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Abstract

We prove that for anyg > 0 there exists an integer, such that the pathwidth of every cubic (or 3-regular) graplmenn,
vertices is at mostl/6 + ¢)n. Based on this bound we improve the worst case time analysis for a number of exact exponential
algorithms on graphs of maximum vertex degree three.
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1. Introduction bound with standard dynamic programming approach

on graphs of bounded treewidth (or pathwidth) we ob-
Treewidth is one of the most basic parameters in tain new worst case time analysis for several well stud-

graph algorithms. There is well established theory on ied problems. Surprisingly, such a simple idea leads to

the design of polynomial (or even linear) time algo- better analysis. To demonstrate this approach we choose

rithms for many intractable problems when the input three problems on cubic graphsAMIMUM INDEPEN-

is restricted to graphs of bounded treewidth. See [4] DENT SET, MINIMUM DOMINATING SET and MAX-

for a comprehensive survey. As it was observed in [9], CurT.

treewidth (or branchwidth) can also be used to obtain MaAxIMUM INDEPENDENT SET is one of the clas-

fast exact algorithms on planar graphs. In this paper we sical NP-complete problems. For graphsonertices

show that similar approach can be used for graphs of jt can be trivially solved in time?*(2")? however the

degree at most three. Our main combinatorial result is existence of subexponential algorithm for this prob-

that for anye > O there exists an integer, such that  |em considered to be very unlikely [13]. In 1977 Tar-

the pathwidth of every cubic graph an> n. vertices is jan and Trojanowski [24] gave af?*(2"/3) algorithm

at most(1/6+ ¢)n. Combining the combinatorial upper  for MaxiMUM INDEPENDENT SET. After several im-
provements, the fastest so far tiré (2/4) algorithm
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was announced by Robson [23]. The problem remains Table 1
NP-complete even when restricted to graphs of maxi- Known results  New results
mum vertex degree three. Moreover, it is known that

INDEPENDENTSET ~ O* (20171 [5]  (0%(21/8) = 0% (20.16Tn)
_ DOMINATING SET ~ O0*(20501y [16] (0% (20-2651)
Theorem 1 (Johnson and Szegedy [15]f the maxi- MAX-CUT ©0*(202881) [16]  (O*(2/6) = O* (20167

mum independent set problem on graphs of maximum
degree three can be solved in sub-exponential time, then
also the minimum independent set problem on arbitrary
graphs can be solved in sub-exponential time.

meyer [20] uses a very nice and cute idea (including
matching techniques) to restrict the search space. The
most time consuming part of their algorithm enumer-
ates all subsets of nodes of cardinality at mg&, thus

the overall running time i©*(2%91%"), Grandoni [11,

12] described a0*(2°85%) algorithm for MINIMUM
DOMINATING SET. Recently, it was shown that the run-
ning time of Grandoni’s algorithm can be improved till
O*(20.5981) [7]

For graphs of maximum degree three, Kneis et al.
[16] introduced a faster algorithm of running time
©*(20501) The combinatorial bound on the pathwidth
of a graph of this paper combined with an observation
on the running time of dynamic programming algorithm
on graphs of bounded pathwidth yields thatN\\Mum
DOMINATING SET of a graph with vertex degree at
most three is solvable in tim@*(3"/6) = ©*(20-26%),

We summarize the algorithmic consequences of
combinatorial results in Table 1.

There are several exponential time algorithms solv-
ing MAXIMUM INDEPENDENTSET on graphs of max-
imum degree at most three. For example, Beigel [2]
obtained tima?*(20-1777) algorithm for MAXIMUM IN-
DEPENDENTSET on graphs with maximum vertex de-
gree three. The fastest so far algorithm on graphs of de-
gree three for the problem is due to Chen et al. [5] with
running time©®*(291705) |n this paper we show that
the treewidth based dynamic programming can solve the
problem in time©*(2%/6).

