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Abstract: It is known that a planar graph on n vertices has branch-width/
tree-width bounded by �

ffiffiffi
n
p

. In many algorithmic applications, it is useful to
have a small bound on the constant �. We give a proof of the best, so far,
upper bound for the constant �. In particular, for the case of tree-width,
� < 3:182 and for the case of branch-width, � < 2:122. Our proof is based
on the planar separation theorem of Alon, Seymour, and Thomas and some
min–max theorems of Robertson and Seymour from the graph minors
series. We also discuss some algorithmic consequences of this result.
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1. INTRODUCTION

In this paper, we give an improved upper bound to the branch-width and the tree-

width of planar graphs. Both these parameters were introduced (and served) as

basic tools by Robertson and Seymour in their Graph Minors series of papers.

Tree-width and branch-width are related parameters (See Theorem 2.1) and can

be considered as measures of the ‘‘global connectivity’’ of a graph. Moreover,

they appear to be of a major importance in algorithmic design as many NP-hard

problems admit polynomial or even linear time solutions when their inputs are

restricted to graphs of bounded tree-width or branch-width [7].

The objective of this paper is to show that every n-vertex planar graph G has

branch-width � 2:122
ffiffiffi
n
p

and tree-width � 3:182
ffiffiffi
n
p

. To obtain the new upper

bounds we use deep ‘dual’ and ‘min–max’ theorems from Graph Minors series

papers of Robertson, Seymour. We also observe interesting algorithmic con-

sequences following from the new upper bounds.

A. Previous Results and our Contribution

Computation of constants �t and �b such that for every planar graph on n vertices

twðGÞ � �t

ffiffiffi
n
p
þ Oð1Þ and bwðGÞ � �b

ffiffiffi
n
p
þ Oð1Þ is of a great theoretical

importance. In [5], Alon, Seymour, and Thomas proved that any Kr-minor free

graph on n vertices has tree-width� r1:5
ffiffiffi
n
p

. (Here Kr is complete graph on r

vertices.) Since no planar graph contains K5 as a minor, we have that �bðGÞ �
�tðGÞ � 61:5 � 14:697. By using deep results of Robertson, Seymour, and Thomas,

one can easily prove much better bounds as follows.

Before we proceed, let us remind the notion of a minor. Given an edge

e ¼ fx; yg of a graph G, the graph G=e is obtained from G by contracting the edge

e; that is, to get G=e we identify the vertices x and y and remove all loops and

duplicate edges. A graph H obtained by a sequence of edge-contractions is said to

be a contraction of G. H is a minor of G if H is the subgraph of a some

contraction of G.

The following is a combination of statements (4.3) in [18] and (6.3) in [21].

Theorem 1.1 ([21]). Let k � 1 be an integer. Every planar graph with no

ðk � kÞ-grid as a minor has branch-width � 4k � 3.

Because a graph on n vertices does not contain a ððd
ffiffiffi
n
p
e þ 1Þ � ðd

ffiffiffi
n
p
e þ 1ÞÞ-

grid as a minor, we have that �bðGÞ � 4. Robertson, Seymour, and Thomas

showed (unpublished result announced by Thomas [23]) that any planar graph

without a ðk � kÞ-grid as a minor has tree-width � 5k � 1 implying �t � 5.

In this paper, we reduce the bound for constant �b to 2.122 (for the case of

branch-width) and for constant �t to 3.182 (for the case of tree-width).
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The paper is organized as follows. In Section 2, we present the basic

definitions and well-known facts about decompositions of planar graphs. In

Section 3, we give the proof of the main combinatorial result of this paper. The

proof is long and we split it into several subsections. Our proof makes strong use

of deep graph theoretic results from [6] and [19, 22]. In particular, Alon,

Seymour, and Thomas introduced the concept of ‘‘majority’’ in order to study the

existence of small separators in planar graphs. On the other side, the results in [19,

22] were strongly based on the notion of ‘‘slope.’’ The main idea of our proof is to

show that slopes can be transformed to majorities for triangulated planar graphs

without multiple edges (in this paper only consider plane triangulations). Then

combining this results with the results from [6] and [22], we obtain the claimed

upper bound. In Section 4, we observe why our theoretical upper bounds are

interesting from the algorithmic point of view. We prove that the running time of

many known algorithms on planar graphs (parameterized or exact) can be

improved significantly. Finally, in Section 5, we conclude with three open

problems related to our results.

2. DEFINITIONS

All graphs in this paper are undirected, loop-less and, unless otherwise

mentioned, they may have multiple edges.

A. Tree-Width and Branch-Width

A tree decomposition of a graph G is a pair ðfXi j i 2 VðTÞg; TÞ, where

fXi j i 2 VðTÞg is a collection of subsets of VðGÞ and T is a tree, such that

�
S

i2VðTÞ Xi ¼ VðGÞ,
� for each edge fv;wg 2 EðGÞ, there is an i 2 VðTÞ such that v;w 2 Xi, and

� for each v 2 VðGÞ, the set of nodes fi j v 2 Xig forms a subtree of T.

The width of a tree decomposition ðfXi j i 2 VðTÞg;TÞ equals maxi2VðTÞ
ðjXij � 1Þ. The tree-width of a graph G, twðGÞ, is the minimum width over all

tree decompositions of G.

A branch decomposition of a graph (or a hyper-graph) G is a pair ðT ; �Þ, where

T is a tree with vertices of degree 1 or 3, and � is a bijection from the set of leaves

of T to EðGÞ. The order of an edge e in T is the number of vertices v 2 VðGÞ such

that there are leaves t1; t2 in T in different components of TðVðTÞ;EðTÞ � eÞ with

�ðt1Þ and �ðt2Þ both containing v as an endpoint.

The width of ðT; �Þ is the maximum order over all edges of T , and the branch-

width of G, bwðGÞ, is the minimum width over all branch decompositions of G.

(In case where jEðGÞj � 1, we define the branch-width to be 0; if jEðGÞj ¼ 0,

then G has no branch decomposition; if jEðGÞj ¼ 1, then G has a branch
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decomposition consisting of a tree with one vertex–the width of this branch

decomposition is considered to be 0.)

It is easy to see that if H is a subgraph of G, then bwðHÞ � bwðGÞ. The

following result is due to Robertson and Seymour [(5.1) in [18]].

Theorem 2.1 ([18]). For any connected graph G where jEðGÞj � 3, bwðGÞ �
twðGÞ þ 1 � 3

2
bwðGÞ.

From Theorem 2.1, any upper bound on tree-width implies an upper bound on

branch-width and vice versa.

B. Planar Graphs: Slopes and Majorities

In this paper, we use the expression �-plane graph for any planar graph drawn in

the sphere �. To simplify notations, we do not distinguish between a vertex of a

�-plane graph and the point of � used in the drawing to represent the vertex or

between an edge and the open line segment representing it. We also consider G as

the union of the points corresponding to its vertices and edges. That way, a

subgraph H of G can be seen as a graph H where H � G. We call by face of G

any connected component of �� EðGÞ � VðGÞ. (Every face is an open set.) We

use the notation VðGÞ;EðGÞ; and RðGÞ for the set of the vertices, edges, and faces

of G respectively. A path of G is any connected subgraph P of G with two vertices

of degree 1 (we call them extremes) and all other vertices (we call them internal) of

degree 2. A sub-path of a path P is any path P0 � P. A cycle of G is any

connected subgraph C of G with all the vertices of degree 2. The length jCj (jPj)
of a cycle C (path jPj) is the number of its edges.

If � � �, then � denotes the closure of �, and the boundary of � is

bdð�Þ ¼ � \ ���. An edge e (a vertex v) is incident with a face r if

e � bdðrÞ ðv � bdðrÞÞ.
We call a �-plane graph G triangulated if all of its faces are triangles, i.e., for

every face r, bdðrÞ is a cycle of three edges and three vertices. Given a face r of a

triangulated graph G, we call the cycle bdðrÞ triangle of G. A triangulation H of

a �-plane graph G is any triangulated �-plane graph H where G � H. Notice that

any �-plane graph with all faces of size � 3 has a triangulation. A triangle of a

triangulated �-plane graph G is a facial triangle if it bounds a face of G.

Let G be a �-plane graph. A subset of � meeting the drawing only in vertices

of G is called G-normal. A subset of � homeomorphic to the closed interval ½0; 1�
is called I-arc. If the ends of a G-normal I-arc L are both vertices of G, then we

call it line of G. If a simple closed curve F � � is G-normal, then we call it

noose.

The length of a line is the number of its vertices minus 1 and the length of a

noose is the number of its vertices. We denote by jNjðjLjÞ the length of a noose N

(line L). � � � is an open disc if it is homeomorphic to fðx; yÞ : x2 þ y2 < 1g.
We say that a disc D is bounded by a noose N if N ¼ bdðDÞ. From the theorem of
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Jordan, any noose N bounds exactly two closed discs �1;�2 in � where

�1 \�2 ¼ N.

Let x; y 2 � be distinct. We call �-structure S ¼ ðL1; L2;L3Þ of G the union

of three lines L1;L2; L3 between x and y that are otherwise disjoint. If for

i; j; 1 � i < j � 3 the noose Li [ Lj has size � k, then we say that S is a �-

structure of length � k. We call a �-structure non-trivial if at least two of its lines

have length � 2. We call the 6 closed discs bounded by the nooses Li [ Lj;
1 � i < j � 3 closed discs bounded by S.

The radial graph of a �-plane graph G is the bipartite �-plane graph RG

obtained by selecting a point in every face r of G and connecting it to every

vertex of G incident to that face. We call the vertices of RG that are not vertices of

G radial vertices. For an example of a graph G drawn along with its radial, see

Figure 1.

