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Abstract

The f-cost of a tree decomposition({Xi | i ∈ I }, T = (I, F )) for a functionf : N → R+ is defined as
∑

i∈I f (|Xi |). This
measure associates with the running time or memory use of some algorithms that use the tree decomposition. In this paper, we
investigate the problem to find tree decompositions of minimumf-cost. A functionf : N → R+ is fast, if for everyi ∈ N:
f (i +1)�2f (i). We show that for fast functionsf, every graphGhas a tree decomposition of minimumf-cost that corresponds
to a minimal triangulation ofG; if f is not fast, this does not hold.We give polynomial time algorithms for the problem, assuming
f is a fast function, for graphs that have a polynomial number of minimal separators, for graphs of treewidth at most two, and
for cographs, and show that the problem is NP-hard for bipartite graphs and for cobipartite graphs. We also discuss results for a
weighted variant of the problem derived of an application from probabilistic networks.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that many problems that are intractable on general graphs become linear or polynomial time solvable on
graphs of bounded treewidth. These algorithms often have the following form: first a tree decomposition of small treewidth is
made, and then a dynamic programming algorithm is used, computing a table for each node of the tree. The time to process one
node of the tree is exponential in the size of the associated set of vertices of the graph; thus, when the maximum size of such a
set is bounded by a constant (i.e., the width of the tree decomposition is bounded by a constant), then the algorithm runs in linear
time. However, two different tree decompositions of the same graph with the same width may still give different running times,
e.g., when one has many large vertex sets associated to nodes, while the other has only few large vertex sets associated to nodes.
In several applications, the same tree decompositionwill be used for several successive runs of an algorithm, e.g., with different

data. An important example of such an application is thePROBABILISTIC INFERENCEproblem on probabilistic networks. (This
application will be briefly discussed in Section 8.) Hence, in many cases it makes sense to do more work on finding a good tree
decomposition, and to use a more refined measure on what is a ‘good’ tree decomposition. Apart from extensive studies on the
problem on the notion of treewidth and the notion of ‘fill-in’, more precise measures have been studied mainly in the context of
probabilistic networks (see[22].)
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In this paper, we study a notion that more closely reflects the time needed when using the tree decomposition. Suppose
processing a node of the tree decomposition whose associated set has sizek costsf (k) of some resource (e.g., time or space).
Then, processing a tree decomposition of the form({Xi | i ∈ I }, T = (I, F )) costs

∑
i∈I f (|Xi |). (For precise definitions, see

Section 2.) We call this measure thef-costof the tree decomposition; the treecost of a graphGwith respect tof is the minimum
f-cost of a tree decomposition ofG. In this paper, we investigate the problem of finding tree decompositions of minimumf-cost.
In Section 10 we discuss in more detail how far this notion comes close to precisely measuring the resources needed by the
algorithm.
It appears that it is important whether the functionf satisfies a certain condition which we callfast: a functionf : N → R+

is fast, if for everyk, f (k + 1)�2f (k). Most applications of treewidth in our framework will have functions that are fast (in
particular, many of the classical algorithms using tree decompositions for well-known graph problems have fast cost functions.)
To a tree decomposition we can associate a triangulation (chordal supergraph) of input graphG in a natural way. Now, every
graph has a tree decomposition of minimumf-cost that can be associated with aminimal triangulation, if and only iff is fast.
This will be shown in Section 3. This result will be used in later sections to show that the problem of finding minimumf-cost tree
decompositions can be solved in polynomial time for graphs that have a polynomial number of separators (Section 4), and in
linear time for cographs (Section 5), and for graphs of treewidth at most two (Section 6); assuming in each case thatf is fast and
polynomial time computable. In Section 7, we discuss a conjecture on the relation between triangulations of minimumf-cost and
minimum treewidth, and show that for a fixedk, one can find a triangulation of minimumf-cost among those of treewidth at most
k in polynomial time.A variant of the problems for weighted graphs with an application to probabilistic networks is discussed in
Section 8. In Section 9, we show the unsurprising but unfortunate result that for each fastf, the TREECOSTf problem is NP-hard
for cobipartite graphs and for bipartite graphs. Also, in these cases there is no constant factor approximation algorithm, unless
P = NP. Some final remarks are made in Section 10.

2. Preliminaries

We use the following notations:G= (V ,E) is an undirected and finite graph with vertex setV and the edge setE, assumed to
be without self-loops or parallel edges. Unless otherwise specified,n denotes the number of vertices andm the number of edges
of G. The(open) neighborhoodof a vertexv in a graphG isNG(v) = {u ∈ V : {u, v} ∈ E} and theclosed neighborhoodof v
isNG[v] = NG(v) ∪ {v}. For a vertex setS ⊆ V we denoteNG[S] = ⋃

v∈SN [v] andN(S) = N [S]\S. If G is clear from the
context, we writeN(v), N [v], etc.dG(v) : =|NG(v)| is the degree ofv in G. G − v is the graph, obtained by removingv and
its incident edges fromG.
For a setS ⊆ V of vertices of a graphG = (V ,E) we denote byG[S] the subgraph ofG induced byS. A setW ⊆ V of

vertices is aclique in graphG= (V ,E) if G[W ] is a complete graph, i.e. every pair of vertices fromW induces an edge ofG. A
setW ⊆ V of vertices is amaximal cliquein G = (V ,E), if W is a clique inG andW is not a proper subset of another clique
in G.
A chordof a cycleC is an edge not inC that has both endpoints inC. A chordless cyclein G is a cycle of length more than

three that has no chord. A graphG is chordal if it does not contain a chordless cycle.
A triangulationof a graphG is a graphH on the same vertex set asG that contains all edges ofG and is chordal. Aminimal

triangulation ofG is a triangulationH such that no proper subgraph ofH is a triangulation ofG.

