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Abstract

We prove that for anyε > 0 there exists an integernε such that the pathwidth of every cubic (or 3-regular) graph onn > nε

vertices is at most(1/6 + ε)n. Based on this bound we improve the worst case time analysis for a number of exact expo
algorithms on graphs of maximum vertex degree three.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Treewidth is one of the most basic parameters
graph algorithms. There is well established theory
the design of polynomial (or even linear) time alg
rithms for many intractable problems when the in
is restricted to graphs of bounded treewidth. See
for a comprehensive survey. As it was observed in
treewidth (or branchwidth) can also be used to ob
fast exact algorithms on planar graphs. In this paper
show that similar approach can be used for graph
degree at most three. Our main combinatorial resu
that for anyε > 0 there exists an integernε such that
the pathwidth of every cubic graph onn > nε vertices is
at most(1/6+ ε)n. Combining the combinatorial uppe
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bound with standard dynamic programming appro
on graphs of bounded treewidth (or pathwidth) we
tain new worst case time analysis for several well st
ied problems. Surprisingly, such a simple idea lead
better analysis. To demonstrate this approach we ch
three problems on cubic graphs: MAXIMUM INDEPEN-
DENT SET, MINIMUM DOMINATING SET and MAX -
CUT.

MAXIMUM INDEPENDENT SET is one of the clas
sical NP-complete problems. For graphs onn vertices
it can be trivially solved in timeO∗(2n)2 however the
existence of subexponential algorithm for this pro
lem considered to be very unlikely [13]. In 1977 Ta
jan and Trojanowski [24] gave anO∗(2n/3) algorithm
for MAXIMUM INDEPENDENT SET. After several im-
provements, the fastest so far timeO∗(2n/4) algorithm

2 Throughout this paper we use a modified big-Oh notation that
presses all polynomially bounded factors. For functionsf andg we
write f (n) = O∗(g(n)) if f (n) = O(g(n) · nO(1)).
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was announced by Robson [23]. The problem rem
NP-complete even when restricted to graphs of m
mum vertex degree three. Moreover, it is known tha

Theorem 1 (Johnson and Szegedy [15]). If the maxi-
mum independent set problem on graphs of maximum
degree three can be solved in sub-exponential time, then
also the minimum independent set problem on arbitrary
graphs can be solved in sub-exponential time.

There are several exponential time algorithms s
ing MAXIMUM INDEPENDENTSET on graphs of max
imum degree at most three. For example, Beigel
obtained timeO∗(20.171n) algorithm for MAXIMUM IN-
DEPENDENTSET on graphs with maximum vertex d
gree three. The fastest so far algorithm on graphs o
gree three for the problem is due to Chen et al. [5] w
running timeO∗(20.1705n). In this paper we show tha
the treewidth based dynamic programming can solve
problem in timeO∗(2n/6).

Until very recently there was no known algorithm f
MAX -CUT on graphs onn vertices faster than a triv
ial O∗(2n). In 2004, Williams obtained an algorith
solving MAX -CUT in O∗(20.793n) [25]. For graphs of
small vertex degree there were several known a
rithms. Gramm et al. [10] introduced an algorithm ru
ning in timeO∗(2m/3) on graphs withm edges. Ku-
likov and Fedin [18] improved the running time dow
to O∗(2m/4). Recently, Kneis et al. proved that th
treewidth of a graph withm edges is at mostm/5.217.
Applying this combinatorial bound to the analysis of t
dynamic programming algorithm on graphs of bound
treewidth, they obtained running timeO∗(2m/5.217). For
graphs of maximum vertex degree three the algorithm
Kneis et al. [16] runs in timeO∗(20.288n). Our combina-
torial result allows to improve the running time analy
of the treewidth based algorithm tillO∗(2n/6) on graphs
of maximum degree three.

MINIMUM DOMINATING SET is a natural and ver
interesting problem concerning the design and an
sis of exponential-time algorithms. Despite of this,
exact algorithm for this problem faster than the tr
ial one had been known until very recently. In 20
three different sets of authors seemingly independe
published algorithms breaking the trivial “2n-barrier”.
The algorithm of Fomin et al. [8] uses a deep gra
theoretic result due to Reed [21], providing an up
bound on the domination number of graphs of minim
degree three. The most time consuming part of thei
gorithm is an enumeration of all subsets of nodes
cardinality at most 3n/8, thus the overall running tim
is O∗(20.955n). The algorithm of Randerath and Schi
Table 1

Known results New results

INDEPENDENTSET O∗(20.171n) [5] O∗(2n/6) = O∗(20.167n)

DOMINATING SET O∗(20.501n) [16] O∗(20.265n)

MAX -CUT O∗(20.288n) [16] O∗(2n/6) = O∗(20.167n)

meyer [20] uses a very nice and cute idea (includ
matching techniques) to restrict the search space.
most time consuming part of their algorithm enum
ates all subsets of nodes of cardinality at mostn/3, thus
the overall running time isO∗(20.919n). Grandoni [11,
12] described aO∗(20.850n) algorithm for MINIMUM

DOMINATING SET. Recently, it was shown that the ru
ning time of Grandoni’s algorithm can be improved
O∗(20.598n) [7].