Slopes and majorities are important tools for the proofs of this paper.

Slopes (Robertson and Seymour [19]). Let G be a �-plane graph and let k � 1

be an integer. A slope in G of order k=2 is a function ins which assigns to every

cycle C of G of length < k one of the two closed discs insðCÞ � � bounded by C

such that

[S1] If C;C0 are cycles of length < k and C � insðC0Þ, then insðCÞ � insðC0Þ.
[S2] If P1;P2;P3 are three paths of G joining the same pair u; v of distinct

vertices but otherwise disjoint, and the three cycles P1 [ P2; P1 [ P3;
P2 [ P3 all have length < k, then

insðP1 [ P2Þ [ insðP1 [ P3Þ [ insðP2 [ P3Þ 6¼ �:

A slope is uniform if for every face r 2 RðGÞ there is a cycle C of G of length < k

such that r � insðCÞ.
We need the following deep result proved in the Graph Minors papers by

Robertson and Seymour. This result follows from Theorems (6.1) and (6.5) in

[19] and Theorem (4.3) in [18]. (See also Theorems (6.2) and (7.1) in [22].)

FIGURE 1. An example of a �-plane graph G drawn (i) with its radial RG (ii) with a
noose S that is not a cycle of RG and (iii) with a noose S 0 that is a cycle of RG and a
vibration of S.
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Theorem 2.2 ([19]). Let G be a connected �-plane graph where jEðGÞj � 2

and let k � 1 be an integer. The radial drawing RG has a uniform slope of order

� k if and only if G has branch-width � k.

Majorities (Alon, Seymour, and Thomas [6]). Let G be a �-plane graph and let

k � 0 be an integer. A majority of order k is a function big that assigns to every

noose N in G of length � k a closed disc bigðNÞ � � bounded by N such that

[M1] If P1;P2;P3 is a �-structure of G with length � k and P3 �
bigðP1 [ P2Þ, then bigðP1 [ P3Þ � bigðP1 [ P2Þ or bigðP2 [ P3Þ �
bigðP1 [ P2Þ.

[M2] If N is a noose of length � minð2; kÞ, then either bigðNÞ � N contains a

vertex or bigðNÞ includes at least two edges of G.

The following result gives an upper bound on the order of a majority

(Statement (3.7) of [6]). This is a basic ingredient of our bound for the branch-

width of planar graphs.

Theorem 2.3 ([6]). Any majority of a �-plane graph G has order at mostffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:5 � jVðGÞj

p
� 1.

3. CREATING MAJORITIES FROM SLOPES

Our bounds on branch-width and tree-width follow from the following theorem

that is the main technical result of the paper.

Theorem 3.1. Let G; jVðGÞj � 5, be a triangulated �-plane graph without

multiple edges, drawn in � along with its radial graph, and let k � 2 be an

integer. If there exists a uniform slope of order k þ 1 in RG, then G contains a

majority of order k.

This section is devoted to the proof of Theorem 3.1 and is organized as

follows. We start with the definitions of the notions of variations and vibrations

(Subsection 3A). Then we prove that any noose can be transformed, after applying

to it a sequence of variations, to a cycle of the radial graph (Subsection 3C). We

also prove that the same type of representation via variations applies also to the

�-structures (Subsection 3D). That way, we are able to ‘‘translate’’ the slope

axioms to majority ones. This requires a series of auxiliary results assuring that

the basic topological properties involved in the majority axioms are invariants

under vibrations (Subsection 3F). With all this knowledge on hands, we proceed

with the proof of the main result in Subsection 3G.

A. Variations and Vibrations

If G is a �-plane graph without loops or multiple edges, and S � � is an I-arc

(simple closed curve) in �, then we use the notation �GðSÞ ¼ ðv1; . . . ; vjS\VðGÞjÞ
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for the ordering (cyclic ordering) of the vertex set F \ VðGÞ that represents the

way the vertices of G are met by S.

Notice that � can be applied to both cycles and nooses but also to paths

and lines. Especially for cycles and paths of graphs without multiple edges, we

can directly represent them with the output of the function � (we will use the

same notation for a cycle/path and the (cyclic) ordering of the vertices that it

meets).

The basic idea of the proof is to correspond nooses of G to cycles of RG and try

to translate the slope axioms to majority axioms. Corresponding nooses to cycles

are not direct as not every noose is a cycle of the radial graph (see Fig. 1). To

overcome this problem, we need to introduce the concepts of variations and

vibrations of nooses.

Let S be one of the following structures in G: a noose, a line, or a �-structure.

A variation of S is the operation that transforms S to another structure S0 of the

same type such that ðS [ S0Þ � ðS \ S0Þ is a noose of size 2 and one of the closed

discs bounded by this noose, we denote this disc by difðS; S0Þ, has the following

two properties:

1. difðS; S0Þ � bdðdifðS; S0ÞÞ contains no vertices of G,

2. difðS; S0Þ contains at most one edge of G.

If two structures S1 and S2 are variations each of the other, we denote it as

S1 	 S2. If a structure S0 is the result of a finite number of consecutive variations

with S as starting point, we call S0 vibration of S and we denote this fact as

S 	
 S0. Notice that if S 	
 S0, then VðGÞ \ S ¼ VðGÞ \ S0 and S and S0 have the

same length. In fact, it is easy to observe that if N; N 0 are nooses or lines where

N 	
 N 0, then �GðNÞ ¼ �GðN 0Þ. Moreover, if S ¼ ðL1; L2;L3Þ and S0 ¼
ðL01;L02; L03Þ are �-structures with S 	
 S0, then we order the elements of S and

S0 such that for every i; 1 � i < j � 3; Li [ Lj 	
 L0i [ L0j. For examples of the

notions of variation and vibration, see Figure 2.

FIGURE 2. A �-structure S1, a variation S2 of S1, a variation S3 of S2, and a
vibration S4 of all S1;S2; and S3.
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B. Corresponding Nooses and Lines to Cycles and Paths

The main result of this subsection is Lemma 3.3, claiming that if two nooses of a

plane triangulation meet vertices in the same cyclic ordering, then the one should

be a vibration of the other.

Lemma 3.2. Let G be a triangulated �-plane graph without multiple edges. If S
is a line or a noose of length 2, then exists a unique edge Q in G such that

�GðSÞ ¼ �GðQÞ. If S is a noose of length � 3, then there exists a unique cycle Q

in G such that �GðSÞ ¼ �GðQÞ.
Proof. Let �GðSÞ ¼ ðv0; . . . ; vr�1Þ. We prove that for any i ¼ 0; . . . ; r � 2,

the vertices vi; viþ1 2 �GðSÞ are adjacent via only one edge (in case S is a noose

we take i ¼ 0; . . . ; r � 1 and indices are taken modulo r). As S is G-normal, the

portion of S that is between vi and viþ1 should be a subset of some, say r, of

the faces of G (this face is not well defined only if jVðGÞj ¼ 3 and, in this case,

r can be any face of G). Notice that r is a triangle where vi; viþ1 2 bdðrÞ and

therefore fvi; viþ1g is an edge of G. This edge is unique because G does not have

multiple edges (for an example, see the first graph of Fig. 3). &

Lemma 3.3. Let G be a triangulated �-planar graph without multiple edges

and let N1;N2 be nooses of G where jN1j; jN2j � 3. Then �GðN1Þ ¼ �GðN2Þ
implies N1 	
 N2.

Proof. Suppose that N1;N2 are nooses where jN1j; jN2j � 3 and

�GðN1Þ ¼ �GðN2Þ. By Lemma 3.2, there is a unique cycle C where �GðCÞ ¼
�GðN1Þ and a unique cycle C0 where �GðC0Þ ¼ �GðN2Þ. As �GðNÞ ¼ �GðN 0Þ we

have that �GðCÞ ¼ �GðC0Þ and as G does not have multiple edges, we have that

C ¼ C0. We use the notation C ¼ ðx0; . . . ; xr�1Þ. For j ¼ 1; 2, we define the

function �j corresponding to each edge ei ¼ fxi; xiþ1g of C the unique line, �jðeiÞ
in � that is a subset of Ni and has endpoints xi and xiþ1 (as jN1j; jN2j � 3; �j is

well defined). Let �1;�2 be the closed discs bounded by C in �. We define

Dj ¼ fi j �jðeiÞ � �3�jg; j ¼ 1; 2:

For j ¼ 1; 2 we apply a sequence of variations on Nj as indicated by the following

routine. The target of this routine is to put the whole Ni inside the closed disc �i.

FIGURE 3. Examples of the proofs of Lemmata 3.2 and 3.3.
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1. If Dj is empty, then stop and output Nj.

2. Pick an integer i in Dj.

3. Let L be any line L � � where jLj ¼ 1; L � �j, and L \ Lj ¼ xi; xiþ1.

4. Set Nj  Nj � �jðeiÞ [ L. (Notice that this is a variation operation on Nj.)

5. Recalculate �j and Dj. (Notice that now i 62 Dj.)

6. Go to step 1.

For j ¼ 1; 2, we call N 0j the resulting nooses and observe that N 0j � �j and

Nj 	
 N 0j . We now apply the following sequence of variations on N
1 : For any

i ¼ 0; . . . ; r � 1, we set N 01 ¼ N 01 � �1ðeiÞ [ �2ðeiÞ. The resulting noose is N2 and

therefore, N 01 	
 N 02. We conclude that N1 	
 N2 and this completes the proof of

the lemma (for an example, see the second and the third graph of Fig. 3). &

C. Representing Nooses by Vibrations

We are now ready to show that any noose in a plane triangulation can be seen as a

vibration of a cycle of its radial graph.

