
DOI: 10.1007/s00224-007-2007-x

Theory Comput. Systems 41, 381–393 (2007) Theory of
Computing

Systems
© 2007 Springer Science+Business Media, Inc.

Exact Algorithms for Graph Homomorphisms∗

Fedor V. Fomin,1 Pinar Heggernes,1 and Dieter Kratsch2

1Department of Informatics, University of Bergen,
N-5020 Bergen, Norway
{fomin,pinar}@ii.uib.no

2Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine,
57045 Metz Cedex 01, France
kratsch@univ-metz.fr

Abstract. Graph homomorphism, also called H -coloring, is a natural generaliza-
tion of graph coloring: There is a homomorphism from a graph G to a complete
graph on k vertices if and only if G is k-colorable. During recent years the topic of
exact (exponential-time) algorithms for NP-hard problems in general, and for graph
coloring in particular, has led to extensive research. Consequently, it is natural to ask
how the techniques developed for exact graph coloring algorithms can be extended
to graph homomorphisms. By the celebrated result of Hell and Nešetřil, for each
fixed simple graph H , deciding whether a given simple graph G has a homomor-
phism to H is polynomial-time solvable if H is a bipartite graph, and NP-complete
otherwise.

The case where H is the cycle of length 5, is the first NP-hard case different
from graph coloring. We show that for an odd integer k ≥ 5, whether an input graph
G with n vertices is homomorphic to the cycle of length k, can be decided in time
min

{(n
�n/k�

)
, 2n/2

}·nO(1). We extend the results obtained for cycles, which are graphs
of treewidth two, to graphs of bounded treewidth as follows: if H is of treewidth at
most t , then whether input graph G with n vertices is homomorphic to H can be
decided in time (t + 3)n · nO(1).

∗ This work is supported by the AURORA mobility programme for research collaboration between France
and Norway. A preliminary version was presented at the 15th International Symposium on Fundamentals of
Computation Theory - FCT 2005.

382 F. V. Fomin, P. Heggernes, and D. Kratsch

1. Introduction

Given two undirected graphs G and H , a homomorphism from G to H is a mapping
ϕ: V (G) −→ V (H) that satisfies the following: {x, y} ∈ E(G) �⇒ {ϕ(x), ϕ(y)} ∈
E(H) for every x, y ∈ V (G). When there is a homomorphism from G to H we say that
G is homomorphic to H . The problem of deciding whether graph G is homomorphic to
graph H is called HOM(G, H). This problem can be seen as labeling, or coloring, the
vertices of G by the vertices of H , and this is why it is often also called the H -coloring
problem. Note that for the special case when H is a complete graph on k vertices, G is
homomorphic to H if and only if the chromatic number of G is at most k. We refer to
the recent book by Hell and Nešetřil [13] for a thorough introduction to the topic.

For graph classes G and H we denote by HOM(G,H) the problem of deciding
whether a given graph G ∈ G is homomorphic to a given graph H ∈ H. If G consists
of a single graph G, orH consists of a single graph H , we use G and H instead of {G}
and {H}, for simplicity of notation. If G or H is the class of all graphs then they are
denoted by the placeholder “ ”. The computational complexity of graph homomorphism
was studied from different “sides”.

“Left Side” of Homomorphisms. For any fixed graph G, HOM(G,) is trivially solvable
in polynomial time. Several authors independently showed that HOM(G,) is solvable
in polynomial time if all graphs in G have bounded treewidth [7], [8], [11]. In this case
polynomial-time algorithms can be obtained even for counting homomorphisms [8].
Grohe, concluding from the results of Dalmau et al. [7], showed that HOM(G,) is
solvable in polynomial time if and only if the cores of all graphs in G have bounded
treewidth (under some parameterized complexity theoretic assumptions) [11].