Definition. A tree decompositionof a graphG= (V ,E) is a pair({Xi | i ∈ I }, T = (I, F )), with {Xi | i ∈ I } a family of subsets
of V andT a tree, such that

• ⋃
i∈IXi = V .

• For all {v,w} ∈ E, there is ani ∈ I with v,w ∈ Xi .
• For all i0, i1, i2 ∈ I : if i1 is on the path fromi0 to i2 in T, thenXi0 ∩ Xi2 ⊆ Xi1.

Thewidth of tree decomposition({Xi | i ∈ I }, T = (I, F )) is maxi∈I |Xi | − 1. The treewidth of a graphG is the minimum
width of a tree decomposition ofG.

The following well-known result is due to Gavril[12].

Theorem 1 (Gavril [12] ). Graph G is chordal if and only there is aclique treeof G, i.e. tree decomposition({Xi | i ∈ I }, T =
(I, F )) of G such that for every node i of T there is a maximal cliqueW of G such thatXi = W .

A vertexv ∈ V is simplicial in graphG= (V ,E), if NG(v) is a clique. Every chordal graph on at least two vertices contains
at least two simplicial vertices[11].
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Definition. For a functionf : N → R+, the f-costof a tree decomposition({Xi | i ∈ I }, T = (I, F )) is
∑

i∈I f (|Xi |). The
treecostwith respect tof of a graphG is the minimumf-cost of a tree decomposition ofG, and is denoted tcf (G).

Definition. Thef-costof a chordal graphG is

costf (G) =
∑

W⊆V ;W is a maximal clique
f (|W |).

We identify the following computational problem. Given a functionf : N → R+, the TREECOSTf problem is the problem,
that given a graphG = (V ,E) and an integerK, decides whether tcf (G)�K.

There is a one-to-one correspondence between chordal supergraphsH of a graphG and tree decompositions ofG: to tree
decomposition({Xi | i ∈ I }, T = (I, F ))we associate the graphHwithEH ={{v,w} | ∃i ∈ I : v,w ∈ Xi}, and given a chordal
graphH, one can build a tree decomposition with each setXi a maximal clique inH. See e.g.[4, Section 6]. Thef-costs of this
tree decomposition and chordal supergraph are the same, hence we have:

Lemma 2. The treecost of a graph G with respect to f equals the minimum f-cost of a chordal graph H that contains G as a
subgraph.

An interesting and important question is whether the treecost of a chordal graph equals itsf-cost. We will see in Section 3 that
this depends on the functionf.

Definition. A functionf : N → R+ is fast, if for all i ∈ N, f (i + 1)�2f (i).

An example of a fast function is the functionf (i) = 2i .

Definition. A tree decomposition({Xi | i ∈ I }, T = (I, F )) of a graphG = (V ,E) isminimal, if there is no{i, j} ∈ F with
Xi ⊆ Xj .

It is well known that there is always a minimal tree decomposition of minimum treewidth. Such a minimal tree decomposition
can be obtained by taking an arbitrary tree decomposition of minimum width, and while there is an edge{i, j} ∈ F with
Xi ⊆ Xj , contracting this edge, taking for the new nodei′, Xi′ = Xi ∪ Xj = Xj . The same construction can also be used for
obtaining a minimal tree decomposition of minimumf-cost. Thus, we have the following lemma.

Lemma 3. Let f be a functionf : N → R+.

(i) Let({Xi | i ∈ I }, T =(I, F )) be a tree decomposition of a graphG=(V ,E) ofminimum f-cost. Then this tree decomposition
is minimal.

(ii) Every graph G has a minimal tree decomposition with f-cost equal to the treecost of G with respect to f.

Lemma 4. Let f bea functionf : N → R+.LetGbeagraphwith n vertices andwith treewidth k.Thentcf (G)�(n−k)f (k+1).

Proof. Take a minimal tree decomposition({Xi | i ∈ I }, T = (I, F )) of G of width k. This tree decomposition will have
|I |�n − k, (see e.g.[3, Lemma 2.2]) and each node of the tree decomposition has at mostk + 1 vertices. �

The following well-known lemma (see[6] for its proof) is used in some of our proofs.

Lemma 5. Let ({Xi | i ∈ I }, T = (I, F )) be a tree decomposition ofG = (V ,E).

(i) SupposeW ⊆ V forms a clique in G. Then there is ani ∈ I withW ⊆ Xi .
(ii) Suppose there are setsW1, W2 ⊆ V , such that for allw1 ∈ W1, w2 ∈ W2, {w1, w2} ∈ E. Then there is ani ∈ I with

W1 ⊆ Xi orW2 ⊆ Xi .

An alternative way of stating Lemma 5(ii) is:
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Lemma 6. Let H be a chordal supergraph ofG= (V ,E), and suppose there are setsW1,W2 ⊆ V , such that for allw1 ∈ W1,
w2 ∈ W2, {w1, w2} ∈ E. ThenW1 forms a clique in H orW2 forms a clique in H.

