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Abstract. The (k, r )-center problem asks whether an input graph G has ≤ k vertices (called centers)
such that every vertex of G is within distance ≤ r from some center. In this article, we prove that the
(k, r )-center problem, parameterized by k and r , is fixed-parameter tractable (FPT) on planar graphs,
i.e., it admits an algorithm of complexity f (k, r )nO(1) where the function f is independent of n. In
particular, we show that f (k, r ) = 2O(r log r )

√
k , where the exponent of the exponential term grows

sublinearly in the number of centers. Moreover, we prove that the same type of FPT algorithms can
be designed for the more general class of map graphs introduced by Chen, Grigni, and Papadimitriou.
Our results combine dynamic-programming algorithms for graphs of small branchwidth and a graph-
theoretic result bounding this parameter in terms of k and r . Finally, a byproduct of our algorithm is
the existence of a PTAS for the r -domination problem in both planar graphs and map graphs.

Our approach builds on the seminal results of Robertson and Seymour on Graph Minors, and as
a result is much more powerful than the previous machinery of Alber et al. for exponential speedup
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on planar graphs. To demonstrate the versatility of our results, we show how our algorithms can be
extended to general parameters that are “large” on grids. In addition, our use of branchwidth instead of
the usual treewidth allows us to obtain much faster algorithms, and requires more complicated dynamic
programming than the standard leaf/introduce/forget/join structure of nice tree decompositions. Our
results are also unique in that they apply to classes of graphs that are not minor-closed, namely,
constant powers of planar graphs and map graphs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Computations on discrete structures; G.2.2 [Mathematics
of Computing]: Discrete Mathematics—Graph algorithms, network problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: (k, r )-center, fixed-parameter algorithms, domination, planar
graph, map graph

1. Introduction

Clustering is a key tool for solving a variety of application problems such as data
mining, data compression, pattern recognition and classification, learning, and fa-
cility location. Among the algorithmic problem formulations of clustering are k-
means, k-medians, and k-center. In all of these problems, the goal is to partition n
given points into k clusters so that some objective function is minimized.

In this article, we concentrate on the (unweighted) (k, r )-center problem [Bar-
Ilan et al. 1993], in which the goal is to choose k centers from the given set of
n points so that every point is within distance r from some center in the graph.
In particular, the k-center problem [Gonzalez 1985] of minimizing the maximum
distance to a center is exactly (k, r )-center when the goal is to minimize r subject
to finding a feasible solution. In addition, the r-domination problem [Bar-Ilan et al.
1993; Gavoille et al. 2001] of choosing the fewest vertices whose r -neighborhoods
cover the whole graph is exactly (k, r )-center when the goal is to minimize k subject
to finding a feasible solution.

A sample application of the (k, r )-center problem in the context of facility lo-
cation is the installation of emergency service facilities such as fire stations. Here
we suppose that we can afford to buy k fire stations to cover a city, and we require
every building to be within r city blocks from the nearest fire station to ensure a
reasonable response time. Given an algorithm for (k, r )-center, we can vary k and
r to find the best bicriterion solution according to the needs of the application. In
this scenario, we can afford high running time (e.g., several weeks of real time) if
the resulting solution builds fewer fire stations (which are extremely expensive) or
has faster response time; thus, we prefer fixed-parameter algorithms over approxi-
mation algorithms.

In this application, and many others, the graph is typically planar or nearly so.
Chen et al. [2002] have introduced a generalized notion of planarity which allows
local nonplanarity. In this generalization, two countries of a map are adjacent if
they share at least one point, and the resulting graph of adjacencies is called a map
graph. (See Section 2 for a precise definition.) Planar graphs are the special case
of map graphs in which at most three countries intersect at a point.

1.1. PREVIOUS RESULTS. r -domination and k-center are NP-hard even for pla-
nar graphs. For r -domination, the current best approximation (for general graphs)
is a (log n + 1)-factor by phrasing the problem as an instance of set cover [Bar-Ilan
et al. 1993]. For k-center, there is a 2-approximation algorithm [Gonzalez 1985]
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which applies more generally to the case of weighted graphs satisfying the tri-
angle inequality. Furthermore, no (2 − ε)-approximation algorithm exists for any
ε > 0 even for unweighted planar graphs of maximum degree 3 [Plesnı́k 1980].
For geometric k-center in which the weights are given by Euclidean distance in d-
dimensional space, there is a PTAS whose running time is exponential in k [Agarwal
and Procopiuc 2002]. Several relations between small r -domination sets for planar
graphs and problems about organizing routing schemes with compact structures is
discussed in [Gavoille et al. 2001].

The (k, r )-center problem can be considered as a generalization of the well-
known dominating set problem. During the last two years in particular much at-
tention has been paid to constructing fixed-parameter algorithms with exponential
speedup for this problem. Alber et al. [2002] were the first who demonstrated an
algorithm checking whether a planar graph has a dominating set of size ≤ k in time
O(270

√
kn). This result was the first non-trivial result for the parameterized version

of an NP-hard problem in which the exponent of the exponential term grows sub-
linearly in the parameter. Recently, the running time of this algorithm was further
improved to O(227

√
kn) [Kanj and Perković 2002] and O(215.13

√
kk+n3+k4) [Fomin

and Thilikos 2003]. Fixed-parameter algorithms for solving many different prob-
lems such as vertex cover, feedback vertex set, maximal clique transversal, and
edge-dominating set on planar and related graphs such as single-crossing-minor-
free graphs are considered in Demaine et al. [2003] and Kloks et al. [2002]. Most
of these problems have reductions to the dominating set problem. Also, because all
these problems are closed under taking minors or contractions, all classes of graphs
considered so far are minor-closed.