For graphs of maximum degree three, Kneis et
[16] introduced a faster algorithm of running tim
O∗(20.501n). The combinatorial bound on the pathwid
of a graph of this paper combined with an observa
on the running time of dynamic programming algorith
on graphs of bounded pathwidth yields that MINIMUM

DOMINATING SET of a graph with vertex degree
most three is solvable in timeO∗(3n/6) = O∗(20.265n).

We summarize the algorithmic consequences
combinatorial results in Table 1.

2. Preliminaries

We consider undirected and simple graphs, wh
V (G) denotes the set of vertices andE(G) denotes the
set of edges of a graphG. For a given subsetS of V (G),
G[S] denotes the subgraph ofG induced byS, andG\S

denotes the graphG[V (G) \ S]. The set of neighbors o
a vertexv is denoted byN(v). A cut in a graphG is
a separation of the verticesV (G) into two disjoint sub-
setsV1 andV2. Thesize of the cut is the number of edge
that have one endpoint inV1 and the other inV2.

We use the following result due to Monien a
Preis [19] in our proof.

Theorem 2 (Monien and Preis [19]). For any ε > 0
there exists an integer nε such that for any 3-regular
graph G with |V (G)| > nε there is a cut (V1,V2) of size
at most (1/6+ε)|V (G)| and such that ||V1|−|V2|| � 1.

It follows from the proof in [19] that the valuenε can
be taken at most(4/ε) · ln(1/ε) · (1 + 1/ε2). Also it is
easy to check that the bound in Theorem 2 valid not o
for 3-regular graphs but for graphs of maximum ver
degree at most three as well.

The notion of treewidth was introduced by Roberts
and Seymour [22]. Atree decomposition of a graphG
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is a pair({Xi : i ∈ I }, T ), where{Xi : i ∈ I } is a collec-
tion of subsets ofV (G) (these subsets are calledbags)
andT = (I,F ) is a tree such that the following thre
conditions are satisfied:

(1)
⋃

i∈I Xi = V (G).
(2) For all {v,w} ∈ E(G), there is ani ∈ I such that

v,w ∈ Xi .
(3) For all i, j, k ∈ I , if j is on a path fromi to k in T

thenXi ∩ Xk ⊆ Xj .

The width of a tree decomposition({Xi : i ∈ I }, T ) is
maxi∈I |Xi | − 1. The treewidth of a graphG, denoted
by tw(G), is the minimum width over all its tree decom
positions. A tree decomposition ofG of width tw(G) is
called anoptimal tree decomposition ofG.

A tree decomposition({Xi : i ∈ I }, T ) of G with T

a path (i.e., every node inT has degree at most two
is called apath decomposition of G. A path decom-
position is often denoted by listing the successive
Xi : (X1,X2, . . . ,Xr). Thewidth of a path decomposi
tion (X1,X2, . . . ,Xr) is max1�i�r |Xi | − 1. Thepath-
width of a graphG, denoted bypw(G), is the minimum
width over all its path decompositions. Clearly for
graphsG, tw(G) � pw(G).

We need the following result due to Ellis et al. [6].

Theorem 3 (Ellis et al. [6]). For any tree T on n � 3
vertices, pw(T ) � log3 n.

3. Combinatorial bounds

Lemma 4. Let G be a graph on n vertices and with
maximum vertex degree at most 3. Then for any vertex
subset X ⊆ V (G) there is a path decomposition P =
(X1,X2, . . . ,Xr) of G of width at most

max
{|X|, �n/3� + 1

} + (2/3) log3 n + 1

and such that X = Xr .

Proof. We prove the lemma by induction on the nu
ber of vertices in a graph. For a graph on one ve
the lemma is trivial. Suppose that lemma holds for
graphs on less thann vertices for somen > 1.

Let G be a graph onn vertices and letX ⊆ V (G).
Different cases are possible.

Case 1. There is a vertexv ∈ X such thatN(v) \ X

= ∅, i.e., v has no neighbors outsideX. By induc-
tion assumption, there is a path decomposition(X1,X2,

. . . ,Xr) of G \ {v} of width at most

max
{|X| − 1, �(n − 1)/3�} + (2/3) log3 (n − 1) + 1
and such thatX \ {v} = Xr . By addingv to the bagXr

we obtain the path decomposition ofG of width at most
max{|X|, �n/3�} + (2/3) log3 n + 1.