3. Minimal triangulations and treecost

In this section, we investigate for which chordal graphs andwhich functionsf, the treecost equals thef-cost. Using the obtained
results, we will see that for every fast functionf, there always exists a minimal triangulation with optimalf-cost.

Lemma 7. Letf : N → R+ be a function that is not fast. Then there is a chordal graph G, such that the f-cost of G is larger
than the treecost of G with respect to f.

Proof. Supposef (i + 1)<2f (i). LetG be the graph, obtained by taking a clique withi + 1 vertices and remove one edgee.
ThenG hasf-cost 2f (i), but the triangulation that is formed by adding the edgeehasf-costf (i + 1). �

Lemma 8. Let f : N → R+ be a fast function. LetG = (V ,E) be a chordal graph. Letv,w ∈ V with {v,w} /∈E. Let
G′ = (V ,E ∪ {v,w}) be a chordal graph. Thencostf (G)�costf (G′).

Proof. We associate to every maximal cliqueWof G′ a seth(W) of at most two maximal cliques ofG. If {v,w}�W , then we
takeh(W) = {W }. Otherwise, if{v,w} ⊆ W , then we have thatW1 = W − {v} andW2 = W − {w} are maximal cliques inG
and we seth(W) = {W1,W2}.
Write f (h(W)) = ∑

Z∈h(W)f (|Z|). We have thatf (h(W))� max{f (|W |),2 · f (|W | − 1)}�f (|W |).
For every maximal cliqueWofG, there is a maximal cliqueW ′ ofG′ such thatW ∈ h(W ′). Note that{v,w}�W . IfW is also

a maximal clique ofG′, thenh(W) = {W }. If W is not a maximal clique inG′, then eitherW ∪ {v} orW ∪ {w} is a maximal
clique inG′, andW ∈ h(W ∪ {v}) orW ∈ h(W ∪ {w}).
Now, it follows that

costf (G
′) =

∑

W⊆V ;W is a maximal clique inG′
f (|W |)

�
∑

W⊆V ;W is a maximal clique inG′
f (h(W))

�
∑

W⊆V ;W is a maximal clique inG
f (|W |)

= costf (G).

This proves the lemma.�

Lemma 9. LetG=(V ,EG) andH =(V ,EH ) be chordal graphs,andf : N → R+ be a fast function. SupposeG is a subgraph
of H. Thencostf (G)�costf (H).

Proof. We use induction on|EH − EG|. If |EH − EG| = 0, thenG = H and the result follows trivially.
Suppose the lemma holds for|EH −EG| = i. Now, suppose|EH −EG| = i + 1. From[19, Lemma 2], it follows that there

is an edgee ∈ EH − EG such thatH ′ = (V ,EH − e) is chordal. By induction, costf (G)�costf (H ′), and by Lemma 8,
costf (H

′)�costf (H), so costf (G)�costf (H). �

Theorem 10. Letf : N → R+ be a fast function. Every graph G has aminimal triangulation H, such thatcostf (H)= tcf (G).

Proof. SupposeH ′ is a triangulation ofGwith costf (H ′)= tcf (G).H ′ contains a minimal triangulationH ofG. Trivially, we
have costf (H)� tcf (G). By the previous lemma, we have costf (H)�costf (H ′). �

Corollary 11. Let G be a chordal graph, and let f be a fast function. Thencostf (G) = tcf (G).

Proof. The only minimal triangulation ofG isG itself. �
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4. Separators

In this section, we obtain an important algorithmic consequence of Theorem 10.We show that for fast functions the treecost of
graphs with a polynomial number of minimal separators can be computed efficiently. Our approach to this problem follows the
ideas of Bouchitté and Todinca[8]. (See also Parra and Scheffler[18].) This allows one to find the treecost efficiently when the
input is restricted to cocomparability graphs,d-trapezoid graphs, permutation graphs, circle graphs, weakly triangulated graphs
and many other graph classes. See[9] for an encyclopedic survey on graph classes.
A subsetSof vertices of a connected graphG is called ana, b-separatorfor non-adjacent verticesa andb in V (G)\S if a

andb are in different connected component of the subgraph ofG induced byV (G)\S. If no proper subset of ana, b-separator
Sseparatesa andb in this way, thenS is called aminimala, b-separator. A subsetS is referred to as aminimal separator, if
there exist non-adjacent verticesa andb for whichS is a minimala, b-separator. Note that a minimal separator can be strictly
contained in another minimal separator.
The following result of Dirac[11] is well known.

Theorem 12(Dirac [11] ). Graph G is chordal if and only if every minimal separator of G is a clique.

Lemma 13. Let S be a minimal separator of a chordal graph G andC be the set of connected components inG\S. Then for
any fast function f

tcf (G) =
∑
C∈C

tcf (G[N [C]]).

Proof. SinceSis a minimal separator, we have that every vertex subsetW is a maximal clique inG if and only ifW is a maximal
clique inexactlyone of the graphsG[N [C]]. Therefore, costf (G) = ∑

C∈C costf (G[N [C]]). By Theorem 10 this implies the
proof of the lemma. �

Let �G be the set of all minimal separators inG. Let S ∈ �G be a minimal separator of a graphG. We denote byGS the
supergraph ofG obtained fromG by making all vertices ofSadjacent. For a set of minimal separators� ⊆ �G we denote by
G� the graph obtained fromG by turning all separators from� into cliques.
There is a deep relation between the minimal separators of a graph and its minimal triangulations. We need the following

generalization of Dirac’s theorem by Parra and Scheffler[18].
Two separatorsSandT crossif there are distinct componentsC andD of G\T such thatS intersects both of them. IfSandT

do not cross, they are calledparallel.

