
55 55

55 55

47

Tʜ� Aʟɢ�ʀɪ�ʜ�ɪ�� C�ʟ��ɴ
ʙʏ

J���� Dɪ́��
Department of Languages and Computer Systems

Polytechnical University of Catalunya
c/ Jodi Girona 1-3, 080304 Barcelona, Spain

diaz@lsi.upc.es

The present column deals with the “hot” topic of exact algorithms. Fomin,
Grandoni and Kratsch give a very beautiful introduction to the existing tech-
niques to design and analyze better exact (exponential) algorithms for solving
hard problems. I strongly recommend its reading to anybody working in the
field of theoretical computer science.
After four years as editor of the Algorithmics Column, it is time to have an
editor with a different perspective. From next issue, Gerhard Woeginger will
take over as editor of the Algorithmics Column. The 12 columns that so far
have appeared were made possible by the effort of all the authors that have
contributed to them. Thanks to all them!

S��� ɴ�� ���ʜɴɪ���� ɪɴ ���ɪɢɴ �ɴ� �ɴ�ʟʏ�ɪ� ��
����� (����ɴ�ɴ�ɪ�ʟ) �ʟɢ�ʀɪ�ʜ��

Fedor V. Fomin∗ Fabrizio Grandoni† Dieter Kratsch‡

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
fomin@ii.uib.no. Supported by Norges forskningsråd project 160778/V30. This work
was done while the first author was at the Humboldt-Unoversität Berlin, supported by Alexander
von Humboldt Foundation.
†Dipartimento di Informatica, Università di Roma “La Sapienza”, Via Salaria 113, 00198

Roma, Italy, grandoni@di.uniroma1.it. Supported by Web-Minds project of the Italian Min-
istry of University and Research, under the FIRB program.
‡LITA, Université de Metz, 57045 Metz Cedex 01, France, kratsch@univ-metz.fr

56 56

56 56

BEATCS no 87 THE EATCS COLUMNS

48

Abstract

This survey concerns techniques in design and analysis of algorithms
that can be used to solve NP hard problems faster than exhaustive search
algorithms (but still in exponential time). We discuss several of such tech-
niques: Measure & Conquer, Exponential Lower Bounds, Bounded Tree-
width, and Memorization. We also consider some extensions of the men-
tioned techniques to parameterized algorithms.

1 Introduction
In this survey we use the term exact algorithms for algorithms that find exact
solutions of NP-hard problem (and thus run in exponential time).

The design of exact algorithms has a long history dating back to Held and
Karp’s paper [42] on the travelling salesman problem in the early sixties. The last
years have seen an emerging interest in constructing exponential time algorithms
for combinatorial problems like C�ʟ�ʀɪɴɢ [9, 14], M��-C�� [64], 3-SAT [12, 22]
(see also the survey of Iwama [43] devoted to exponential algorithms for 3-SAT),
Mɪɴɪ��� D��ɪɴ��ɪɴɢ S�� [32], Tʀ��-�ɪ��ʜ [34]. There are two nice surveys of
Woeginger [65, 66] describing the main techniques that have been established in
the field. We also recommend the paper of Schöning [61] for an introduction to
exponential time algorithms.

In this paper we review four techniques for the design and analysis of exact
algorithms which were not covered in the mentioned surveys. We also show how
some of the techniques can be extended to parameterized algorithms.

The techniques are

• Measure & Conquer. For more than 30 years Davis-Putnam-style expo-
nential time search tree algorithms have been the most common tools used
for finding exact solutions of NP-hard problems. Despite of that, the way
to analyze such recursive algorithms is still far from producing tight worst
case running time bounds. The “Measure & Conquer” approach is one of
the recent attempts to step beyond such limitations. It is based on the choice
of the measure of the subproblems recursively generated by the algorithm
considered; this measure is used to lower bound the progress made by the
algorithm at each branching step. A good choice of the measure can lead to
a significantly better worst case time analysis. We exemplify the approach
by showing how to use it for solving the Mɪɴɪ��� D��ɪɴ��ɪɴɢ S�� problem.

• Lower bounds. Since it is so difficult to obtain tight worst case running
time bounds on exponential time search tree algorithms, the natural ques-

57 57

57 57

The Bulletin of the EATCS

49

tion, we believe, that should be addressed is to find lower bounds for the
worst case running time of such algorithms. 1

• Bounded tree-width and dynamic programming. Dynamic programming
is another common tool for exact algorithms. Here we discuss how struc-
tural properties of graphs and combinatorial bounds can be used to obtain
fast exact algorithms on planar and sparse graphs. We also show how this
technique can be used for parameterized algorithms.

• Memorization. This technique was introduced by Robson and is used to
reduce the running time of exponential-time algorithms at the cost of space.
We overview this technique and explain how to use it for parameterized
algorithms.

2 Measure & Conquer
In this section we study the analysis of search tree algorithms. Search tree algo-
rithms are also called branch-and-reduce algorithms, splitting algorithms, back-
tracking algorithms etc. Such an algorithm is recursively applied to a problem
instance and uses two types of rules. Reduction rules are used to simplify the
instance. Branching rules are used to solve the problem by recursively calling
smaller instances of the problem. An execution of such an algorithm can best be
analyzed by a search tree: assign the root node to the input of the problem; recur-
sively assign a child to a node for each smaller instance reached by a branching
rule at the instance of the node. Our goal is to analyze the running time of search
tree algorithms, i.e. to upper bound the number of nodes of the search tree in the
worst case.

In [65] among the major techniques to construct exponential-time algorithms
Woeginger lists “pruning the search tree” and describes the classical method to an-
alyze search tree algorithms for the problems Iɴ����ɴ��ɴ� S��, 3-SAT and B�ɴ�-
�ɪ��ʜ. The analysis of such recursive algorithms is based on the bounded search
tree technique: a measure of the size of an instance of the problem is defined;
this measure is used to lower bound the progress made by the algorithm at each
branching step. One obtains a linear recurrence or a collection of linear recur-
rences for each reduction and branching rule. Those linear recurrences can be
solved using standard techniques. Finally the worst case is taken over all linear
recurrences and a running time of the type O(αp) is obtained, where p is some
(natural) parameter for the size of the problem.

1Let us remark that we are interested in exponential lower bounds for a specific class of algo-
rithms, so these type of results do not imply that P� NP.

58 58

58 58

BEATCS no 87 THE EATCS COLUMNS

50

For the last 30 years the research on exact algorithms has been mainly focused
on the design of more and more sophisticated algorithms. However, measures
used in the analysis of search tree algorithms had been usually very simple, e.g.
number of vertices for graphs and number of variables for satisfiability problems.
Retrospective it is somewhat surprising that almost all analysis of search tree al-
gorithms used standard measures for such a long period. Although a few papers
used non-standard measures the general potential of a careful choice of the mea-
sure had not been discovered until very recently.

The idea behind Measure & Conquer is to focus on the choice of the (non-
standard) measure, instead of creating algorithms with more and more rules. If
the measure fulfils the following three conditions then the approach outlined above
works.

• The measure of an instance of a subproblem obtained by a reduction or
a branching rule must be smaller than the measure of the instance of the
original problem.

• The measure of each instance is nonnegative.

• The measure of the input is upper bounded by some function of “natural
parameters” of the input.

The last property is needed to retranslate the asymptotic upper bound in terms
of the non-standard measure into an upper bound in terms of some natural param-
eters for the size of the input (such as the number of vertices in a graph or the
number of variables in a formula). This way one is able to derive from different
(and often complicated) measures, results that are easy to state and compare.

2.1 Eppstein’s work
It seems that Eppstein was the first who observed the power of using non-standard
measures for analyzing search tree algorithms. He used this type of analysis in
several papers, among them [9, 30].

Eppstein’s TSP algorithm [30]. There is a well-known dynamic programming
O(2n · n2)2 algorithm for the �ʀ���ʟʟɪɴɢ ��ʟ����ɴ �ʀ�ʙʟ�� (TSP) by Held and
Karp [42] and there is no improvement since 1962. Eppstein studied TSP for
graphs of maximum degree three (for which the problem remains NP-hard) and
obtained an O(2n/3nO(1)) algorithm [30]. More precisely, he studies the �ʀ���ʟʟɪɴɢ

2Whether not specified differently, n and m denote the number of vertices and edges of the
input graph, respectively.

59 59

59 59

The Bulletin of the EATCS

51

��ʟ����ɴ �ʀ�ʙʟ�� �ɪ�ʜ ��ʀ��� ��ɢ��. The input is a (multi)graph G, a cost func-
tion c : E(G) → R and a set of forced edges F ⊆ E(G); the output is a minimum
cost hamiltonian cycle of G containing all edges of F.

The search tree algorithm is simple. It consists of various reduction rules (step
1 in [30]), a unique branching rule (step 3) and it terminates in a leaf (step 2) if
G − F forms a collection of disjoint 4-cycles since in this case a minimum cost
solution can be computed in polynomial time. In step 3 an edge xy is chosen and
then the algorithm branches in the instances G, F ∪ {xy} (force xy) and G − xy, F
(discard xy). The analysis of the algorithm uses the following interesting non-
standard measure: s(G, F) = |V(G)| − |F| − |C|, where C is the set of 4-cycles
of G that form connected components of G − F. Note that despite the negative
coefficients in the definition of the measure 0 ≤ s(G, F) ≤ n for all instancesG, F.
Using this measure the analysis gets fairly easy.

Beigel and Eppstein’s 3-coloring algorithm [9]. The O(20.411n) time 3-coloring
algorithm presented in [9] is the fastest one known. To a large extent the pa-
per studies special ��ɴ��ʀ�ɪɴ� ���ɪ�����ɪ�ɴ �ʀ�ʙʟ��� (CSP). An instance of CSP
consists of a collection of n variables, each with a list of possible colors, and a col-
lection of m constraints consisting of a tuple of variables and a color for each vari-
able. A solution assigns a possible color to each variable such that no constraint
is satisfied, i.e. not every variable of the constraint is colored in the way specified
by the constraint. For an instance of the problem (a, b)-CSP, each variable has at
most a possible colors and each constraint involves at most b variables. Note that
3-SAT is equivalent to (2,3)-CSP. Furthermore 3-��ʟ�ʀɪɴɢ, 3-ʟɪ��-��ʟ�ʀɪɴɢ and
3-��ɢ�-��ʟ�ʀɪɴɢ can be translated to (3,2)-CSP.