1.2. OUR RESULTS. In this article, we focus on applying the tools of parame-
terized complexity, introduced by Downey and Fellows [1999], to the (k, r )-center
problem in planar and map graphs. We view both k and r as parameters to the
problem. We introduce a new proof technique which allows us to extend known
results on planar dominating set in two different aspects.

First, we extend the exponential speed-up for a generalization of dominating set,
namely the (k, r )-center problem, on planar graphs. Specifically, the running time
of our algorithm is O((2r + 1)6(2r+1)

√
k+12r+3/2n + n4), where n is the number of

vertices. Our proof technique is based on combinatorial bounds (Section 3) derived
from the Robertson, Seymour, and Thomas theorem about quickly excluding planar
graphs, and on a complicated dynamic program on graphs of bounded branchwidth
(Section 4). Second, we extend our fixed-parameter algorithm to map graphs which
is a class of graphs that is not minor-closed. In particular, the running time of the
corresponding algorithm is O((2r + 1)6(4r+1)

√
k+24r+3n + n4).

Notice that the exponential component of the running times of our algorithms
depends only on the parameters, and is multiplicatively separated from the problem
size n. Moreover, the contribution of k in the exponential part is sublinear. In
particular, our algorithms have polynomial running time if k = O(log2 n) and
r = O(1), or if r = O(log n/ log log n) and k = O(1). We stress the fact that
we design our dynamic-programming algorithms using branchwidth instead of
treewidth because this provides better running times.

Finally, in Section 6, we present several extensions of our results, including a
PTAS for the r -dominating set problem and a generalization to a broad class of
graph parameters.
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2. Definitions and Preliminary Results

Let G be a graph with vertex set V (G) and edge set E(G). We let n denote the
number of vertices of a graph when it is clear from context. For every nonempty
W ⊆ V (G), the subgraph of G induced by W is denoted by G[W ].

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y and
remove all loops and duplicate edges. A graph H obtained by a sequence of edge
contractions is said to be a contraction of G. A graph H is a minor of a graph G if
H is a subgraph of a contraction of G. We use the notation H � G (respectively,
H �c G) for H is a minor (a contraction) of G.

(k, r )-center. We define the r-neighborhood of a set S ⊆ V (G), denoted by
Nr

G(S), to be the set of vertices of G at distance at most r from at least one vertex
of S; if S = {v} we simply use the notation Nr

G(v). We say a graph G has a (k, r )-
center or interchangeably has an r-dominating set of size k if there exists a set S
of centers (vertices) of size at most k such that Nr

G(S) = V (G). We denote by
γr (G) the smallest k for which there exists a (k, r )-center in the graph. One can
easily observe that for any r the problem of checking whether an input graph has a
(k, r )-center, parameterized by k is W [2]-hard by a reduction from dominating set.
(See Downey and Fellows [1999] for the definition of the W Hierarchy.)

Map graphs. Let � be a sphere. A �-plane graph G is a planar graph G drawn
in �. To simplify notation, we usually do not distinguish between a vertex of the
graph and the point of � used in the drawing to represent the vertex, or between an
edge and the open line segment representing it. We denote the set of regions (faces)
in the drawing of G by R(G). (Every region is an open set.) An edge e or a vertex
v is incident to a region r if e ⊆ r̄ or v ⊆ r̄ , respectively. (r̄ denotes the closure
of r .)

For a �-plane graph G, a map M is a pair (G, φ), where φ : R(G) → {0, 1} is a
two-coloring of the regions. A region r ∈ R(G) is called a nation if φ(r ) = 1 and
a lake otherwise.

Let N (M) be the set of nations of a mapM. The graph F is defined on the vertex
set N (M), in which two vertices r1, r2 are adjacent precisely if r̄1 ∩ r̄2 contains at
least one edge of G. Because F is the subgraph of the dual graph G∗ of G, it is
planar. Chen, Grigni, and Papadimitriou [Chen et al. 2002] defined the following
generalization of planar graphs. A map graph GM of a map M is the graph on the
vertex set N (M) in which two vertices r1, r2 are adjacent in GM precisely if r̄1 ∩ r̄2
contains at least one vertex of G.

For a graph G, we denote by Gk the kth power of G, i.e., the graph on the vertex
set V (G) such that two vertices in Gk are adjacent precisely if the distance in G
between these vertices is at most k. Let G be a bipartite graph with a bipartition
U ∪ W = V (G). The half square G2[U ] is the graph on the vertex set U and two
vertices are adjacent in G2[U ] precisely if the distance between these vertices in G
is 2.