Until very recently there was no known algorithm for
MAX-CuT on graphs om vertices faster than a triv-
ial O*(2"). In 2004, Williams obtained an algorithm
solving Max-CuT in ©0*(2079%) [25]. For graphs of
small vertex degree there were several known algo-
rithms. Gramm et al. [10] introduced an algorithm run-
ning in time ©*(2"/3) on graphs withmm edges. Ku-
likov and Fedin [18] improved the running time down

m /4 i
to O0%(2 . Recently, Kneis et al. proved that the We consider undirected and simple graphs, where
treewidth of a graph witin edges is at most/5.217. V(G) denotes the set of vertices afidG) denotes the
Applying this combinatorial bound to the analysis of the gat of edges of a grapli. For a given subses of V(G)
dynamic programming algorithm on grapth?; bounded (g denotes the subgraph 6finduced bys, andG \ §
treewidth, they obtained running tin@"(2"/>2'"). For  genotes the grapi[V(G) \ S]. The set of neighbors of
graphs of maximum vertex degree three the algorithm of 5 \ertexy is denoted byN (v). A cut in a graphG is
Kneis et al. [16] runs in time*(2°2%%"). Our combina- 5 separation of the vertics(G) into two disjoint sub-
torial result allows to improve the running time analysis  getsy; andV,. Thesize of the cut is the number of edges
of the treewidth based algorithm t@*(2"/) on graphs that have one endpoint ik and the other V5.

of maximum degree three. . We use the following result due to Monien and
MINIMUM DOMINATING SET is a natural and very  preis [19] in our proof.

interesting problem concerning the design and analy-

sis of exponential-time algorithms. Despite of this, N0 Theorem 2 (Monien and Preis [19])For any ¢ > 0
exact algorithm for this problem faster than the triv- there exists an integer n, such that for any 3-regular

ial one had been known until very recently. In 2004 graph G with |V (G)| > n, thereisacut (V1, V») of size
three different sets of authors seemingly independently at most (1/6+¢)|V (G)| and such that || V1| — | V2|| < 1.
published algorithms breaking the trivial *Darrier”.

The algorithm of Fomin et al. [8] uses a deep graph- It follows from the proof in [19] that the value, can
theoretic result due to Reed [21], providing an upper be taken at mos#/¢) - In(1/e) - (1 + 1/¢2). Also it is
bound on the domination number of graphs of minimum easy to check that the bound in Theorem 2 valid not only
degree three. The most time consuming part of their al- for 3-regular graphs but for graphs of maximum vertex
gorithm is an enumeration of all subsets of nodes of degree at most three as well.

cardinality at most 3/8, thus the overall running time The notion of treewidth was introduced by Robertson
is 0*(20-9551), The algorithm of Randerath and Schier- and Seymour [22]. Aree decomposition of a graphG

2. Preliminaries
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isapair({X;: i eI}, T), where{X;: i € I} is a collec-
tion of subsets o/ (G) (these subsets are callbégs)
andT = (I, F) is a tree such that the following three
conditions are satisfied:

(1) Uier Xi =V(G).

(2) For all {v, w} € E(G), there is an’ € I such that
v,w € X;.

(3) Foralli, j,kel,if jisonapathfromtokinT
thenX; N X, C X;.

The width of a tree decompositiof{X;: i € I}, T) is
maxc; | X;| — 1. Thetreewidth of a graphG, denoted
by tw(G), is the minimum width over all its tree decom-
positions. A tree decomposition 6f of width tw(G) is
called anoptimal tree decomposition of;.

A tree decompositiont{X;: i € I}, T) of G with T
a path (i.e., every node ifi has degree at most two)
is called apath decomposition of G. A path decom-
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and such thak \ {v} = X,. By addingv to the bagX,
we obtain the path decomposition@fof width at most
max{|X|, [n/3]} + (2/3)loggn + 1.