An O(20.449n) time algorithm for (3,2)-CSP is the fundamental result of [9].
The algorithm also solves (4,2)-CSP and then its running time is O(20.854n). The
basic idea is that any (4,2)-CSP instance can be transformed into a (3,2)-CSP
instance by expanding each of its four-color variables to two three-color variables.
Therefore the natural measure of a (4,2)-CSP instance would be n = n3 + 2n4,
where ni denotes the number of variables with i possible colors. Crucial for the
analysis of the algorithm is the use of the non-standard measure n = n3 + (2− �)n4
where the best choice of � turns out to be � ≈ 0.095543.

Eppstein’s quasiconvex analysis [31]. Multivariate recurrences frequently arise
in the analysis of the worst-case running time of search tree algorithms. Two ex-
amples are provided in the paper. One is a subroutine, used in a graph coloring
algorithm [29], listing all maximal independent sets of size at most k. In fact
when analyzing a search tree algorithm an instance is often characterized by more
than one size parameter (variable), and thus it is convenient to establish multi-
variate recurrences (instead of linear recurrences based on a unique variable) for
the reduction and branching rules. Those variables are part of the input or come

60 60

60 60

BEATCS no 87 THE EATCS COLUMNS

52

up during an execution of the algorithm in a natural way or might be chosen to
improve the upper bound of the worst-case running time to be obtained. For ex-
ample, the linear recurrences in terms of s(G, F) obtained in the analysis of the
TSP algorithm in [30] can easily be translated into multivariate recurrences in the
variables |V(G)|, |F| and |C|. Furthermore the linear recurrences in terms of the
non-standard measure n = n4 + (2− �)n3 obtained for the reduction and branching
rules of the (4,2)-CSP algorithm in [9] can be translated easily into multivariate
recurrences in the variables n3 and n4.

Given the multivariate recurrences we would like to obtain an upper bound on
the running time of the algorithm. Eppstein showed that this multivariate system
can be turned into an equivalent system of recurrences in a unique variable, where
the new variable is a linear combination of the size parameters. It is sufficient to
choose the coefficients (weights) which minimize the resulting running time. The
optimal weight vector can be computed using quasiconvex programming.
Byskov and Eppstein’s maximal bipartite subgraph listing algorithm [16].
The O(20.826n) time algorithm to list all maximal bipartite subgraphs of a graph
is the fastest one known. The algorithm can also be found in Byskov’s Ph.D.
thesis [15] which contains a variety of exponential-time algorithms.

The key operations of the algorithm are: coloring a vertex black (resp. white),
remove an edge and remove a vertex. The key idea is that all neighbors of a black
(resp. white) vertex can either be white (resp. black) or have to be removed. To
indicate this state they will be half-colored: half-white (resp. half-black). Thus an
instance of the problem is a half-colored graph G = (V, F, B,W, E) where F is the
set of full vertices (i.e. uncolored yet), B is the set of half-black vertices and W is
the set of half-white vertices.

The algorithm is based on a lengthy case analysis (p. 35–49 in [15]) gener-
ating reduction and branching rules. The analysis of the running time is based
on Eppstein’s technique: multivariate recurrences and quasiconvex programming.
The recurrences depend on two variables: number of full variables and number
of half-colored variables. Once provided the long list of two-variable recurrences
they will be solved using Eppstein’s quasiconvex programming based approach
and one obtains the running time O(20.826n) of the algorithm.3

2.2 A set cover algorithm
A more careful choice of the measure can lead to a significantly better analysis
of the worst case running time of simple search tree algorithms. To illustrate this
let us consider the following simple exponential-time search tree algorithm for

3However to verify the stated running time without having a special program on hands is non-
trivial.

61 61

61 61

The Bulletin of the EATCS

53

the minimum set cover problem that has been presented in [32] by the authors
of this survey. The analysis is based on a sophisticated choice of the measure.
This algorithm is used to obtain the fastest known algorithm for the minimum
dominating set problem having running time: O(20.610n) using polynomial space
and O(20.598n) using exponential space.

In the NP-hard problem Mɪɴɪ��� S�� C���ʀ (MSC) we are given a universe
U of elements and a collection S of (non-empty) subsets of U. The aim is to
determine the minimum cardinality of a subset S� ⊆ S which covers U, that is
such that ∪S∈S�S = U. The frequency of u ∈ U is the number of subsets S ∈ S in
which u is contained. For the sake of simplicity, we always assume that S covers
U. With this assumption, an instance of MSC is univocally specified by S.

The NP-hard problem Mɪɴɪ��� D��ɪɴ��ɪɴɢ S�� (MDS) asks to determine the
smallest cardinality of a dominating set for the input graphG. Recall that a set D ⊆
V(G) is called a dominating set of the graphG if every vertex ofG is either in D, or
adjacent to some vertex in D. MDS for an input graphG can be naturally reduced
to MSC by imposing U = V(G) and S = {N[v]| v ∈ V}, where N[v] denotes the
closed neighborhood of vertex v in G. Thus D is a minimum dominating set of
G if and only if S� = {N[v]| v ∈ D} is a minimum set cover of (U,S). Thus an
O(2α(|S|+|U|)) algorithm for MSC implies an O(22αn) algorithm for MDS.

Consider the following simple recursive search tree algorithm msc for solving
MSC:

1 int msc(S) {
2 if(|S| = 0) return 0;
3 if(∃S ,R ∈ S : S ⊆ R) return msc(S\{S });
4 if(∃u ∈ U(S)∃ a unique S ∈ S : u ∈ S)

return 1+msc(del(S , S));
5 take S ∈ S of maximum cardinality;
6 if(|S | = 2) return poly-msc(S)
7 return min{msc(S\{S }), 1+msc(del(S , S))};
8 }

Here del(S ,S) = {Z|Z = R\S � ∅,R ∈ S} is the instance of MSC which is ob-
tained from S by removing the elements of S from the subsets in S, and by even-
tually removing the empty sets obtained. Algorithm poly-msc is the polynomial-
time minimum set cover algorithm solving MSC for instances where all subsets
have cardinality two, which can be reduced to a minimum edge cover problem,
based on a well-known reduction to maximum matching.

Essentially algorithm msc has two reduction rules (in line 3 and 4) and one
branching rule (in line 7). If the maximum cardinality of a subset is at least 3 then

62 62

62 62

BEATCS no 87 THE EATCS COLUMNS

54

the algorithm chooses a subset S of maximum cardinality and branches into the
two subproblems S IN = del(S ,S) (the case where S belongs to the minimum set
cover) and S OUT = S\S (corresponding to the case S is not in the minimum set
cover). It is easy to see that the simple algorithm is correct.

2.2.1 Analyzing the algorithm msc

How should we analyze the running time of msc? Classical analysis with the
natural measure s(U�,S�) = |S�|+ |U�| for the size of an instance (U�,S�) of MSC
provides an upper bound of O(20.465(|S|+|U|)) [40]. (The recurrence corresponding
to the unique branching rule is P(s) ≤ P(s − 1) + P(s − 4) where P(s) denotes the
number of leaves in the search tree generated by the algorithm to solve a problem
of size s = s(U,S).)

We show how to refine the running time analysis to O(20.305(|S|+|U|)) via a more
careful choice of the measure of an instance of MSC (without modifying the al-
gorithm!).
Intuition. The choice is based on the following observations showing two

“side effects” not taken into account by the above classical analysis: Removing a
large set has a different impact on the “progress” of the algorithm than removing a
small one. In fact, when we remove a large set, we decrease the frequency of many
elements. Decreasing elements frequency pays of on long term, since the elements
of frequency one can be filtered out (without branching). A dual argument holds
for the elements. Removing an element of high frequency is somehow preferable
to removing an element of small frequency. In fact, when we remove an element
occurring in many sets, we decrease the cardinality of all such sets by one. This is
good on long term, since sets of cardinality one can be filtered out. This suggests
the idea to give a different weight to sets of different cardinality and to elements
of different frequency in the measure of an instance.
The measure. Let ni denote the number of subsets S ∈ S of cardinality i. Let
moreover mj denote the number of elements u ∈ U of frequency j. The mea-
sure s = s(U,S) of the size of an instance of MSC is defined to be: s(U,S) =�
i≥1 wi ni +

�
j≥1 v j mj, where the weights wi, v j ∈ (0, 1] will be fixed in the fol-

lowing. Note that s ≤ |S| + |U|. Thus when obtaining a running time O(2αs) we
may conclude that msc has running time O(2α(|S|+|U|)).
Notation.

∆wi =

wi − wi−1 if i ≥ 3,
w2 if i = 2,

and ∆ vi =

vi − vi−1 if i ≥ 3,
v2 if i = 2.

Intuitively, ∆wi (∆ vi) is the reduction of the size of the problem corresponding to
the reduction of the cardinality of a set (of the frequency of an element) from i to
i − 1. Let us note that this holds also in the case i = 2.

63 63

63 63

The Bulletin of the EATCS

55

Constraints. In order to simplify the running time analysis, we will add the fol-
lowing constraints:

• w1 = v1 = 1 and wi = vi = 1 for i ≥ 6;

• 0 ≤ ∆wi ≤ ∆wi−1 for i ≥ 2.

