
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Journal of Discrete Algorithms 4 (2006) 499–510

www.elsevier.com/locate/jda

A 3-approximation for the pathwidth of Halin
graphs ✩

Fedor V. Fomin a,∗, Dimitrios M. Thilikos b

a Department of Informatics, University of Bergen N-5020, Bergen, Norway
b Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,

E-08034, Barcelona, Spain

Available online 5 July 2005

Abstract

We prove that the pathwidth of Halin graphs can be 3-approximated in linear time. Our approxi-
mation algorithms is based on a combinatorial result about respectful edge orderings of trees. Using
this result we prove that the linear width of Halin graph is always at most three times the linear width
of its skeleton.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Halin graph; Pathwidth; Linear width

1. Introduction

All graphs in this paper are finite without loops or multiple edges. For a graph G we
denote by V (G) the vertex set of G, by E(G) the edge set of G, and by A(G) the set
of degree one vertices of G. Also, given two graphs G1 and G2 we define their union as
G1 ∪ G2 = (V (G1) ∪ V (G1),E(G1) ∪ E(G2)). In this paper we call by cycle a graph that

✩ Fedor Fomin is supported by Norges forskningsråd project 160778/V30. Dimitrios Thilikos is supported by
the EU within the 6th Framework Programme under contract 001907 (DELIS) and by the Spanish CICYT project
TIC-2002-04498-C05-03 (TRACER).

* Corresponding author.
E-mail addresses: fomin@ii.uib.no (F.V. Fomin), sedthilk@lsi.upc.es (D.M. Thilikos).

1570-8667/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2005.06.004

Aut
ho

r's

pe
rs

on
al

co

py

500 F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510

is connected and has all vertices of degree 2. We set n = |V (G)| and m = |E(G)|. Finally,
for any vertex v ∈ V (G) we will denote as Ev the set of edges that have v as an end-
point.

A plane graph is a particular drawing of a planar graph in the plane without crossings.
A plane graph G is a Halin graph if its edge set can be partitioned into a tree without
vertices of degree 2 (this tree is called the skeleton) and a cycle passing through all leaves
of the tree. A graph is a Halin graph if it is isomorphic to some plane Halin graph. In other
words, a graph is Halin if it is planar and is the union of a cycle C and a tree T without
vertices of degree 2 and where A(T) = V (C). Halin graphs were introduced by Halin in
[16] and have been extensively examined (see e.g. [1,8,11,18,26]).

It is easy to check that every Halin graph has treewidth � 3 [4] (for the definitions,
see Section 2.1). Finding a polynomial time algorithm for computing (or approximating)
the pathwidth of graphs of treewidth bounded by some fixed constant is an old problem
mentioned first by Dean in [12]. A general answer to this problem was given by Bodlaender
and Kloks in [7]. However, while the algorithm in [7] is polynomial, its exponent is heavily
depending on k and this makes it unpractical even for small values of k. Therefore, it is
interesting to find a low-degree polynomial algorithm for graphs of treewidth bounded
by small values of k. For k = 1 (i.e., when the input graph is forest) there was known
an exact algorithm with running time O(n logn) time [14,21] and only recently Skodinis
obtained a linear time algorithm [25]. Even addition of one edge to a tree requires much
more elaborate algorithms. Recently such an O(n logn) algorithm computing pathwidth of
unicyclic graphs (i.e., non-tree graphs obtained from a tree by adding one edge) is given by
Ellis and Markov [13]. In spite of many attacks, no explicit algorithm is known for graphs
of treewidth 2. The best progress in this direction is the 2-approximation algorithm of [6]
for biconnected outerplanar graphs, a class of graphs with treewidth � 2 (see also [15]).
So far, no efficient exact or approximation algorithm is known for any class of graphs with
treewidth 3 or more.

In this paper we give a linear time algorithm that approximates the pathwidth of Halin
graphs within a factor of 3. Our algorithm is very simple: To find a good solution one only
needs to compute the pathwidth of a skeleton of Halin graph. The proof of the correctness
of our algorithm is more technical. We prove that the pathwidth of G cannot be more that
three times the pathwidth of T plus one. It appears that for our proof the related parameter
of linear-width defined by Thomas in [29] is much more convenient than pathwidth. Our
proof is based on a combinatorial result about new type of edge orderings of trees, so called
respectful orderings.