Theorem 14(Parra and Scheffler[18] ). (i) Let� ⊆ �G be a maximal set of pairwise parallel separators of G. ThenH = G�
is a minimal triangulation of G and�H = �. (ii) Let H be a minimal triangulation of a graph G. Then� = �H is a maximal set
of pairwise parallel separators of G andH = G�.

Let Sbe a minimal separator of a graphG andCS be the set of connected components ofG\S. A block Bis a graph of the
formGS [N [C]], whereC is the vertex set of one of the connected components inCG. In other words, a block is obtained from
a subgraph ofG induced by vertex setC of a connected component ofG\S and a subsetSC =N [C] − C (vertices ofSthat are
adjacent to at least one vertex inC) by adding a clique onSC .
The following characterization of minimal separators is well-known (see e.g.[13, p. 106]).

Lemma 15. Let S be ana, b-separator of G and letGa ,Gb be two components ofG\S containing a and b, respectively. Then
S is a minimala, b-separator if and only if every vertexs ∈ S is adjacent to a vertex in each of these components.

Lemma 15 implies that for every minimal separatorS, the setBS contains at least two full blocks. Also Lemma 15 implies
that for every blockB = (VB,EB) ∈ BS the setVB ∩ S is a minimal separator and thatB is a full block forVB ∩ S.

Theorem 16. For any graph G and fast function f

tcf (G) = min
S∈�G

∑
B∈BS

tcf (B).

Proof. (� ). LetSbe a minimal separator andHS be a minimal triangulation ofGS of optimal treecost. By Theorem 14 there
is a minimal triangulationH ⊆ HS of G. By Lemma 9, costf (H)�costf (HS) and by Theorem 10, tcf (G)� tcf (GS).
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For every blockB = (BV , BE) ∈ BS , let ({Xi | i ∈ IB }, TB = (IB, FB)) be a tree decomposition of optimal treecost of this
block. For every componentC the verticesN(C)∩ S induce a clique inB. Hence for every blockB ∈ BS and the corresponding
treeTB = (IB, FB), there is a nodeiB ∈ IB such thatXiB contains all vertices ofB ∩S. We choose one such node for every tree
TB . Moreover, by Lemma 15 there is a nodei

∗ in some of the treesTB such that the corresponding setXi∗ contains all vertices
of S. We construct a tree decomposition ofGS with treecost

∑
B∈BS

tcf (B) from the tree decompositions of blocksBS . The
tree of this decomposition is obtained by taking disjoint union of treesTB and making nodei

∗ adjacent to nodesiB , B ∈ BS .
One can check easily that this is a tree decomposition ofGS . The cost of this decomposition is equal to the sum of the costs of
B. Therefore, tcf (G)� tcf (GS)�

∑
B∈BS

tcf (B).
(� ). LetH be a minimal triangulation ofG such that tcf (H) = tcf (G). LetSbe a minimal separator ofH. By Lemma 13,

we have that tcf (H) = ∑
C∈CS

tcf (H [N [C]]). For everyC ∈ CS the corresponding blockB ∈ BS is the induced subgraph of
H [N [C]] and hence chordal. Then by Theorem 10

tcf (G) = tcf (H) =
∑
C∈CS

tcf (H [N [C]])�
∑
B∈BS

tcf (B).

By Theorem 14,S is also minimal separator ofG. Therefore,
∑

B∈BS
tcf (B)�minS∈�G

∑
B∈BS

tcf (B). �

Vertex set� ⊆ V of a graphG is a potential maximal cliqueif there is a minimal triangulationH of G such that� is a
maximal clique inH. We denote by�G the set of all potential maximal cliques inG. Bouchitté and Todinca[7] proved that
|�G| = O(n|�G|2) and that the potential maximal cliques can be computed in polynomial time in size of the graph and the
number of its minimal separators.
Let� be a potential maximal clique ofG. LetC1, C2, ..., Ck be the connected components ofG\�. By Lemma 15,� ∩ Ci

are minimal separators and the graphsG�[N [Ci ]] are blocks. We call these blocks theblocks associated with�. The set of all
blocks associated with potential clique� is denoted byB�.
The following result was obtained by Bouchitté and Todinca.

Theorem 17(Bouchitté and Todinca[8] ). LetB = (VB,EB) be one of the full blocks of G corresponding to minimal separator
S. ThenH = (VH ,EH ) is a minimal triangulation of B if and only if there is a potential maximal clique� ⊆ VB (maximal
clique of G) such that

• S ⊂ �;
• H is obtained from B by turning� into a clique and taking minimal triangulations of blocks in B associated with�.More
precisely, letB1= (V1, E1), . . . , Bk = (Vk, Ek) be the blocks fromB� in B associated with�.ThenVH =V1∪· · ·∪Vk ∪�
andEH = E1 ∪ ... ∪ Ek ∪ {{x, y} : x, y ∈ �}.

As a consequence, we have the following result.

Theorem 18. LetB = (VB,EB) be a full block of G corresponding to a minimal separator S, let f be a fast function. Then

tcf (B) = min
S⊂�⊆VB,�∈�G


f (|�|) +

∑
Bi∈B�

tcf (Bi)


 .