“Right Side” of Homomorphisms. Hell and Nešetřil showed that for any fixed simple
graph H , the problem HOM(, H) is solvable in polynomial time if H is bipartite, and
NP-complete if H is not bipartite [12]. This resolves the complexity classification of the
whole right side of homomorphisms, and provides a P vs. NP dichotomy. Consequently
the study of the right side of homomorphisms for undirected graphs almost stopped,
and research has been mainly concentrated on finding polynomial-time algorithms for
special graph classes from the “left side”.

On the other hand extensive work has been done recently for graph coloring, a
special case of graph homomorphism, resulting in faster and faster exponential-time
algorithms. The recent best bounds are an O(1.3289n)-time algorithm for 3-coloring
[4], anO(1.7504n)-time algorithm for 4-coloring [5], anO(2.1020n)-time algorithm for
5-coloring [6], and an O(2.1809n)-time algorithm for 6-coloring [6]. For k ≥ 7, the
k-coloring problem can be solved in time O(2.4023n) [5].

Despite considerable progress on exponential-time algorithms for graph coloring
problems, not much is known on exponential-time algorithms for the graph homomor-
phism problem. By the result of Hell and Nešetřil, HOM(, H) is polynomial-time solv-
able when H is bipartite. Another ‘easy’ case is when χ(H) = ω(H), i.e., the chromatic
number of H is equal to its maximum clique size. It is not hard to show that in this case
the HOM(, H) problem is equivalent to the k-coloring problem with k = χ(H) (see
Lemma 1). Consequently the HOM(, H) problem is equivalent to the χ(H)-coloring
problem for all perfect graphs H .

Exact Algorithms for Graph Homomorphisms 383

All this motivates us to study exact algorithms for HOM(, H) for fixed graphs
H satisfying χ(H) > ω(H). Thus chordless cycles of odd length are the first natural
candidates to study exponential-time algorithms for graph homomorphisms. For the
cycle C3 on three vertices HOM(,C3) is equivalent to 3-coloring, but already for the
cycle C5 on five vertices no better deterministic algorithm than the brute-force O∗(5n)-
time algorithm has been known. (Throughout this paper, in addition to the standard
big-Oh notation O, we sometimes use a modified big-Oh notation O∗ that suppresses
all polynomially bounded factors. For functions f and g we write f (n) = O∗(g(n)) if
f (n) = g(n) · nO(1).)

Our Results. In this paper we initiate the study of exponential time complexity of graph
homomorphism problems beyond graph coloring. We show that for an input graph G on
n vertices and an odd integer k ≥ 5, HOM(,Ck) is solvable inO∗

(
min

{(n
�n/k�

)
, 2n/2

})

time, where Ck is the cycle on k vertices. In particular, the running time of our algorithm
is O∗(2n/2) when k ∈ {5, 7, 9}, and O(αn) with α <

√
2 for all k ≥ 11. It is interesting

to note that, for k ≥ 13, our algorithm for homomorphism to Ck is faster than the fastest
known 3-coloring algorithm. Hence the natural conjecture that HOM(,Ck) is at least
as difficult as 3-coloring for every odd k ≥ 5 might be mistaken. Our algorithms use
2-SAT expressions to search for suitable extensions of an initial partial homomorphism:
a maximal independent set of G to be mapped to a carefully chosen subset of vertices of
H . To enumerate all possible preliminary choices we use known algorithms to enumerate
all maximal independent sets.

Treewidth and tree decompositions are of great importance in structural graph the-
ory and graph algorithms. Many NP-hard graph problems become polynomial-time or
even linear-time solvable when the input is restricted to graphs of bounded treewidth.
We refer to [3] for a survey on this parameter. It seems that the treewidth can be a useful
tool to design exponential-time algorithms as well. We use dynamic programming tech-
niques similar to bounded treewidth techniques to decide whether an input graph G is
homomorphic to a graph H in time O∗((t + 3)|V (G)|), where H is a graph of treewidth
at most t and a tree decomposition of H of width at most t is supposed to be known in
advance.