Observe that if G is a �-plane graph drawn in � along with its radial graph RG,

then any cycle of RG of length 2k is a noose of length k. Any path of length 2k in

RG with both endpoints in VðGÞ is a line in G of length k. Notice that if r is a face

RG, then bdðrÞ is a cycle of length 4 where r contains exactly one edge of G.

Every edge e of G is contained in r for some face r. From now on, we use the

notation re to denote this face. If T is a triangle of G and jVðGÞj � 4, then we use

the notation vðTÞ for the unique vertex of RG that is adjacent in RG with all

the vertices of T .

Let G be a triangulated �-plane graph and let F � EðGÞ. We define the graph

HF as the subgraph of a dual graph G
 formed by edges F
. In other words, its

vertices are the triangles of G that contain some edge in F and two such triangles

are connected by an edge if they have an edge of F in common. To distinguish the

vertices of HF from the vertices of the original graph we refer to the vertices of

HF as to triangles.

Notice that, as G is triangulated, the maximum degree of the vertices of HF is 3

(in the extreme case where the maximum degree is 3 we have that three of the

edges in F induce a triangle in G). This construction will be the basic common

ingredient of the proofs of this and the next subsection. We call two triangles of

degree 1 in HF irrelevant if they belong to different connected components of HF.

We call a subgraph P of a �-plane graph G generalized ðxÞ-path if either

� P is a path with an extreme x, or

� it is a cycle of length � 4 passing through x and such that there is no edge

connecting the neighbors of x in P.

Notice that the stressed cycle of the graph of Figure 4 is a generalized ðxÞ-path iff

x is one of the gray vertices.
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Lemma 3.4. Let G be a triangulated �-plane graph without multiple edges and

where jVðGÞj � 4, drawn in � along with its radial graph RG. Let also P be a

generalized ðxÞ-path of G with the property that HEðPÞ is connected. Let also T be

a triangle of degree 1 in HEðPÞ. Then there exists a generalized ðxÞ-path PR in RG

such that �GðPRÞ ¼ �GðPÞ and vðTÞ 62 PR.

Proof. We use the notation P ¼ ðx ¼ v0; . . . ; vr ¼ yÞ; r � 1 (in case P is a

cycle we have x ¼ y). As jVðGÞj � 4 and G does not have multiple edges, the

connectivity of HEðPÞ yields that HEðPÞ is a path whose extreme vertices are

triangles of G. Each of these triangles has only one edge in common with P.

Therefore, we can denote them as ða; v0; v1Þ and ðvr�1; vr�2; bÞ for some a 6¼ v0

and b 6¼ vd. Notice that, for j ¼ 2; . . . ; r � 2 the edge fvj; vjþ1g is the common

edge of the triangles ðvj�1; vj; vjþ1Þ and ðvj; vjþ1; vjþ2Þ in VðHÞ. Moreover,

fv0; v1g is the common edge of ða; v0; v1Þ and ðv0; v1; v2Þ and fvr�1; vrg is the

common edge of ðvr�2; vr�1; vrÞ and ðvr�1; vr; bÞ.
If ðb; vr�1; vrÞ ¼ T we set

PR ¼ ðv0; vða; v0; v1Þ; v1; vðv0; v1; v2Þ; v2; vðv1; v2; v3Þ; . . .
. . . ; vðvq�3; vq�2; vq�1Þ; vq�1; vðvr�2; vr�1; vrÞ; vrÞ: ð1Þ

If ða; v0; v1Þ ¼ T we set

PR ¼ ðv0; vðv0; v1; v2Þ; v1; vðv1; v2; v3Þ; v2; . . .

. . . ; vr�2; vðvr�2; vr�1; vrÞ; vr�1; vðb; vr�1; vrÞ; vrÞ: ð2Þ

In any case, we guarantee that we can choose a line PR that does not meet the

vertex vðTÞ. Observe that, by the construction of PR; �GðPRÞ ¼ �GðPÞ and the

lemma follows. For examples of the above constructions, see Figure 4. &

FIGURE 4. a: If F contains the edges of the ‘‘fat’’ cycle, then the graph HF is the
one formed by the dotted vertices and the white vertices. b: Examples of the
constructions (1) and (2) of the proof of Lemma 3.4 when generalized ðxÞ-path is a
ðx ; yÞ-paths and a cycle.
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The next Lemma is a generalization of Lemma 3.4 for the general case where

HEðPÞ is not necessarily connected.

Lemma 3.5. Let G; jVðGÞj � 4, be a triangulated �-plane graph without

multiple edges drawn in � along with its radial graph RG. Let also P be a

generalized x-path of G and let T be a collection of mutually irrelevant degree

one triangles in VðHEðPÞÞ. Then there exists a generalized x-path PR in RG such

that 8T2T ; vðTÞ 62 PR and �GðPRÞ ¼ �GðPÞ.
Proof. Let P1; . . . ;Pq be the maximal sub-paths of P with the property that

HEðPiÞ is connected. (When P is a cycle these sub-paths still exist because

x belongs into two distinct degree one triangles of HEðPÞ.) Notice that

fPi j i ¼ 1; . . . ; qg is a partition of P and assume that its indices order it into

consecutive segments of P. We assume that the endpoints of Pi are ai; bi;
1 � i � q where x ¼ a1; b1 ¼ a2; . . . ; bq�1 ¼ aq, and bq ¼ y; the equalities

follow from the maximality of each Pi (when P is a cycle, x ¼ y). We denote

as H1; . . . ;Hq the connected components of HEðPÞ indexed in a way that

Hi ¼ HEðPiÞ. Notice that jT \ VðHiÞj � 1; i ¼ 1; . . . ; q (otherwise we should have

two irrelevant degree one triangles in the same component of H). If jT \ VðHiÞj
is nonempty, then let Ti be the unique triangle in it. Otherwise, let Ti be any of the

triangles of VðHiÞ with degree 1 in Hi. We now apply Lemma 3.4 for Hi and Ti
and we get a path Pi

R connecting ai and bi in RG and such that �GðPi
RÞ ¼ �GðPiÞ

and vðTiÞ 62 Pi
R. We set CR ¼

S
i¼1;...;q P

i
R and observe that, for any T 2 T ;

vðTiÞ 62 Pi
R. As none of the triangles in HEðPÞ belongs to two different connected

components of HEðPÞ, we have that �GðPRÞ ¼ �GðPÞ and the lemma follows (for

an example, see Figure 5a). &

Lemma 3.6. Let G be a triangulated �-plane graph with � 4 vertices and

without multiple edges, drawn in � along with its radial graph RG. Let also C be

a cycle in G and T be an collection of mutually irrelevant degree one triangles

in HEðCÞ. Then there exists a cycle CR in RG such that �GðCRÞ ¼ �GðCÞ and
8T2T ; vðTÞ 62 CR.

FIGURE 5. a: An example of the proof of Lemma 3.5. b: Examples of the case
jC j ¼ 3 of the proof of Lemma 3.6. c: Example of the first case of the proof of
Lemma 3.6.
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Proof. If jCj ¼ 3, then we use the notation C ¼ ðx; y; zÞ and we notice that

bdðrfx;ygg [ rfy;zg [ rfz;xgÞ

is a subgraph of RG and contains as a subgraph at least one cycle CR of length 6 as

required (it meets all the vertices of C, otherwise, G should have a multiple

edge—see also Fig. 5b).

Suppose now that C ¼ ðx0; . . . ; xr�1; x0Þ; r � 4. As jCj � 4, we have that all

the vertices in HEðCÞ have degree at most 2 (otherwise C is a triangle). We

examine two cases:

Case 1. H is a cycle of r vertices. In this case we should have T ¼ ;. Observe

that

CR ¼ ðx0; vðx0; x1; x2Þ; x2; vðx1; x2; x3Þ; . . . ; xr�1; vðxr�1; x0; x1Þ; x0Þ

is the required cycle of RG (all indices are taken modulo r). For an example of this

case, see Figure 5c.

Case 2. All the connected components of H are paths. In this case, there will

exist a vertex x 2 C such that its neighbors in C are not adjacent. Therefore, C is

a generalized ðxÞ-path, it is not a triangle, and by applying Lemma 3.5 for C and

T , the result follows. &

The following lemma is the main conclusion of this subsection.

Lemma 3.7. Let G be a triangulated �-plane graph with � 4 vertices and

without multiple edges, drawn in � along with its radial graph RG. Then any

noose N; jNj � 2, of G is a vibration of some of the cycles of RG.

Proof. If jNj ¼ 2, then let e be the unique edge connecting the extreme

points of N (e is unique because G does not have multiple edges). We directly

have that bdðreÞ is a cycle of RG and it is easy to verify that it is also a vibration

of N. Therefore, we may assume that jNj � 3. From Lemma 3.2 there exist a

unique cycle C where �GðCÞ ¼ �GðNÞ. From Lemma 3.6, there exist a noose CR

of G where �GðCRÞ ¼ �GðCÞ. Notice that CR is a cycle of RG and, as

�GðNÞ ¼ �GðCRÞ, from Lemma 3.3, we conclude that N 	
 CR. &

D. Representing �-Structures by Vibrations

In this section, we extend the results of Subsection 3C to �-structures. In

particular, we prove Lemma 3.9 claiming that any �-structure of a plane

triangulation is a vibration of some �-structure of its radial graph.