Proof. Let H be a minimal triangulation ofB with optimal treecost. Then by Theorem 17 there is a potential maximal clique
S ⊂ � such thatH is obtained by turning� into clique and takingminimal triangulationsH1, H2, ..., Hk of blocks inBassociated
with �.
By the definition of blocks associated with clique�, every cliqueW �= � inH is maximal if and only ifW is a maximal clique

in exactly one triangulationHi . Then

tcf (B) = costf (H) = f (|�|) +
∑

Bi∈B�
costf (Hi)�f (|�|) +

∑
Xi∈B�

tcf (Bi).

In the other direction, let� be amaximal potential clique and letHi beminimal triangulations ofBi ∈ B� with minimumf-cost.
LetH be the triangulation ofB obtained by turning� into clique and taking triangulationsH1, H2, ..., Hk as triangulations of
the corresponding associated blocks. Thef-cost ofH is at mostf (|�|) + ∑

Bi∈B�
costf (Hi). By Theorem 17,H is a minimal

triangulation and by Theorem 10, tcf (B)�costf (H). �
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Theorem 19. Let f be a fast function and letTf (n) be the time needed to computef (1), . . . , f (n). Let �G be the set of all

minimal separators in G.Then for every graphG there exists anO(n2|�G|3+Tf (n)+n2m|�G|2) time algorithm for computing
the treecost of G.

Proof. To prove the theorem we present the algorithm similar to the algorithm for treewidth and fill-in by Bouchitté and
Todinca[8].

INPUT:G and all its minimal separators.
OUTPUT: tcf (G)

(1) Use Bouchitté–Todinca’s algorithm[7] to compute all potential maximal cliques ofG;
(2) For every minimal separator compute the set of blocksBS and sort all blocks by the number of vertices;
(3) For every blockB = (VB,EB) (and the corresponding minimal separatorS) in order of increasing size do

• tcf (B) : =∞;
• For every potential maximal clique� such thatS ⊂ � ⊆ VB ; compute the blocksB� associated with�;
• tcf (B) : =min(tcf (B), f (|�|) + ∑

X∈B�
tcf (X));

(4) tcf (G) =minS∈�G

∑
B∈BS

tcf (B).

The correctness of the algorithm follows from Theorems 10 and 18.
The running time of the first step of the algorithm is O(n2m|�G|2) (see[7]). Letb be the number of blocks inG. Because for

everyminimal separatorSthe setBS has cardinality at mostn, we have thatb�n|�G| and the second step can be implemented in
O(n|�G|+mn) time. The third step can be implemented inO(b|�G|+Tf (n))=O(n|�G||�G|+Tf (n))=O(n2|�G|3+Tf (n))

time. �

5. Cographs

In this section, we give a relatively simple algorithm that computes the treecost of a cograph with respect to a functionf,
and constructs the corresponding tree decomposition. Whenf (1), . . . , f (n) can be computed in linear time, the algorithm uses
linear time. A polynomial time algorithm for the problem can be obtained from Theorem 19, as cographs are a subclass of the
permutation graphs and have polynomially many minimal separators; the algorithm given in this section is faster and simpler,
and also works for functionsf that are not fast.
The algorithm follows the same pattern as many algorithms on cographs, and uses ideas of the algorithm to compute the

treewidth of a cograph from[6]. Let f ◦ +j denote the function with for alli ∈ N: (f ◦ +j)(i) = f (i + j). Any cograph
can be formed from graphs with one vertex by the following operations: disjoint union and product (×), where the product of
G1 = (V1, E1) andG2 = (V2, E2) is formed by taking the disjoint union ofG1 andG2 and then adding all|V1| · |V2| edges
between the vertices inV1 and the vertices inV2.

Lemma 20. Letf : N → R+ be a function. LetG1= (V1, E1) andG2 = (V2, E2) be disjoint graphs.
(i) tcf (G1 ∪ G2) = tcf (G1) + tcf (G2).
(ii) tcf (G1× G2) =min{tcf ◦+|V2|(G1), tcf ◦+|V1|(G2)}.

Proof. (i) Trivial.
(ii) If we take a triangulationH1 ofG1 withminimum(f ◦+|V2|)-cost, and then turnV2 into a clique, we obtain a triangulation

H ofG1×G2. For every maximal cliqueW inH,W −V2 is a maximal clique inH1, and hence thef-cost ofH is tcf ◦+|V2|(G1).
Similarly, we can make a triangulation ofG1× G2 of f-cost tcf ◦+|V1|(G2).
SupposeH is a triangulation ofG1×G2 such that costf (H) is minimal. Then by Lemma 6, eitherV1 orV2 forms a clique in

H. SupposeV1 is a clique inH. LetH2 be the triangulation ofG2 obtained by restrictingH toG2. As for every maximal clique
W in H2, we have thatW ∪ V1 is a maximal clique inH, we have that tcf (H) = costf (H) = costf ◦+|V1|(H2). So in this case,
tcf (H)� tcf ◦+|V1|(G2). If V2 forms a clique inH, then similarly, tcf (H)� tcf ◦+|V2|(G1). �

As one can find in O(|V | + |E|) time, a series of disjoint union and product operations that build a given cograph[10], the
following result can be obtained similar to many other algorithmic results on cographs:

Theorem 21. Let f : N → R+ be a function. LetTf (n) be the time needed to computef (1), . . . , f (n). Then there is an
algorithm that computestcf (G) for a given cograph with n vertices and m edges inO(n + m + Tf (n)) time.