Case 2. There is a vertexv ∈ X such that|N(v) \ X|
= 1, i.e.,v has exactly one neighbor outsideX. Letu be
such a neighbor. By the induction assumption forG\{v}
and forX\{v}∪{u}, there is a path decompositionP ′ =
(X1,X2, . . . ,Xr) of G \ {v} of width at most

max
{|X|, �(n − 1)/3�} + (2/3) log3 (n − 1) + 1

and such thatX\{v}∪{u} = Xr . We create new path de
compositionP from T ′ by adding bagsXr+1 = X∪{u},
Xr+2 = X, i.e., P = (X1,X2, . . . ,Xr,Xr+1,Xr+2).
The width of this decomposition is at most

max
{|X|, �n/3�} + (2/3) log3 n + 1.

Case 3. For any vertexv ∈ X, |N(v) \ X| � 2. We
consider two subcases.

Subcase 3.A. |X| � �n/3� + 1. The number of ver
tices inG \X is n− |X|. The number of edges inG \X

is at most

3(n − |X|) − 2|X|
2

= 3n − 5|X|
2

= n − |X| + n − 3|X|
2

� n − |X| + n − 3(�n/3� + 1)

2

< n − |X| + n − 3(n/3− 1) + 3

2
= n − |X| = ∣∣V (G \ X)

∣∣.
Since|E(G \X)| < |V (G \X)|, we know that there is
connected componentT of G\X that is a tree. Note tha
|V (T )| � (2n)/3. By Theorem 3, there is a path deco
positionP 1 = (X1,X2, . . . ,Xr) of T of width at most
(2/3) log3 n. By induction assumption, there is a pa
decompositionP 2 = (Y1, Y2, . . . , Yt = X) of G \ V (T )

of width at most|X| + 1. The desired path decompo
tion P of width � |X| + (2/3) log3 n + 1 is formed by
addingX = Yt to all bags ofP 1 and appending the a
teredP 1 to P 2. In other words,

P = (Y1, Y2, . . . , Yt ,X1 ∪ X,X2 ∪ X, . . . ,Xr ∪ X,X).

Case 3.B. |X| � �n/3�, i.e., every vertexv ∈ X has
at least two neighbors outsideX. In this case we choos
a setS ⊆ V (G) \X of size�n/3�− |X|+1. If there is a
vertex ofX ∪ S having at most one neighbor inV (G) \
(X ∪ S), we are in Case 1 or in Case 2. If every ver
of X ∪ S has at least two neighbors inV (G) \ (X ∪ S),
then we are in Case 3.A. For each of these cases, th
a path decompositionP = (X1,X2, . . . ,Xr) of width �
�n/3�+2 such thatXr = X∪S. By adding bagXr+1 =
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X we obtain the path decomposition of width� �n/3�+
2. �
Theorem 5. For any ε > 0, there exists an integer nε

such that for every graph G with maximum vertex de-
gree at most three and with |V (G)| > nε , pw(G) �
(1/6+ ε)|V (G)|.

Proof. For ε > 0, let G be a graph onn > nε(8/ε) ·
ln(1/ε) · (1+ 1/ε2) vertices and with maximum verte
degree at most three. By Theorem 2, there is a bisec
V1, V2 of G such that there is at most(1

6 + ε
2)|V (G)|

edges with endpoints inV1 andV2. Let ∂(V1) (∂(V2))
be the set of vertices inV1 (V2) having a neighbor inV2
(V1). Note that|∂(Vi)| � (1/6+ ε

2)n, i = 1,2.
By Lemma 4, there is a path decompositionP1 =

(A1,A2, . . . ,Ap) of G[V1] and a path decompositio
P3 = (C1,C2, . . . ,Cs) of G[V2] of width at most

max

{(
1/6+ ε

2

)
n, �n/6� + 1

}
+ (2/3) log3 n + 1

� (1/6+ ε)n

such thatAp = ∂(V1) andC1 = ∂(V2).

It remains to show how the path decompositionP

of G can be obtained from path decompositionsP1 and
P3. To constructP we show that there is a path deco
positionP2 = (B1,B2, . . . ,Br) of G[∂(V1) ∪ ∂(V2)] of
width � (1/6 + ε)n and withB1 = ∂(V1), Br = ∂(V2).
The union ofP1,P2, andP3, i.e.,(A1, . . . ,Ap,B1, . . . ,

Br ,C1, . . . ,Cs) will be the path decomposition ofG of
width � (1/6+ ε)n.