THEOREM 2.1 [CHEN ET AL. 2002]. A graph GM is a map graph if and only if
it is the half-square of some planar bipartite graph H.

Here the graph H is called a witness for GM. Thus the question of finding a (k, r )-
center in a map graph GM is equivalent to finding in a witness H of GM a set
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S ⊆ V (GM) of size k such that every vertex in V (GM) − S has distance ≤ 2r in
H from some vertex of S.

The proof of Theorem 2.1 is constructive, that is, given a map graph GM to-
gether with its map M = (G, φ), one can construct a witness H for GM in time
O(|V (GM)| + |E(GM)|). One color class V (GM) of the bipartite graph H cor-
responds to the set of nations of the map M. Each vertex v of the second color
class V (H ) − V (GM) corresponds to an intersection point of boundaries of some
nations, and v is adjacent (in H ) to the vertices corresponding to the nations it
belongs. What is important for our proofs are the facts that

(1) in such a witness, every vertex of V (H ) − V (GM) is adjacent to a vertex of
V (GM), and

(2) |V (H )| = O(|V (GM)| + |E(GM)|).
Thorup [1998] provided a polynomial-time algorithm for constructing a map of a

given map graph in polynomial time. However, in Thorup’s algorithm, the exponent
in the polynomial time bound is about 120 [Chen 2001]. So from practical point
of view there is a big difference whether we are given a map in addition to the
corresponding map graph. Below, we suppose that we are always given the map.

Branchwidth. Branchwidth was introduced by Robertson and Seymour [1991],
in their Graph Minors series of papers. A branch decomposition of a graph G is
a pair (T, τ ), where T is a tree with vertices of degree 1 or 3 and τ is a bijection
from E(G) to the set of leaves of T . The order function ω : E(T ) → 2V (G) of a
branch decomposition maps every edge e of T to a subset of vertices ω(e) ⊆ V (G)
as follows. The set ω(e) consists of all vertices of V (G) such that, for every vertex
v ∈ ω(e), there exist edges f1, f2 ∈ E(G) such that v ∈ f1 ∩ f2 and the leaves
τ ( f1), τ ( f2) are in different components of T − {e}. The width of (T, τ ) is equal to
maxe∈E(T ) |ω(e)| and the branchwidth of G, bw(G), is the minimum width over all
branch decompositions of G.

It is well known that, if H � G or H �c G, then bw(H ) ≤ bw(G).
The following deep result of Robertson, Seymour, and Thomas (Theorem 4.3

in Robertson and Seymour [1991] and Theorem 6.3 in Robertson et al. [1994])
plays an important role in our proofs.

THEOREM 2.2 [ROBERTSON ET AL. 1994]. Let k ≥ 1 be an integer. Every planar
graph with no (k × k)-grid as a minor has branchwidth ≤ 4k − 3.

Branchwidth is the main tool in this article. All our proofs can be rewritten in
terms of the related and better-known parameter treewidth, and indeed treewidth
would be easier to handle in our dynamic program. However, branchwidth pro-
vides better combinatorial bounds resulting in faster exponential speed-up of our
algorithms.

3. Combinatorial Bounds

LEMMA 3.1. Let ρ, k, r ≥ 1 be integers and G be a planar graph having a
(k, r )-center and with a (ρ × ρ)-grid as a minor. Then k ≥ (ρ−2r

2r+1 )2.

PROOF. We set V = {1, . . . , ρ} × {1, . . . , ρ}. Let

F = (V, {((x, y), (x ′, y′)) | |x − x ′| + |y − y′| = 1})
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be a plane (ρ ×ρ)-grid that is a minor of some plane embedding of G. Without loss
of generality, we assume that the external (infinite) face of this embedding of F is
the one that is incident to the vertices of the set Vext = {(x, y) | x = 1 or x = ρ or
y = 1 or y = ρ}, that is, the vertices of F with degree < 4. We call the rest of the
faces of F internal faces. We set Vint = {(x, y) | r + 1 ≤ x ≤ ρ − r, r + 1 ≤ y ≤
ρ −r}, i.e., Vint is the set of all vertices of F within distance ≥ r from all vertices in
Vext. Notice that F[Vint] is a subgrid of F and |Vint| = (ρ − 2r )2. Given any pair of
vertices (x, y), (x ′, y′) ∈ V , we define δ((x, y), (x ′, y′)) = max{|x − x ′|, |y − y′|}.

We also define dF ((x, y), (x ′, y′)) to be the distance between any pair of vertices
(x, y) and (x ′, y′) in F . Finally, we define J to be the graph occurring from F by
adding in it the edges of the following sets:

{((x, y), (x + 1, y + 1) | 1 ≤ x ≤ ρ − 1, 1 ≤ y ≤ ρ − 1)}
{((x, y + 1), (x + 1, y) | 1 ≤ x ≤ ρ − 1, 1 ≤ y ≤ ρ − 1)}.