2. Preliminaries

We consider undirected and simple graphs, where V (G) denotes the set of vertices and
E(G) denotes the set of edges of a graph G. We denote the number of vertices |V (G)|
of (input) graph G by n, if there is no ambiguity. For a given subset S of V (G), G[S]
denotes the subgraph of G induced by S, and G − S denotes the graph G[V (G)\S].
A vertex set S of G is an independent set if G[S] is a graph with no edges, and S is a
clique if G[S] is a complete graph. The set of neighbors of a vertex v in G is denoted
by NG(v), and the set of neighbors of a vertex set S is NG(S) =

⋃
v∈S NG(v)\S. A

connected component of a graph G is the vertex set of a maximal connected subgraph of
G. A subset of vertices S ⊆ V (G) is a separator of the graph G if G− S is disconnected.

The complete graph on k vertices is denoted by Kk and the chordless cycle on k
vertices is denoted by Ck . A coloring of a graph G is a function assigning a color to each

384 F. V. Fomin, P. Heggernes, and D. Kratsch

vertex of G such that adjacent vertices have different colors. A k-coloring of a graph
uses at most k colors, and the smallest number of colors in a coloring of G is denoted
by χ(G). The maximum size of a clique in a graph G is denoted by ω(G)

Given a mapping ϕ: V (G) −→ V (H) and a set U ⊆ V (H), we denote by ϕ−1(U)
the set of all those vertices of G that are mapped to a vertex of U .

The notion of treewidth was introduced by Robertson and Seymour [17]. A tree
decomposition of a graph G = (V, E) is a pair ({Xi : i ∈ I }, T), where {Xi : i ∈ I } is a
collection of subsets of G (these subsets are called bags) and T = (I, F) is a tree such
that the following three conditions are satisfied:

1.
⋃

i∈I Xi = V (G).
2. For all {v,w} ∈ E(G), there is an i ∈ I such that v,w ∈ Xi .
3. For all i, j, k ∈ I , if j is on a path from i to k in T then Xi ∩ Xk ⊆ X j .

The width of a tree decomposition ({Xi : i ∈ I }, T) is maxi∈I |Xi | − 1. The treewidth of
a graph G, denoted by tw(G), is the minimum width over all its tree decompositions.
A tree decomposition of G of width tw(G) is called an optimal tree decomposition
of G.

For the sake of completeness, we conclude this section with a proof of the following
lemma which was mentioned in the Introduction.

Lemma 1. Let H be a graph such that χ(H) = ω(H). Then for any graph G the
following are equivalent:

• There is a homomorphism from G to H .
• G is colorable in χ(H) colors.

Proof. Let k = χ(H). If G is homomorphic to H , then G is trivially k-colorable since
H is k-colorable. If G is k-colorable, then G is homomorphic to Kk . Since H contains
a clique of size k, we have that the vertices of G can be mapped to the vertices of this
clique, and the result follows.

3. Homomorphisms to Odd Cycles

Recall that HOM(,Ck) is solvable in polynomial time if k is even, and NP-complete if
k is odd. We study the case when k ≥ 5 is an odd integer. Throughout the remainder of
this section we assume the input graph G to be nonbipartite, since every bipartite graph
is homomorphic to K2, and thus also homomorphic to Ck for all k ≥ 3.

For a given graph G and a vertex subset S ⊆ V (G), we define the levels of breadth-
first search starting at S as follows:

• L0(S) = S;
• Li (S) = NG(Li−1(S))\

⋃
j<i L j (S), for i > 0.

The following technical lemma is used in the proof of the main results of this
section.