Let us observe that this implies that only the weights v2, v3, v4, v5 andw2,w3,w4,w5
have still to be fixed. Furthermore for every i ≥ 3, wi ≥ wi−1, and vi ≥ vi−1.
Recurrences. Let Ph(s) be the number of subproblems of size h, 0 ≤ h ≤ s,
solved by msc to solve an instance of the MSC of size s. As in a classical analysis
for all reduction rules and all branching rules we obtain recurrences. Typically
the analysis is more difficult and more tedious than in the case of simple measures
because now one branching rule can generate a lot of recurrences.

For the detailed analysis we refer to [32]. We only mention all recurrences
corresponding to the unique branching rule (which are practically all important
recurrences). Suppose the algorithm has chosen a set S with |S | ≥ 3 in line 5, thus
msc branches into two subproblems SIN = del(S ,S) and SOUT = S\S . Let ri be
the number of elements of S of frequency i. Note that there cannot be elements of
frequency 1, and that

�
i≥2 ri = |S |.

For all the possible values of |S | ≥ 3 and of the ri such that
�6
i=2 ri + r≥7 = |S |,

we have the following set of recurrences:

Ph(s) ≤ Ph(s − ∆ sOUT) + Ph(s − ∆ sIN),

where

∆ sOUT � w|S | +
6�

i=2
ri ∆ vi + r2 w2 + δ(r2) v2,

∆ sIN � w|S | +
6�

i=2
ri vi + r≥7 + ∆w|S |

6�

i=2
(i − 1) ri + 6 · r≥7

 ,

and δ(r2) = 0 for r2 = 0, and δ(r2) = 1 otherwise.
Solving recurrences. Fortunately we can restrict our attention to the case 3 ≤
|S | ≤ 7. In fact, since ∆w|S | = 0 for |S | ≥ 7, each recurrence with |S | ≥ 8 is
“dominated” by some recurrence with |S | = 7.

Thus we consider a large but finite number of recurrences. For every fixed 8-
tuple (w2,w3,w4,w5, v2, v3, v4, v5) the number Ph(s) is within a polynomial factor
of αs−h, where α is the largest number from the set of real roots of the set of
equations

αs = αs−∆ sOUT + αs−∆ sIN

64 64

64 64

BEATCS no 87 THE EATCS COLUMNS

56

corresponding to different combinations of values |S | and ri. Thus the estimation
of Ph(s) boils up to choosing the weights minimizing α.
Choosing weights. This optimization problem is interesting in its own and we
refer to Eppstein’s work [31] on quasiconvex programming for general treatment
of such problems. It turns out that α = α(v,w) is a quasiconvex function of the
weights (see [31]). We numerically (using a randomized local search algorithm)
obtained the following values of the weights:

wi =

0.3774 if i = 2,
0.7548 if i = 3,
0.9095 if i = 4,
0.9764 if i = 5,

and vi =

0.3996 if i = 2,
0.7677 if i = 3,
0.9300 if i = 4,
0.9856 if i = 5,

which yields α ≤ 1.2352 . . . < 1.2353.4

Running time. Let K denote the set of the possible sizes of the subproblems
solved. Note that |K| is polynomially bounded. The total number P(s) of subprob-
lems solved satisfies:

P(s) ≤
�

h∈K

Ph(s) ≤
�

h∈K

αs−h ≤ |K|αs.

The cost of solving a problem of size h ≤ s, excluding the cost of solving the
corresponding subproblems (if any), is a polynomial poly(s) of s. Thus the time
complexity of the algorithm is

O(poly(s)|K|αs) = O(1.2353|U|+|S|) = O(20.305(|U|+|S|)).

Theorem 1. Algorithm msc solvesMSC in time O(20.305(|U|+|S|)).

By simply combining the reduction from MDS to MSC with algorithm msc
one obtains algorithm mds.

Corollary 2. Algorithm mds solvesMDS in time O(20.305(2n)) = O(20.610n).

Applying the memorization technique described in Section 5 to mds the run-
ning time can be further reduced to O(20.598 n).

Though search tree algorithms form a very prominent class of parameterized
algorithms, it is yet not fully understood in which way Measure & Conquer can
be applied to such algorithms. We leave this as an interesting open problem.

4 Although computing the weights minimizing α is computationally a non-trivial task, given
the weights, checking whether a given α is feasible or not is easy.

65 65

65 65

The Bulletin of the EATCS

57

3 Exponential lower bounds
Impressive improvements on the upper bound of the worst case running time of
a particular exponential-time search tree algorithm can be achieved by a refined
analysis and use of a suitable measure as we have seen in the previous section.
This suggests the possibility that the time complexity of exponential-time ex-
act algorithms might be largely overestimated. Indeed, most running times of
exponential-time search tree algorithms could be too pessimistic and the worst
case running time of such an algorithm might be significantly faster. None of the
tools and methods for analyzing such algorithms is guaranteed to provide tight
upper bounds of the running time.

Consequently, while for most of the known polynomial time algorithms, the
known running times seem to be tight, this is most likely not the case for exponen-
tial time search tree algorithms. Therefore it is natural to ask for lower bounds of
the worst case running time of such algorithms. A lower bound may give an idea
how far the running time analysis is from being tight. Furthermore lower bounds
might also help to compare exponential-time search tree algorithms.

There are several results on lower bounds for different so-called DPLL algo-
rithms for SAT and k-SAT (see e.g. [5, 54]). However not much more is known on
lower bounds for existing exponential-time search tree algorithms for other prob-
lems, and in particular for graph problems. One of the reasons to this could be
that for most of the graph problems the construction of good lower bounds seems
to be a difficult and challenging task even for very simple algorithms.

3.1 A lower bound for algorithm mds
The following lower bound for the O(20.610n) polynomial-space algorithm mds of
the previous section has been provided in [32]. Recall that algorithm mds solves
the Mɪɴɪ��� D��ɪɴ��ɪɴɢ S�� problem based on a reduction to the Mɪɴɪ��� S��
C���ʀ problem and uses the algorithm msc.

Theorem 3. The worst case running time of mds is Ω(20.333n).

Proof. Consider the following input graph Gn (n ≥ 1): the vertex set of Gn is
{ai, bi, ci : 1 ≤ i ≤ n}. The edge set of Gn consists of two types of edges: for
each i = 1, 2 . . . , n, the vertices ai, bi and ci induce a triangle Ti; and for each
i = 1, 2, ..., n − 1: {ai, ai+1}, {bi, bi+1} and {ci, ci+1} are edges.

Each node of the search tree corresponds to a subproblem of the minimum set
cover problem with input (U; S = {S v : v ∈ V}) where S v = N[v].

We give a selection rule for the choice of the vertices v (respectively sets S v)
to be chosen for the branching. The goal is to choose a selection rule

66 66

66 66

BEATCS no 87 THE EATCS COLUMNS

58

• which is compatible with the algorithm, and

• such that the number of nodes in the search tree obtained by the execution
of algorithm msc on the instance of MSC generated by the graph Gn is as
large as possible.

In each round i, i ∈ {2, 3, . . . , n− 1}, we start with a pair C = {xi, yi} of vertices
(belonging to triangle Ti), where {x, y} ⊂ {a, b, c}. Initially C = {a2, b2}. Our
choice makes sure that for each branching vertex x the cardinality of its set S x is
five in the current subproblem S, and that none of the rules of line 2,3 and 4 of the
algorithm will ever be applied. Consequently only the branching rule is applied,
and by line 7 of msc either the set S v is taken into the set cover (S := del(S, S v)),
or S v is removed (S := S \ S v).

For each pair C = {xi, yi} of nodes we branch in the following 3 ways
1) take S xi ,
2) remove S xi , and then take S yi ,
3) remove S xi , and then remove S yi .

The following new pairs of vertices correspond to each of the three branches:
1) C1 = {ai+2, bi+2, ci+2} \ xi+2,
2) C2 = {ai+2, bi+2, ci+2} \ yi+2,
3) C3 = {xi+1, yi+1}.

On each pair Cj we recursively repeat the process. Thus of the three branches
of Ti two are proceeded on Ti+2 and one is proceeded on Ti+1.

To show a lower bound on the worst case running time of algorithm msc re-
spectively mds on input Gn we analyze the number of leaves of the search tree.
Let P(i) be the number of leaves in the search tree when all triangles up to Ti
have been used for branching. Thus P(i) = 2 · P(i − 2) + P(i − 1), and hence
P(i) ≥ 2i−2. Consequently the worst case number of leaves in the search tree of
msc for a graph on n vertices is at least 2n/3−2. Thus the worst case running time
of mds is Ω(20.333n). �

Notice that there is a large gap between the O(20.610n) upper bound and the
Ω(20.333n) lower bound for the worst case running time of algorithm mds. This
suggests the possibility that the analysis of algorithm mds can be further refined.

4 Tree-width based techniques
The notion of tree-width was introduced by Robertson and Seymour [55]. A tree
decomposition of a graph G is a pair ({Xi : i ∈ I}, T), where {Xi : i ∈ I} is a col-
lection of subsets of V(G) and T is a tree such that the following three conditions
are satisfied:

67 67

67 67

The Bulletin of the EATCS

59

1.
�

i∈I Xi = V(G).

2. For all {v,w} ∈ E(G), there is an i ∈ V(T) such that v,w ∈ Xi.

3. For all i, j, k ∈ V(T), if j is on a path from i to k in T then Xi ∩ Xk ⊆ Xj.

The width of a tree decomposition ({Xi : i ∈ V(T)}, T) is maxi∈V(T) |Xi| − 1. The
tree-width of a graph G, denoted by tw(G), is the minimum width over all its tree
decompositions. A tree decomposition of G of width tw(G) is called an optimal
tree decomposition of G.

A tree decomposition ({Xi : i ∈ V(T)}, T) of G with T being a path is called a
path decomposition of G. The path-width of a graph G, denoted by pw(G), is the
minimum width over all its path decompositions.