This paper is organized as follows. In Section 2 we give necessary definitions and known
facts on width parameters. In Section 3 we discuss some basic properties of Halin graphs.
In Section 4 we introduce the main tool of our proofs, respectful orderings and in Section 5
we conclude with the approximation algorithm.

Aut
ho

r's

pe
rs

on
al

co

py

F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510 501

2. Width parameters

2.1. Treewidth—pathwidth

The notions of treewidth and pathwidth were introduced by Robertson and Seymour in
[24] and [23] (see [5] and [22] for surveys).

A tree decomposition of a graph G is a pair (X,U) where U is a tree whose vertices we
will call nodes and X = ({Xi | i ∈ V (U)}) is a collection of subsets of V (G) such that

(1)
⋃

i∈V (U) Xi = V (G),
(2) for each edge {v,w} ∈ E(G), there is an i ∈ V (U) such that v,w ∈ Xi , and
(3) for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)},U) equals maxi∈V (U){|Xi | − 1}. The
treewidth of a graph G is the minimum width over all tree decompositions of G.

If in the definitions of a tree decomposition and treewidth we restrict U to be a tree
with all vertices of degree at most 2 (i.e., a path) then we have the definitions of path de-
composition and pathwidth. It is convenient to denote a path decomposition as a sequence
(X1,X2, . . . ,Xr) of subsets of V (G).

2.2. Vertex orderings

For our purposes it is more convenient to work with vertex and edge orderings than with
width parameters.

For S ⊆ V (G) we define

∂S = {
u ∈ S and there exists w ∈ V (G) \ S such that {u,w} ∈ E(G)

}
.

Let σ = (v1, v2, . . . , vn) be an ordering of V (G). For j ∈ {1, . . . , n} we put

Vj =
j⋃

i=1

{vi}.

Setting

vs(G,σ) = max
i∈{1,...,n}

|∂Vi |,
we define the vertex separation of G as

vs(G) = min
{
vs(G,σ): σ is an ordering of V (G)

}
.

The linear width was introduced by Thomas [29] and is closely related to crusades of
Bienstock and Seymour [3] (see also Bienstock’s survey [2]). For X ⊆ E(G) let δ(X) be
the set of all vertices incident to edges in X and E(G) \ X. Let σ = (e1, e2, . . . , em) be an
ordering of E(G). For i ∈ {1, . . . ,m} we put Ei = ⋃i

j=1{ej }. We define

lw(G,σ) = max
i∈{1,...,m}

∣∣δ(Ei)
∣∣,

Aut
ho

r's

pe
rs

on
al

co

py

502 F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510

and the linear width of G as

lw(G) = min
{
lw(G,σ): σ is an ordering of E(G)

}
.

The results of Bienstock and Seymour [3] imply that for graphs without vertices of de-
gree 1, the linear width has a game theoretic interpretation in terms of mixed search
number. (See also [27] on further discussions of mixed search number.)

The following proposition is well known. (See the survey of Möhring [22] for an
overview of the related results.) It follows directly form the results of Kirousis and Pa-
padimitriou [20] on interval width of a graph, see also [19].

Proposition 1. [19,20] For any graph G, vs(G) = pw(G).

Lemma 2. For any graph G, pw(G) � lw(G) � pw(G) + 1.

Proof. Let σ = (v1, v2, . . . , vn) be an ordering of the vertices of G of vertex separation
� k. For each i ∈ {1, . . . , n} let Ei be the subset of edges of G induced by the vertex set Vi .
Then δ(Ei) = ∂(Vi). We define an ordering π = (e1, . . . , em) of the edges of G such that
for every 1 � k � l � n, the conditions ei ∈ Ek and ej ∈ El imply i � j . It is easy to verify
that lw(G,π) � k+1. Thus lw(G) � vs(G)+1 and by Proposition 1, lw(G) � pw(G)+1.

Let now π = (e1, . . . , em) be an edge ordering of G. W.l.o.g. we assume that G

is connected and we define the vertex set sequence X = (X1, . . . ,Xr) so that Xi =
δ{e1, . . . , ei−1} ∪ ei , i ∈ {1, . . . , r}. It is easy to see that X is a path decomposition of G

where the maximum size of a Xi is at most one more than the linear-width of L. Therefore
pw(G) � lw(G). �

Let T be a tree and let P be a path in T . We define T (T ,P) as the set of trees defined
by the connected components of the graph taken after subdividing in T all edges not in P

but with endpoints in P and then removing all the vertices in P . For reasons of simplicity,
we will use the same notation as in T for all the vertices of the trees in T (T ,P) (the only
essential difference is that the vertices of P may be present in several trees in T (T ,P)—it
is convenient to imagine each of the trees in T (T ,P) as the closure of each of the connected

Fig. 1. An example of the definition of the graph collection T (T ,P) for some tree T and some path P = (a, b, c)

in it.