Exact Algorithms for Graph Homomorphisms 385

Lemma 2. Let k ≥ 3 be an odd integer. A nonbipartite graph G = (V, E) is homo-
morphic to Ck if and only if there is a set S ⊆ V such that

• |S| ≤ |V (G)|/k,
• the levels L0(S), L1(S), L2(S), . . . , L�k/2�−1(S) are independent sets in G,
• the graph G − S is bipartite, and
• there is a coloring of the vertices of G− S in red and blue such that every pair of

adjacent vertices in
⋃�k/2�

i=1 Li (S) from different levels have the same color, and
every pair of adjacent vertices in

⋃
i≥�k/2� Li (S) have different colors.

Proof. Let us choose a vertex v ∈ V (Ck) and let R = (v, r1, r2, . . . , r�k/2�) and
B = (v, b1, b2, . . . , b�k/2�) be the two edge disjoint paths in Ck of length �k/2� starting
at v.

Let G be homomorphic to Ck . Observe that every proper subgraph of Ck is bipartite,
so there is a homomorphism from G to a proper subgraph of Ck only if G is bipartite. Thus,
since G is not bipartite, every homomorphism from G to Ck is surjective. Consequently,
there is a homomorphism τ from G to Ck such that |τ−1(v)| ≤ |V (G)|/k. We define
S = τ−1(v). We then choose a homomorphism ϕ: G −→ Ck that minimizes

∑

1≤i≤�k/2�

|ϕ−1(ri)| + |ϕ−1(bi)|
i

(1)

subject to ϕ−1(v) = S.
By (1), every vertex of ϕ−1(ri), i ∈ {1, 2, . . . , �k/2� − 1}, is adjacent in G to a

vertex of ϕ−1(ri−1). In fact, suppose on the contrary that there is a vertex x ∈ ϕ−1(ri)

that is not adjacent in G to any vertex of ϕ−1(ri−1). Then there is a homomorphism ϕ

from G to Ck such that ϕ(y) = ϕ(y) for all y �= x , and ϕ(x) = ri+2 if i ≤ �k/2� − 2
and ϕ(x) = b�k/2� if i = �k/2� − 1. However, the existence of such a homomorphism
contradicts (1). By similar arguments, every vertex of ϕ−1(bi) i ∈ {1, 2, . . . , �k/2�− 1}
is adjacent to a vertex of ϕ−1(bi−1).

Thus for every i ∈ {1, 2, . . . , �k/2�− 1}, the vertices of ϕ−1(ri)∪ϕ−1(bi) form the
level Li (S) of breadth-first search starting at S in G. Furthermore, each of these sets is
an independent set. The graph G − S is bipartite because it is homomorphic to a path.
For i ∈ {1, 2, . . . , �k/2�}, we color the vertices of ϕ−1(ri) in red and the vertices of
ϕ−1(bi) in blue. Such a coloring satisfies the conditions of the lemma.

Now suppose that there is a vertex set S ⊆ V (G) and a breadth-first search starting
at S satisfying the conditions of the lemma. We construct a homomorphism from G to
Ck by mapping S to v. For i ∈ {1, 2, . . . , �k/2� − 1}, all red vertices from level Li (S)
are mapped to ri and all blue vertices from level Li (S) are mapped to bi . For i ≥ �k/2�,
red vertices from level Li (S) are mapped to r�k/2� and blue vertices from level Li (S) are
mapped to b�k/2�.

Lemma 3. For any odd integer k ≥ 5, HOM(,Ck) can be solved in timeO∗
((n
�n/k�

))
.

Proof. By Lemma 2, a nonbipartite graph G is homomorphic to Ck if and only if there
is a set S ⊆ V (G) satisfying the conditions of the lemma.

386 F. V. Fomin, P. Heggernes, and D. Kratsch

For a given (independent) set S, one can decide whether S satisfies the conditions
of Lemma 2 as follows:

1. Find the levels L0(S), L1(S), L2(S), . . . , Lm(S) of breadth-first search at S. If
all sets L0(S), L1(S), L2(S), . . . , L�k/2�−1(S) are independent sets in G proceed
to step 2.