A branch decomposition of a graph G is a pair (T, µ), where T is a tree with
vertices of degree one or three and µ is a bijection from the set of leaves L of T to
E(G). Let e be an edge of T . The removal of e results in two subtrees of T , say
T1 and T2. Let Gi be the graph formed by the edge set {µ(f) : f ∈ L ∩ V(Ti)} for
i ∈ {1, 2}. The middle set mid(e) of e is the intersection of the vertex sets of G1
and G2, i.e., mid(e) := V(G1) ∩ V(G2).

The width of (T, µ) is the maximum size of the middle sets over all edges
of T , and the branch-width of G, bw(G), is the minimum width over all branch
decompositions of G. (In case where |E(G)| ≤ 1, we define the branch-width to
be 0; if |E(G)| = 0, then G has no branch decomposition; if |E(G)| = 1, then G
has a branch decomposition consisting of a tree with one vertex—the width of this
branch decomposition is considered to be 0).

Tree-width and branch-width are related parameters and can be considered as
measures of the “global connectivity” of a graph. The following result is due to
Robertson and Seymour [(5.1) in [56]].

Theorem 4 ([56]). For any connected graph G with |E(G)| ≥ 3, bw(G) ≤ tw(G)+
1 ≤ 3

2bw(G).

Tree-width is one of the most basic parameters in graph algorithms. There
is a well established theory on the design of polynomial (or even linear) time
algorithms for many intractable problems when the input is restricted to graphs
of bounded tree-width. See [11] for a comprehensive survey. But what is more
important for us, many problems on graphs with n vertices and tree-width (branch-
width) at most � can be solved in time c� ·nO(1), where c is some problem dependent
constant.

For example, Alber et al. [1] proved that MDS on graphs of tree-width at most
� can be solved in timeO(22�n). Fomin and Thilikos showed in [36] that for graphs

68 68

68 68

BEATCS no 87 THE EATCS COLUMNS

60

G given with a branch-decomposition of width at most �, a minimum dominating
set of G can be computed in time O(3 3�2 m) = O(25.197n). (See also [27] for general
discussions on transformations of tree-width based dynamic programming algo-
rithms into algorithms on graphs of bounded branch-width and vice versa.) It can
be shown that for graphs of path-width at most � the running time of the algorithm
of Alber et al. is O(3�n).

All results mentioned above are based on the following observation.

Observation 5. Let P be a problem on graphs and G be a class of graphs such
that

• for every graph G ∈ G of branch-width at most �, the problem P can be
solved in time 2cP� · nO(1), where cP is a constant, and

• for every graph G ∈ G a branch decomposition (not necessary optimal) of
G of width at most g(n) can be constructed in polynomial time.

Then for every graph G ∈ G, the problem P can be solved in time 2cP·g(n) · nO(1).

Similar observations are valid for tree and path decompositions.
In the following subsections we shall see how Observation 5 combined with

good combinatorial upper bounds, provide us with fast algorithms for several in-
teresting graph classes.

4.1 Planar graphs
Using a well-known approach of Lipton and Tarjan [49] based on the celebrated
planar separator theorem [48], one can obtain algorithms with time complexity
cO(
√
n) for many problems on planar graphs. However, the constants “hidden”

in O(
√
n) can be crucial for practical implementations. During the last few years

some work has been done to compute and to improve the “hidden” constants [3, 4].
Dynamic programming can be seen as a simpler and, sometimes, faster al-

ternative to the approach of Lipton and Tarjan. To use Observation 5 efficiently,
we need to establish upper bounds on the tree-width and branch-width of planar
graphs.

Upper bounds. Let αt and αb be constants such that for every planar graph
tw(G) ≤ αt

√
n + O(1) and bw(G) ≤ αb

√
n + O(1).

In [6] Alon, Seymour, and Thomas proved that any Kr-minor free graph on n
vertices has tree-width at most r1.5

√
n. (Here Kr is complete graph on r vertices.)

Since no planar graph contains K5 as a minor, we have that αb(G) ≤ αt(G) ≤
61.5 ≤ 14.697. By using deep results of Robertson, Seymour, and Thomas, one
can easily prove much better bounds as follows.

69 69

69 69

The Bulletin of the EATCS

61

Before we proceed, let us remind the notion of a minor. Given an edge e =
{x, y} of a graph G, the graph G/e is obtained from G by contracting the edge
e; that is, to get G/e we identify the vertices x and y and remove all loops and
duplicate edges. A graph H obtained by a sequence of edge-contractions is said to
be a contraction of G. H is a minor of G if H is the subgraph of some contraction
of G.

The following is a combination of statements (4.3) in [56] and (6.3) in [58].

Theorem 6 ([58]). Let k ≥ 1 be an integer. Every planar graph with no (k×k)-grid
as a minor has branch-width at most 4k − 3.

Since a graph on n vertices does not contain a ((�
√
n�+1)× (�

√
n�+1))-grid as

a minor, we have that αb(G) ≤ 4. Fomin and Thilikos [38] obtained the following
bounds

Theorem 7 ([38]). αb ≤
√
4.5 < 2.1214 and αt < 3.1820.

The proof in [38] makes strong use of deep graph theoretic results from [7]
and [57, 62]. In particular, Alon, Seymour and Thomas introduced the concept of
“majority” in order to study the existence of small separators in planar graphs. On
the other side, the results in [62, 57] are strongly based on the notion of “slope”.
The main idea of the proof in [38] was to show that slopes can be transformed to
majorities.

Now to apply Observation 5, we need to construct a tree or a branch decom-
position of small width. It is a long standing open problem whether an optimal
tree decomposition of a planar graph can be constructed in polynomial time. For
branch decompositions the situation is different. An optimal branch decomposi-
tion of a planar graph can be constructed in polynomial time by using the algo-
rithm due to Seymour and Thomas (Sections 7 and 9 in [62]). The algorithm can
be implemented such that its running time is O(n4). Recently, the running time of
the algorithm was reduced by Gu and Tamaki to O(n3) [41].
Putting things together. Thus for planar graphs the function g(n) of Observa-
tion 5 can be taken g(n) =

√
4.5n. As we already discussed, for Mɪɴɪ��� D��ɪ-

ɴ��ɪɴɢ S��, cP ≤ 5.1962, and we arrive at the fastest known algorithms on planar
graphs for MDS with running time

O(3 32
√
4.5·nn + n3) = O(25.044

√
n).

Similar approach yields an algorithm for M��ɪ��� Iɴ����ɴ��ɴ� S�� on planar
graphs with running time O(23.182

√
n).

This machinery not only improves the time bounds but also provides an uni-
fied approach for many exponential time algorithms emerging from the planar
separator theorem of Lipton and Tarjan [48, 49]. (See [37] for further details.)

70 70

70 70

BEATCS no 87 THE EATCS COLUMNS

62

Non-local problems. Observation 5 cannot be used to obtain 2O(
√
n) time algo-

rithms on planar graphs for “non-local” problems like H��ɪʟ��ɴɪ�ɴ Cʏ�ʟ� (HC),
where we are asked if the input graph has a Hamiltonian cycle, i.e. a (simple)
cycle containing all vertices of the graph. The reason is that all known algorithms,
solving HC on graphs of branch-width at most � have running time 2O(� log �)nO(1),
thus on planar graphs Observation 5 yields only algorithms with running time
2O(
√
n log n).
The intuition, why only 2O(� log �)nO(1) time algorithms for HC on graphs of

branch-width at most � are known is the following. While performing dynamic
programming, we keep for every edge e of the branch decomposition the set of
“patterns” which encode all possible information how possible hamiltonian cycles
can hit mid(e). The only known way of doing this is basically to keep as the
states of dynamic programming all possible permutations of the set mid(e), which
ends up in running time 2O(� log �)nO(1). This seems to be a natural obstacle and
no significantly faster algorithm solving H��ɪʟ��ɴɪ�ɴ �ʏ�ʟ� on graphs of bounded
branch-width (or tree-width) is known.

Note that for obtaining 2O(
√
n) time algorithms for MDS on planar graphs, pla-

narity comes into play twice: First in the upper bound on the branch-width of a
graph and second in the polynomial time algorithm constructing an optimal branch
decomposition. It is possible to get rid of the logarithmic factor in the exponent
for a number of nonlocal problems as well. The main idea to speed-up algorithms
obtained by the branch decomposition approach is to exploit planarity for the third
time: use planarity in dynamic programming on graphs of bounded branch-width.
To explain how planarity can be used in dynamic programming, we need to go
deeper into the properties of planar branch decompositions.

It is more convenient to work with graphs embedded on a sphere instead of a
plane. Let Σ be a sphere (x, y, z : x2 + y2 + z2 = 1). By a Σ-plane graphG we mean
a planar graph G with the vertex set V(G) and the edge set E(G) drawn (without
crossing) in Σ. An O-arc is a subset of Σ homeomorphic to a circle. An O-arc in Σ
is called noose of a Σ-plane graph G if it meets G only in vertices. The length of
a noose O is |O ∩ V(G)|, the number of vertices it meets. Every noose O bounds
two open discs ∆1, ∆2 in Σ, i.e. ∆1 ∩ ∆2 = ∅ and ∆1 ∪ ∆2 ∪ O = Σ.

For a Σ-plane graph G, we define a sphere cut branch decomposition �T, µ�
as a branch decomposition such that for every edge e of T there exists a noose Oe
bounding the two open discs ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2. Thus
the length of the noose Oe is |mid(e)|.

It follows almost directly from results of Seymour and Thomas [62] that the
optimal branch decomposition constructed by their algorithm is in fact a sphere
cut branch decomposition (see [26] for details).

Let C be a Hamiltonian cycle and let Oe be a noose of a Σ-plane graph G
corresponding to an edge e of a sphere cut branch decomposition. Here is the

71 71

71 71

The Bulletin of the EATCS

63

moment when planarity is used for the third time. Because the graph is Σ-plane,
the number of possible ways Hamiltonian cycles can hit the noose Oe (which is
mid(e)) can be bounded by the |mid(e)|-th Catalan number, which yields almost
immediately an algorithm of running time 2O(bw(G))nO(1) = 2O(

√
n).