(In other words, we add all edges connecting pairs of nonadjacent vertices in-
cident to its internal faces). It is easy to verify that ∀(x, y), (x ′, y′) ∈ V δ((x, y),
(x ′, y′)) = dJ ((x, y), (x ′, y′)). This implies the following: if R is a subgraph of J ,
then

∀(x, y), (x ′, y′) ∈ V δ((x, y), (x ′, y′)) ≤ dR((x, y), (x ′, y′)) (1)

For any (x, y) ∈ V , we define Br ((x, y)) = {(a, b) ∈ V | δ((x, y), (a, b)) ≤ r}
and we observe the following:

∀(x,y)∈V |V (Br ((x, y)))| ≤ (2r + 1)2. (2)

Consider now the sequence of edge contractions/removals that transform G to F . If
we apply on G only the contractions of this sequence we end up with a planar graph
H that can obtained by the (ρ × ρ)-grid F after adding edges to nonconsecutive
vertices of its faces. This makes it possible to partition the additional edges of H
into two sets: a set denoted by E1 whose edges connect nonadjacent vertices of
some square face of F and another set E2 whose edges connect pairs of vertices in
Vext. We denote by R the graph obtained by F if we add the edges of E1 in F . As
R is a subgraph of J , (1) implies that

∀(x,y)∈V Nr
R((x, y)) ⊆ Br ((x, y)). (3)

We also claim that

∀(x,y)∈V Nr
H ((x, y)) ⊆ Br ((x, y)) ∪ (V − Vint). (4)

To prove (4), we notice first that if we replace H by R in it then the resulting
relation follows from (3). It remains to prove that the consecutive addition of edges
of E2 in R does not introduce in Nr

R((x, y)) any vertex of Vint. Indeed, this is correct
because any vertex in Vext is in distance ≥ r from any vertex in Vint. Notice now
that (4) implies that ∀(x,y)∈V Nr

H ((x, y)) ∩ Vint ⊆ Br ((x, y)) ∩ Vint and using (2) we
conclude that

∀(x,y)∈V

∣∣Nr
H ((x, y)) ∩ Vint

∣∣ ≤ (2r + 1)2 (5)

Let S be a (k ′, r )-center in the graph H . Applying (5) on S we have that the r -
neighborhood of any vertex in S contains at most (2r + 1)2 vertices from Vint.
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Moreover, any vertex in Vint should belong to the r -neighborhood of some vertex
in S. Thus, k ′ ≥ |Vint|/(2r + 1)2 = (ρ − 2r )2/(2r + 1)2 and therefore k ′ ≥ (ρ−2r

2r+1 )2.
Clearly, the conditions that G has an r -dominating set of size k and H �c G

imply that H has an r -dominating set of size k ′ ≤ k. (But this is not true for H � G.)
As H is a contraction of G and G has a (k, r )-center, we have that k ≥ k ′ ≥ (ρ−2r

2r+1 )2

and lemma follows.

We are ready to prove the main combinatorial result of this article:

THEOREM 3.2. For any planar graph G having a (k, r )-center, bw(G) ≤ 4(2r+
1)

√
k + 8r + 1.

PROOF. Suppose that bw(G) > p = 4(2r + 1)
√

k + 8r + ε − 3 for some ε,
0 < ε ≤ 4, for which p + 3 ≡ 0 (mod 4). By Theorem 2.2, G contains a (ρ × ρ)-
grid as a minor where ρ = (2r + 1)

√
k + 2r + ε

4 . By Lemma 3.1, k ≥ (ρ−2r
2r+1 )2 =

(
(2r+1)

√
k+ ε

4
2r+1 )2 which implies that

√
k ≥ √

k + ε
8r+4 , a contradiction.

Notice that the branchwidth of a map graph is unbounded in terms of k and r . For
example, a clique of size n is a map graph and has a (1, 1)-center and branchwidth
≥ 2/3n.

THEOREM 3.3. For any map graph GM having a (k, r )-center and its witness
H, bw(H ) ≤ 4(4r + 3)

√
k + 16r + 9.

PROOF. The question of finding a (k, r )-center in a map graph GM is equivalent
to finding in a witness H of GM a set S ⊆ V (GM) of size k such that every vertex
V (GM) − S is at distance ≤ 2r in H from some vertex of S. By the construction
of the witness graph, every vertex of V (H ) − V (GM) is adjacent to some vertex of
V (GM). Thus, H has a (k, 2r +1)-center and by Theorem 3.2 the proof follows.

4. (k, r )-Centers in Graphs of Bounded Branchwidth

In this section, we present a dynamic-programming approach to solve the (k, r )-
center problem on graphs of bounded branchwidth. It is easy to prove that, for a
fixed r , the problem is in MSOL (monadic second-order logic) and thus can be
solved in linear time on graphs of bounded treewidth (branchwidth). However, for
r part of the input, the situation is more difficult. Additionally, we are interested in
not just a linear-time algorithm but in an algorithm with running time f (k, r )n.

