size of the largest clique in G.
For a non-chordal graph G, the treewidth is the minimum treewidth over all triangulations
of G. This is due to the fact that a tree decomposition (X, T) of G actually corresponds
to a triangulation of the given graph G: simply add edges to G such that each bag of
X becomes a clique. The resulting graph, which we call tri(X, T) is a chordal graph of
which G is a subgraph. In addition, any triangulation G+ of G is equal to tri(X, T) for
some tree decomposition (X, T) of G.

Another reason why tree decompositions and chordal graphs are closely related is that
chordal graphs are exactly the intersection graphs of subtrees of a tree [16]. Analogously,
interval graphs are related to path decompositions, and they are the intersection graphs
of subpaths of a path. A graph is an interval graph if there is a mapping f of its vertices
into sets of consecutive integers such that for each pair of vertices v,w the following is

76 F. V. Fomin, P. Heggernes, and J. A. Telle

true: vw is an edge⇔ f (v) ∩ f (w) �= ∅. Interval graphs form a subclass of chordal
graphs. Similar to treewidth, the pathwidth of a graph G is one less than the smallest
clique number over all triangulations of G into interval graphs.

The bandwidth of G, bw(G), is defined as the minimum, over all linear orders of the
vertices of G, maximum difference between labels of two adjacent vertices. Similar to
pathwidth and treewidth, bandwidth can be defined in terms of triangulations as follows.
A graph isomorphic to K1,3 is referred to as a claw, and a graph that does not contain an
induced claw is said to be claw-free. An interval graph G is a proper interval graph if it
is claw-free [25]. As was observed by Parra and Scheffler [24], the bandwidth of a graph
G is one less than the smallest clique number over all triangulations of G into proper
interval graphs. One can define bandwidth in terms of ordered path decompositions. In
an ordered path decomposition, the bags are numbered 1, 2, . . . , n from left to right. The
first bag X1 contains only one vertex of G, and for 1 ≤ i ≤ n−1 we have |Xi+1\Xi | = 1,
meaning that exactly one new graph vertex is introduced in each new bag. The number
of bags a vertex v belongs to is denoted by l(v). It is easy to show that bw(G) is the
minimum, over all ordered path decompositions, max{l(v)− 1 | v ∈ V }.

The natural question here is, what kind of parameter corresponds to bandwidth when,
instead of path decompositions, we switch to tree decompositions? This brings us to the
definitions of ordered tree decomposition and treespan.

DEFINITION 2.1. An ordered tree decomposition (X, T, r) of a graph G = (V, E) is a
tree decomposition (X, T) of G where T = (I,M) is a rooted tree with root r ∈ I , such
that

|Xr | = 1, and if i is the parent of j in T , then |X j\Xi | = 1.

DEFINITION 2.2. Given a graph G = (V, E) and an ordered tree decomposition
(X, T, r) of G, we define:

l(v) = |{i ∈ I | v ∈ Xi }| (number of bags that contain v), for each v ∈ V .
ts(X, T, r) = max{l(v) | v ∈ V } − 1.

The treespan of a graph G is ts(G) = min{ts(X, T, r) | (X, T, r) is an ordered tree
decomposition of G}.

Since every ordered path decomposition is an ordered tree decomposition, it is clear
that for every graph G, ts(G) ≤ bw(G).

3. Search Minimizing Occupation Time with an Inert Fugitive. In this section we
give a formal definition of the minimum occupation time for inert fugitive searching. A
search program � on a graph G = (V, E) is the sequence of pairs

(A0, Z0), (A1, Z1), . . . , (Am, Zm)

such that:

I. For i ∈ {0, . . . ,m}, Ai ⊆ V and Zi ⊆ V . We say that vertices Ai are cleared,
vertices V − Ai are contaminated, and vertices Zi are occupied by searchers at the
i th step.

Graph Searching, Elimination Trees, and a Generalization of Bandwidth 77

II. (Initial state.) A0 = ∅ and Z0 = ∅. All vertices are contaminated.
III. (Final state.) Am = V and Zm = ∅. All vertices are cleared.
IV. (Placing–removing searchers and clearing vertices.) For i ∈ {1, . . . ,m} there exists

v ∈ V and Yi ⊆ Ai−1 such that Ai − Ai−1 = v and Zi = Yi ∪ {v}. Thus at every
step one of the searchers is placed on a contaminated vertex v while the others are
placed on cleared vertices Yi . The searchers are removed from vertices Zi−1 − Yi .
Note that Yi is not necessarily a subset of Zi−1. This means that the searchers placed
on Yi “guard” vertices from possible recontamination and the searcher placed on v
that “attacks” the contaminated area.