Note that we do not need thatf is fast.
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6. Graphs of treewidth two

For graphs of treewidth at most two it holds that there always exists a triangulation of minimumf-cost that also has minimum
treewidth (i.e., treewidth two), assuming thatf is fast.

Lemma 22. For any fast function f and any graph G, the treecost of G with respect to f equals the sum over the biconnected
components of G of the treecost of the components with respect to f.

Proof. If we have a triangulation of each biconnected component ofG, then taking these together gives a triangulation ofG;
noting that each maximal clique of that triangulation appears once as a maximal clique in a triangulation of a biconnected
component shows that the treecost ofG is at most the sum over the biconnected components of their treecosts.
Suppose we have a triangulationH ofGof minimumf-cost. By Theorem 10, wemay assume thatH is a minimal triangulation.

Hence,H does not contain edges between different biconnected components ofG; the biconnected components ofH have the
same vertex sets as the biconnected components ofG. Thus, the sum of thef-costs of the triangulations, obtained by restricting
H to the different biconnected components equals thef-cost ofH. �

Lemma 23. Let G be a biconnected chordal graph. Then every maximal clique in G has size at least three.

Proof. Suppose{v,w} is a maximal clique of size two in biconnected chordal graphG. If v andw have no common neighbor
in G, then we easily can construct a chordless cycle of length more than three inG. �

Lemma 24. LetG = (V ,E) be a biconnected graph of treewidth at most two. Let f be a fast function. Letn = |V |. If n = 2,
tcf (G) = f (2), and ifn�3, tcf (G) = f (3) · (n − 2).

Proof. If n = 2, thenG consists of a single edge, and clearly tcf (G) = f (2).
We use induction onn for the casen�3. If n = 3, thenG is isomorphic toK3: a clique with three vertices, and hence

tcf (G)= f (3). Suppose the lemma is true upton− 1. LetG= (V ,E) be a biconnected graph withn�4 vertices and treewidth
at most two. By Lemma 4, we have that tcf (G)�f (3) · (n − 2).
Suppose we have a triangulationH ofGof optimalf-cost. Consider a vertexv that is simplicial inH. If NH (v) is not amaximal

clique inH − v, then tcf (G)= f (|NH (v)| + 1)+ tcf (H − v)�f (3)+ (n− 2)f (3). If NH (v) is a maximal clique inH − v,
then, by Lemma 23,|NH (v)|�3, and hence tcf (G) = f (|NH (v) ∪ {v}|) + tcf (H − v) − f (|NH (v)|)�f (|NH (v)|) + (n −
2)f (3)�(n − 1)f (3). (We have used in this step thatf is fast.) �

The proof of the preceding lemma shows that any triangulation of a biconnected graph of treewidth two with maximum clique
size three has optimalf-cost; f any fast function. Such a triangulation can be easily obtained by taking a vertexv of degree
two, making its neighbors adjacent, recursively triangulating the graph withoutv, and then addingv back. This is similar to the
algorithm to recognize graphs of treewidth two, see[1]. For an arbitrary (not necessarily biconnected) graphG of treewidth at
most two, we can apply this procedure for every biconnected component separately.

Theorem 25. Let f be a fast function, such thatf (1), f (2), andf (3) are computable. Then there is a linear time algorithm that
computes the treecost with respect to f of a graph of treewidth at most two.

7. Treewidth versus treecost

An interesting question is whether there is always a triangulation with both optimal treecost and with optimal treewidth. Such
a result would have had nice practical algorithmic consequences (e.g., in the algorithm of Section 4, we can ignore all separators
larger than the treewidth plus one). Unfortunately, such triangulations do not always exist. In the example, given inFig. 1, we
have a cograph that is formed as follows.G1 is the disjoint union of four triangles (copies ofK3). G2 is the disjoint union of
a clique with four vertices and eight isolated vertices.G is the product ofG1 andG2. Let f be the functionf (n) = 2n. Now, a
triangulation of minimum treewidth is obtained by turningV2 into a clique: this gives a maximum clique size of 15 (whereas
when we turnV1 into a clique, we have a triangulation with maximum clique size 16.) A triangulation ofG1×G2 of minimum
f-cost is obtained by turningV1 into a clique: this gives anf-cost of 212(24 + 8); turningV2 into a clique gives anf-cost of
212(4× 23).
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×

G1

G2

Fig. 1. A cograph whose triangulation with optimal treecost has not optimal treewidth.

More generally, let tcf,k(G) be the minimumf-cost of a tree decomposition ofGof width at mostk. The cograph given above
is an example of a graph where tcf,k(G) �= tcf (G), k the treewidth ofG.
We conjecture that the width of a tree decomposition of optimalf-cost cannot be ‘much’ larger than the treewidth of a graph:

Conjecture 26. Let f be a fast function. There exists a functiongf , such that for all graphs G of treewidth at most k, tcf (G)=
tcf,gf (k)(G).

Having such a functiongf would help to speed up the algorithm of Section 4. A proof of Conjecture 26 would imply that for
every polynomial time computable fast function, the treecost of graphs of bounded treewidth is polynomial time computable,
because we have the following result.