With a more careful work involving tricks on compressing the number of states
in dynamic programming, Dorn et al. [26] established a O(26.903

√
n) time algo-

rithm solving HC on planar graphs. A similar approach can be used to obtain an
O(210.8224

√
n) time algorithm for Pʟ�ɴ�ʀ Gʀ��ʜ TSP, where one asks for a shortest

tour visiting all vertices of a weighted planar graph. Similarly, Pʟ�ɴ�ʀ L�ɴɢ���
Cʏ�ʟ� is solvable in time O(27.214

√
n).

Finally, let us note that the separator based approach can be used to obtain a
2O(
√
n) time algorithm for HC on planar graphs [23]. However, it seems that by

making use of branch decompositions one can prove significantly better bounds
on the worst case running time of algorithms on planar graphs.

4.2 Parameterized algorithms on planar graphs
A similar approach (with some modifications) can be used for the design of pa-
rameterized algorithms on planar graphs. The last ten years have seen a rapid
development of a new branch of computational complexity: Parameterized Com-
plexity. (See the book of Downey and Fellows [28].) Roughly speaking, a pa-
rameterized problem with parameter k is fixed parameter tractable if it admits
a solving algorithm with running time f (k)|I|β. (Here f is a function depending
only on k, |I| is the length of the non parameterized part of the input and β is a
constant.) In many cases, f (k) = ck is an exponential function for some constant
c. Some attention was paid to the construction of parameterized algorithms with
running time of the kind f (k) = c

√
k for different problems on planar graphs. The

first paper on the subject was the paper by Alber et al. [1] describing an algorithm
with running time O(46

√
34kn) = O(269.972

√
kn) for the Mɪɴɪ��� D��ɪɴ��ɪɴɢ S��

problem on planar graphs.
Let L be a parameterized problem, i.e. L consists of pairs (I, k) where I is the

input and k is the parameter of the problem. Reduction to linear problem kernel is
the replacement of problem inputs (I, k) by a reduced problem with inputs (I�, k�)
(linear kernel) with constants c1, c2 such that

k� ≤ c1k, |I�| ≤ c2k� and (I, k) ∈ L⇔ (I�, k�) ∈ L.

(We refer to Downey and Fellows [28] for discussions on fixed parameter tractabil-
ity and the ways of constructing kernels.)

Observation 8. Let L be a parameterized problem (G, k), where G is a graph
such that

72 72

72 72

BEATCS no 87 THE EATCS COLUMNS

64

• there is a linear problem kernel (G�, k�) computable in time Tkernel(|V(G)|, k)
with constants c1, c2 such that an optimal branch decomposition of G� is
computable in time Tbw(|V(G�)|),

• for graphs of branch-width at most �, problem L can be solved in time
O(2c3�n), where c3 is a constant, and

• bw(G�) ≤ c4
√
k, where c4 is a constant.

Then L can be solved in time O(2c3c4
√
kk + Tbw(|V(G�)|) + Tkernel(|V(G)|, k)).

Proof. The algorithm works as follows. First it computes a linear kernel in time
Tkernel(|V(G)|, k). Then it constructs a branch decomposition of the kernel G� in
time Tbw(|V(G�)|). (If there is no such kernel, the problems has no solution.) The
size of the kernel is at most c1c2k = O(k). The branch-width of the kernel is at
most c4

√
k and it takes time O(2c3c4

√
kk + Tbw(|V(G�)|) + Tkernel(|V(G)|, k)) to solve

the problem. �

Let us on exemplify on parameterize D��ɪɴ��ɪɴɢ S�� problem how Observa-
tion 8 can be used.

The k-D��ɪɴ��ɪɴɢ S�� problem asks to compute, given a graphG and a positive
integer k, a dominating set of size k or to report that no such set exists. Alber,
Fellows and Niedermeier [2] show that the k-D��ɪɴ��ɪɴɢ S�� problem on planar
graphs admits a linear problem kernel. (The size of the kernel is 335k. Recently
this result was improved to 67k by Chen et al. [17].) This reduction can be
performed inO(n3) time. As we already mentioned, theMDS on graphs of branch-
width at most � can be solved in time O(23log43·�m) [36]. Thus c3 ≤ 3log43.

What about the constant c4 for MDS? It is proved in [36] that for every pla-
nar graph G with a dominating set of size k, the branch-width of G is at most
3
√
4.5
√
k, i.e. c4 ≤ 3

√
4.5. Therefore by Observation 8, k- D��ɪɴ��ɪɴɢ ��� can

be solved in time O(29·log43·
√
4.5
√
kk + n3 + k3) = O(215.130

√
k + n3) on planar graphs.

This is the fastest known algorithm for k-Pʟ�ɴ�ʀ D��ɪɴ��ɪɴɢ S��.
By similar arguments, one can show that k-V�ʀ��� C���ʀ on planar graphs

can be solved in time O(k4 + 24.5
√
kk + kn). (See [37] for details.)

Parameterized versions of non-local problems. For non-local problems Obser-
vation 8 cannot be applied directly, however similar arguments are valid. Let us
consider the following parameterized version of H��ɪʟ��ɴɪ�ɴ Cʏ�ʟ� problem: In
the k-Cʏ�ʟ� problem we are given a graph G and a positive integer k, the task
is to find a cycle of length at least k, or to conclude that there is no such a cy-
cle. By adopting the technique from [26], a longest cycle in a planar graph of
branch-width at most � can be found in time O(23.4�� n). If the branch-width of

73 73

73 73

The Bulletin of the EATCS

65

G is at least 4
√
k + 1 − 3 then by Theorem 6, G contains a (

√
k + 1 ×

√
k + 1)-

grid as a minor and thus contains a cycle of length at least k. If the branch-width
of G is less than 4

√
k + 1 − 3 then we can find the longest cycle in G in time

O(23.4·4
√
k+1
√
k n) = O(213.6

√
k
√
k n+n3). By standard techniques (see for example

[28]) the recognition algorithm for k-Cʏ�ʟ� on planar graphs can easily be turned
into one constructing a cycle of length at least k, if such a cycle exists.

The described technique can be applied to a large collection of parameterized
problems (so-called bidimensional problems) and it can also be extended to more
general graph classes. See [24, 25, 36] for further details.

4.3 Sparse graphs
Another class of graphs for which tree-width based techniques can be used to
design exact algorithms are graphs of small maximum degree and graphs with
small number of edges.

One of the usual approaches to obtain exact algorithms on sparse graphs are
search tree algorithms. There are quite many exact algorithms in the literature
for different NP hard problems on sparse graphs and in particular on graphs of
maximum degree three, see e.g. [8, 20, 35, 39, 47]

The following result is due to Fomin and Høie [33].

Theorem 9 ([33]). For any ε > 0, there exists an integer nε such that for every
graph G with maximum degree at most three and |V(G)| > nε, pw(G) ≤ (1/6 +
ε)|V(G)|.

The proof of Theorem 9 provides an algorithm to construct a path decompo-
sition of width at most (1/6 + ε)|V(G)|. Theorem 9 and Observation 5 imply the
following

Corollary 10. For graphs of maximum degree at most three MDS is solvable in
time 3n/6 · nO(1) = O(20.265n).

By similar approach one can also obtain the fastest known so far 2n/6 · nO(1) =
O(20.167n)-time algorithms for M��ɪ��� Iɴ����ɴ��ɴ� S�� and M��-C�� on graphs
of maximum vertex degree three. 5

The proof of Theorem 9 is based on a result of Monien and Preis [50] about
the bisection width of 3-regular graphs.

Let us also mention an interesting upper bound on the tree-width of graphs in
terms of the number of edges obtained by Kneis et al. [44]

5Recently, Kojevnikov and Kulikov [46] announced a new search tree algorithm for M��ɪ���
Iɴ����ɴ��ɴ� S�� on graphs of maximum degree three with running time 2n/6 · nO(1).

74 74

74 74

BEATCS no 87 THE EATCS COLUMNS

66

Theorem 11 ([44]). For any graph G on m edges, tw(G) ≤ m/5.217.

This implies, for example, that M��-C�� can be solved in time O(2m/5.217).

4.3.1 Lower bounds

The worst case running time of the algorithms described in this subsection de-
pends on combinatorial bounds on path-width of graphs with maximum degree
three. Thus it is natural to ask, how small can be the path-width or tree-width of
graphs of maximum degree three, or even 3-regular graphs.

Lower bounds on these graph parameters can be obtained by making use of
Algebraic Graph Theory. In particular, Bezrukov et al. [10] (by making use of the
second smallest eigenvalues of Ramanujan graph’s Laplacian) showed that there
are 3-regular graphs with the bisection width at least 0.082n. (See [10] for more
details.) It can be easily shown that the result of Bezrukov et al. also yields the
lower bound 0.082n for path-width of graphs with maximum degree three.

The gap between 0.082n and 0.167n for the upper bound on the path-width of
3-regular graphs provides some hopes for faster algorithms.

5 Memorization
The time complexity of many exponential time search tree algorithms can be re-
duced at the cost of an exponential space complexity via the memorization tech-
nique by Robson [59]. Memorization works as follows: the solutions of all the
subproblems solved are stored in an (exponential-size) database. If the same sub-
problem turns up more than once, the algorithm is not to run a second time, but the
already computed result is looked up. The database is implemented in such a way
that the query time is logarithmic in the number of solutions stored and polynomial
in the size of the problem: this way the cost of each look up is polynomial.

In order to illustrate the technique better, we will consider a specific NP-hard
problem, the Mɪɴɪ��� V�ʀ��� C���ʀ problem (MVC), and a specific algorithm
to solve it. The techniques described in this section can easily be adapted to
many other algorithms and problems. Moreover, for the sake of simplicity, we
will analyze the algorithm with the standard measure (using Measure & Conquer,
better bounds are achievable).