V. (Possible recontamination.) For i ∈ {1, . . . ,m}, Ai − {v} is the set of vertices
u ∈ Ai−1 such that every uv-path has an internal vertex in Zi . This means that the
fugitive awakening in v can run to a cleared vertex u if there is a uv-path unguarded
by searchers.

Dendris et al. [7] initiated the study of the inert search problem, where the problem is to
find a search program�with the smallest maxi∈{0,...,m}|Zi | (this maximum can be treated
as the maximum number of searchers used in one step). It turns out that this number is
equal to the treewidth of a graph plus one. The definition of inert search given in [7]
is different from ours but it is easy to check the equivalence between both definitions.
However, the definition we use makes it more easy to define the search cost and other
modifications of searching. Thus, for example, we find an alternative measure of search
to be interesting as well. For a search program � = (A0, Z0), (A1, Z1), . . . , (Am, Zm)

on a graph G = (V, E) and vertex v ∈ V we define

δi (v) =
{

1, v ∈ Zi ,

0, v �∈ Zi .

Then the number
∑m

i=0 δi (v) is the number of steps at which vertex v was occupied
by searchers. For a program � we define the maximum vertex occupation time to be
ot (�,G) = maxv∈V

∑m
i=0 δi (v). The vertex occupation time of a graph G, denoted by

ot (G), is the minimum maximum vertex occupation time over all search programs on G.
A search program (A0, Z0), (A1, Z1), . . . , (Am, Zm) is monotone if Ai−1 ⊆ Ai for

each i ∈ {1, . . . ,m}. Note that recontamination does not occur when a searcher is placed
on a contaminated vertex thus awaking the fugitive.

Finally, for a graph G we define mot (G) to be the minimum maximum vertex
occupation time over all monotone search programs on G. We do not know whether
mot (G) = ot (G) for every graph G, and leave it as an interesting open question.

4. Searching and Elimination Trees. In this section we discuss a relation between
mot (G) and elimination trees of G. This relation is not only interesting on its own but
also serves as a tool in further proofs.

For a graph G = (V, E), an elimination order α: {1, 2, . . . , n} → V is a linear
order of the vertices of G. For each given order α, a unique triangulation of G can be
computed from the following procedure: starting with vertex α(1), at each step i , turn
the set of neighbors of vertex α(i)with numbers> i in the transitory graph into a clique
by adding edges. The resulting graph, which is denoted by G+α , is chordal [14], and

78 F. V. Fomin, P. Heggernes, and J. A. Telle

the given elimination ordering defines the resulting triangulation. The following lemma
follows from the definition of G+α . (See also Lemma 1 in [7] for similar results.)

LEMMA 4.1. Edge uv is an edge of G+α if and only if uv is an edge of G or there is a
path u, x1, x2, . . . , xk, v in G with k ≥ 1 such that all xi are ordered before u and v by
α (in other words, max{α−1(xi) | 1 ≤ i ≤ k} < min{α−1(u), α−1(v)}).

DEFINITION 4.2. Let α be an elimination order on G. For a vertex u of G we define
madj+(u) to be {v | α−1(v) > α−1(u) and uv is an edge of G+α }.

Given a graph G = (V, E), and an elimination order α on G, the corresponding
elimination tree ET is a rooted tree on the same vertex set, whose edges are defined
by the following parent function: parent (α(i)) = α(j) where j = min{k | α(k) ∈
mad j+(α(i))}, for i ∈ {1, 2, . . . , n}. Hence the elimination tree is a tree on the vertices
of G, the parent of a vertex u is the lowest numbered vertex among u’s higher numbered
neighbors in G+α , and vertex α(n) is always the root. For a vertex v ∈ V we denote
by ET [v] the subtree of ET rooted in v and containing all descendants in ET of v.
It has been shown that if v ∈ mad j+(u) then u ∈ ET [v] [28]. As a consequence, for
two vertices u and v such that ET [u] and ET [v] are disjunct subtrees of ET , no vertex
belonging to ET [u] is adjacent to any vertex belonging to ET [v] in G or G+α . We refer
to the survey by Liu [21] for further details on elimination trees.

DEFINITION 4.3. Given an elimination tree ET of G, the pruned subtree with its root in
v, ETp[v], is the subtree obtained from ET [v] by deleting the following set of vertices:
{u ∈ ET [v] | neither u nor any descendant of u is a neighbor of v in G}.