Aut
ho

r's

pe
rs

on
al

co

py

F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510 503

components of the set (E(T)−E(P))∪ (V (T)−V (P))). For an example of the definition
of T (T ,P) see Fig. 1.

The following theorem is the analogous for linear-width of the corresponding results
of [14] on pathwidth. It can be directly derived by the results of [27] on the mixed search
number and its connection with linear-width as explained in Theorem 24 of [28], so we
omit its proof.

Theorem 3. The following two statements hold:

(1) For any tree T and integer k � 1, lw(G) � k if and only if for any vertex v ∈ V (T) the
set T (T , {v}) contains at most two trees of linear width � k while all the other trees
of this set are of linear width � k − 1.

(2) Any tree T with lw(G) � k contains a path P where for any v ∈ V (P), all the trees in
T (T , {v}) have linear width at most k − 1.

For a tree T of linear-width at most k, we call a path P given by the second statement
of Theorem 3 the spine of T .

3. Halin graphs

It is a part of folklore that Halin graphs can be recognized in linear time (see [10,
p. 118]). In this section we give a linear time Halin graph recognition algorithm which
also outputs one of the skeletons, if the graph is Halin. This algorithm also seems to be a
folklore and we sketch its main steps for completeness.

Given a face F of a planar embedding of a graph, we define V (F) as the set of vertices
and E(F) as the set of edges incident to F . A face F of a plane graph G is wrapping face
if 2 · |V (F)| � |V (G)| + 2 and every vertex of F is of degree 3 in G. Finally, if T is a
tree we define I (T) = V (T) − A(T), i.e., I (T) and A(T) are the sets of internal and leaf
vertices of T respectively.

Lemma 4. Every planar drawing of a Halin graph G has at least one and at most four
wrapping faces. Moreover, there is at least one wrapping face such that E(G) − E(F) is
a skeleton of G.

Proof. Let G be a plane Halin graph with a skeleton T . The edges of the cycle E(G) −
E(T) are incident to a face F and |V (F)| is the number of leaves of T . There is no vertices
of degree two in T , thus the number |A(T)| of leaves in T is at least |I (T)| + 2 and
|V (F)| � |I (T)| + 2. Notice also that |V (G)| = |I (T)| + |A(T)| � |V (F)| − 2 + |V (F)|.
Thus F is a wrapping face and E(G) − E(F) is a skeleton of G.

Let us prove that there are at most four wrapping faces in any Halin graph. We claim
first that every two wrapping faces F1,F2 of G have at least one edge in common. In
fact, |V (G)| = |V (F1)| + |V (F2)| − |V (F1) ∩ V (F2)| � |V (G)| + 2 − |V (F1) ∩ V (F2)|,
therefore |V (F1)∩V (F2)| � 2. Since all vertices of V (F1) and V (F2) have degree 3 in G,
we have that each vertex in V (F1) ∩ V (F2) is incident to an edge that is incident to both

Aut
ho

r's

pe
rs

on
al

co

py

504 F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510

Fig. 2. A Halin graph with 3 wrapping faces and an isomorphic Halin plane graph.

F1 and F2 and the claim holds. The claim implies that G has at most four wrapping edges
because otherwise the dual of G contains complete graph on five vertices K5 as a subgraph
and thus is not planar. �

In fact the largest possible number of wrapping faces a drawing of a Halin graph may
have is 3 (see the graph in Fig. 2). We do not prove the tight version of the above lemma
because the current bound is sufficient to support the linearity of the following algorithm.

Lemma 5. For a given graph G on n vertices there exists an algorithm that in O(n) steps
checks if G is a Halin graph and, in cases of a positive answer, returns its skeleton.