The path decompositionP2 = (B1,B2, . . . ,Br) is
constructed as follows. We putB1 = ∂(V1). In a bagBj ,
wherej � 1 is odd, we choose a vertexv ∈ Bj \ ∂(V2).
We putBj+1 = Bj ∪ N(v) ∩ ∂(V2) andBj+2 = Bj+1 \
{v}. Since we always remove a vertex of∂(V1) from Bj

(for oddj ), we arrive finally at the situation when a b
Br contains only vertices of∂(V2).

To conclude the proof, we argue that for anyj ∈
{1,2, . . . , k}, |Bj | � (1/6 + ε)n + 1. Let Dm, m =
1,2,3, be the set of vertices in∂(V1) having exactlym
neighbors in∂(V2). Thus

|B1| =
∣∣∂(V1)

∣∣ = |D1| + |D2| + |D3|
and

|D1| + 2 · |D2| + 3 · |D3| � (1/6+ ε)n.

Therefore,

|B1| � (1/6+ ε)n − |D2| − 2 · |D3|.
For a setBj , j ∈ {1,2, . . . , k}, let D′

2 = Bj ∩ D2 and
D′ = Bj ∩ D3. Every time when�, � � 3, vertices are
3
added to a bag, one vertex is removed from the next
Thus

|Bj | � |B1| + |D2 \ D′
2| + 2 · |D3 \ D′

3| + 1

� (1/6+ ε)n − (|D2| − |D2 \ D′
2|

)
− 2 · (|D3| − |D3 \ D′

3|
) + 1

� (1/6+ ε)n + 1. �
4. Algorithmic consequences

The proof of Theorem 2 in [19] is constructive a
can be turned into polynomial time algorithm constru
ing for any large graphG of maximum vertex degre
at most three a cut(V1,V2) of size at most(1/6 +
ε)|V (G)| and such that||V1| − |V2|| � 1. The proof of
Theorem 5 is also constructive and can be turned in
polynomial time algorithm constructing a path deco
position ofG of width � (1/6+ ε)|V (G)|.

An independent set of a graphG is a subset of the
vertices such that no two vertices in the subset repre
an edge ofG. MAXIMUM INDEPENDENTSET problem
asks to determine the cardinality of a largest indep
dent set inG.

It is well known that a maximum independent set i
graph ofn vertices and of tree-width� � can be can be
found in timeO(2�n). Thus by Theorem 5, we obta
the following

Corollary 6. On graphs of maximum degree � 3, MAX -
IMUM INDEPENDENTSET is solvable in time O∗(2n/6).

Remark. Recently, Kojevnikov and Kulikov [17] an
nounced a new search tree algorithm for MAXIMUM IN-
DEPENDENTSET on graphs of maximum degree thr
with running timeO∗(2n/6).

MAX -CUT problem asks to determine the cardina
of a largest cut inG. A k-partition of a graphG is a cut
(V1,V2) with |V1| = k. A k-partition is maximum (min-
imum) if it has the largest (the smallest) cut size o
all k-partitions. Jansen et al. [14] observed that the s
of all maximum and minimumk-partitions of a graph
on n vertices and of tree-width� � can be computed i
O(2�n3) time. By combining the result of Jansen et
with Theorem 5 we arrive at the following corollary.

Corollary 7. On graphs of maximum degree � 3, MAX -
CUT is solvable in time O∗(2n/6).

A setD ⊆ V is called adominating set for G if every
node of G is either in D, or adjacent to some nod
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in D. MINIMUM DOMINATING SET problem asks to
determine the cardinality of a smallest dominating
of G. Alber et al. [1] proved that on graphs of tre
width � � MINIMUM DOMINATING SET can be solved
in O(4�n) time. It can be shown that on graphs of pa
width � � the running time of Alber et al. algorithm
is O(3�n). The algorithm of Alber et al. for treewidt
requiresO(3�n) steps for initialization, ‘forget’ node
and ‘insert’ nodes. We refer for details to [1]. The on
case when Alber et al. algorithm requiresO(4�n) oper-
ations is the processing of ‘join’ nodes. But since p
decomposition has no ‘join’ nodes, the running time
the algorithm isO(3�n).

Corollary 8. On graphs of maximum degree � 3, MINI -
MUM DOMINATING SET is solvable in time O∗(20.265n).

5. Concluding remark

Lower bounds on pathwidth of cubic graphs can
obtained by making use of Algebraic Graph Theory
particular, Bezrukov et al. [3] (by making use of the s
ond smallest eigenvalues of Ramanujan graph’s La
cian) showed that there are 3-regular graphs with
bisection width at least 0.082n. (See [3] for more de
tails.) It can be shown that the result of Bezrukov
al. also yields the lower bound 0.082n for pathwidth
of graphs with maximum degree three. It is an int
esting challenge to reduce the gap between 0.082n and
0.167n.
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