Case 2. There is a vertex € X such thaifN (v) \ X|
=1, i.e.,v has exactly one neighbor outsidte Letu be
such a neighbor. By the induction assumption@or{v}
and forX \ {v}U{u}, there is a path decompositidt =
(X1, X2,...,X,) of G\ {v} of width at most

max{|X|, [(n — 1)/3]} + (2/3)logz (n — 1) + 1

and such thakX \ {v}U{u} = X,. We create new path de-
compositionP from 7’ by adding bag¥, 11 = X U{u},
Xr+2 = X! i'e'! P = (Xl’XZ,-~~,XraXr+1er+2)-
The width of this decomposition is at most

max{|X|, [n/3]} + (2/3)logzn + 1.

Case 3. For any vertex € X, |[IN(v) \ X| > 2. We
consider two subcases.
Subcase 3.A. | X| > |n/3] + 1. The number of ver-

position is often denoted by listing the successive sets ticesinG \ X isn —|X|. The number of edges i@ \ X

X;: (X1, X2,...,X,). Thewidth of a path decomposi-
tion (X1, Xo, ..., X,) is maxgi<- |Xi| — 1. Thepath-
width of a graphG, denoted byw(G), is the minimum
width over all its path decompositions. Clearly for all
graphsG, tw(G) < pw(G).

We need the following result due to Ellis et al. [6].

Theorem 3 (Ellis et al. [6]). For anytree T onn > 3
vertices, pw(7) < logz n.

3. Combinatorial bounds

Lemma 4. Let G be a graph on n vertices and with
maximum vertex degree at most 3. Then for any vertex
subset X C V(G) there is a path decomposition P =
(X1, X2,...,X,) of G of width at most

max{|X|, [n/3] + 1} + (2/3)loggn + 1
and such that X = X,..

Proof. We prove the lemma by induction on the num-
ber of vertices in a graph. For a graph on one vertex
the lemma is trivial. Suppose that lemma holds for all
graphs on less thanvertices for some > 1.

Let G be a graph om vertices and leiX C V(G).
Different cases are possible.

Case 1. There is a vertex € X such thatN (v) \ X
= @, i.e.,, v has no neighbors outsid¥. By induc-
tion assumption, there is a path decompositixin, X2,
..., X;) of G\ {v} of width at most

max{|X| -1, [(n —1)/3]} + (2/3)logs(n — 1) + 1

is at most
3(n —|1X]) - 2|X|
2
3n — 5|X| |X|—|—n_3|X|
= =n —
2 2
-3 3]+1
<n— x4 PR
—3n/3-1)+3
<n_|X|+n (n/2 ) +

=n—|X|=|V(G\X)|

SincelE(G \ X)| < |V (G \ X)|, we know that there is a
connected componefitof G \ X that is a tree. Note that
|V(T)| < (2n)/3. By Theorem 3, there is a path decom-
position P = (X1, Xo, ..., X,) of T of width at most
(2/3)logz n. By induction assumption, there is a path
decompositionP2 = (Y1, Y, ..., Y, = X) of G\ V(T)

of width at most| X| + 1. The desired path decomposi-
tion P of width < |X| + (2/3)logzn + 1 is formed by
addingX = Y; to all bags ofP! and appending the al-
tered P! to P2. In other words,

P=(Y1,Y2,....7:, X1UX, XoUX,..., X, UX, X).

Case 3.B. |X| < |n/3], i.e., every vertew € X has
at least two neighbors outside In this case we choose
asetS C V(G)\ X ofsize|n/3] — | X|+ 1. Ifthereisa
vertex of X U S having at most one neighbor in(G) \
(XU S), we are in Case 1 or in Case 2. If every vertex
of X U S has at least two neighbors In(G) \ (X U S),

then we are in Case 3.A. For each of these cases, there is

a path decompositioR = (X1, X2, ..., X,) of width <
n/3] +2 suchthaX, = X US. By adding bag{, 11 =
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X we obtain the path decomposition of width|n/3] +
2. O

Theorem 5. For any ¢ > 0, there exists an integer n,
such that for every graph G with maximum vertex de-
gree at most three and with |V (G)| > ne, pWw(G) <
(1/6+&)IV(G)I.