Proof. The algorithm returning the correct answer to the question “is G a Halin graph?”
is the following:

Consider any planar drawing of G (such a drawing can be constructed in linear time
[9,17]). For each face, check whether it is a wrapping face or not. If G does not have
any wrapping face then stop and answer “no”. Otherwise, for any wrapping face, check
whether the removal of its edges creates a tree T . If such a wrapping face exists, then
answer “yes and the skeleton of G is T ”, otherwise answer “no”.

To see that the algorithm is correct observe that if G is a Halin graph, then from
Lemma 4 it contains a wrapping face whose removal creates the skeleton of G. As the
algorithm checks this for all possible wrapping faces it finally gives a correct (posi-
tive) answer. On the other side if the algorithm answers positively then this means that
there exists a face in G such that the removal of its edges created a tree which means
that the graph is a Halin graph. Notice now that to check whether a face F is a wrap-
ping face needs O(|E(F)|) steps. Therefore, to detect the wrapping faces requires in
total

∑
F is a face of G O(|E(F)|) = O(|V (G)|) steps. According to Lemma 4, the second

check of the algorithm is applied only a constant number of times. Clearly, computing
T = E(G)−E(F) can be done in O(n) steps. It also needs the same time to check whether
T is a tree. Therefore the algorithm can be implemented in O(n) steps. �

4. Respectful orderings

Let G be a plane graph. Let MG be a plane graph with vertex set E(G). We say that the
graph MG is a medial graph of G if MG = ⋃

v∈V (G) Cv where,

Aut
ho

r's

pe
rs

on
al

co

py

F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510 505

Fig. 3. A tree T , its medial graph and a respectful ordering of E(T).

• Cv (v ∈ V (G)) are mutually edge-disjoint cycles.
• For each v ∈ V (G), if {v, x1}, {v, x2}, . . . , {v, xt } are the edges of Ev enumer-

ated according to the cyclic order in the drawing of G, then Cv has vertex set
{v, x1}, {v, x2}, . . . , {v, xt } and, in Cv , vertex {v, xi−1} is adjacent to {v, xi} (1 � i � t),
where x0 = xt (note that for every vertex v of G, V (Cv) = Ev).

For an example of a tree and its medial graph, see Fig. 3.
Let E be some subset of E(G) and let σ = (e1, . . . , em) be an ordering of E. We set

Ei = ⋃i
j=1 ej , 1 � i � m. We say that the ordering σ is v-respectful if for every i ∈

{1, . . . ,m}, the set of edges Ei ∩ V (Cv) form a connected subgraph (i.e., path or cycle) of
MG. An edge ordering σ of E is respectful if it is v-respectful for every vertex v of G. See
Fig. 3 for an example of respectful ordering of E(T).

In the rest of this paper, we will use the symbol ⊕ to denote the concatenation of two
edge sequences, i.e., if σi = (ei

1, . . . , e
i
ri
), i = 1,2, then σ1 ⊕σ2 = (e1

1, . . . , e
2
r1

, e2
1, . . . , e

2
r2

).

Lemma 6. For any plane tree T with linear-width at most k, there exists a respectful edge
ordering L of E(T) that has linear-width at most k.

Proof. We apply induction on k. The case k = 0, i.e., when the tree has at most one edge,
is trivial. Let k � 1. We assume that the result holds for any i < k and we prove that it also
holds for k. Let P = (v1, . . . , vr) be the spine path of T . All the trees from T (T ,P) are of
linear-width � k − 1 and have respectful orderings. The proof idea is to concatenate these
orderings in such a way, that for any vertex v of P the new ordering will be v-respectful
(for the vertices out of P this is a direct consequence of the induction hypothesis).

For every i ∈ {1, . . . , r}, we denote by σi = (ei
1, . . . , e

i
ρi

) an ordering of Evi
= V (Cvi

)

which is vi -respectful and such that ei
1 = {vi−1, vi} for i ∈ {2, . . . , r}, and ei

ρi
= {vi, vi+1}

for i ∈ {1, . . . , r −1}. For i ∈ {1, . . . , r} and j ∈ {1, . . . , ρi}, we denote by T i
j the connected

component of T (T , vi) that contains ei
j as an edge.