Let N be a noose in � and let Q be a continuous subset of � such that

N \ Q ¼ ;. Then one of the discs bounded by N does not contain points of Q. We

call this disc by Q-avoiding disc bounded by N.
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Lemma 3.8. Let G be a triangulated �-plane graph with � 5 vertices and

without multiple edges, drawn in � along with its radial graph RG. Then for any

three paths P1; P2; P3 of G that connect two vertices x and y, and are otherwise

disjoint, there exist three paths P1
R; P

2
R; P

3
R in RG that connect x and y, and are

otherwise disjoint, and such that for any i; 1 � i � 3, �GðPi
RÞ ¼ �GðPiÞ.

Proof. We first examine the special case where some of P1 [ P2, P1 [ P3, or

P2 [ P3 has length 3. W.l.o.g we assume that jP2 [ P3j ¼ 3 and, in particular, we

let P2 ¼ ðx; yÞ and P3 ¼ ðx; z; yÞ. Notice that jP1j � 2 because G has no multiple

edges. We examine two subcases:

jP1j ¼ 2. We assume that P1 ¼ ðx;w; yÞ. We examine first the case where

either x or y is connected with a vertex u of the fx; yg-avoiding open disc D

bounded by ðx; z; y;wÞ (see Fig. 6a). W.l.o.g. assume that x is adjacent to u and let

ðw; x; u1Þ and ðz; x; u2Þ be the facial triangles containing fw; xg and fz; xg where

u1; u2 2 D (each of these two triangles can have fx; ug as an edge). Let also

ðw; y; z0Þ be the facial triangle containing fw; yg and such that z0 2 D (notice that z

and z0 may be identical). Then we set P1
R ¼ ðx; vðx; u1;wÞ;w; vðy;w; z0Þ; yÞ,

P2
R ¼ ðx; vðx;w; yÞ; yÞ, and P3

R ¼ ðx; vðz; u2; xÞ; z; vðz; x; yÞ; yÞ. Observe that

Pi
R; i ¼ 1; 2; 3 are paths and that for every i, 1 � i � 3, �GðPi

RÞ ¼ �GðPiÞ.
In the remaining case, w and z are adjacent, and the triangles ðw; x; zÞ and

ðw; y; zÞ are both facial (see Fig. 6b). Then, as jVðGÞj � 5, there exist a vertex u

that is adjacent to either x or y and is included into either the w-avoiding open

disc bounded by ðx; y; zÞ or into the z-avoiding open disc bounded by ðx; y;wÞ.
W.l.o.g. we assume that u is adjacent to x and that x is included in the w-avoiding

open disc D bounded by ðx; y; zÞ. Let ðx; u1; yÞ and ðx; u2; zÞ be the facial triangles

containing fx; yg and fx; zg where u1; u2 2 D (each of these two triangles can

have fx; ug as an edge). Let also ðw; y; tÞ be a facial triangle containing fw; yg
where t belongs in the z-avoiding open disc bounded by ðx;w; yÞ. Then we set

P1
R ¼ ðx; vðx;w; zÞ;w; vðw; y; tÞ; yÞ, P2

R ¼ ðx; vðx; u1; yÞ; yÞ, and P3
R ¼ ðx; vðx; u2;

zÞ; z; vðw; z; yÞ; yÞ. Observe that for every i, 1 � i � 3, Pi
R; i ¼ 1; 2; 3 are paths and

�GðPi
RÞ ¼ �GðPiÞ.

jP1j � 3. We assume that P1 ¼ ðx ¼ v0; v1; . . . ; vr�2; vr ¼ yÞ, r � 3 and

observe that C ¼ ðv0; v1; . . . ; vr�1; vrÞ is a cycle of G where jCj � 4. We call

FIGURE 6. The case jP2 [ P3j ¼ 3 and jP1j ¼ 2 of the proof of Lemma 3.8.
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D the fx; yg-avoiding closed disc bounded by P1 [ P3 in �. Let Tz ¼ ðx; y; zÞ.
Also let Tx ¼ ðx; z; aÞ be the unique facial triangle different than ðx; y; zÞ that

contains fx; zg and where a 2 D and let Ty ¼ ðy; z; bÞ be the unique triangle

different than ðx; y; zÞ that contains fy; zg and where b 2 D. We now construct the

set T distinguishing 4 cases (see also Fig. 7).

1. If a 6¼ v1 and b 6¼ vr�1, then we set T ¼ ;.
2. If a ¼ v1 and b 6¼ vr�1, then we have that Tx is a triangle of degree 1 in

HEðCÞ and we set T ¼ fTxg.
3. If a 6¼ v1 and b ¼ vr�1, then we have that Ty is a triangle of degree 1 in

HEðCÞ and we set T ¼ fTyg.
4. If a ¼ v1 and b ¼ vr�1, then we have that both Tx and Ty are triangless of

degree 1 in HEðCÞ. As jCj � 4, any connected component of HEðCÞ has two

triangles of degree 1. This implies that either fTz; Txg or fTz; Tyg is a

collection of mutually irrelevant degree one triangles in VðHEðCÞÞ. We

distinguish two subcases:

4a. If Tz and Tx are irrelevant we set T ¼ fTz;Txg.
4b. If Tz and Ty are irrelevant we set T ¼ fTz;Tyg.
(If both pairs Tz;Tx and Tz;Ty are irrelevant we make an arbitrary choice.)

For any of the above cases, we apply Lemma 3.6 for C and T and we get a cycle

CR in RG where �GðCRÞ ¼ �GðCÞ. Clearly, CR is the union of two internally

disjoint paths P1
R and P2

R that connect in RG the vertices x and y. In cases 1–3, we

set P3
R ¼ ðx; vðTxÞ; z; vðTyÞ; yÞ. In case 4a, we set P3

R ¼ ðx; vðTxÞ; z; vðTzÞ; yÞ. In

case 4b, we set P3
R ¼ ðx; vðTzÞ; z; vðTyÞ; yÞ. It is now easy to see that, in any case,

for all i; 1 � i � 3, �GðPi
RÞ ¼ �GðPiÞ. This completes the analysis of the special

case.

Assume now that for all i; j; 1 � i < j � 3, jPi [ Pjj � 4. Let P1 ¼ ðx; v1; . . . ;
vr�2; yÞ;P2 ¼ ðx; u1; . . . ; us�2; yÞ, and P3 ¼ ðx;w1; . . . ;wt�2; yÞ. We consider

the cycle C ¼ P1 [ P2 and the path P ¼ P3. As jCj � 4 and jPj � 3, VðHEðCÞÞ
and VðHEðPÞÞ can have at most 4 triangles in common that can be the triangles

A ¼ ðu1; x;w1Þ;B ¼ ðv1; x;w1Þ, C ¼ ðus�2; y;wt�2Þ, and D ¼ ðvr�2; y;wt�2Þ. Our

target will be to apply Lemmata 3.5 and 3.6 on P and C in order to construct a

path PR and a cycle CR without common radial vertices. In order not to use the

same interior vertices of RG two times we have to apply them with the restrictions

FIGURE 7. Examples of the proof of Lemma 3.8 for the case where jP2 [ P3j ¼ 3
and jP1j � 3 (subcases 1,2,3,4a, and 4b).
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imposed by suitably chosen collections T C,T P of mutually irrelevant degree one

triangles in VðHEðCÞÞ and VðHEðPÞÞ, respectively. We set C ¼ VðHEðCÞÞ \ VðHEðPÞÞ
and we distinguish the following cases (for examples, see Figs. 8 and 9).

1. jCj ¼ 0. Then we set T C ¼ T P ¼ ;.
2. jCj ¼ 1. Then we set T C ¼ VðHEðCÞÞ \ VðHEðPÞÞ and T P ¼ ;.
3. jCj ¼ 2. Then we put in T C one of the two elements of C and we put in T P

the other.

4. jCj ¼ 3. Then we distinguish the following subcases:

4a. if C ¼ fA;B;Cg, then T C ¼ fAg and T P ¼ fB;Cg.
4b. if C ¼ fA;C;Dg, then T C ¼ fCg and T P ¼ fA;Dg.
4c. if C ¼ fA;B;Dg, then T C ¼ fAg and T P ¼ fB;Dg.
4d. if C ¼ fB;C;Dg, then T C ¼ fCg and T P ¼ fB;Dg.

5. jCj ¼ 4. Then we set T C ¼ fA;Dg and T P ¼ fB;Cg.

Notice that, in any of the above cases, the triangles in T C and T P are mutually

irrelevant degree one triangles of VðHEðCÞÞ and VðHEðPÞÞ, respectively. Therefore,

we can apply Lemma 3.5 for P and T P and Lemma 3.6 for C and T C and

construct the cycle CR and the path PR where �GðCRÞ ¼ �GðCÞ and �GðPRÞ ¼
�GðPÞ. Notice that, in each case, the choice of T C and T P does not allow CR and

PR to have common radial vertices. CR defines two paths P1 and P2 connecting

x and y and if we set P3
R ¼ PR we have that �GðPi

RÞ ¼ �GðPiÞ for all 1 � i � 3.

&

Let us remind that a �-structure is non-trivial if at least two of its lines have

length � 2.

Lemma 3.9. Let G be a triangulated �-plane graph with � 5 vertices and

without multiple edges, drawn in � along with its radial graph RG. If

S ¼ ðL1; L2;L3Þ is a non-trivial �-structure of G, then there exists a non-trivial

�-structure ðP1
R;P

2
R;P

3
RÞ of G that is a vibration of S, where P1

R;P
2
R and P3

R are

paths of RG.