MVC consists in determining the minimum cardinality of a subset V � of ver-
tices (vertex cover) such that every edge is incident to at least one vertex in V �.
Let us consider the following simple search tree algorithm to solve MVC: (1) if
there is a vertex v of degree zero, remove it; (2) if there is a vertex v of degree one,
add w to the vertex cover and remove both v and w (with all the edges incident

75 75

75 75

The Bulletin of the EATCS

67

to them); (3) select v of maximum degree; (3.a) if deg(v) = 2, solve the prob-
lem with the trivial polynomial-time algorithm; (3.b) otherwise, branch by either
including v or its neighborhood N(v) in the vertex cover, and by removing v or
its closed neighborhood N[v], respectively. Solve the two subproblems generated
recursively. Observe that each subproblem involves an induced subgraph of the
original graph. This property is crucial in order to apply memorization, as it will
be clearer soon.6

Let P(n) be the number of leaves in the search tree recursively generated by
the algorithm to solve the problem on a graph with n vertices. The worst case
recurrence, corresponding to the case we branch at a vertex of degree 3, is

P(n) ≤ P(n − 1) + P(n − 4),

from which we obtain P(n) < 20.465 n. Since each recursive call takes polynomial
time, and the total number of subproblems solved is within a polynomial factor
from P(n), the running time of the algorithm (according to the standard analysis)
is O(20.465 n). Let Ph(n), h ≤ n, be the number of subproblems being graphs with
h vertices solved when the algorithm solves MVC on a graph with n vertices.
Observe that, by basically the same analysis, Ph(n) < 20.465(n−h).

5.1 The basic technique
The running time can be reduced, at the cost of an exponential space complexity,
in the following way. Whenever we solve a subproblem G�, we store the pair
(G�,mvc(G�)) in a database. Before solving any subproblem, we check whether
its solution is already available in the database. Observe that, since G has O(2n)
induced subgraphs, the database can be easily implemented such that each query
takes polynomial time in n.

There are
�
n
h

�
induced subgraphs of G with h vertices, which implies Ph(n) ≤�

n
h

�
since no subproblem is solved twice. Moreover the upper bound Ph(n) ≤

20.465(n−h) still holds. Altogether

Ph(n) ≤ min{20.465(n−h),
�
n
h

�
}.

By Stirling’s approximation, and balancing the two terms, one obtains that, for
each h, Ph(n) ≤ 20.465(n−αn) < 20.425 n, where α > 0.0865 satisfies

20.465(1−α) =
1

αα(1 − α)1−α
.

As a consequence, the running time is O(20.425 n).
6Chen, Kanj and Jia [18] erroneously applied memorization to a MVC algorithm which does

not satisfy this property; this mistake was later corrected in the journal version of their paper [19].

76 76

76 76

BEATCS no 87 THE EATCS COLUMNS

68

5.2 A refined approach
If the graph considered is disconnected, one can solve the vertex cover prob-
lem corresponding to each connected component separately. More precisely, if
G1,G2, . . . ,Gp are the connected components of G, then

mvc(G) =
p�

i=1
mvc(Gi).

This, in combination with memorization, can help to further reduce the running
time bound, provided that the degree of the graph is bounded by a small constant.
In fact, the number of connected induced subgraphs on h vertices of a graph of
maximum degree d is much smaller than

�
n
h

�
, provided that h is sufficiently small.

Theorem 12 ([59]). Let d ≥ 3 be a constant and G a graph of maximum degree d.
Let G(h) be the set of all connected induced subgraphs of G on h vertices. Then

|G(h)| = O

�
(d − 1)d−1

(d − 2)d−2

�h
nO(1)

 .

Proof. The claim is trivially true when h = n. So let us assume h < n. Consider a
graphG� ∈ G(h). Since G is connected, there must be one edge incident to exactly
one vertex of G�, say {u, r} ∈ E(G) with r ∈ V(G�) and u ∈ V − V(G�).

Let T �(r) be an arbitrary spanning tree of G� rooted at r (there must be one
such tree sinceG� is connected). Consider an arbitrary ordering of the edges. This
numbering allows to univocally associate to T �(r) a (d − 1)-ary tree T �� (where
the position of the children of each vertex is taken into account): the neighbors of
each vertex w, excluding the parent vertex (u if w = r) are ordered following the
ordering on the edges; an edge e which is not in T �(r) gives an empty subtree in
T �� in the corresponding position.

Thus, given G and the ordering of the edges, there is a one-to-many mapping
between G(h) and the set of triples (v, e,T ��), where v is a vertex, e is an edge
incident to v, and T �� is a (d − 1)-ary tree. The claim follows by recalling that the
number of (d− 1)-ary trees is upper bounded by c(d− 1)d−1/(d− 2)d−2, for a small
constant c [45]. �

For example, if the maximum degree of a graph is at most 4, one obtains

Ph(n) = O(min{20.465(n−h), (27/4)h}),

and thus a running time of O(20.465(1−α)n) = O(20.398 n), where

20.465(1−α) = (27/4)α ⇔ α =
log(20.465)

log(20.465) + log(27/4)
> 0.1444.

77 77

77 77

The Bulletin of the EATCS

69

This result can easily be extended to the case of arbitrary graphs, by branching on
the vertices of degree 5 or larger in a preliminary phase:

P(n) ≤

P(n − 1) + P(n − 6)
20.398 n

≤ max{20.362 n, 20.398 n}.

Observe that vertices of degree smaller than two are removed by reduction
rules. Thus, without loss of generality, we can consider in the analysis only the
connected induced subgraphs of minimum degree 2: even better upper bounds are
available on the number of such graphs.

Theorem 13 ([60]). Let d ≥ 3 be a constant and G a graph of maximum degree at
most d. Let G(h, 2) be the set of connected induced subgraphs of G with h vertices
and minimum degree at least 2. Then |G(h, 2)| = O(c(d)h nO(1)) where

c(d) = max
x∈X

 2
−x0

d−1�

i=0

��
d − 1
i

�
/xi
�xi
 ,

and

X =

x = (x0, x1, . . . , xd−1) ∈ R

d
+ |

d−1�

i=0
xi = 1 and

d−1�

i=0
i xi = 1

 .

Proof. Consider an arbitrary G� ∈ G(h, 2). We consider the same many-to-one
mapping from the (d − 1)-ary trees to the spanning trees of G� as in the proof of
Theorem 12, but this time we restrict our attention to the spanning trees with the
minimum possible number of leaves �. Note that no two leaves of such spanning
trees can be adjacent (otherwise we could create a new spanning tree with one
less leaf, which contradicts the minimality assumption). Consider one such tree
T � and one of its leaves v. Let u = u(v) be a vertex adjacent to v in G� but not
in T �, selected arbitrarily. Note that u must exist since the minimum degree is
2, and it must be an internal vertex of T � by the minimality assumption. Let w
be the lowest level ancestor of v in T � of degree 3 or larger (w = r is no such
vertex exists). We can obtain a different tree T �� with the same number of leaves
by adding to T � the edge e(v) = {u, v} and by cutting the new cycle introduced
at the edge e�(v) = {w,w�} right below w in T �. Note that there is a one-to-one
mapping between v and both e(v) and e�(v). As a consequence, this replacement
of edges can be performed simultaneously on an arbitrary subset of the leaves of
the original spanning tree without interference, leading each time to a different
spanning tree. This implies that there are at least 2� distinct spanning trees with �
leaves.

78 78

78 78

BEATCS no 87 THE EATCS COLUMNS

70

Let us give a weight 2−h0 to each spanning tree of G� with h0 ≥ � leaves. The
weighted sum of such trees is at least one (since there are at least 2� trees of weight
2−�). As a consequence, the weighted sum of all the spanning trees of the graphs
in G(h, 2) is an upper bound on |G(h, 2)|. The number of (d − 1)-ary trees with hi
vertices of out-degree i, i ∈ {0, 1, . . . , d − 1}, is upper bounded by

�
h

h0, h1, . . . , hd−1

�
d−1�

i=0

�
d − 1
i

�hi ,

where the first factor considers the possible ways to assign out-degrees to vertices,
and the second takes into account the positions of the children of each vertex in
the tree. Note that the (h0, h1, . . . , hd−1) must belong to the following set

H = {(h0, h1, . . . , hd−1) ∈ Nd |
d−1�

i=0
hi = h and

d−1�

i=0
i hi = h − 1}.

With the notation xi = hi/h (and letting h tend to infinity),

�

H

2−h0
�

h
h0, h1, . . . , hd−1

� d−1�

i=0

�
d − 1
i

�hi

= O

�

H

2−x0

d−1�

i=0

��
d − 1
i

�
/xi
�xi

h

= O

|H|

maxx∈X

 2
−x0

d−1�

i=0

��
d − 1
i

�
/xi
�xi

h .

The claim follows by observing that, for any constant d, |H| is polynomially
bounded. �

For example if the maximum degree is 4, one obtains |G(h, 2)| = O(5.5981h),
corresponding to the case (x0, x1, x2, x3) � (0.2440, 0.5359, 0.1962, 0.0239). As a
consequence, the running time is O(20.465(1−α)n) = O(20.392 n), where

α =
log(20.465)

log(20.465) + log(5.5981)
> 0.1576.

By the same arguments as above, this running time bound extends to graphs of
arbitrary degree. Based on this approach, Robson obtained the currently fastest
O(20.250 n) exponential space MVC algorithm [60].

Note that the maximization in Theorem 13 must be performed in a very careful
way. In fact, underestimating the value of c(d) would lead to wrong running time
bounds. The value of c(d) for some values of d are given in Table 1.

79 79

79 79

The Bulletin of the EATCS

71

Table 1 Upper bounds on c(d) for d ∈ {3, 4, . . . , 10}.

d c(d)
3 3.4143
4 5.5981
5 7.7654
6 9.9275
7 12.0871
8 14.2455
9 16.4031
10 18.5602

5.3 Memorization in parameterized algorithms
The parameterized k-V�ʀ��� C���ʀ problem asks to compute, given a graph G
and a positive integer k, a vertex cover of size k or to report that no such set exists.