Theorem 27. Letf : N → R+ be function, such that for each n, f (n) can be computed. Letk ∈ R+.There exists an algorithm
that computes for a given graph G, tcf,k(G) in O(nk+2) time, plus the time needed to computef (1), . . . , f (k + 1).

Proof. We sketch the proof here. Let�k+1
G

be the set of all potential maximal cliques inG of cardinality at mostk + 1. Similar
to the proof of Theorem 18 one can prove the following: LetB = (VB,EB) be a full block ofG corresponding to minimal
separatorS. Then

tcf,k(G) = min
S⊂�⊆VB,�∈�k+1

G


f (|�|) +

∑
Bi∈B�

tcf,k(Bi)


 .

The results of Bouchitté and Todinca[7] imply that for a vertex setK one can recognize in O(|K|m) time if K is a potential
maximal clique. Ifm>kn, thenG has treewidth more thank (see[4]), and hence tcf,k(G) = ∞. So, we may assume that we
have a linear number of edges. Therefore, in our case, a potential maximal clique of size at mostk+1 can be recognized in O(n)
time and the set�k+1

G
can be computed in O(nk+2) time.

Checking if a given set is a separator can be done in O(n) time, so finding the list of minimal separators of size at mostk costs
O(nk+1) time. (By Theorems 14 and 16 only minimal separators of size at mostk have to be considered.)
Now one can use the modified version of the algorithm in the proof of Theorem 19 restricted to the set of potential maximal

cliques of sizes at mostk + 1 and minimal separators of size at mostk to obtain tcf,k(G). �

There is also a constructive variant of the algorithm (it outputs the desired tree decomposition) that runs also in O(nk+2) time.

8. Probabilistic networks and vertex weights

Probabilistic networks are the underlying technology of several modern decision support systems. See e.g.[14]. Such a
probabilistic network models independencies and dependencies between statistical variables with help of a directed acyclic
graph. A central problem is thePROBABILISTIC INFERENCEproblem: one must determine the probability distribution of a
specific variable, possibly given the values of some other variables. As this problem is #P -complete for general networks[20]
but many networks used in practice appear to have small treewidth, an algorithm of Lauritzen and Spiegelhalter[17] is often
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used that solves the problem on networks with small treewidth.1 As the same network is used for many computations, it is very
useful to spend much preprocessing time and obtain a tree decomposition that allows fast computations. Thus, more important
than minimizing the width is to minimize the ‘cost’ of the tree decomposition. While each vertex models a discrete statistical
variable, variables may have a different valence. Letw(v) ∈ N be theweightof v.w(v)models the number of valuesv can take,
which directly reflects on the resources (time and space) needed for a computation. For instance, a binary variable corresponds
to a vertex with weight two. In a tree decomposition ofG, the time to process a node is basically the product of the weights of
the vertices in the corresponding setXi . In graph terms, we can model the situation as follows, after[16,22,15].
Given are a graphG = (V ,E), and a weight functionw : V → N. Thetotal state spaceof a triangulationH of G is the sum

over all maximal cliquesW in H of
∏

v∈Ww(v).
Note that when all vertices have weight two (i.e., all variables are binary), then the total state space is exactly thef-cost with

for all i, f (i) = 2i .
Some of the proofs of previous sections can be modified to give similar results for the problem to find a triangulation of

minimum total state space.

Theorem 28.

(i) Let G be a graph, with vertices weighted with positive integers. Then there is a minimal triangulation H with total state
space equal to the minimum total state space of a triangulation of G.

(ii) There exists an algorithm to compute a triangulation with minimum total state space whose running time is polynomial in
the number of minimal separators of G.

(iii) Given a cograph G with vertices weighted with positive integers, a triangulation of G with minimum total state space can
be found in linear time.

(iv) For each k, there is an algorithm that runs inO(nk+2) time, and that given a graph G with vertices weighted with positive
integers, finds among the tree decompositions of G of width at most k finds one of minimum state space.

The method to compute the treecost of a graph of treewidth two of Section 6 cannot be used for the minimum state space
problem when vertices have different weights.

9. Hardness results

Wen[22] showed that TREECOSTf is NP-hard whenf is the functionf (i)= 2i . To be precise, Wen showed that the problem
of finding a triangulation of minimum total state space is NP-hard when all variables are binary. In this section, we show similar
results for a larger class of functionsf, using a different reduction, and we show that the problems remain NP-hard for cobipartite
and for bipartite graphs.

Theorem 29. Let f be a fast function. TheTREECOSTf problem is NP-hard for cobipartite graphs.

Proof. We reduce from TREEWIDTH. Let an instance of the TREEWIDTHproblem be given: a graphG= (V ,E) and an integer
k� |V |.
We transformG to a graphH as follows: for everyv ∈ V , we take logn verticesv1, . . . , vlog n; and for every edge

{v,w}∈E, we take the edges{vi , wj } for all i, j , 1� i� log n, 1�j � log n. In addition, we add edges{vi , vj } for all
1� i<j � log n. �

Claim 1. The treewidth of G is at most k, if and only if the treecost of H is at most(n − 1) f ((k + 1) log n).