An example to illustrate this definition is given in Figure 1. It follows from Defini-
tion 4.3 that the leaves of ETp[v] are neighbors of v in G. In addition, there might clearly
appear vertices in ETp[v] that are not neighbors of v in G. However, every vertex that
appears in ETp[v] is a neighbor of v in G+, by the following result.

THEOREM 4.4 [20]. Let α be an elimination order of G = (V, E) and let ET be a
corresponding elimination tree. Then for any u, v ∈ V with α−1(u) < α−1(v), v ∈
mad j+(u) if and only if v has a neighbor w in G such that w ∈ ET [u].

7

3 4

5
6 2

1

7

6

543

2

1

7

6

3 4

6

3 4 5

2
6 2

5 1

43

7

(b) (c) (d)(a) (e)

Fig. 1. A graph G with a given order α is shown in (a), and (b) shows G+α . The corresponding elimination tree
ET and the pruned subtrees ETp[7] and ETp[6] are given in (c), (d), and (e), respectively.

Graph Searching, Elimination Trees, and a Generalization of Bandwidth 79

As a direct consequence, ETp[v] contains, in addition to v, exactly the set of lower
numbered neighbors of v in G+α , as stated in the following.

COROLLARY 4.5. Let α be an elimination order of graph G = (V, E) and let ET be a
corresponding elimination tree. Then for any distinct u, v ∈ V , u ∈ ETp[v] if and only
if v ∈ mad j+(u). Hence ETp[v] = {u | v ∈ mad j+(u)} ∪ {v}.

We define a parameter called elimination span, es, as follows:

DEFINITION 4.6. Given an elimination tree ET of a graph G = (V, E), for each vertex
v ∈ V we define s(v) = |ETp[v]| and es(ET) = max{s(v) | v ∈ V } − 1. The
elimination span of a graph G is es(G) = min{es(ET) | ET is an elimination tree
of G}.

THEOREM 4.7. For any graph G = (V, E), es(G) = mot (G)− 1.

PROOF. We prove es(G) ≤ mot (G)− 1 first. Let

� = (A0, Z0), (A1, Z1), . . . , (Am, Zn)

be a monotone search program. At every step of the program exactly one new vertex
Ai − Ai−1 is cleared. Thus we can define the elimination ordering α by putting, for
1 ≤ i ≤ n,

α(Ai − Ai−1) = n − i + 1.

At the i th step, when a searcher is placed at a vertex u = Ai − Ai−1 every vertex v ∈ Ai

such that there is a uv-path with no inner vertices in Ai should be occupied by a searcher
(otherwise v would be recontaminated). Therefore, if v ∈ mad j+(u) then v is occupied
by a searcher during the step when a searcher is placed at u and the number of steps
when vertex v is occupied by searchers is at least |{u | v ∈ mad j+(u)} ∪ {v}|. By
Corollary 4.5, |{u | v ∈ mad j+(u)} ∪ {v}| = s(v) and we arrive at

es(ET) ≤ mot (�,G)− 1,

where ET is the elimination tree corresponding to the ordering α.
We now show that es(G) ≥ mot (G)− 1. Let ET be an elimination tree and let α be

a corresponding elimination ordering. We consider a search program� where at the i th
step of the program, 1 ≤ i ≤ n, the searchers occupy the set of vertices mad j+(v)∪{v},
where v is a vertex with α(v) = n− i + 1. We first prove that� is recontamination free.
Suppose, on the contrary, that a vertex u is recontaminated at the i th step after placing
a searcher on a vertex v. Then there is a uv-path P such that no vertex of P except v
contains a searcher at the i th step. On the other hand, vertex u is after v in ordering
α. Thus P should contain a vertex w ∈ mad j+(v), occupied by a searcher. This is a
contradiction. Since every vertex was occupied at least once and no recontamination
occurs, we conclude that at the end of � all vertices are cleared. Every vertex v was
occupied by searchers during |{u | v ∈ mad j+(u)} ∪ {v}| steps and using Corollary 4.5
we conclude that es(ET) ≥ mot (�,G)− 1.

80 F. V. Fomin, P. Heggernes, and J. A. Telle

5. Ordered Tree Decompositions and Elimination Trees. In this section we discuss
a relation between the treespan ts(G) and elimination trees of G, establishing that
ts(G) = mot (G) − 1. We first give a simplified view of ordered tree decompositions
and then proceed to prove some of their properties.