2. Check if G − S is bipartite. If it is bipartite proceed to step 3.
3. To decide whether there is a coloring of the vertices of G − S which meets the

condition of Lemma 2, we reduce the problem to 2-SAT as follows. We encode
every vertex x of G − S by a boolean variable x such that x = TRUE means that
vertex x is colored red, and variable x = FALSE means that vertex x is colored
blue. Every edge {x, y} between Li (S) and Li+1(S), for each 1 ≤ i ≤ �k/2�−1,
is encoded by two clauses (x̄∨ y) and (x∨ ȳ). This forces vertex x and vertex y to
receive the same color. Every edge {u, v} with both endpoints in

⋃
i≥�k/2� Li (S)

is encoded by two clauses (u ∨ v) and (ū ∨ v̄). This forces vertex u and vertex
v to receive opposite colors. The corresponding 2-SAT formula is satisfiable if
and only if S satisfies the conditions of Lemma 2 and there is a homomorphism
from G to Ck that can be derived from S.

Consequently, for each given set S, constructing a homomorphism from G to
Ck using S or concluding that S cannot be used can be done by solving the corre-
sponding 2-SAT formula, and thus requires linear time (see [1]). There are less than
(n/k)

(n
�n/k�

)
different subsets S of size at most n/k. Hence the total running time is

O∗(
(n
�n/k�

)
).

Our next algorithm improves upon the running time of the previous one for k ∈
{5, 7, 9}. First, we need the following algorithmic version of the result from [14] which
is due to Byskov [5].

Proposition 4 [5]. All maximal independent sets in a triangle-free graph on n vertices
can be listed in time O∗(2n/2).

Lemma 5. For any odd integer k ≥ 5, HOM(,Ck) can be solved in time O∗(2n/2) =
O(1.41422n).

Proof. We may assume that G = (V, E) is not bipartite. Furthermore Ck is 3-colorable
and triangle-free for every odd integer k ≥ 5. Thus G is homomorphic to Ck implies
that G is 3-colorable and triangle-free.

Let v1, v2, v3, . . . , vk−1, vk be the vertices of Ck , where vi is adjacent to vi+1 for
1 ≤ i ≤ k−1, and vk is adjacent to v1. We choose the following maximal independent set
of Ck : U = {v2, v4, . . . , vk−3, vk−1}. Suppose there is a homomorphism ϕ: G −→ Ck .
Then ϕ−1(U) is an independent set of G. We claim that in this case there is even a
homomorphism ψ : G −→ Ck such that ψ−1(U) is a maximal independent set of G.
Let x ∈ V (G)\ϕ−1(U) such that {x} ∪ ϕ−1(U) is an independent set of G, and let y be
a neighbor of x in G. Then {x, y} ∈ E(G) implies {ϕ(x), ϕ(y)} = {v1, vk}. Thus the
following modification of ϕ is a homomorphism from G to Ck . Let I ′ ⊆ V (G)\ϕ−1(U)

Exact Algorithms for Graph Homomorphisms 387

such that I = I ′∪ϕ−1(U) is a maximal independent set of G. We define a homomorphism
ψ : G −→ Ck such that ψ−1(U) = I ′. For every vertex v ∈ V (G)\I ′, we let ψ(v) =
ϕ(v). For every vertex v ∈ I ′, we let ψ(v) = v2 if ϕ(v) = vk , and we let ψ(v) = vk−1

if ϕ(v) = v1.
The goal of our algorithm is to test, for every maximal independent set I of G,

whether there is a homomorphism ψ : G −→ Ck such that ψ−1(U) = I . By the above
claim, ψ must exist if G is homomorphic to Ck . For every maximal independent set
I in G the test is done as follows: First, if G − I is not bipartite, then reject I since
a nonbipartite graph cannot be homomorphic to Ck − U which consists of a K2 and
(k − 1)/2 isolated vertices. If G − I is bipartite, let A be the set of isolated vertices of
G − I , and let J be the set of vertices in connected components of G − I that have at
least two vertices. Clearly V (G) = I ∪ A ∪ J . Furthermore, since G is not bipartite,
J �= ∅.