It is worth mentioning that our algorithm requires more than a simple extension
of Alber et al.’s algorithm for dominating set in graphs of bounded treewidth [Alber
et al. 2002], which corresponds to the case r = 1. In fact, finding a (k, r )-center is
similar to finding homomorphic subgraphs, which has been solved only for special
classes of graphs and even then only via complicated dynamic programs [Gupta and
Nishimura 1994]. The main difficulty is that the path v =v0, v1, v2, . . . , v≤r =c from
a vertex v to its assigned center c may wander up and down the branch decomposition
repeatedly, so that c and v may be in radically different ‘cuts’ induced by the branch
decomposition. All we can guarantee is that the next vertex v1 along the path from
v to c is somewhere in a common ‘cut’ with v , and that vertex v1 and v2 are in
a common ‘cut’, etc. In this way, we must propagate information through the vi ’s
about the remote location of c.
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Let (T ′, τ ) be a branch decomposition of a graph G with m edges and let ω′ :
E(T ′) → 2V (G) be the order function of (T ′, τ ). We choose an edge {x, y} in T ′,
put a new vertex v of degree 2 on this edge, and make v adjacent to a new vertex
r . By choosing r as a root in the new tree T = T ′ ∪ {v, r}, we turn T into a rooted
tree. For every edge of f ∈ E(T ) ∩ E(T ′), we put ω( f ) = ω′( f ). Also we put
ω({x, v}) = ω({v, y}) = ω′({x, y}) and ω({r, v}) = ∅.

For an edge f of T we define E f (V f ) as the set of edges (vertices) that are
“below” f , that is, the set of all edges (vertices) g such that every path containing g
and {v, r} in T contains f . With such a notation, E(T ) = E{v,r} and V (T ) = V{v,r}.
Every edge f of T that is not incident to a leaf has two children that are the edges
of E f incident to f . We denote by G f the subgraph of G induced by the vertices
incident to edges from the following set

{τ−1(x) | x ∈ V f ∧ (x is a leaf of T ′)}.
The subproblems in our dynamic program are defined by a coloring of the vertices

in ω( f ) for every edge f of T . Each vertex will be assigned one of 2r + 1 colors

{0, ↑1, ↑2, . . . , ↑r, ↓1, ↓2, . . . , ↓r}.
The meaning of the color of a vertex v is as follows:

—0 means that the vertex v is a chosen center.
—↓i means that vertex v has distance exactly i to the closest center c. Moreover,

there is a neighbor u ∈ V (G f ) of v that is at distance exactly i − 1 to the center
c. We say that neighbor u resolves vertex v .

—↑i means that vertex v has distance exactly i to the closest center c. However,
there is no neighbor of v in V (G f ) resolving v . Thus, we are guessing that any
vertex resolving v is somewhere in V (G) − V (G f ).

Intuitively, the vertices colored by ↓i have already been resolved (though the vertex
that resolves it may not itself be resolved), whereas the vertices colored by ↑i still
need to be assigned vertices that are closer to the center.

We use the notation �i to denote a color of either ↑i or ↓i . Also we use �0 = 0.
For an edge f of T , a coloring of the vertices in ω( f ) is called locally valid if

the following property holds: for any two adjacent vertices v and w in ω( f ), if v
is colored � i and w is colored � j , then |i − j | ≤ 1. (If the distance from some
vertex v to the closest center is i , then for every neighbor u of v the distance from
u to the closest center can not be less than i − 1 or more than i + 1.)

For each locally valid coloring c of ω( f ), f ∈ E(T ), we define A f (c) as the size
of the “minimum (k, r )-center restricted to G f and coloring c”. More precisely,
A f (c) is the minimum cardinality of a set D f (c) ⊆ V (G f ) such that

—For every vertex v ∈ ω( f ),
—c(v) = 0 if and only if v ∈ D f (c), and
—if c(v) =↓ i , i ≥ 1, then v /∈ D f (c) and either there is a vertex u ∈ ω( f )

colored by � j , j < i , at distance i − j from v in G f , or there is a path P
of length i in G f connecting v with some vertex of D f (c) such that no inner
vertex of P is in ω( f ).

—Every vertex v ∈ V (G f ) − ω( f ) whose closest center is at distance i , either is
at distance i in G f from some center in D f (c), or is at distance j , j < i , in G f
from a vertex u ∈ ω( f ) colored �(i − j).
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We put A f (c) = +∞ if there is no such a set D f (c), or if c is not a locally valid
coloring. Because ω({r, v}) = ∅ and G{r,v} = G, we have that A{r,v}(c) is the
smallest size of an r -dominating set in G.

We start computations of the functions A f from leaves of T . Let x be a leaf of
T and let f be the edge of T incident with x . Then, G f is the edge {u, v} of G
corresponding to x and either V (G f ) = ω( f ), or the vertex u = V (G f ) − ω( f )
is the vertex of degree 1 in G. If V (G f ) = ω( f ), we consider all locally valid
colorings c of ω( f ) such that, if a vertex v ∈ ω( f ) is colored by ↓i for i > 0 then u
is colored by �i −1. Let us note that there is always an optimal solution containing
no centers in vertices of degree 1. Thus, in the case v = V (G f ) −ω( f ), we color v
in one of the colors from the set {0, ↑1, ↑2, . . . , ↑r − 1}. For each such coloring c,
we define A f (c) to be the number of vertices colored 0 in ω( f ). Otherwise, A f (c)
is +∞, meaning that this coloring c is infeasible. The brute-force algorithm takes
O(rm) time for this step.