There are exactly n bags in X of an ordered tree decomposition (X, T, r) of G. Thus,
the index set I for Xi , i ∈ I, can be chosen so that I = V , with r ∈ V . Then T is a tree
on the vertices of G. To identify the bags and to define the correspondence between I
and V uniquely, name the bags so that Xr is the bag corresponding to the root r of T .
Regarding the bags in a top down fashion according to T , name the bag in which vertex
v appears for the first time Xv and the corresponding tree node v. Thus if y is the parent
of v in T then Xv\X y = {v}. This explains how to rename the bags and the vertices of
T with elements from V given a tree decomposition based on I . However, if we replace
i with v and I with V in Conditions 1–3 of the definition of a tree decomposition, and
change the condition in the definition of ordered tree decompositions to “Xr = {r}, and
if y is the parent of v in T then Xv\X y = {v}”, then this will automatically give a tree
T on the vertices of G as we have explained above. For the remainder of this paper,
when we mention an ordered tree decomposition (X, T, r), we assume that T is a tree
on the vertices of G as explained here. The following lemma will make the role of T
even clearer.

LEMMA 5.1. Let T be a rooted tree on the vertex set of a graph G = (V, E). There
exists an ordered tree decomposition (X, T, r) of G if and only if for every edge uv ∈ E ,
u and v have an ancestor–descendant relationship in T .

PROOF. Assume that T corresponds to an ordered tree decomposition of G, but there is
an edge uv in G such that T [u] and T [v] are disjunct subtrees of T . Xu is the first bag in
which u appears and Xv is the first bag in which v appears, thus u and v do not appear in
any bag Xw wherew is on the path from u to the root or from v to the root in T . Thus if u
and v appear together in any other bag X y where y belongs to T [u] or T [v] or any other
disjunct subtree in T , this would violate Condition 3 of a tree decomposition. Therefore,
u and v cannot appear together in any bag, and there cannot exist a valid decomposition
(X, T, r) of G.

For the reverse direction, assume that for every edge uv in G, u and v have an
ancestor–descendant relationship in T . Assume without loss of generality that v is an
ancestor of u. Then the bags can be defined so that (1) Xv contains v, (2) no bag X y

contains v where y is an ancestor of v, (3) for every vertex w on the path from v to u in
T , Xw contains v (and w of course), and (4) Xu contains both u and v. We can see that
all the conditions of an ordered tree decomposition are satisfied.

LEMMA 5.2. For every graph G, there exists an ordered tree decomposition (X, T, r)
of G of minimum treespan such that if u is a child of v in T then v ∈ Xu .

PROOF. Assume that u is a child of v in T and v �∈ Xu . By the properties of tree
decompositions, v does not belong to any bag X y where y is a descendant of u, and thus
Xv is the only bag that contains v. By the definition of ordered tree decompositions,

Graph Searching, Elimination Trees, and a Generalization of Bandwidth 81

neither u nor any descendant of u belongs to Xv . As a consequence, neither u nor any
descendant of u in T is a neighbor of v in G. Since G is connected, u or a descendant of
u must have a neighborw in G such thatw is an ancestor of v in T . Letw be such a node
of T that is closest to v. Thus no descendant ofw is adjacent in G to u or any descendant
of u. Observe that w must belong to Xu . We now change the tree decomposition as
follows: remove edge vu from T , add edge wu to T , and remove w from any bag Xz

that it can be removed from, where z = v or z is on the path between v and w in T . This
operation results in a new ordered tree decomposition, it does not increase l(w), and for
every other vertex x , l(x) is unchanged. This can be repeated to achieve an ordered tree
decomposition as claimed.

LEMMA 5.3. Let (X, T, r) be an ordered tree decomposition of a given graph. For every
edge uv in tri(X, T), u and v have an ancestor–descendant relationship in T .

PROOF. As we have seen in the proof of Lemma 5.1, if u and v belong to disjunct
subtrees of T , then they cannot appear together in the same bag. Since only the bags are
made into cliques, u and v cannot belong to the same clique in tri(X, T), which means
that the edge uv does not exist in tri(X, T).

LEMMA 5.4. Let (X, T, r) be an ordered tree decomposition of a given graph. Let uv
be an edge of tri(X, T) such that v is an ancestor of u in T . Then v belongs to bag Xw

for every w on the path from v to u including Xv and Xu .