Let I = {(i, j) | 1 � i � r,1 � j � ρi and ei
j is not an edge of P } and notice that for

each (i, j) ∈ I , ei
j belongs to a different tree of T i

j ∈ T (T ,P). By Theorem 3, any such

a T i
j has linear-width � k − 1 and by the induction hypothesis it has a respectful edge

Aut
ho

r's

pe
rs

on
al

co

py

506 F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510

ordering σ i
j of linear-width � k − 1. We now define

σ = σ 1
1 ⊕ · · · ⊕ σ 1

ρ1−1 ⊕ ({v1, v2}
) ⊕ σ 2

2 ⊕ · · · ⊕ σ 2
ρ2−1 ⊕ ({v2, v3}

) ⊕ · · ·
⊕ ({vr−1, vr}

) ⊕ σ r
2 ⊕ · · · ⊕ σ r

ρr

and we observe that σ is a respectful edge ordering of G of linear-width � k (notice that
the σ i

j ’s that are omitted in this concatenation are exactly those that correspond to pairs
(i, j) missing from I). �

We call a tree T ternary if all its internal vertices have degree 3. A graph H obtained
by a sequence of edge-contractions and edge-removals is said to be a minor of G. Clearly,
for any minor H of a graph G, lw(H) � lw(H).

Lemma 7. Any plane tree T without vertices of degree 2 is the minor of a plane ternary
tree T ′ where lw(T) = lw(T ′) and A(T) = A(T ′).

Proof. Let σ be an edge ordering of T of minimum linear-width. By Lemma 6, there
exists a respectful ordering σ of E(T) with the same linear-width. We apply the following
algorithm on T .

1. If T contains a vertex v of degree � 4 then goto the next step, otherwise output T and
stop.

2. Let ei and ej be the two first edges in Cv that appear in σ (in terms of the medial
graph of T , ei and ej are consecutive vertices in the cyclic ordering of Cv). We construct
a new tree T ′ as follows: first construct the tree U1 by taking by the union of the two trees
of T (T , v) containing the edges ei and ej , then construct the tree U2 by taking the union
of the rest of the trees of T (T , v), then, for i = 1,2, rename to vi the vertex v in Ui and
finally define T ′ as the disjoint union of U1 and U2 with enew = {v1, v2} as an additional
edge, i.e., T ′ = U1 ∪ U2 ∪ ({v1, v2}, {v1, v2}}) (see Fig. 4).

Notice that σ ′ = (e1, . . . , ei, . . . , ej , enew, ej+1, . . . , eq) is a respectful edge ordering
for T ′ with linear-width � k. Therefore lw(T ′) � lw(T). As T is a minor of T ′, we have
that lw(T) � lw(T ′) and thus T ′ has the same linear-width as T . Moreover, as the vertex
splitting operation of this step is not applied to a leave, we get hat A(T) = A(T ′).

3. Set T := T ′, σ := σ ′ and goto step 1.

Fig. 4. Step 2 of the algorithm in Lemma 7.

Aut
ho

r's

pe
rs

on
al

co

py

F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510 507

The above algorithm stops only when T is a ternary tree as required. To see this, notice
that after each step the quantity

∑
v∈I (T)(degT (v)−3) becomes smaller and the algorithms

stops when its value is equal to 0 (we use the notation degT (v) to denote the degree of
vertex v in T). �

5. Approximation algorithm

Lemma 8. Let H be a Halin graph with skeleton T . Then lw(T) � lw(H) � 3 · lw(T).

Proof. The first inequality is obvious as T is a subgraph of H . In what remains we will
prove that lw(H) � 3 · lw(T). By Lemma 7, there is a ternary tree T ′ such that lw(T ′) =
lw(T) and A(T) = A(T ′). Let H ′ be a plane Halin graph having T ′ as a skeleton and with
exterior wrapping face. It easy to check that lw(H) � lw(H ′) (this follows from the fact
that H is a minor of H ′). So to prove the lemma it is sufficient to show that lw(H ′) �
3 · lw(T ′).

We construct a new graph J by modifying the graph H ′. For every internal face F

of H ′ we do the following. Let (v1, . . . , vr , v1) be the cycle bordering F , where r � 3
and {v1, vr} is the edge of E(H ′) − E(T ′). We replace the edge {v1, vr} by a path (v1 =
a1, a2, . . . , ar = vr) of length r − 1. (See Fig. 5.)

Notice that there is a natural one-to-one correspondence between edges of paths
(v1, . . . , vr) and (a1, a2, . . . , ar). For every i ∈ {1, . . . , r − 1}, we call the edge {ai, ai+1}
the shadow of the edge {vi, vi+1} and for every i ∈ {2, . . . , r − 1} we cal the vertex ai

shadow of vi . As every edge e ∈ E(T ′) is adjacent to two faces, it has two shadows in J .
Moreover, as every vertex of I (T ′) is of degree 3, it has 3 shadows. For e ∈ E(T ′) and
v ∈ I (T ′), let S(e) and S(v) be the sets of shadows of e and v.