Proof. Suppose we have a minimal tree decomposition({Xi | i ∈ I }, T = (I, F )) of G of width at mostk.
TakingYi = {vj | v ∈ Xi,1�j � log n}, we have that({Yi | i ∈ I }, T = (I, F )) is a tree decomposition off-cost at most

(n − 1) · f ((k + 1) log n).
Now, suppose({Yi | i ∈ I }, T =(I, F )) is a tree decomposition of minimumf-cost ofH. By Lemma 3, we assume that this tree

decomposition is minimal. Take for alli ∈ I :Xi ={v ∈ V | v1, . . . , vlog n ∈ Yi}. One can verify that({Xi | i ∈ I }, T =(I, F )) is
a tree decomposition ofG. (The second condition of tree decomposition can be seen to hold as follows: for every edge{v,w} ∈ E,
the set{v1, . . . , vlog n,w1, . . . , wlog n} forms a clique inH, hence there is ani ∈ I with {v1, . . . , vlog n,w1, . . . , wlog n} ⊆ Yi

1 To be precise, first the moralization of the network is made: for every vertex, the set of its direct predecessors is turned into a clique, and
then all directions of edges are dropped.



H.L. Bodlaender, F.V. Fomin /Discrete Applied Mathematics 145 (2005) 143–154 153

(Lemma 5), hencev,w ∈ Xi .) The width of this decomposition is at mostk: if there is ani ∈ I with |Xi |�k + 2, then
|Yi |�(k+2) log n, and hence thef-cost of the tree decomposition ofH is at leastf ((k+2) log n)�2log n ·f ((k+1) log n)>

(n − 1) · f ((k + 1) log n). Hence, we have a tree decomposition ofG of width at mostk. �

Note that ifG is a cobipartite graph, thenH is a cobipartite graph. As we can constructH from G in polynomial time, the
NP-completeness result now follows.

Theorem 30. Let f be a fast function. TheTREECOSTf problem is NP-hard for bipartite graphs.

Proof. LetG andH be as in the previous proof, but instead replace every vertex inG by 2 logn vertices; and letH ′ be obtained
fromH by subdividing every edge.�

Claim 2. The treewidth of G is at most k, if and only if the treecost ofH ′ is at most(n−1)f ((k+1)2 log n)+4f (3) n2 log2 n.

Proof. Make a tree decomposition ofH as in the proof of the previous theorem.
Suppose the treewidth ofG is at mostk. For each of the at most 4n2 log2 n subdivision vertices inH ′, we have thatH contains

an edge between its neighbors, and hence we can add a setXv , containingv and its neighbors and make it adjacent to a set that
contains the neighbors ofv. This gives a tree decomposition ofH ′ of f-cost at most(n−1) f ((k+1)2 log n)+4f (3) n2 log2 n.
Suppose the treecost ofH ′ is at most(n− 1) f ((k + 1)2 log n)+ 4f (3) n2 log2 n. Build a tree decomposition ofG as in the

proof for cobipartite graphs. Note thatf ((k+2)2 log n)�22 log n f ((k+1)2 log n)> (n−1) f ((k+1) log n)4f (3) n2 log2 n,
so we must have that this tree decomposition has width at mostk. �

Finally, note thatH is bipartite whenG is bipartite, and thatH can be constructed in polynomial time fromG. The theorem
now follows from the fact that TREEWIDTH is NP-complete for bipartite graphs.�

Corollary 31. Let f be a fast function such that there is an algorithm that computes for each n, f (n) in time polynomial in n.
Then theTREECOSTf problem is NP-complete for cobipartite graphs and for bipartite graphs.

In [5], it was shown that there is no algorithm that approximates the treewidth within a constant additive term unlessP =NP.
Combining this result with the proof technique of the NP-hardness results given above can be used to show:

Theorem 32. If P �= NP, then for everyc ∈ N, there is no polynomial time algorithm that approximates the treecost of a given
graph G within a multiplicative factor c.

10. Discussion

In this paper, we investigated a notion that gives a more refined view on what is a ‘good’ tree decomposition of a graph.
For several algorithms on tree decompositions, the function that maps a tree decomposition to the amount of time spent by the
algorithm when using that tree decomposition is actually somewhat more complicated than thef-costs as used in this paper, but
thef-cost functions come close to these exact models. For instance, one can observe that often the degree of nodes inT, and the
differences in set sizes along edges inT also influence the running time.
In some cases, thef-costs equals the space used by the algorithm, apart from a negligible small amount of space for the actual

representation of the tree decomposition and control variables used by the algorithm. When running a dynamic programming
algorithm one can often reuse memory. In[2], it was investigated how tree decompositions can be obtained that require little
memory, when reusingmemory. (See also[21].) However, that approach is mainly useful when solving decision problems.When
solving the construction variant of the problem, one generally wants to keep all tables (as reusing space of tables means that
one might have to recompute some when constructing solutions for yes-instances of the problem). In the latter case, thef-cost
expresses precisely the space used by all the tables computed by the dynamic programming algorithm.We think it is an interesting
and important problem to study notions that more precisely reflect the time used by algorithms using tree decompositions, and
investigate their algorithmic complexity.
In other cases, thef-cost of the tree decomposition can represent the amount of space needed for the algorithm, in particular,

the total size of all tables a specific dynamic programming algorithm uses with the tree decomposition.
We have seen that in several interesting cases, tree decompositions with optimalf-cost can be computed in polynomial time,

and we expect that in some practical cases, where it makes sense to spend sufficiently much preprocessing time on finding one
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good tree decomposition (in particular, in cases, where the same tree decomposition is used several times with different data on
the same graph or network), some of our methods can be of practical use.
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