Proof. For e > 0, let G be a graph om > n.(8/¢) -
In(1/e) - (14 1/£2) vertices and with maximum vertex

degree at most three. By Theorem 2, there is a bisection

V1, V2 of G such that there is at most + $)|V(G)|
edges with endpoints iy and V. Let (V) (3(V2))
be the set of vertices il (V2) having a neighbor iV,
(V1). Note thatja(V;)| < (1/6+ 5)n, i =1, 2.

By Lemma 4, there is a path decompositi®n =
(A1, Az,...,Ap) of G[V1] and a path decomposition
P3=(C1,Co,...,Cy) of G[V>] of width at most

max{ (1/6—1— %)n 1n/6) + 1} +(2/3)loggn + 1
<(1/6+¢e)n

such thatd, = 3(V1) andC1 = 9(V2).

It remains to show how the path decompositiBn
of G can be obtained from path decompositidhsand
P3. To constructP we show that there is a path decom-
position P, = (B1, Bo, ..., B,) of G[3(V1) U d(Vo)] of
width < (1/6 + e)n and with By = 9(V1), B, = 3(V2).
The union ofPy, P>, andP3, i.e., (A1, ..., Ap, By, ...,
B, C1,...,Cy) will be the path decomposition @ of
width < (1/6 + ¢)n.

The path decompositiolP, = (B1, Ba, ..., B,) is
constructed as follows. We pBy = d(V1). In abagB;,
wherej > 1is odd, we choose a vertexs B; \ 9(V>2).
We putBji1=B; UN()Nad(V2) andBji2=Bj1\
{v}. Since we always remove a vertexayfl’y) from B;
(for odd j), we arrive finally at the situation when a bag
B, contains only vertices daf(V>).

To conclude the proof, we argue that for apy
{1,2,...,k}, |Bj| < (1/6 + &)n + 1. Let D,,, m =
1, 2, 3, be the set of vertices i®(V1) having exactlym
neighbors i (V»). Thus

|B1| = [0(V1)| = |D1| + | D2| + | D3|
and

|D1| +2-|D2| +3- D3| < (1/6+ &)n.
Therefore,

|B1l < (1/6+ e)n — |D2| — 2+ |D3|.

For a setB;, j € {1,2,...,k}, let D, = B; N D and
D’3 = B; N D3. Every time whery, £ < 3, vertices are
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added to a bag, one vertex is removed from the next bag.
Thus

|Bj| <|B1l+ D2\ Dyl +2-|D3\ D3| + 1
< (1/6+ &)n — (ID2| — |D2\ D5))
—2-(IDs| — |D3\ D3) +1

<(1/6+e)n+1. O

4. Algorithmic consequences

The proof of Theorem 2 in [19] is constructive and
can be turned into polynomial time algorithm construct-
ing for any large graplG of maximum vertex degree
at most three a cugVy, Vo) of size at most(1/6 +
£)|V(G)| and such that| V1| — |V2|| < 1. The proof of
Theorem 5 is also constructive and can be turned into a
polynomial time algorithm constructing a path decom-
position of G of width < (1/6 + ¢)|V (G))|.

An independent set of a graphG is a subset of the
vertices such that no two vertices in the subset represent
an edge of5. MAXIMUM INDEPENDENTSET problem
asks to determine the cardinality of a largest indepen-
dent set inG.

Itis well known that a maximum independent setin a
graph ofn vertices and of tree-widtki £ can be can be
found in time©O(2'n). Thus by Theorem 5, we obtain
the following

Corollary 6. On graphs of maximumdegree < 3, MAX -
IMUM INDEPENDENTSET issolvablein time O*(2"/6).

Remark. Recently, Kojevnikov and Kulikov [17] an-
nounced a new search tree algorithm fosdMMum IN-
DEPENDENTSET on graphs of maximum degree three
with running time©*(2"/6).