PROOF. Vertex v appears for the first time in Xv on the path from the root, and u appears
for the first time in Xu . For every vertex w on the path from v to u, exactly vertex w is
introduced in Xw. Thus Xu is the first bag in which u and v can both belong to. In order
for this to be possible, v must belong to bag Xw for every vertex w on the path from v

to u in T .

LEMMA 5.5. Let (X, T, r) be an ordered tree decomposition of G, and let α: {1, . . . , n}
→ V be a post order of T . Then G+α ⊆ tri(X, T).

PROOF. Let uv be an edge of G+α , and assume without loss of generality that u has a
lower number than v according to α. If uv is an edge of G, then we are done. Otherwise,
due to Lemma 4.1, there must exist a path u, x1, x2, . . . , xk, v in G with k ≥ 1 such that all
xi are ordered before u. Since α is a post order of T , none of the vertices xi , i = 1, . . . , k,
can lie on the path from u to the root in T . Consequently and due to Lemma 5.1, since
ux1 is an edge of G, x1 belongs to T [u]. With the same argument, since x1, x2, . . . , xk

is a path in G, all the vertices x1, x2, . . . , xk must belong to T [u]. Now, since vxk is an
edge in G, v must be an ancestor of xk and thus of u in T , where u lies on the path from
v to xk . By Lemma 5.4, vertex v must be present in all bags Xw wherew lies on the path
from v to xk , and consequently also in bag Xu . Therefore, u and v are both present in
bag Xu and are neighbors in tri(X, T).

82 F. V. Fomin, P. Heggernes, and J. A. Telle

LEMMA 5.6. Let (X, T, r) be an ordered tree decomposition of G, and let α be a post
order of T . Let ET be the elimination tree of G corresponding to elimination order α.
Then for any vertex u, if v is the parent of u in ET , then v lies on the path from u to the
root in T .

PROOF. Since v is the parent of u in ET , uv is an edge of G+α . By Lemma 5.5, uv is
also an edge of tri(X, T). By Lemma 5.3, u and v must have an ancestor–descendant
relationship in T . Since α is a post order of T , and α−1(u) < α−1(v), v must be an
ancestor of u in T .

THEOREM 5.7. For any graph G, ts(G) = es(G).

PROOF. First we prove that ts(G) ≤ es(G). Let ET be an elimination tree of G =
(V, E) such that es(G) = es(ET), and let r be the root vertex of ET . We define an
ordered tree decomposition (X = {Xv | v ∈ V }, T = ET, r) of G in the following
way. For each vertex v in ET , put v in exactly the bags Xu such that u ∈ ETp[v].
Regarding ET top down, each vertex u will appear for the first time in bag Xu , and
clearly |Xu\Xv| = 1 whenever v is the parent of u. It remains to show that (X, ET) is a
tree decomposition of G. Conditions 1 and 3 of a tree decomposition are trivially satisfied
since for every vertex v bag Xv contains v and ETp[v] is connected. For Condition 2,
if uv is an edge of G, then the lower numbered of v and u is a descendant of the other
in ET . Let us say u is a descendant of v, then u ∈ ETp[v], and v and u will both
appear in bag Xu . Thus (X, ET) is an ordered tree decomposition of G, and, clearly,
ts(X, ET) = es(G). Consequently, ts(G) ≤ es(G).

Now we show that es(G) ≤ ts(G). Let (X, T, r) be an ordered tree decomposition of
G with ts(X, T, r) = ts(G). Let α be a post order on T , and let ET be the elimination
tree of G corresponding to elimination order α. For any two adjacent vertices u and
v in G, u and v must have an ancestor–descendant relationship both in T and in ET .
Moreover, due to Lemma 5.6, all vertices that are on the path between u and v in ET must
also be present on the path between u and v in T . Assume, without loss of generality, that
u is numbered lower than v. By Lemma 5.4, v must belong to all the bags corresponding
to the vertices on the path from v to u in T . Thus for each vertex v, s(v) in ET is at most
l(v) in (X, T, r). Consequently, es(G) ≤ ts(G), and the proof is complete.

Theorems 4.7 and 5.7 imply the main combinatorial result of this paper.

COROLLARY 5.8. For any graph G, ts(G) = es(G) = mot (G)− 1.

6. Treespan of Some Special Graph Classes. The diameter of a graph G, diam(G),
is the maximum length of a shortest path between any two vertices of G. The density of
a graph G is defined as dens(G) = (n − 1)/diam(G) [6]. The following result is well
known

LEMMA 6.1 [6]. For any graph G, bw(G) ≥ max{dens(H) | H ⊆ G}.