Let f be a nonleaf edge of T and let f1, f2 be the children of f . Define X1 =
ω( f ) − ω( f2), X2 = ω( f ) − ω( f1), X3 = ω( f ) ∩ ω( f1) ∩ ω( f2), and X4 =
(ω( f1) ∪ ω( f2)) − ω( f ).

Notice that

ω( f ) = X1 ∪ X2 ∪ X3. (6)

By the definition of ω, it is impossible that a vertex belongs to exactly one of
ω( f ), ω( f1), ω( f2). Therefore, condition u ∈ X4 implies that u ∈ ω( f1) ∩ ω( f2)
and we conclude that

ω( f1) = X1 ∪ X3 ∪ X4, (7)

and

ω( f2) = X2 ∪ X3 ∪ X4. (8)

We say that a coloring c ∈ {0, ↑1, ↑2, . . . , ↑r, ↓1, ↓2, . . . , ↓r}|ω( f )| of ω( f ) is
formed from a coloring c1 of ω( f1) and a coloring c2 of ω( f2) if

(1) For every u ∈ X1, c(u) = c1(u);
(2) For every u ∈ X2, c(u) = c2(u);
(3) For every u ∈ X3,

(a) If c(u) =↑ i , 1 ≤ i ≤ r , then c(u) = c1(u) = c2(u). Intuitively, because
vertex u is unresolved in ω( f ), this vertex is also unresolved in ω( f1) and
in ω( f2).

(b) If c(u) = 0 then c1(u) = c2(u) = 0.
(c) If c(u) =↓i , 1 ≤ i ≤ r , then c1(u), c2(u) ∈ {↓i, ↑i} and c1(u) �= c2(u). We

avoid the case when both c1 and c2 are colored by ↓i because it is sufficient
to have the vertex u resolved in at least one coloring. This observation
helps to decrease the number of colorings forming a coloring c. (Similar
arguments using a so-called “monotonicity property” are made by Alber
et al. [2002] for computing the minimum dominating set on graphs of
bounded treewidth.)

(4) For every u ∈ X4,
(a) either c1(u) = c2(u) = 0 (in this case we say that u is formed by 0 colors),
(b) or c1(u), c2(u) ∈ {↓ i, ↑ i} and c1(u) �= c2(u), 1 ≤ i ≤ r (in this case we

say that u is formed by {↓i, ↑i} colors).
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This property says that every vertex u of ω( f1) and ω( f2) that does not appear
in ω( f ) (and hence does not appear further) should finally either be a center (if
both colors of u in c1 and c2 were 0), or should be resolved by some vertex in
V (G f ) (if one of the colors c1(u), c2(u) is ↓i and one ↑i). Again, we avoid the
case of ↓i in both c1 and c2.

Notice that every coloring of ω( f ) is formed from some colorings of ω( f1)
and ω( f2). Moreover, if D f (c) is the restriction to G f of some (k, r )-center and
such a restriction corresponds to a coloring c of ω( f ) then D f (c) is the union
of the restrictions D f1 (c1), D f2 (c2) to G f1 , G f2 of two (k, r )-centers where these
restrictions correspond to some colorings c1, c2 of ω( f1) and ω( f2) that form the
coloring c.

We compute the values of the corresponding functions in a bottom-up fashion.
The main observation here is that if f1 and f2 are the children of f , then the vertex
sets ω( f1) ω( f2) “separate” subgraphs G f1 and G f2 , so the value A f (c) can be
obtained from the information on colorings of ω( f1) and ω( f2).

More precisely, let c be a coloring of ω( f ) formed by colorings c1 and c2 of f1
and f2. Let #0(X3, c) be the number of vertices in X3 colored by color 0 in coloring
c and and let #0(X4, c) be the number of vertices in X4 formed by 0 colors. For a
coloring c, we assign

A f (c) = min{A f1 (c1) + A f2 (c2) − #0(X3, c1) − #0(X4, c1) | c1, c2 form c}. (9)

(Every 0 from X3 and X4 is counted in A f1 (c1) + A f2 (c2) twice and X3 ∩ X4 = ∅.)
The time to compute the minimum in (9) is given by

O

(∑
c

|{{c1, c2}| c1, c2 form c}|
)

.

Let xi = |Xi |, 1 ≤ i ≤ 4. For a coloring c, let z3 be the number of vertices
colored by ↓ colors in X3. Also, we denote by z4 the number of vertices in X4
formed by {↓ i, ↑ i} colors, 1 ≤ i ≤ r . Thus, the number of pairs forming c is
2z3+z4 . The number of colorings of ω( f ) such that exactly z3 vertices of X3 are
colored by ↓ colors and such that exactly z4 vertices of X4 are formed by {↓, ↑}
colors is

(2r + 1)x1 (2r + 1)x2 (r + 1)x3−z3

(
x3

z3

)
r z3

(
x4

z4

)
r z4 .

Thus, the number of operations needed to estimate (9) for all possible colorings of
ω( f ) is

x3∑
p=0

x4∑
q=0

2p+q(2r + 1)x1+x2 (r + 1)x3−p

(
x3

p

)
r p

(
x4

q

)
rq = (2r + 1)x1+x2+x4 (3r + 1)x3.