MAX-CuT problem asks to determine the cardinality
of a largest cut irG. A k-partition of a graplG is a cut
(V1, Vo) with | V1| = k. A k-patrtition is maximum (min-
imum) if it has the largest (the smallest) cut size over
all k-partitions. Jansen et al. [14] observed that the sizes
of all maximum and minimunk-partitions of a graph
onn vertices and of tree-widtk{ ¢ can be computed in
O(2'n®) time. By combining the result of Jansen et al.
with Theorem 5 we arrive at the following corollary.

Coroallary 7. On graphs of maximumdegree < 3, MAX -
CuT issolvablein time ©*(2"/5).

AsetD C V is called adominating set for G if every
node of G is either in D, or adjacent to some node
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in D. MINIMUM DOMINATING SET problem asks to
determine the cardinality of a smallest dominating set
of G. Alber et al. [1] proved that on graphs of tree-
width < ¢ MINIMUM DOMINATING SET can be solved

in O(4'n) time. It can be shown that on graphs of path-
width < ¢ the running time of Alber et al. algorithm
is O(3'n). The algorithm of Alber et al. for treewidth
requiresO(3‘n) steps for initialization, ‘forget’ nodes
and ‘insert’ nodes. We refer for details to [1]. The only
case when Alber et al. algorithm requir@s4‘n) oper-
ations is the processing of ‘join’ nodes. But since path
decomposition has no ‘join’ nodes, the running time of
the algorithm isO(3n).

Coroallary 8. On graphs of maximum degree < 3, MINI -
MUM DOMINATING SETissolvableintime O*(20-2651),

5. Concluding remark
Lower bounds on pathwidth of cubic graphs can be

obtained by making use of Algebraic Graph Theory. In
particular, Bezrukov et al. [3] (by making use of the sec-
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(ISAAC 2003), in: Lecture Notes in Comput. Sci., vol. 2906,
Springer, Berlin, 2003, pp. 148-157.

[6] J.A. Ellis, I.H. Sudborough, J.S. Turner, The vertex separation

and search number of a graph, Inform. and Comput. 113 (1994)

50-79.

F.V. Fomin, F. Grandoni, D. Kratsch, Measure and conquer:

Domination—a case study, in: Proc. 32nd Internat. Colloquium

on Automata, Languages and Programming (1CALP 2005), in:

Lecture Notes in Comput. Sci., vol. 3580, Springer, Berlin, 2005,

pp. 191-203.

F.V. Fomin, D. Kratsch, G.J. Woeginger, Exact (exponential) al-

gorithms for the dominating set problem, in: Proc. 30th Work-

shop on Graph Theoretic Concepts in Computer Science (WG

2004), in: Lecture Notes in Comput. Sci., vol. 3353, Springer,

Berlin, 2004, pp. 245-256.

F.V. Fomin, D.M. Thilikos, A simple and fast approach for solv-

ing problems on planar graphs, in: Proc. 21st Internat. Symp.

on Theoretical Aspects of Computer Science (STAGS 2004), in:

Lecture Notes in Comput. Sci., vol. 2996, Springer, Berlin, 2004,

pp. 56-67.

[10] J. Gramm, E.A. Hirsch, R. Niedermeier, P. Rossmanith, Worst-
case upper bounds for MAX-2-SAT with an application to MAX-
CUT, Discrete Appl. Math. 130 (2003) 139-155.

[11] F. Grandoni, Exact algorithms for hard graph problems, PhD the-
sis, Universita di Roma “Tor Vergata”, Roma, Italy, March, 2004.

[12] F. Grandoni, A note on the complexity of minimum dominating
set, J. Discrete Algorithms, in press.

(7]

9

—

ond smallest eigenvalues of Ramanujan graph’s Lapla- [13] R. Impagliazzo, R. Paturi, F. Zane, Which problems have

cian) showed that there are 3-regular graphs with the

bisection width at least.082:. (See [3] for more de-
tails.) It can be shown that the result of Bezrukov et
al. also yields the lower bound.@2: for pathwidth

of graphs with maximum degree three. It is an inter-
esting challenge to reduce the gap betwe®8%: and
0.167n.
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