Graph Searching, Elimination Trees, and a Generalization of Bandwidth 83

A caterpillar is a tree consisting of a main path of vertices of degree at least two with
some leaves attached to the vertices of the main path.

THEOREM 6.2. For any graph G, ts(G) ≥ max{dens(H) | H ⊆ G and H is a
caterpillar}.

PROOF. Let the caterpillar H be a subgraph of G consisting of the following main path:
c1, c2, . . . , cdiam(H)−1. We view the bags of an ordered tree decomposition as labeled by
vertices of G in the natural manner (as described before Lemma 5.1). Let (X, T, r) be
an ordered tree decomposition of G with (X ′, T ′, r ′) being the topologically induced
ordered tree decomposition on H , i.e., containing only bags labeled by a vertex from
H , where we contract edges of T going to vertices labeled by vertices not in H to get
T ′. Let Xci be the “highest” bag in (X ′, T ′, r ′) labeled by a vertex from the main path,
so that only the subtree of (X ′, T ′, r ′) rooted at Xci contains any vertices from the main
path. Let there be h + 1 bags on the path from Xci to the root Xr ′ of (X ′, T ′, r ′). Since
vertex r ′ of H (a leaf unless r ′ = ci) is adjacent to a vertex on the main path it appears
in at least h + 1 bags, giving ts(G) ≥ h. Moreover, by applying Lemma 5.2 we get that
T ′ between its root Xr ′ and Xci consists simply of a path without further children, so
that the subtree rooted at Xci has |V (H)| − h bags. Each of these bags contain a vertex
from the main path since every leaf of H is adjacent in H only to a vertex on the main
path, and by the pigeonhole principle we thus have that some main path vertex is in at
least �(|V (H)| − h)/(diam(H) − 1)� bags. If (|V (H)| − h)/(diam(H) − 1) is not an
integer, then immediately we have the bound ts(G) ≥ �(|V (H)| − h)/(diam(H)− 1)�.
If (diam(H) − 1) on the other hand does divide (|V (H)| − h) then we apply the fact
that at least diam(H) − 2 bags must contain at least two vertices from the main path,
to account for edges between them, and for diam(H) ≥ 3 (which holds except for the
trivial case when H is a star) this increases the span of at least one main path vertex and
we again get ts(G) ≥ �(|V (H)| − h)/(diam(H)− 1)�.

Thus ts(G) ≥ max{h, �(|V (H)|−h)/(diam(H)−1)�}. If h ≤ dens(H)we have that
�(|V (H)| − h)/(diam(H) − 1)� ≥ (|V (H)| − 1)/diam(H) and therefore �(|V (H)| −
h)/(diam(H) − 1)� ≥ dens(H). We conclude that ts(G) ≥ dens(H) and the lemma
follows.

With this theorem, in connection with the following result from [2], we can conclude
that bw(G) = ts(G) for a caterpillar graph G.

LEMMA 6.3 [2]. For a caterpillar graph G, bw(G) ≤ max{dens(H) | H ⊆ G}.

LEMMA 6.4. For a caterpillar graph G, bw(G) = ts(G) = max{dens(H) | H ⊆ G}.

PROOF. Let G be a caterpillar graph. Then bw(G) ≥ ts(G) ≥ max{dens(H) | H ⊆
G} ≥ bw(G). The first inequality was mentioned in Section 2, the second inequality is
due to Theorem 6.2, and the last inequality is due to Lemma 6.3 since G is a caterpillar.
Thus all of the mentioned parameters on G are equal.

84 F. V. Fomin, P. Heggernes, and J. A. Telle

A set of three vertices x, y, z of a graph G is called an asteroidal triple (AT) if
for any two of these vertices there exists a path joining them that avoids the (closed)
neighborhood of the third. A graph G is called an asteroidal triple-free (AT-free) graph
if G does not contain an asteroidal triple. This notion was introduced by Lekkerk-
erker and Boland [19] for the following characterization of interval graphs: G is an
interval graph if and only if it is chordal and AT-free. A graph isomorphic to K1,3 is
referred to as a claw, and a graph that does not contain an induced claw is said to be
claw-free.

A graph G is said to be cobipartite if it is the complement of a bipartite graph. Notice
that cobipartite graphs form a subclass of AT-free claw-free graphs. Another subclass of
AT-free claw-free graphs are the proper interval graphs, which were mentioned earlier.
Thus G is a proper interval graph if and only if it is chordal and AT-free claw-free. A
minimal triangulation of G is a triangulation H such that no proper subgraph of H is a
triangulation of G. The following result is due to Parra and Scheffler.