Proof. We apply Lemma 3.2 for the noose N ¼ L1 [ L2 and we get a cycle C

of G where �GðCÞ ¼ �GðNÞ. This cycle defines two internally disjoint paths P1

FIGURE 8. Examples of the proof of Lemma 3.8 for the case where jP2 [ P3j � 4
and jP1j � 3 (subcases 1,2,3,4.a).
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and P2 between x and y in G where �GðPiÞ ¼ �GðLiÞ; i ¼ 1; 2. Applying now

again Lemma 3.2 for the line L3, we get a path P3 between x and y in G where

�GðP3Þ ¼ �GðL3Þ. We now apply Lemma 3.8 on Pi; i ¼ 1; 2; 3 and get three

internally disjoint paths P1
R;P

2
R;P

3
R of RG that connect x and y and such that for

each i, 1 � i � 3, �GðPi
RÞ ¼ �GðPiÞ. Resuming the previous equalities, we get

�GðPi
RÞ ¼ �GðLiÞ, 1 � i � 3. Notice that ðP1

R;P
2
R;P

3
RÞ is a non-trivial �-structure

in G. In what remains we will show that it is also a vibration of ðL1; L2; L3Þ.
Notice that �GðP1

R [ P2
RÞ ¼ �GðL1 [ L2Þ and applying Lemma 3.3, we have that

P1
R [ P2

R 	
 L1 [ L2 and this, in turn, implies that P1
R 	
 L1 and P2

R 	
 L2. Notice

now that P2
R [ L3 is a noose of G. Recall that �GðP3

RÞ ¼ �GðL3Þ which implies

that �GðL2 [ P3
RÞ ¼ �GðL2 [ L3Þ. From Lemma 3.3, we have that L2 [ P3

R 	

L2 [ L3 and this, in turn, implies that P3

R 	
 L3. Therefore, ðP1
R;P

2
R;P

3
RÞ is a

vibration of ðL1; L2;L3Þ.

E. A Topological Property of �-Structures

The following Lemma is a necessary ingredient for the proofs of the next

subsection.

Lemma 3.10. Let S ¼ ðL1;L2; L3Þ and S0 ¼ ðL01;L2; L3Þ be two non-trivial �-

structures of some �-plane graph G where S 	 S0. Then, for one, say D
, of the
closed discs bounded by L2 [ L3, holds that D
 \ difðS; S0Þ � L2 \ L3 (recall

L2 \ L3 is a set of two distinct point).

Proof. Let fx; yg ¼ L2 \ L3. Let also L and L0 be the length-1 lines

comprising the length-2 noose ðS [ S0Þ � ðS \ S0Þ ¼ L [ L0, assuming that L � L1

and L0 � L01. In the case analysis that follows, we will define a disc D
 bounded

by L2 [ L3 and we will show that L [ L0 � �� D
.

Case 1. jL1j; jL02j � 2. Then, we can choose a vertex v 2 ðL [ L0Þ \ VðGÞ that

is different that x and y. Therefore v 62 L2 [ L3 and we can define D
 as the closed

disc bounded by L2 [ L3 that does not contain v. Notice that L1 [ L01 contains at

most one point in common with L2 [ L3 ¼ bdðD
Þ ¼ bdð�� D
Þ. We need the

following topological fact.

FIGURE 9. Examples of the proof of Lemma 3.8 for the case where jP2 [ P3j � 4
and jP1j � 3 (subcases 4.b,4.c,4.d, and 5).
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Fact 1. Let � be a closed disc on a sphere � and let N be a simple closed curve

where N \ bdð�Þ is either empty or is just a point x. Then ð�� bdð�ÞÞ \N 6¼ ;
implies N � �.

As ð�� D
Þ \ ðL [ L0Þ 6¼ ;, we apply the fact for L [ L0 and �� D
,
obtaining L [ L0 � �� D
.

Case 2. jL1j; jL01j ¼ 1. Notice that, then, jL2j; jL3j � 2. Notice that L1 � fx; yg
cannot have common points with the noose L2 [ L3. Therefore, it will be a subset

of some of the closed discs bounded by L2 [ L3. Notice also that the same holds

for L01. Observe now that L1 � fx; yg, L01 � fx; yg cannot be subsets of different

discs bounded by the noose L2 [ L3 because then each of the discs bounded by

the noose L1 [ L01 should contain a vertex of G. Let D
 be the disc containing

none of L1 � fx; yg,L01 � fx; yg. This means that the noose L1 [ L01 is a subset of

�� D
. As L1 ¼ L and L01 ¼ L0, we have that L1 [ L01 � �� D
.
Here is the second topological property we use in our proof.

Fact 2. Let � be a closed disc on a sphere � and let N be a simple closed curve

where N � �. Then some of the closed discs bounded by N will be a subset of �.

Let A and A0 be the discs bounded by L1 [ L01. By Fact 2, one, say A, of A;A0

should be a subset of �� D
. Notice that A should be difðS; S0Þ, otherwise

A ¼ �� difðS; S0Þ and as A � �� D
, we have that �� difðS; S0Þ �
�� D
 ) D
 � difðS; S0Þ. Hence D
 \ VðGÞ � difðS; S0Þ \ VðGÞ ¼ fx; yg a

contradiction as jðD
 \ VðGÞÞ � fx; ygj � 1 (this follows from the fact that S is

non-trivial). We conclude that difðS; S0Þ � �� D
, therefore difðS; S0Þ � bd
ðdifðS; S0ÞÞ � �� D
 ) ðdifðS; S0Þ � bdðdifðS; S0ÞÞ \ D
 ¼ ;. As bdðdif
ðS; S0ÞÞ ¼ L1 [ L01, we have that bdðdifðS; S0ÞÞ \ D
 ¼ ðL1 [ L01Þ \ D
 � fx; yg
and the proof is complete. &

F. Vibration Invariants of �-structures

We are now ready to prove two properties of �-structures that will be critical for

the proof of Theorem 3.1. Intuitively, we show that vibrations do not alter

‘‘interior-exterior’’ relation of their bounding disks.

Let N;N 0 be two nooses of some �-plane graph G. Let N 	 N 0 and let

D ¼ fD1;D2g and D0 ¼ fD01;D02g be the closed discs bounded by N and N 0,
respectively. We set up a bijection �N;N 0 : D ! D0 such that if D 2 D, then

�N;N 0 ðDÞ ¼ D� difðN;N 0Þ if difðN;N 0Þ � D;
D [ difðN;N 0Þ if difðN;N 0Þ 6� D:

�

Also, for notational convenience, we enhance the definition of � so that

�N;NðDÞ ¼ D. It is easy to verify that �N;N 0 ¼ ��1
N 0;N (for an example, see Fig. 10).

Let N and N 0 be nooses where N 	
 N 0. Then if N ¼ N0 	 N1 	 � � � 	
Nr�1 	 Nr ¼ N 0, we define �
N;N 0 ¼ �N0;N1

� �N1;N2
� � � � � �Nr�1;Nr

. Notice that
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�
N;N 0 is well defined as it does not depend on the way N is transformed to N 0

(however, we stress that this fact is not used in our proofs). Again it follows that

�
N;N 0 ¼ �
�1
N 0;N .

Intuitively, we define �
N;N 0 so that D and �
N;N 0 ðDÞ are in the same ‘‘interior/

exterior location’’ with respect to the nooses N;N 0.
The following lemma is a direct consequence of the fact that difðN;N 0Þ does

not contain vertices that are not met by both N and N 0.

Lemma 3.11. Let N1;N2 be nooses of G where N1 	
 N2. If D is some disc

bounded by N1, then VðGÞ \ �
N1;N2
ðDÞ ¼ VðGÞ \ D.

We need the following lemma.

Lemma 3.12. Let G be a �-plane graph and S ¼ ðL1;L2; L3Þ and S0 ¼
ðL01;L02; L03Þ be non-trivial �-structures in G where S 	
 S0. If D is a closed disc

bounded by the noose L1 [ L2 and L3 � D, then L03 � �
L1[L2;L
0
1
[L0

2
ðDÞ.

Proof. It is sufficient to prove the statement of the lemma only for the case

L03 � �L1[L2;L
0
1
[L0

2
ðDÞ. (Using this case as an induction assumption, one can prove

the lemma by making use of induction on the number of variations required in

order to transform S to S0.)
We set fx; yg ¼ L1 \ L2 \ L3. We also set � ¼ difðS; S0Þ and notice that a

variation affects only one of the lines in S. Therefore, we can distinguish the

following cases.

Case 1. L2 [ L3 ¼ L02 [ L03. Then � ¼ difðL1 [ L2; L
0
1 [ L02Þ.

Subcase 1a. If � 6� D, then �L1[L2;L
0
1
[L0

2
ðDÞ ¼ D [�. Therefore, L03 ¼ L3 �

D � D [� ¼ �L1[L2;L
0
1
[L0

2
ðDÞ.

Subcase 1b. If � � D, apply Lemma 3.10 on S and S0 and let D2;3 be the

closed disc bounded by L2 [ L3 where D2;3 \� � fx; yg. As ðL1 � fx; ygÞ
\� 6¼ ;, it implies that L1 � fx; yg � �� D2;3. This means that D2;3 � D. We

now have D2;3 � fx; yg � D2;3 � ðD2;3 \�Þ ¼ D2;3 �� � D��. Therefore,

L3 � D2;3 ¼ D2;3 � fx; yg � D�� ¼ �L1[L2;L
0
1
[L0

2
ðDÞ.

Case 2. L1 [ L3 ¼ L01 [ L03. This case is symmetric to the Case 1.