Notice that J is a Halin graph with skeleton T ′. Clearly, lw(H ′) � lw(J) and to finish
the proof it is enough to prove that lw(J) � 3 · lw(T ′).

Let E ⊆ E(T ′) and let E∗ = ⋃
e∈E({e} ∪ S(e)). Let also v ∈ δT ′(E). Notice that v ∈

I (T ′). As the internal vertices of T ′ have all degree 3, this means that either two or one
of the three edges with v as endpoint are members of E. In each case, v ∈ δJ (E∗) and
moreover exactly 2 of the shadows of v will be members of δJ (E∗) (see Fig. 6). That way
we can correspond to each vertex of δT ′ exactly three vertices of δJ (E∗). Certainly, to each

Fig. 5. The transformation of the proof of Lemma 8.

Aut
ho

r's

pe
rs

on
al

co

py

508 F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510

such triple in δJ (E∗) corresponds exactly one vertex in δT ′(E). Therefore,

(1)for any E ⊆ E(T ′),
∣∣∣∣δJ

(⋃
e∈E

({e} ∪ S(e)
))∣∣∣∣ = 3

∣∣δT ′(E)
∣∣.

Let now σ = (e1, . . . , eq) be an edge ordering of T ′ of linear-width � k.
By (1), for any � ∈ {1, . . . , q},

∣∣∣∣δJ

(⋃
i=1,...,�

({e} ∪ S(e)
))∣∣∣∣ = 3

∣∣δT ′
({

e1, . . . , ei

})∣∣.

Fig. 6. Two ways to correspond a vertex v of T ′ to 3 vertices of J (filled vertices).

Fig. 7. There are 16 possible ways shadow edges can be distributed around an edge e with both endpoints of
degree 3. We present 7 representative configurations (the rest come up as symmetric ones—arrows depict the
symmetries) and the way the sub-ordering e1, e, e2 is contributing to the linear-width of L∗. Notice that, in
each case, the contribution of the endpoints of e1, e, e2 in L∗ is never more than 3 times the contribution of the
endpoints of e in L.

Aut
ho

r's

pe
rs

on
al

co

py

F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510 509

To finish the proof we need to show how to transform σ to an ordering σ ∗ of J by
suitable inserting into σ all the shadow edges. Each edge e of T ′ has two shadows in
E(J) − E(T ′). We call these two shadows e1 and e2 always choosing indices 1 or 2 ar-
bitrarily except the following case: For i = 1,2, each endpoint of e = {v, v′} belongs to
exactly one edge ei appearing before e in σ and each such edge has a shadow sharing an
endpoint with the same shadow e∗ of e. In this case we set e1 = e∗ and let e2 be the other
shadow of e (this special case, corresponds to the 4th row of the configurations in Fig. 7).

A detailed case analysis is depicted in Fig. 7 shows that σ ∗ = (e1
1, e1, e

2
1, . . . , e

1
q, eq, e2

q)

is an edge layout of J with linear-width � 3k.
Thus

lw(T) � lw(H) � lw(H ′) � lw(J) � 3 · lw(T ′) = 3 · lw(T). �
Taking in mind that the pathwidth of a tree can be computed in linear time [25] we may

resume the results of this section to the following.

Theorem 9. There exists an linear time algorithm that for any Halin graph H returns an
integer k such that k − 1 � pw(H) � lw(H) � 3 · k.

Proof. Use the algorithm of Lemma 5 and find a skeleton T of H in O(n) time. Then,
use the algorithm of [25] to compute the pathwidth of T in O(n) time and output k =
pw(T) + 1. From Lemma 8, lw(H) � 3 · lw(T). From Lemma 2, lw(T) � k therefore
lw(H) � 3 · k. From Lemma 2, pw(H) � lw(H) and as T is a subgraph of H we also have
k − 1 = pw(T) � pw(H). �

References

[1] C.A. Barefoot, 4-connected Halin graphs are 2-Hamiltonian connected, Ars Combinatoria 35 (1993) 109–
128.