THEOREM 6.5 [24]. Let G be an AT-free claw-free graph. Then every minimal triangu-
lation of G is a proper interval graph, and, hence, bw(G) = pw(G) = tw(G).

THEOREM 6.6. For an AT-free claw-free graph G, ts(G) = bw(G) = pw(G) =
tw(G).

PROOF. Let G be AT-free claw-free and let H be its minimal triangulation such that
ts(G) = ts(H). Such a graph H must exist, since for an optimal ordered tree de-
composition (X, T, r), the graph tri(X, T) is chordal and ts(tri(X, T)) = ts(G). Thus
any minimal graph from the set of chordal graphs “sandwiched” between tri(X, T)
and G can be chosen as H . By Theorem 6.5, H is a proper interval graph. It is well
known [24] that the maximum clique size ω(H) of a proper interval graph is equal to
bw(H)+ 1. Thus ω(H)− 1 = bw(H) ≥ bw(G). Since ts(H) ≥ ω(H)− 1, we have
that ts(G) = ts(H) ≥ ω(H)− 1 ≥ bw(G) ≥ ts(G).

By the celebrated result of Arnborg et al. [1], treewidth (and hence pathwidth and
bandwidth) is NP-hard even for cobipartite graphs. Thus Theorem 6.6 yields the follow-
ing corollary.

COROLLARY 6.7. Computing treespan is NP-hard for cobipartite graphs.

7. Open Problems and Concluding Remarks. We have introduced a new graph
parameter, called treespan, that can be seen as a generalization of bandwidth to tree
layouts, with connections also to elimination trees as used in sparse matrix computations,
but with the main viewpoint emphasized in this paper being its role in inert graph
searching. The most important and challenging open question about this new parameter
is if recontamination can help or if we may as well assume monotonicity, in other words,
if ot (G) = mot (G) for any graph G.

Graph Searching, Elimination Trees, and a Generalization of Bandwidth 85

Another interesting version of inert searching is when instead of minimizing the vertex
occupation time one wants to minimize the “average” vertex occupation time

m∑
i=0

|Zi |

as indicated by the column labeled “Cost of searching” in the table given in Section 1.
As promised in that section we now show that this version of monotone searching is
related to the fill-in problem of adding the smallest number of edges to get a chordal
supergraph. This result was obtained by Fomin et al. [11], we give the proof here for
completeness. Our second open problem is similar to the first: can recontamination help
for this version of inert searching?

THEOREM 7.1. For any graph G = (V, E) the following are equivalent:

(a) There is a chordal supergraph of G with at most k edges.
(b) There is a monotone search program (for inert fugitive)

� = (A0, Z0), (A1, Z1), . . . , (Am, Zm)

such that
m∑

i=0

|Zi | ≤ k.

PROOF. (b) ⇒ (a) Let � = (A0, Z0), (A1, Z1), . . . , (Am, Zn) be a monotone search
program. As in the proof of Theorem 4.7, � defines an elimination order α by putting,
for 1 ≤ i ≤ n,

α(Ai − Ai−1) = n − i + 1.

The corresponding supergraph G+α = (V, E+) of G is chordal and

|E+| =
∑
v∈V

|mad j+(v)|.

As in Theorem 4.7, the number of steps when a vertex v is occupied by searchers is
|{u | v ∈ mad j+(u)}|. Hence

∑m
i=0 |Zi | =

∑
v∈V |{u | v ∈ mad j+(u)}|. Since

∑
v∈V

|{u | v ∈ mad j+(u)}| =
∑
v∈V

|mad j+(v)|,

we have that
m∑

i=0

|Zi | = |E+|.

(a) ⇒ (b) Let α be an elimination ordering of G and let G+α = (V, E+) be the
corresponding chordal supergraph of G. As in the proof of Theorem 4.7, we construct a
monotone search program

� = (A0, Z0), (A1, Z1), . . . , (Am, Zn)

86 F. V. Fomin, P. Heggernes, and J. A. Telle

such that for 1 ≤ i ≤ n the searchers occupy the set of vertices Zi = mad j+(v), where
v is a vertex with α(v) = n − i + 1. In the proof of Theorem 4.7 we show that every
vertex v was occupied by searchers during |{u | v ∈ mad j+(u)}| steps. Thus

m∑
i=0

|Zi | =
∑
v∈V

|{u | v ∈ mad j+(u)}| =
∑
v∈V

|mad j+(v)| = |E+|.