Case 3. L1 [ L2 ¼ L01 [ L02. Again we apply Lemma 3.10 on S and S0, and let

D1;2 be the disc bounded by L1 [ L2 where D1;2 \� � fx; yg. As ðL3 � fx; ygÞ \

FIGURE 10. An example of the application of the function dif.
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� 6¼ ;, we imply that L3 � fx; yg � �� D1;2. Applying the same argument for

L03, we get L03 � fx; yg � �� D1;2. Therefore, L3 and L03 are both included in

the same disc bounded by L1 [ L2. As L3 � D, we conclude L03 � D ¼
�L1[L2;L

0
1
[L0

2
ðDÞ. &

Lemma 3.13. Let G be a �-plane graph and S ¼ ðL1; L2;L3Þ and

S0 ¼ ðL01;L02; L03Þ be non-trivial �-structures in G where S 	
 S0. If D1;2 is a

closed disc bounded by the noose L1 [ L2 and D1;3 is a closed disc bounded by the

noose L1 [ L3 such that D1;3 � D1;2, then �
L3[L3;L
0
1
[L0

3
ðD1;3Þ � �
L1[L2;L

0
1
[L0

2
ðD1;2Þ.

Proof. As in the previous lemma, it is sufficient to prove only the case

S 	 S0. (And then use the induction on the number of variations required in order

to transform S to S0.)
We set fx; yg ¼ L1 \ L2 \ L3. We also set � ¼ difðS; S0Þ and notice that a

variation affects only one of the lines in S. Therefore, we can distinguish the

following cases.

Case 1. L2 [ L3 ¼ L02 [ L03. Notice that � ¼ difðL1 [ L3; L
0
1 [ L03Þ:

Subcase 1a. If � 6� D1;2, then, from, D1;3 � D1;2 we also have that � 6�
D1;3. Therefore, �L1[L2;L01[L02ðD1;2Þ ¼ D1;2 [�, �L1[L3;L01[L03ðD1;3Þ ¼ D1;3 [� and

the required relation follows as D1;3 � D1;2.

Subcase 1b. If � � D1;2 we apply Lemma 3.10 on S and S0 and let D2;3 be

the disc bounded by L2 [ L3 where D2;3 \� � fx; yg. As ðL1 � fx; ygÞ \� 6¼ ;,
we imply that L1 � fx; yg � �� D2;3. This means that D2;3 � D1;2. Combining

this with the fact that D1;3 � D1;2, we have that D1;2 ¼ D1;3 [ D2;3. So, we can

assume that D1;2 � D2;3 � D1;3. Notice that �� fx; yg � �� ðD2;3 \�Þ ¼
�� D2;3 � D1;2 � D2;3 � D1;3. As also fx; yg � D1;3, we have that � � D1;3 and

therefore �L1[L3;L
0
1
[L0

3
ðD1;3Þ ¼ D1;3 ��. Moreover, �L1[L2;L

0
1
[L0

2
ðD1;2Þ ¼ D1;2 ��

and the result follows as D1;3 �� � D1;2 ��.

Case 2. L1 [ L2 ¼ L01 [ L02. Notice that � ¼ difðL1 [ L3; L
0
1 [ L03Þ.

Observe that in this case, the variation does not affect the noose L1 [ L2.

Therefore, �L1[L2;L
0
1
[L0

2
ðD1;2Þ ¼ D1;2. In both subcases that follow, our target will

be to prove that D1;2 � �L1[L3;L
0
1
[L0

3
ðD1;3Þ.

Subcase 2a. If � 6� D1;3, we apply Lemma 3.10 on S and S0 and let D
 be a

disc bounded by L1 [ L2 where D
 \� � fx; yg. As ðL3 � fx; ygÞ \� 6¼ ;, we

imply that L3 � fx; yg � �� D
. As L3 � D1;2, we get that D
 ¼ �� D1;2.

Combining this with D
 \� � fx; yg we take � � D1;2. Therefore �L1[L3;L01[L03
ðD1;3Þ ¼ D1;3 [� � D1;2 [� � D1;2.

Subcase 2b. If � � D1;3, then �L1[L3;L
0
1
[L0

3
ðD1;3Þ ¼ D1;3 �� � D1;3 � D1;2.

Case 3. L1 [ L3 ¼ L01 [ L03. Notice that � ¼ difðL1 [ L2; L
0
1 [ L02Þ.

Observe that in this case, the variation does not affect the noose L1 [ L3.

Therefore, �L1[L3;L
0
1
[L0

3
ðD1;3Þ ¼ D1;3. In both subcases that follow, our target will

be to prove that D1;3 � �L1[L2;L
0
1
[L0

2
ðD1;2Þ.
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Subcase 3a. If � 6� D1;2, then �L1[L2;L
0
1
[L0

2
ðD1;2Þ ¼ D1;2 [� � D1;2 � D1;3.

Subcase 3b. If � � D1;2, we apply Lemma 3.10 on S and S0 and let D
 be a

disc bounded by L1 [ L3 where D
 \� � fx; yg. As ðL2 � fx; ygÞ \� 6¼ ;, we

imply that L2 � fx; yg � �� D
. This means that D
 ¼ D1;3. We now have D1;3�
fx; yg � D1;3 � ðD1;3 \�Þ ¼ D1;3 �� � D1;2 ��. Therefore, �L1[L2;L

0
1
[L0

2
ðD1;2Þ

¼ D1;2 �� � D1;3 � fx; yg ¼ D1;3.

G. Proof of Theorem 3.1

Lemma 3.14. Let G be a triangulated �-plane graph without multiple edges

and let ins be a uniform slope of order k þ 1 in RG for k � 2. Then, for any face r

of RG, insðbdðrÞÞ ¼ r.

Proof. As ins is uniform, we have that there exists a cycle C0 of length � 2k

such that r � insðC0Þ. This means that bdðrÞ � insðC0Þ and from axiom [S1] we

have that insðbdðrÞÞ � insðC0Þ. Therefore, insðbdðrÞÞ ¼ r. &

We are now ready to prove the main technical result of this paper.

Proof of Theorem 3.1. Let ins be a uniform slope of order k þ 1 in RG. We

define the function big as follows. Let N be a noose of G with size � k. In the

trivial case where jNj � 1, we define bigðNÞ as the closed disk bounded by N and

containing all the vertices of G. If jNj � 2 we observe that, as G is triangulated,

Lemma 3.7 implies that N is the vibration of some of the cycles, say C of RG.

Observe that C has length � 2k. We then set bigðNÞ ¼ �
C;Nð�� insðCÞÞ.
Intuitively, we define big so that what is ‘‘interiors’’ according to ins becomes

‘‘exteriors’’ for big and vice versa.

We claim that the function big satisfies the majority axioms on G.

Proof of [M1]. Let S ¼ ðL1; L2;L3Þ be a �-structure of size � k where

L3 � bigðL1 [ L2Þ. We will prove that bigðL1 [ L3Þ � bigðL1 [ L2Þ or

bigðL2 [ L3Þ � bigðL1 [ L2Þ. For this, we distinguish two cases.

Special case. S ¼ ðL1;L2;L3Þ is trivial. Notice that Li; i ¼ 1; 2; 3 has the same

vertices, say x; y of G as endpoints. Also, from Lemma 3.2, e ¼ fx; yg is an edge

of G. We will first prove the following claim.

Claim. If jLi [ Ljj ¼ 2 for some i; j; 1 � i < j � 3, then one, say �, of the

closed discs bounded by Li [ Lj contains all the vertices of G and

bigðLi [ LjÞ ¼ � (recall that Li [ Lj is a noose and jLi [ Ljj is the number of

vertices it meets).

Proof of Claim. The proof is based on the observation that ins maps

face rfx;yg of RG to its ‘‘inside’’ disk. As rx;y is a vibration of Li [ Lj then big
will map it to its ‘‘ouside’’ disk that is �. We will now proceed with the formal

proof.
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The fact that G is triangulated and without multiple edges implies that G is 3-

connected. Therefore, one of the closed discs, we denote it �, bounded by Li [ Lj
contains all the vertices of G. It remains to prove that bigðLi [ LjÞ ¼ �.

By Lemma 3.7, the noose Li [ Lj, is a vibration of some cycle C of RG. As

jLi [ Ljj ¼ 2, the only cycle of RG with this property is the boundary of rfx;yg. By

Lemma 3.14, insðCÞ ¼ insðbdðrfx;ygÞÞ ¼ rfx;yg. From the definition of big, we

have that bigðLi [ LjÞ ¼ �
C;Li[Ljð�� rfx;ygÞ. Notice that �� rfx;yg \ VðGÞ ¼
VðGÞ, and Lemma 3.11 yields that �
C;Li[Ljð�� rfx;ygÞ \ VðGÞ ¼ VðGÞ, therefore

bigðLi [ LjÞ should be equal to � and the claim holds.

We now distinguish the following subcases of the special case (recall the

length of a line Li is equal to the number of vertices it meets minus one).