Let 	 be the branchwidth of G. The sets Xi , 1 ≤ i ≤ 4, are pairwise disjoint and
by (6)–(8),

x1 + x2 + x3 ≤ 	

x1 + x3 + x4 ≤ 	 (10)
x2 + x3 + x4 ≤ 	.



Fixed-Parameter Algorithms for (k, r )-Center 43

The maximum value of the linear function log3r+1(2r + 1) · (x1 + x2 + x4) + x3

subject to the constraints in (10) is 3log3r+1(2r+1)
2 	. (This is because the value of the

corresponding LP achieves maximum at x1 = x2 = x4 = 0.5	, x3 = 0.) Thus, one
can evaluate (9) in time

(2r + 1)x1+x2+x4 (3r + 1)x3 ≤ (3r + 1)
3log3r+1(2r+1)

2 	 = (2r + 1)
3
2 ·	.

It is easy to check that the number of edges in T is O(m) and the time needed to
evaluate A{r,v}(c) is O((2r + 1)

3
2 ·	m). Moreover, it is easy to modify the algorithm

to obtain an optimal choice of centers by bookkeeping the colorings assigned to
each set ω( f ).

Summarizing, we obtain the following theorem:

THEOREM 4.1. For a graph G on m edges and with a given branch decompo-
sition of width ≤ 	, and integers k, r , the existence of a (k, r )-center in G can be
checked in O((2r + 1)

3
2 ·	m) time and, in case of a positive answer, constructs a

(k, r )-center of G in the same time.

Similar result can be obtained for map graphs.

THEOREM 4.2. Let H be a witness of a map graph GM on n vertices and let
k, r be integers. If a branch-decomposition of width ≤ 	 of H is given, the existence
of a (k, r )-center in GM can be checked in O((2r + 1)

3
2 ·	n) time and, in case of a

positive answer, constructs a (k, r )-center of G in the same time.

PROOF. We give a sketch of the proof here. H is bipartite graph with a bipartition
(V (GM), V (H ) − V (GM)). There is a (k, r )-center in GM if and only if H has a
set S ⊆ V (GM) of size k such that every vertex V (GM) − S is at distance ≤ 2r in
H from some vertex of S. We check whether such a set S exists in H by applying
arguments similar the proof of Theorem 4.1. The main differences in the proof are
the following. Now we color vertices of the graph H by �i , 0 ≤ i ≤ 2r , where i is
even. Thus, we are using 2r +1 numbers. Because we are not interested whether the
vertices of V (H ) − V (GM) are dominated or not, for vertices of V (H ) − V (GM)
we keep the same number as for a vertex of V (GM) resolving this vertex. For
a vertex in V (GM), we assign a number ↓ i if there is a resolving vertex from
V (H ) − V (GM) colored �(i − 2). Also we change the definition of locally valid
colorings: for any two adjacent vertices v and w in ω( f ), if v is colored �i and w
is colored � j , then |i − j | ≤ 2.

Finally, H is planar, so |E(H )| = O(|V (H )|) = O(n).

5. Algorithms for the (k, r )-Center Problem

For a planar graph G and integers k, r , we solve (k, r )-center problem on planar
graphs in three steps.

Step 1. We check whether the branchwidth of G is at most 4(2r +1)
√

k +8r +1.
This step requires O((|V (G)| + |E(G)|)2) time according to the algorithm due to
Seymour & Thomas (algorithm (7.3) of Section 7 of Seymour and Thomas [1994]—
for an implementation, see the results of Hicks [2000]). If the answer is negative,
then we report that G has no any (k, r )-center and stop. (The correctness of this
step is verified by Theorem 3.2.) Otherwise, go to the next step.
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Step 2. Compute an optimal branch-decomposition of a graph G. This can be
done by the algorithm (9.1) in the Section 9 of Seymour and Thomas [1994] which
requires O((|V (G)| + |E(G)|)4) steps.

Step 3. Compute, if it exists, a (k, r )-center of G using the dynamic-programming
algorithm of Section 4.

It is crucial that, for practical applications, there are no large hidden constants
in the running time of the algorithms in Steps 1 and 2 above. Because for planar
graphs |E(G)| = O(|V (G)|), we conclude with the following theorem:

THEOREM 5.1. There exists an algorithm finding, if it exists, a (k, r )-center of
a planar graph in O((2r + 1)6(2r+1)

√
k+12r+3/2n + n4) time.

Similar arguments can be applied to solve the (k, r )-center problem on map
graphs. Let GM be a map graph. To check whether GM has a (k, r )-center, we
compute optimal branchwidth of its witness H . By Theorem 3.3, if bw(H ) > 4(4r+
3)

√
k +16r +9, then GM has no (k, r )-center. If bw(H ) ≤ 4(4r +3)

√
k +16r +9,

then, by Theorem 4.2, we obtain the following result:

THEOREM 5.2. There exists an algorithm finding, if it exists, a (k, r )-center of
a map graph in O((2r + 1)6(4r+1)

√
k+24r+13.5n + n4) time.

By a straightforward modification to the dynamic program, we obtain the same
results for the vertex-weighted (k, r )-center problem, in which the vertices have
real weights and the goal is to find a (k, r )-center of minimum total weight.