It is easy to check that for trees of maximum degree at most 3, ts(G) = ��(G)/2�,
where �(G) denotes the maximum degree of any vertex in G. Notice that bandwidth
is NP-complete on trees of max degree 3 [15]. Our third open problem is the question
whether treespan can be computed in polynomial time for trees of larger max degree.

Acknowledgement. We are grateful to Dimitrios Thilikos for fruitful discussions.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM
J. Algebraic Discrete Methods, 8 (1987), 277–284.

[2] S. F. Assman, G. W. Peck, M. M. Syslo, and J. Zak, The bandwidth of caterpillars with hairs of length
1 and 2, SIAM J. Algebraic Discrete Methods, 2 (1981), 387–392.

[3] D. Bienstock, Graph Searching, Path-Width, Tree-Width and Related Problems (a Survey), DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 5, American Mathematical
Society, Providence, RI, 1991, pp. 33–49.

[4] D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms, 12 (1991), 239–245.
[5] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci., 209

(1998), 1–45.
[6] P. Z. Chinn, J. Chvátalová, A. K. Dewdney, and N. E. Gibbs, The bandwidth problem for graphs and

matrices—a survey, J. Graph Theory, 6 (1982), 223–254.
[7] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos, Fugitive-search games on graphs and related

parameters, Theoret. Comput. Sci., 172 (1997), 233–254.
[8] J. A. Ellis, I. H. Sudborough, and J. Turner, The vertex separation and search number of a graph, Inform.

and Comput. 113 (1994), 50–79.
[9] F. Fomin, Helicopter search problems, bandwidth and pathwidth, Discrete Appl. Math., 85 (1998),

59–71.
[10] F. V. Fomin and P. A. Golovach, Graph searching and interval completion, SIAM J. Discrete Math., 13

(2000), 454–464.
[11] F. V Fomin, Y. Stamatiou, and D. M. Thilikos, Unpublished results.
[12] F. V Fomin and D. M. Thilikos, On the monotonicity of games generated by symmetric submodular

functions, Discrete Appl. Math., 131(2) (2003), 323–335.
[13] M. Franklin, Z. Galil, and M. Yung, Eavesdropping games: a graph-theoretic approach to privacy in

distributed systems, J. ACM, 47 (2000), 225–243.
[14] D. Fulkerson and O. Gross, Incidence matrices and interval graphs, Pacific J. Math., 15 (1965), 835–855.
[15] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth, Complexity results for bandwidth mini-

mization, SIAM J. Appl. Math., 34 (1978), 477–495.
[16] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory

Ser. B, 16 (1974), 47–56.
[17] L. M. Kirousis and C. H. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci., 47 (1986),

205–218.
[18] A. S. LaPaugh, Recontamination does not help to search a graph, J. ACM, 40 (1993), 224–245.

Graph Searching, Elimination Trees, and a Generalization of Bandwidth 87

[19] C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals on the real
line, Fund. Math., 51 (1962), 45–64.

[20] J. W. H. Liu, A compact row storage scheme for Cholesky factors using elimination trees, ACM Trans.
Math. Software, 12 (1986), 127–148.

[21] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl., 11 (1990),
134–172.

[22] F. S. Makedon, C. H. Papadimitriou, and I. H. Sudborough, Topological bandwidth, SIAM J. Algebraic
Discrete Methods, 6 (1985), 418–444.

[23] F. S. Makedon and I. H. Sudborough, On minimizing width in linear layouts, Discrete Appl. Math., 23
(1989), 201–298.

[24] A. Parra and P. Scheffler, Treewidth equals bandwidth for AT-free claw-free graphs, Technical Report
436/1995, Fachbereich Mathematik, Technische Universität Berlin, Berlin, 1995.

[25] F. S. Roberts, Indifference graphs, in Proof Techniques in Graph Theory, F. Harary, ed., Academic Press,
New York, 1969, pp. 139–146.

[26] N. Robertson and P. D. Seymour, Graph minors—a survey, in Surveys in Combinatorics, I. Anderson,
ed., Cambridge University Press, Cambridge, 1985, pp. 153–171.

[27] A. L. Rosenberg and I. H. Sudborough, Bandwidth and pebbling, Computing, 31 (1983), 115–139.
[28] R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Trans. Math. Software, 8

(1982), 256–276.