Subcase 1. jLij ¼ 1; i ¼ 1; 2; 3. Applying the claim above, we have that for

i; j; 1 � i < j � 3, bigðLi [ LjÞ is the closed disc bounded by Li [ Lj and

containing all the vertices of G. L3 � bigðL1 [ L2Þ implies that either

L2 � fx; yg � �� bigðL1 [ L3Þ or L1 � fx; yg � �� bigðL2 [ L3Þ. Then either

bigðL1 [ L3Þ � bigðL1 [ L2Þ, or bigðL2 [ L3Þ � bigðL1 [ L2Þ.
Subcase 2. jLij ¼ 1; i ¼ 1; 2 and jL3j ¼ 2. From Lemma 3.3, we have that

L1 [ L3 	
 L2 [ L3. From the claim above, bigðL1 [ L2Þ is the closed disc

bounded by L1 [ L2 and containing all the vertices of G. Therefore,

�� bigðL1 [ L2Þ ¼ difðL1 [ L3;L2 [ L3Þ. We now assume that bigðL2 [ L3Þ 6�
bigðL1 [ L2Þ. This can be rewritten as �� bigðL1 [ L2Þ 6� �� bigðL2 [ L3Þ,
which implies that difðL1 [ L3; L2 [ L3Þ 6� �� bigðL2 [ L3Þ and thus difðL1[
L3; L2 [ L3Þ � bigðL2 [ L3Þ. We now have

bigðL1 [ L3Þ ¼ �L2[L3;L1[L3
ðbigðL2 [ L3ÞÞ

¼ bigðL2 [ L3Þ � difðL1 [ L3; L2 [ L3Þ
� �� difðL1 [ L3;L2 [ L3Þ
¼ bigðL1 [ L2Þ:

Subcase 3. jL1j ¼ 2 and jLij ¼ 1; i ¼ 2; 3. Observe that L3 � bigðL1 [ L2Þ
implies that difðL1 [ L2; L1 [ L3Þ � bigðL1 [ L2Þ. Therefore,

bigðL1 [ L3Þ ¼ �L1[L2;L1[L3
ðbigðL1 [ L2ÞÞ

¼ bigðL1 [ L2Þ � difðL1 [ L2; L1 [ L3Þ
� bigðL1 [ L2Þ:

Subcase 4. jL1j ¼ 1, jL2j ¼ 2, and jL3j ¼ 1. This case is symmetric to

Case 3.

General Case. S ¼ ðL1;L2; L3Þ is non-trivial. Then, from Lemma 3.9, there

exist a non-trivial �-structure ðP1
R;P

2
R;P

3
RÞ of G that is a vibration of S where
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P1
R;P

2
R, and P3

R are all paths of RG. Lemma 3.12 implies that P3 � bigðP1 [ P2Þ.
As bigðP1 [ P2Þ is a cycle of RG, the definition of big implies that

P3 6� insðP1 [ P2Þ: ð3Þ

Suppose now that bigðP1 [ P3Þ 6� bigðP1 [ P2Þ and bigðP2 [ P3Þ 6� bigðP1 [ P2Þ
and we will show that this assumption leads to a contradiction. As

Pi [ Pj; 1 � i < j � 3, are cycles of RG, the definition of big implies that

insðP1 [ P2Þ 6� insðP2 [ P3Þ and ð4Þ
insðP1 [ P2Þ 6� insðP1 [ P3Þ: ð5Þ

From (3), (4), and (5) we have that insðP1 [ P2Þ [ insðP1 [ P3Þ[
insðP2 [ P3Þ ¼ � and this is a contradiction to [S2]. Therefore, we get that

bigðP1 [ P3Þ � bigðP1 [ P2Þ or bigðP2 [ P3Þ � bigðP1 [ P2Þ: ð6Þ

Applying now Lemma 3.13 on each of the relations of (6), we conclude that

either bigðL1 [ L3Þ � bigðL1 [ L2Þ or bigðL2 [ L3Þ � bigðL1 [ L2Þ.
Proof of [M2]. Let N be a noose in G where jNj ¼ 2 (in the case where

jNj � 1, [M2] follows from the bi-connectivity of G). By Lemma 3.7, there exists

a cycle C of RG such that N 	
 C. By Lemma 3.2, there exists an edge e ¼ fx; yg
such that ðx; yÞ ¼ �GðNÞ. Clearly, C ¼ bdðreÞ. By Lemma 3.14, insðCÞ ¼ re and

thus, �� insðCÞ \ VðGÞ ¼ VðGÞ. By Lemma 3.11, bigðNÞ \ VðGÞ ¼ �
C;N
ð�� insðCÞÞ \ VðGÞ ¼ VðGÞ and [M2] follows. &

A consequence of Theorem 3.1 is the following.

Theorem 3.15. For any planar graph G, bwðGÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:5jVðGÞj

p
� 2:122ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jVðGÞj
p

.

Proof. We assume that G has no multiple edges (notice that the duplication

of an edge does not increase the branch-width of a graph with branch-width � 2).

It is easy to see that G has a triangulation H without multiple edges. It is enough

to prove the bound of the theorem for H. By Theorem 2.3, H does not have any

majority of order � ð3=
ffiffiffi
2
p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðGÞj

p
. By Theorem 3.1, RH has no slope of order

� ð3=
ffiffiffi
2
p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðGÞj

p
þ 1. The result now follows from Theorem 2.2. &

Theorem 3.15 combined with Euler’s formula and the Robertson and Seymour

result on the branch-width of dual graphs implies the following.

Theorem 3.16. For any planar graph G, bwðGÞ � 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jEðGÞj

p
þ 2.

Proof. By the direct consequence of Robertson and Seymour’s min–max

Theorem (4.3) in [18] relating tangles and branch-width and Theorem (6.6) in
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[20] establishing relations between tangles of dual graphs, we have that for any

planar graph G of branch-width � 2, the branch-width of G is equal to the

branch-width of its dual. Thus

2 � bwðGÞ ¼ bwðG
Þ þ bwðGÞ:

Let G be a plane graph with n vertices, m edges, and f faces, and let G
 be the

dual of G. By Euler’s formula, n� mþ f ¼ 2.

By Theorem 3.15,

bwðGÞ þ bwðG
Þ �
ffiffiffiffiffiffiffiffiffi
4:5n
p

þ
ffiffiffiffiffiffiffiffiffi
4:5f

p
:

Thus,

2 � bwðGÞ �
ffiffiffiffiffiffiffiffiffi
4:5n
p

þ
ffiffiffiffiffiffiffiffiffi
4:5f

p
:

By Euler’s formula,

ffiffiffiffiffiffiffiffiffi
4:5n
p

þ
ffiffiffiffiffiffiffiffiffi
4:5f

p
¼

ffiffiffiffiffiffiffi
4:5
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ f þ 2

ffiffiffiffiffi
nf

pq
Þ �

ffiffiffiffiffiffiffi
4:5
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 4
p

Þ

and we conclude that

bwðGÞ �
ffiffiffiffiffiffiffi
4:5
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 4
p

Þ
2

� 3

2

ffiffiffiffi
m
p
þ 2:

Finally, Theorem 2.1 implies the following (notice that 9=ð2
ffiffiffi
2
p
Þ < 3:182).

Theorem 3.17. For any planar graph G, twðGÞ � 3:182
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðGÞj

p
.

4. ALGORITHMIC CONSEQUENCES

In this section, we discuss some applications of our results for different problems

on planar graphs.

One of the fields for taking advantage of the current bounds on treewidth and

branch-width of planar graphs is the design of parameterized algorithms. The last

ten years were the evidence of rapid development of a new branch of

computational complexity: Parameterized Complexity. (See the book of Downey

and Fellows [11].) Roughly speaking, a parameterized problem with parameter k

is fixed parameter tractable if it admits a solving algorithm with running time

f ðkÞjIj�. (Here f is a function depending only on k, jIj is the length of the non-

parameterized part of the input, and � is a constant.) Typically, f ðkÞ ¼ ck is an

exponential function for some constant k. During the last two years, much

attention was paid to the construction of parameterized algorithms with running

time where f ðkÞ ¼ c
ffiffi
k
p

for different problems on planar graphs. The first paper on

&
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the subject was the paper by Alber et al. [1] describing an algorithm with running

time Oð46
ffiffiffiffiffi
34k
p

nÞ ðwhich is approximately Oð270
ffiffi
k
p
nÞÞ for the Planar Dominating

Set problem. Different fixed parameter algorithms for solving problems on planar

and related graphs are discussed in [4,14]. Surprisingly, the obtained upper

bounds on branch-width and tree-width provide much simpler algorithms with

better proven worst case time analysis.

Let L be a parameterized problem, i.e., L consists of pairs ðI; kÞ where k is the

parameter of the problem. Reduction to linear problem kernel is the replacement

of problem inputs ðI; kÞ by a reduced problem with inputs ðI0; k0Þ (linear kernel)

with constants c1; c2 such that

k0 � c1k; jI0j � c2k
0; and ðI; kÞ 2 L , ðI0; k0Þ 2 L:

(We refer to Downey and Fellows [11] for discussions on fixed parameter

tractability and the ways of constructing kernels.)

Observation 1. Let L be a parameterized problem ðG; kÞ (here G is a graph)

such that

� There is a linear problem kernel G0 computable in time TkernelðjVðGÞj; kÞ
with constants c1, c2 and such that an optimal branch decomposition of the

kernel is computable in time TbwðjVðG0ÞjÞ.
� On graphs of branch-width � ‘ and ground set of size n the problem L can

be solved in Oð2c3‘nÞ, where c3 is a constant.

� bwðG0Þ � c4

ffiffiffi
k
p

, where c4 is a constant.

Then L can be solved in time Oð2c3c4

ffiffi
k
p
k þ TbwðjVðG0ÞjÞ þ TkernelðjVðGÞj; kÞÞ.

Proof. The algorithm works as follows. First we compute a linear kernel in

time TkernelðjVðGÞj; kÞ. Then we construct a branch decomposition of the kernel

G0 in TbwðjVðG0ÞjÞ steps. The size of the kernel is at most c1c2k ¼ OðkÞ. The

branch-width of the kernel is at most c4

ffiffiffi
k
p

and it takes Oð2c3c4

ffiffi
k
p
kþ

TbwðjVðG0ÞjÞ þ TkernelðjVðGÞj; kÞÞ to solve the problem. &

Let us give some examples, where Observation 1 provides proven better

bounds for different parameterized problems.