6. Concluding Remarks

In this article, we presented fixed-parameter algorithms with exponential speed-up
for the (k, r )-center problem on planar graphs and map graphs. Our methods for
(k, r )-center can also be applied to algorithms on more general graph classes like
constant powers of planar graphs, which are not minor-closed family of graphs.
Extending these results to other non-minor-closed families of graphs would be
instructive.

Surprisingly, the algorithm described in Section 5 does not use special properties
of (k, r )-center problem at all. The only properties the algorithm really needs are
the combinatorial bound used in Step 1 and the fact that the problem can be solved
on graphs of bounded branchwidth (Step 3). The proof of combinatorial bound
(Theorem 3.2) is based on excluded planar graphs theorem of Robertson et al.
[1994] and the following two facts used in the proof of Lemma 3.1.

Fact 1. (k, r )-center problem is closed under edge contraction operation

Fact 2. For any partially triangulated grid (a partially triangulated (ρ×ρ)-grid
is any graph obtained by adding noncrossing edges between pairs of nonconsecutive
vertices on a common face of a planar embedding of an (ρ×ρ)-grid) having a (k, r )-
center, k is at least (ρ−2r

2r+1 )2. (See Figure 1 for an example of a partially triangulated
grid.)

The above observations, summarized in the next theorem, provide a general and
versatile approach for many parameterized problems.
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FIG. 1. A partially triangulated (12 × 12)-grid.

THEOREM 6.1. Let p be a function mapping graphs to nonnegative integers
such that the following conditions are satisfied:

(1) There exists an algorithm checking whether p(G) ≤ w in f (bw(G))nO(1) steps.
(2) For any k ≥ 0, the class of graphs where p(G) ≤ k is closed under taking of

contractions.
(3) For any partially triangulated (ρ × ρ)-grid R, p(R) = 
(ρ2).

Then, there exists an algorithm checking whether p(G) ≤ k on planar graphs in
O( f (

√
k))nO(1) steps.

For a wide source of parameters satisfying condition (1), we refer to the theory
of Courcelle [1990] (see also Arnborg et al. [1991]). Apart from (k, r )-center and
dominating set, examples of parameters satisfying conditions (2) and (3) are vertex
cover, feedback vertex set, minimum maximal matching, edge dominating set and
many others. For parameters where f (bw(G)) = 2O(bw(G)), this result is a strong
generalization of Alber et al.’s approach which requires that the problem of checking
whether p(G) ≤ k should satisfy the “layerwise separation property” [Alber et al.
2004]. Moreover, the algorithms involved are expected to have better constants in
their exponential part comparatively to the ones appearing in Alber et al. [2004].
More generally, it seems that our approach should extend other graph algorithms
(not just dominating-set-type problems) to apply to the r th power and/or half-
square of a graph (and hence in particular map graphs). It would be interesting
to explore to which other problems our approach can be applied. Also, obtaining
“fast” algorithms for problems like feedback vertex set or vertex cover on constant
powers of graphs of bounded branchwidth (treewidth), as we did for dominating
set, would be interesting.

In addition, there are several interesting variations on the (k, r )-center problem.
In multiplicity-m (k, r )-center, the k centers must satisfy the additional constraint
that every vertex is within distance r of at least m centers. In f -fault-tolerant (k, r )-
center [Bar-Ilan et al. 1993], every noncenter vertex must have f vertex-disjoint
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paths of length at most r to centers. (For this problem with r = ∞, [Bar-Ilan et al.
1993] gives a polynomial-time O( f log |V |)-approximation algorithm for k.) In
L-capacitated (k, r )-center [Bar-Ilan et al. 1993], each of the k centers can satisfy
only L “customers”, essentially forcing the assignment of vertices to centers to be
load-balanced. (For this problem, Bar-Ilan et al. [1993] gives a polynomial-time
O(log |V |)-approximation algorithm for r .) In connected (k, r )-center [Swamy
and Kumar 2004], the k chosen centers must form a connected subgraph. In all
these problems, the main challenge is to design the dynamic program on graphs of
bounded treewidth/branchwidth. We believe that our approach can be used as the
main guideline in this direction.

Map graphs can be seen as contact graphs of disc homeomorphs. A question is
whether our results can be extended for another geometric classes of graphs. An
interesting candidate is the class of unit-disk graphs. The current best algorithms
for finding a vertex cover or a dominating set of size k on these graphs have nO(

√
k)

running time [Alber and Fiala 2004].
Using our results we can also easily obtain a PTAS for r -dominating set on pla-

nar and map graphs. These results are similar to the approximation algorithms for
independent set on map graphs by Chen [2001]. We combine Theorems 4.1 and
4.2 with the approaches of Eppstein [2000] and Grohe [2003] (which in turn are
based on the classic Baker’s approach [Baker 1994]), and adapt these approaches
to branch decompositions instead of tree decompositions. We obtain a (1 + 2r/p)-
approximation algorithm for r -domination in planar graphs with running time
O(p(2r + 1)3(p+2r )m), and for map graphs we obtain a (1 + 4r/p)-approximation
algorithm with running time O(p(4r + 3)3(p+4r )m).
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