The algorithm described in the previous subsection can be easily adapted to
this task: it is sufficient to update k (besides G) at each recursive call in order
to keep track of the number of vertices added to the vertex cover along each
search path. Using the same notation as in the previous section, but measuring
the progress of the algorithm in terms of k (instead of n), we obtain the following
tight recurrence

P(k) ≤ P(k − 1) + P(k − 3) < 20.552 k,

which corresponds again to the case in which the algorithm branches at a vertex
of degree 3. The corresponding running time is O(20.552 k).

A linear problem kernel of size 2k for the k-V�ʀ��� C���ʀ problem (not nec-
essary planar) was obtained by Chen et al. [19]. This result is based on graph-
theoretical results of Nemhauser and Trotter [51] and Buss and Goldsmith [13].
The running time of the algorithm constructing such a kernel is O(kn + k3). Thus
Tkernel(|I|, k) = O(kn + k3).

By applying such a kernalization to each subproblem generated, and using the
basic memorization technique described in Section 5.1, one obtains

Ph(k) ≤ min{20.552(k−h),
�
2k
2h

�
}.

As a consequence, the running time is O(20.552(1−α)k + kn) = O(20.528 k + kn) where
α > 0.044 satisfies

20.552(1−α) =
�

1
αα(1 − α)1−α

�2
.

80 80

80 80

BEATCS no 87 THE EATCS COLUMNS

72

By applying a similar (slightly weaker) approach, Niedermeier and Rossmanith
[53] derived a O(20.360 k + kn) exponential space vertex cover algorithm from their
own O(20.370 k + kn) polynomial space algorithm [52].

However, it is not clear a priori how to apply the refined approach of Section
5.2 (based on the number of connected induced subgraphs) to the problem. In fact,
consider a vertex cover instance (G, k), where the connected components ofG are
G1,G2, . . . ,Gp, with p ≥ 2. A simple-minded idea is to branch on the subproblems
(G1, k), (G2, k),. . . , (Gp, k). Though this approach is correct in principle, it leads
to a bad running time bound (since the value of the argument does not decrease in
the subproblems).

Chandran and Grandoni [63] described a simple way to circumvent this prob-
lem. Suppose the maximum degree is bounded by a constant d. If a connected
component contains a small (constant) number of vertices, the corresponding ver-
tex cover problem can be solved in constant time by brute force. Thus, without
loss of generality, we can assume that each connected component contains at least
dh+ 1 vertices (and hence at least dh edges), for some constant h to be fixed later.
Since each vertex of the vertex cover can cover at most d edges, the size of the
minimum vertex cover of each component is at least h. As a consequence, we
can branch on the subproblems (Gi, k − (p − 1)h) instead of (Gi, k). In fact, if
mvc(Gi) > k − (p − 1)h for some i, then mvc(G) > k. This leads to a new set of
recurrences of the kind

P(k) ≤
p�

i=1
P(k − (p − 1)h) ≤ 2k/h.

By choosing a sufficiently large (but still constant) h, we can ensure that these
recurrences are not tight (and thus the worst-case running time is not affected by
the branching on the connected components). For example, imposing h = 3, one
obtains P(k) < 20.334 k.

By combining this idea with the refined memorization technique described in
Section 5.2, we obtain for graphs of degree at most 4 a running timeO(20.552(1−α)k+
kn) = O(20.497 k + kn) where

20.552(1−α) = 5.59812α ⇔ α =
log(20.552)

log(20.552) + 2 log(5.5981)
> 0.0999.

Also in this case the same running time bound extends to graphs of arbitrary de-
gree, provided that vertices of degree 5 or larger are removed in a preliminary
phase:

P(k) ≤

P(k − 1) + P(k − 5)
20.552 k

≤ max{20.406 k, 20.552 k}.

81 81

81 81

The Bulletin of the EATCS

73

Using this approach, Chandran and Grandoni [63] derived a O(20.350 k + kn) ex-
ponential space algorithm from the O(20.370 k + kn) polynomial space algorithm in
[52]. This is the currently fastest algorithm for the parameterized k-V�ʀ��� C���ʀ
problem.7

Acknowledgement. Many thanks to Dimitrios M. Thilikos for his helpful re-
marks and suggestions.

References
[1] J. Aʟʙ�ʀ, H. L. B��ʟ��ɴ��ʀ, H. F�ʀɴ��, T. Kʟ���, �ɴ� R. Nɪ���ʀ��ɪ�ʀ, Fixed pa-

rameter algorithms for dominating set and related problems on planar graphs, Al-
gorithmica, 33 (2002), pp. 461–493.

[2] J. Aʟʙ�ʀ, M. R. F�ʟʟ���, �ɴ� R. Nɪ���ʀ��ɪ�ʀ, Polynomial-time data reduction for
dominating set, Journal of the ACM, 51 (2004), pp. 363–384.

[3] J. Aʟʙ�ʀ, H. F�ʀɴ��, �ɴ� R. Nɪ���ʀ��ɪ�ʀ, Graph separators: a parameterized view,
J. Comput. System Sci., 67 (2003), pp. 808–832.

[4] , Parameterized complexity: exponential speed-up for planar graph problems,
J. Algorithms, 52 (2004), pp. 26–56.

[5] M. Aʟ��ʜɴ��ɪ�ʜ, E. Hɪʀ��ʜ, �ɴ� D. I��ʏ��ɴ, Exponential lower bounds for the run-
ning time of DPLL algorithms on satisfiable formulas, in Proceedings of the 31st In-
ternational Colloquium on Automata, Languages and Programming (ICALP 2005),
vol. 3142 of LNCS, Springer, Berlin, 2004, pp. 84–96.

[6] N. Aʟ�ɴ, P. S�ʏ���ʀ, �ɴ� R. Tʜ����, A separator theorem for nonplanar graphs, J.
Amer. Math. Soc., 3 (1990), pp. 801–808.

[7] , Planar separators, SIAM J. Discrete Math., 7 (1994), pp. 184–193.

[8] R. B�ɪɢ�ʟ, Finding maximum independent sets in sparse and general graphs,
in Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms
(SODA 1999), ACM and SIAM, 1999, pp. 856–857.

[9] R. B�ɪɢ�ʟ �ɴ� D. E�����ɪɴ, 3-coloring in time O(1.3289n), Journal of Algorithms, 54
(2005), pp. 168–204.

[10] S. B��ʀ����, R. Eʟ��̈���ʀ, B. M�ɴɪ�ɴ, R. Pʀ�ɪ�, �ɴ� J.-P. Tɪʟʟɪ�ʜ, New spectral lower
bounds on the bisection width of graphs, Theoretical Computer Science, 320 (2004),
pp. 155–174.

[11] H. L. B��ʟ��ɴ��ʀ, A partial k-arboretum of graphs with bounded treewidth, Theo-
retical Computer Science, 209 (1998), pp. 1–45.

7Recently Chen et al. [21] announced O(1.2740k+kn) = O(20.350 k+kn)-time polynomial space
algorithm.

82 82

82 82

BEATCS no 87 THE EATCS COLUMNS

74

[12] T. Bʀ��ɢɢ���ɴɴ �ɴ�W. K�ʀɴ, An improved deterministic local search algorithm for
3-SAT, Theoretical Computer Science, 329 (2004), pp. 303–313.

[13] J. F. B��� �ɴ� J. G�ʟ���ɪ�ʜ, Nondeterminism within P, SIAM J. Comput., 22 (1993),
pp. 560–572.

[14] J. M. Bʏ����, Enumerating maximal independent sets with applications to graph
colouring, Operations Research Letters, 32 (2004), pp. 547–556.

[15] J. M. Bʏ����, Exact algorithms for graph colouring and exact satisfiability, PhD
thesis, University of Aarhus, Denmark, (August, 2004).

[16] J. M. Bʏ����, Bʏ���� �ɴ� D. E�����ɪɴ, An algorithm for enumerating maximal bi-
partite subgraphs, manuscript, (2004).

[17] J. Cʜ�ɴ, H. F�ʀɴ��, I. A. K�ɴ�, �ɴ� G. Xɪ�, Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size, in Proceedings of the 22nd Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2005),
vol. 3403 of LNCS, Springer, Berlin, 2005, pp. 269–280.

[18] J. Cʜ�ɴ, I. A. K�ɴ�, �ɴ� W. Jɪ�, Vertex cover: further observations and further
improvements, in Proceedings of the 26thWorkshop on Graph Theoretic Concepts in
Computer Science (WG 1999), vol. 1665 of LNCS, Springer, Berlin, 1999, pp. 313–
324.

[19] , Vertex cover: further observations and further improvements, Journal of Al-
gorithms, 41 (2001), pp. 280–301.

[20] J. Cʜ�ɴ, I. A. K�ɴ�, �ɴ� G. Xɪ�, Labeled search trees and amortized analysis: im-
proved upper bounds for NP-hard problems, in Proceedings of the 14th Annual In-
ternational Symposium on Algorithms and Computation (ISAAC 2003), vol. 2906
of LNCS, Springer, Berlin, 2003, pp. 148–157.

[21] , Simplicity is beaty: Improved upper bounds for vertex cover, manuscript,
2005.

[22] E. D�ɴ��ɪɴ, A. G��ʀ��, E. A. Hɪʀ��ʜ, R. K�ɴɴ�ɴ, J. Kʟ�ɪɴʙ�ʀɢ, C. P����ɪ�ɪ�ʀɪ��,
P. R�ɢʜ���ɴ, �ɴ� U. S�ʜ�̈ɴɪɴɢ, A deterministic (2 − 2/(k + 1))n algorithm for k-SAT
based on local search, Theoretical Computer Science, 289 (2002), pp. 69–83.

[23] V. G. D�ɪ̆ɴ���, B. Kʟɪɴ�, �ɴ�G. J. W��ɢɪɴɢ�ʀ, Exact algorithms for the Hamiltonian
cycle problem in planar graphs, Operations Research Letters, (2005), p. to appear.