[2] D. Bienstock, Graph searching, path-width, tree-width and related problems (a survey), in: Reliability of
Computer and Communication Networks, in: DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 5,
Amer. Math. Soc., Providence, RI, 1991, pp. 33–49.

[3] D. Bienstock, P. Seymour, Monotonicity in graph searching, J. Algorithms 12 (1991) 239–245.
[4] H.L. Bodlaender, Planar graphs with bounded treewidth, Tech. Rep. RUU-CS-88-14, Dept. of Computer

Science, Utrecht University, Utrecht, the Netherlands, 1988.
[5] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1998)

1–45.
[6] H.L. Bodlaender, F.V. Fomin, Approximation of pathwidth of outerplanar graphs, J. Algorithms 43 (2002)

190–200.
[7] H.L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs,

J. Algorithms 21 (1996) 358–402.
[8] J.A. Bondy, L. Lovász, Lengths of cycles in Halin graphs, J. Graph Theory 9 (1985) 397–410.
[9] K.S. Booth, G.S. Lueker, Testing the consecutive ones property, interval graphs, and graph planarity using

PQ-tree algorithms, J. Comput. System Sci. 13 (1976) 335–379.
[10] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics

and Applications, SIAM, Philadelphia, PA, 1999.
[11] G. Cornuejols, D. Naddef, W.R. Pulleyblank, Halin graphs and the travelling salesman problem, Math.

Programming 26 (1983) 287–294.

Aut
ho

r's

pe
rs

on
al

co

py

510 F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms 4 (2006) 499–510

[12] N. Dean, Open problems, in: N. Robertson, P.D. Seymour (Eds.), Graph Structure Theory, Contemporary
Mathematics, vol. 147, Amer. Math. Soc., Providence, RI, 1993, pp. 677–688.

[13] J.A. Elis, M. Markov, Computing the vertex separation of unicyclic graphs, Inform. and Comput. (2004),
submitted for publication.

[14] J.A. Ellis, I.H. Sudborough, J.S. Turner, The vertex separation and search number of a graph, Inform. and
Comput. 113 (1994) 50–79.

[15] R. Govindan, M.A. Langston, X. Yan, Approximating the pathwidth of outerplanar graphs, Inform. Process.
Lett. 68 (1998) 17–23.

[16] R. Halin, Über simpliziale Zerfällungen beliebiger (endlicher oder unendlicher) Graphen, Math. Ann. 156
(1964) 216–225.

[17] J. Hopcroft, R. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549–568.
[18] S.B. Horton, R.G. Parker, On some results pertaining to Halin graphs, in: Proceedings of the Twenty-third

Southeastern International Conference on Combinatorics, Graph Theory, and Computing, vol. 89, 1992,
pp. 65–87.

[19] N.G. Kinnersley, The vertex separation number of a graph equals its path-width, Inform. Process. Lett. 42
(1992) 345–350.

[20] L.M. Kirousis, C.H. Papadimitriou, Interval graphs and searching, Discrete Math. 55 (1985) 181–184.
[21] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, C.H. Papadimitriou, The complexity of searching a

graph, J. ACM 35 (1988) 18–44.
[22] R.H. Möhring, Graph problems related to gate matrix layout and PLA folding, in: Computational Graph

Theory, Comput. Suppl., vol. 7, Springer, Vienna, 1990, pp. 17–51.
[23] N. Robertson, P.D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 35 (1983)

39–61.
[24] N. Robertson, P.D. Seymour, Graph minors II. Algorithmic aspects of treewidth, J. Algorithms 7 (1986)

309–322.
[25] K. Skodinis, Construction of linear tree-layouts which are optimal with respect to vertex separation in linear

time, J. Algorithms 47 (2003) 40–59.
[26] P.F. Stadler, Minimum cycle bases of Halin graphs, J. Graph Theory 43 (2003) 150–155.
[27] A. Takahashi, S. Ueno, Y. Kajitani, Minimal forbidden minors for the family of graphs with proper-path-

width at most two, IEICE Trans. Fundamentals E78-A (1995) 1828–1839.
[28] D.M. Thilikos, Algorithms and obstructions for linear-width and related search parameters, Discrete Appl.

Math. 105 (2000) 239–271.
[29] R. Thomas, Tree-decompositions of graphs, Lecture Notes, School of Mathematics, Georgia Institute of

Technology, Atlanta, Georgia 30332, USA, 1996.