Vertex cover. A vertex cover C of a graph is a set of vertices such that every

edge of G has at least one endpoint in C. The Planar Vertex Cover problem is the

task to compute, given a planar graph G and a positive integer k, a vertex cover of

size k or to report that no such a set exists.

A linear problem kernel of size 2k (with constants c1 ¼ 1 and c2 ¼ 2) for the

Vertex Cover problem (not necessary planar) was obtained by Chen et al. [9].

This result is based on the theoretical results of Nemhauser and Trotter [17] and

Buss and Goldsmith [8]. The running time of the algorithm constructing a kernel

of a graph on n vertices is Oðknþ k3Þ. So in this case, TkernelðjIj; kÞ ¼ Oðknþ k3Þ.
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It is well known that the Vertex Cover problem on graphs on n vertices and

with bounded tree-width � ‘ can be solved in Oð2‘nÞ time. The dynamic

programming algorithm for the Vertex Cover on graphs with bounded tree-width

can be easy translated to the dynamic programming algorithm for graphs with

bounded branch-width with running time Oð23=2‘mÞ, where m is the number of

edges in a graph, and we omit it here. For planar graphs, 23=2‘m ¼ Oð23=2‘nÞ, thus

c3 � 3=2.

From the constructions used in the reduction algorithm of Chen et al. [9], it

follows that if G is a planar graph, then the kernel graph is also planar. To

compute an optimal branch decomposition of a planar graph, one can use the

algorithm due to Seymour and Thomas (Sections 7 and 9 in [22]). This algorithm

can be implemented in Oðk4Þ steps. And what is important for practical

applications, there is no large hidden constants in the running time of this

algorithm.

The kernel graph I0 has at most 2k vertices. Then by Theorem 3.15,

c4 �
ffiffiffiffiffiffiffi
4:5
p ffiffiffi

2
p
¼ 3. Thus by making use of Observation 1, we conclude that

Planar Vertex Cover can be solved in Oðk4 þ 24:5
ffiffi
k
p
k þ knÞ. To our knowledge,

this is the best, so far, time bound for this problem.

Dominating set. A k-dominating set D of a graph G is a set of k vertices such

that every vertex outside D is adjacent to a vertex of D. The Planar Dominating

Set problem is the task to compute, given a planar graph G and a positive integer

k, a k-dominating set or to report that no such a set exists.

Alber, Fellows, and Niedermeier [2] show that the Planar Dominating Set

problem admits a linear problem kernel. (The size of the kernel is 335k.) This

reduction can be performed in Oðn3Þ time.

Dominating set problem on graphs of branch-width � ‘ can be solved in

Oð23log43�‘mÞ steps [12]. Thus c3 � 3log43.

What about the constant c4 for the Planar Dominating Set problem? It is

proved in [12] that for every planar graph G with dominating set k, the branch-

width of G is at most 3
ffiffiffiffiffiffiffi
4:5
p ffiffiffi

k
p

, i.e., c4 � 3
ffiffiffiffiffiffiffi
4:5
p

. Then by Observation 1, Planar

Dominating set can be solved in Oð215:13
ffiffi
k
p
k þ n3 þ k4Þ, which improves any

other time bound given before for this problem.

Exact Algorithms. It is well known that by making use of the well-known

approach of Lipton and Tarjan [16], based on the celebrated planar separator

theorem [15], one can obtain algorithms with time complexity cOð
ffiffi
n
p
Þ for many

problems on planar graphs. However, the constants ‘‘hidden’’ in Oð
ffiffiffi
n
p
Þ can be

crucial for practical implementations. During the last few years, a lot of work has

been done to compute and to improve the ‘‘hidden’’ constants [3,4].

The branch-width based approach can be applied to planar graph problems as

well: If a problem can be solved in Oðc‘nÞ on graphs of branch-width � ‘ for

some constant c, we have that on planar graphs this problem can be solved in

time Oðn4 þ c
ffiffiffiffiffiffi
4:5n
p

nÞ. (One needs to construct a branch-decomposition of size

�
ffiffiffiffiffiffiffiffiffi
4:5n
p

and apply dynamic programming.) Combining this simple idea with
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well-known dynamic programming techniques for graphs for bounded tree-width

(branch-width), one can obtain sub-exponential solutions to many problems on

planar graphs. For example, this approach can be used to obtain the fastest known

(so far) algorithms on planar graphs for such problems like Independent Set ðthe

running time of the algorithm is Oð23:182
ffiffi
n
p
nþ n4ÞÞ and Dominating Set ðwith

running time Oð25:043
ffiffi
n
p
nþ n4ÞÞ. This machinery not only improves the time

bounds but also provides an unified approach for many exact algorithms emerging

from the planar separator theorem of Lipton and Tarjan [15,16]. (See [13] for

further details.)

5. DISCUSSION AND OPEN PROBLEMS

In this section, we present three open problems emerging from our main result

and the methodology of our proof.

Improving the Constant 2.122. According to Theorem 3.15, any planar graph

on n vertices has branch-width � 2:122
ffiffiffi
n
p

. The constant 2.122 follows from the

constant of Theorem 2.3 proven by Alon, Seymour, and Thomas in [6]. Any

improvement of the constant of Theorem 2.3 implies also an improvement of our

bound.

Given a graph G, a function w : VðGÞ ! R, and a set S � VðGÞ, we call S

ð2=3Þ-separator of G if VðGÞ � S can be partitioned into two sets A1;A2 where

no edge of EðGÞ has one endpoint in A1 and the other in A2 and such that

wðAiÞ � 2=3wðVðGÞÞ. If we strengthen the definition of a ð2=3Þ-separator by

asking that wðAiÞ þ 1=2wðSÞ � 2=3wðVðGÞÞ, we define the notion of a strong

ð2=3Þ-separator of G. If G is �-plane and there exists a noose N bounding the

open discs D;D0 such that D \ VðGÞ ¼ A1, D0 \ VðGÞ ¼ A2, and S ¼ N \ VðGÞ,
then we call S (strong) cyclic ð2=3Þ-separator of G.

In [6], Alon, Robertson, and Thomas proved the following.

Theorem 5.1. Let G be a �-plane graph with n vertices, let w : VðGÞ ! R be a

function, and let k � 0 be an integer. If every majority of G has order � k, then G

has a strong ð2=3Þ-separator of G of size � k.

Theorems 5.1 and 2.3 were proved in [6] in order to imply the following.

Theorem 5.2. Let G be a �-plane graph with n vertices and let w : VðGÞ ! R

be a function. Then G has strong cyclic ð2=3Þ-separator of size � 2:122
ffiffiffi
n
p

.

Curiously, any proof of Theorem 5.2, for a better constant c, implies the

reduction of the constant of Theorem 3.15 from 2:122 to maxf2; cg. Indeed, this

is correct because of Theorems 2.2 and 3.15 and the following interesting result

(Statement (3.9) of [6]).

Theorem 5.3. Let G be a �-plane graph with n vertices, let w : VðGÞ ! R be a

function, and let k be an integer where k � 2
ffiffiffi
n
p
� 1. If G contains a strong

ð2=3Þ-cyclic separator of size � k, then every majority of G has order � k.
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In [10], Djidjev and Venkatesan proved that every �-plane graph on n vertices

contains a cyclic 2=3-separator of size 2
ffiffiffi
n
p
þ Oð1Þ. It is an interesting challenge

to strengthen this result so that it guarantees the existence of a strong cyclic

ð2=3Þ-separator, as required by Theorem 5.2. This would make it possible to

reduce to 2 the constant 2.122 of our main result (and to improve the time bounds

of our algorithms).

Creating Slopes from Majorities. It is an interesting question whether the

inverse of Theorem 3.1 holds for general graphs. In this direction, one should

show that majorities can be ‘‘transformed’’ to slopes. As any cycle C of RG is also

a noose of G, we can directly define insðCÞ ¼ �� bigðCÞ, following the idea in

the proof of Theorem 3.1 (notice that in this direction, the idea does not need the

‘‘vibration’’ machinery). Moreover it is possible to prove that the axiom [M2] for

big implies the uniformity of ins and axiom [M1] for big implies axiom [S2] for

ins. However, it is not easy to prove that axiom [S1] also holds for ins, and this is

the main obstacle for any possible ‘‘translation’’ of majorities to slopes.

Constructive Upper Bounds. While Theorem 3.15 gives an upper bound to the

branch-width of any planar graph, it does not provide any way to construct the

corresponding branch decomposition. The ‘‘non-constructiveness’’ of our proof

emerges from the fact that it makes strong use of the results in [6], [18], and [21]

that are not (at least directly) ‘‘translatable’’ to a polynomial time algorithm.

However, the algorithmic results of [21] make it possible to construct, for any

n-vertex planar graph, a branch decomposition of width � 2:122
ffiffiffi
n
p

in time Oðn4Þ
and such a branch decomposition can be easily transformed to a tree decompo-

sition of width � 3:128
ffiffiffi
n
p

using the results of [19]. It is an open problem,

whether Theorems 3.15 and 3.17 can admit simpler proofs implying faster

algorithms for the construction of the corresponding decompositions. Robin

Thomas (in private communication) mentioned that by adapting the arguments

from Alon, Seymour, and Thomas paper [6], one can obtain similar bounds on

branch-width/tree-width. Perhaps this can bring us to faster algorithms.
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