[24] E. D. D���ɪɴ�, F. V. F��ɪɴ, M. H��ɪ�ɢʜ�ʏɪ, �ɴ� D. M. Tʜɪʟɪ���, Subexponential
parameterized algorithms on graphs of bounded genus and H-minor-free graphs,
Journal of the ACM, (2004, to appear).

[25] , Fixed-parameter algorithms for (k, r)-center in planar graphs and map
graphs, ACM Trans. Algorithms, 1 (2005), pp. 33–47.

[26] F. D�ʀɴ, E. P�ɴɴɪɴ��, H. B��ʟ��ɴ��ʀ, �ɴ� F. V. F��ɪɴ, Efficient exact algorithms on
planar graphs: Exploiting sphere cut branch decompositions, in Proceedings of the
13th Annual European Symposium on Algorithms (ESA 2005), vol. 3669 of LNCS,
Springer, Berlin, 2005, pp. 95–106.

83 83

83 83

The Bulletin of the EATCS

75

[27] F. D�ʀɴ �ɴ� J. A. T�ʟʟ�, Two birds with one stone: the best of
branchwidth and treewidth with one algorithm, 2005. manuscript,
http://www.ii.uib.no/ telle/bib/DT.pdf.

[28] R. G. D��ɴ�ʏ �ɴ�M. R. F�ʟʟ���, Parameterized complexity, Springer-Verlag, New
York, 1999.

[29] D. E�����ɪɴ, Small maximal independent sets and faster exact graph coloring, Jour-
nal of Graph Algorithms and Applications, 7 (2003), pp. 131–140.

[30] , The travelling salesman problem for cubic graphs, in Proceedings of the 8th
Workshop on Algorithms and Data Structures (WADS 2003), vol. 2748 of LNCS,
Springer, Berlin, 2003, pp. 307–318.

[31] D. E�����ɪɴ, Quasiconvex analysis of backtracking algorithms, in Proceedings of
the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), ACM and
SIAM, 2004, pp. 781–790.

[32] F. V. F��ɪɴ, F. Gʀ�ɴ��ɴɪ, �ɴ� D. Kʀ����ʜ, Measure and conquer: Domination –
a case study, in Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP 2005), vol. 3580 of LNCS, Springer, Berlin,
2005, pp. 191–203.

[33] F. V. F��ɪɴ �ɴ� K. H�ɪ�, Pathwidth of cubic graphs and exact algorithms, Technical
Report 298, Department of Informatics, University of Bergen, Norway, 2005.

[34] F. V. F��ɪɴ, D. Kʀ����ʜ, �ɴ� I. T��ɪɴ��, Exact algorithms for treewidth and min-
imum fill-in, in Proceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP 2004), vol. 3142 of LNCS, Springer, Berlin,
2004, pp. 568–580.

[35] F. V. F��ɪɴ, D. Kʀ����ʜ, �ɴ� G. J. W��ɢɪɴɢ�ʀ, Exact (exponential) algorithms for
the dominating set problem, in Proceedings of the 30th Workshop on Graph The-
oretic Concepts in Computer Science (WG 2004), vol. 3353 of LNCS, Springer,
Berlin, 2004, pp. 245–256.

[36] F. V. F��ɪɴ �ɴ� D. M. Tʜɪʟɪ���, Dominating sets in planar graphs: Branch-width
and exponential speed-up, in 14th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA 2003), New York, 2003, ACM and SIAM, pp. 168–177.

[37] , A simple and fast approach for solving problems on planar graphs, in Pro-
ceedings of the 21st International Symposium on Theoretical Aspects of Computer
Science (STACS 2004), vol. 2996 of LNCS, Springer, Berlin, 2004, pp. 56–67.

[38] , New upper bounds on the decomposability of planar graphs, Journal of Graph
Theory, (2005, to appear).

[39] J. Gʀ���, E. A. Hɪʀ��ʜ, R. Nɪ���ʀ��ɪ�ʀ, �ɴ� P. R�����ɴɪ�ʜ, Worst-case upper
bounds for MAX-2-SAT with an application to MAX-CUT, Discrete Applied Mathe-
matics, 130 (2003), pp. 139–155.

[40] F. Gʀ�ɴ��ɴɪ, A note on the complexity of minimum dominating set, Journal of Dis-
crete Algorithms, (to appear).

84 84

84 84

BEATCS no 87 THE EATCS COLUMNS

76

[41] Q.-P. G� �ɴ� H. T����ɪ, Optimal branch-decomposition of planar graphs in O(n3)
time, in Proceedings of the 32nd International Colloquium on Automata, Languages
and Programming (ICALP 2005), vol. 3580 of LNCS, Springer, Berlin, 2005,
pp. 373–384.

[42] M. H�ʟ� �ɴ� R. M. K�ʀ�, A dynamic programming approach to sequencing prob-
lems, Journal of SIAM, 10 (1962), pp. 196–210.

[43] K. I����, Worst-case upper bounds for k-SAT, Bulletin of the EATCS, 82 (2004),
pp. 61–71.

[44] J. Kɴ�ɪ�, D. M�̈ʟʟ�, S. Rɪ�ʜ��ʀ, �ɴ� P. R�����ɴɪ�ʜ, Algorithms based in treewidth
of sparse graphs, in Proceedings of the 31st International Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2005), LNCS, Springer, Berlin,
2005, to appear.

[45] D. E. Kɴ��ʜ, The art of computer programming, Addison-Wesley, second ed., 1975.
Vol. 1: Fundamental algorithms.

[46] A. K����ɴɪ��� �ɴ� A. S. K�ʟɪ���, A new approach for proving upper bounds for
MAX-2-SAT, 2005. manuscript, http://logic.pdmi.ras.ru/ arist/papers.html.

[47] A. S. K�ʟɪ��� �ɴ� S. S. F��ɪɴ, Solution of the maximum cut problem in time
2|E|/4, Rossiı̆skaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematich-
eskiı̆ Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI), 293 (2002),
pp. 129–138, 183.

[48] R. J. Lɪ���ɴ �ɴ� R. E. T�ʀ��ɴ, A separator theorem for planar graphs, SIAM J.
Appl. Math., 36 (1979), pp. 177–189.

[49] , Applications of a planar separator theorem, SIAM J. Comput., 9 (1980),
pp. 615–627.

[50] B. M�ɴɪ�ɴ �ɴ� R. Pʀ�ɪ�, Upper bounds on the bisection width of 3- and 4-regular
graphs, in Proceedings of the 26th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2001), vol. 2136 of LNCS, Springer, Berlin,
2001, pp. 524–536.

[51] G. L. N��ʜ����ʀ �ɴ� L. E. Tʀ����ʀ, Jʀ., Properties of vertex packing and indepen-
dence system polyhedra, Math. Programming, 6 (1974), pp. 48–61.

[52] R. Nɪ���ʀ��ɪ�ʀ �ɴ� P. R�����ɴɪ�ʜ, Upper bounds for vertex cover further improved,
in Proceedings of the 16th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 1999), vol. 1563 of LNCS, Springer, Berlin, 1999, pp. 561–
570.

[53] , On efficient fixed-parameter algorithms for weighted vertex cover, Journal of
Algorithms, 47 (2003), pp. 63–77.

[54] P. P��ʟ�� �ɴ� R. I���ɢʟ���ɪ�, A lower bound for DLL algorithms for k-SAT,
in Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2000), ACM and SIAM, 2000, pp. 128–136.

85 85

85 85

The Bulletin of the EATCS

77

[55] N. R�ʙ�ʀ���ɴ �ɴ� P. D. S�ʏ���ʀ, Graph minors. II. Algorithmic aspects of tree-
width, Journal of Algorithms, 7 (1986), pp. 309–322.

[56] , Graph minors. X. Obstructions to tree-decomposition, J. Combin. Theory Ser.
B, 52 (1991), pp. 153–190.

[57] , Graph minors. XI. Circuits on a surface, J. Combin. Theory Ser. B, 60 (1994),
pp. 72–106.

[58] N. R�ʙ�ʀ���ɴ, P. D. S�ʏ���ʀ, �ɴ� R. Tʜ����, Quickly excluding a planar graph, J.
Combin. Theory Ser. B, 62 (1994), pp. 323–348.

[59] J. M. R�ʙ��ɴ, Algorithms for maximum independent sets, Journal of Algorithms, 7
(1986), pp. 425–440.

[60] , Finding a maximum independent set in time O(2n/4), 2001. manuscript,
http://dept-info.labri.fr/ robson/mis/techrep.html.

[61] U. S�ʜ�̈ɴɪɴɢ, Algorithmics in exponential time, in Proceedings of the 22nd Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2005),
vol. 3404 of LNCS, Springer, Berlin, 2005, pp. 36–43.

[62] P. D. S�ʏ���ʀ �ɴ� R. Tʜ����, Call routing and the ratcatcher, Combinatorica, 14
(1994), pp. 217–241.

[63] L. S�ɴɪʟ Cʜ�ɴ�ʀ�ɴ �ɴ� F. Gʀ�ɴ��ɴɪ, Refined memorization for vertex cover, Infor-
mation Processing Letters, 93 (2005), pp. 125–131.

[64] R. Wɪʟʟɪ���, A new algorithm for optimal constraint satisfaction and its impli-
cations, in Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP 2004), vol. 3142 of LNCS, Springer, Berlin,
2004, pp. 1227–1237.

[65] G. W��ɢɪɴɢ�ʀ, Exact algorithms for NP-hard problems: A survey, in Combinatorial
Optimization - Eureka, you shrink!, vol. 2570 of LNCS, Springer-Verlag, Berlin,
2003, pp. 185–207.

[66] , Space and time complexity of exact algorithms: Some open problems, in Pro-
ceedings of the 1st International Workshop on Parameterized and Exact Computa-
tion (IWPEC 2004), vol. 3162 of LNCS, Springer-Verlag, Berlin, 2004, pp. 281–
290.