Every vertex of J must be mapped to v1 or vk since each connected component of
G[J] has at least two vertices. Then every vertex of N (J)must be mapped to v2 or vk−1.
Clearly N (J) ⊆ I . Following Lemma 2, we map the vertices of G in a breadth-first search
manner starting from J , with levels L0(J) = J , L1(J) = N (J), L2(J), . . . , L(k−1)/2(J).
At any stage we consider only the vertices that have to be mapped due to adjacencies in
G to already mapped vertices. Therefore the vertices of L2(J) must be mapped to v3 or
vk−2. Clearly L2(J) ⊆ A. The vertices of L3(J) must be mapped to v4 or vk−3, . . . , the
vertices of L(k−3)/2(J)must be mapped to v(k−1)/2 or v(k+3)/2, and finally the vertices of
L(k−1)/2(J) must be mapped to v(k+1)/2. Now, there may be some remaining vertices of
G that are not assigned to any vertex of Ck by the above procedure. If (k + 1)/2 is even,
then all remaining vertices should be mapped to v(k−1)/2 or v(k+3)/2 if they belong to A,
and to v(k+1)/2 if they belong to I . If (k + 1)/2 is odd, then we should do the reverse:
the remaining vertices should be mapped to v(k+1)/2 if they belong to A and to v(k−1)/2

or v(k+3)/2 if they belong to I . Consequently, in the end, vertices of A ∪ J are mapped
to V (Ck)\U , and vertices of I are mapped to U .

To check whether our partial mapping can be transformed into a homomorphism we
use a 2-SAT formula. For all vertices of G except those mapped to v(k+1)/2 there is a choice
between two vertices of the host graph Ck . Furthermore, adjacent vertices of G must be
mapped to adjacent vertices of Ck . For every vertex x of G with ϕ(x) ∈ {vi , vk−i+1} we
define a boolean variable x such that variable x = TRUE means that vertex x is mapped
to vi with i = 1, 2, . . . , (k − 1)/2, and variable x = FALSE means that vertex x is
mapped to vi with i = (k + 3)/2, (k + 5)/2, . . . , k. For each edge {x, y} ∈ E(G[J]),
either ϕ(x) = v1 and ϕ(y) = vk , or vice versa. Otherwise, for each edge {x, y} ∈ E(G)
with {x, y} �⊆ J , either ϕ(x) = vi and ϕ(y) = vj with i, j ∈ {1, 2, . . . , (k − 1)/2},
or ϕ(x) = vi and ϕ(y) = vj with i, j ∈ {(k + 3)/2, . . . , k}. Therefore, for each edge
{x, y} ∈ E(G[J]), we insert the following two clauses in our 2-SAT formula: (x̄ ∨ y)
and (x ∨ ȳ). For all other edges {x, y} ∈ E(G), i.e., at least one of x and y does not
belong to J , we insert the following two clauses in our 2-SAT formula: (x̄ ∨ ȳ) and
(x ∨ y).

The corresponding 2-SAT formula is satisfiable if and only if there is a homo-
morphism ϕ from G to Ck such that ϕ−1(U) = I . Consequently, for each maximal
independent set I of G, constructing a homomorphism from G to Ck using I or conclud-
ing that I cannot be used can be done by solving the corresponding 2-SAT formula, and

388 F. V. Fomin, P. Heggernes, and D. Kratsch

thus requires linear time (see [1]). By Proposition 4, the number of maximal independent
sets in a triangle free graph is at most 2n/2 and all maximal independent sets of a triangle
free graph can be enumerated in time O∗(2n/2). Thus the overall running time of our
algorithm is O∗(2n/2).

The algorithm of Lemma 3 has running timeO(1.64939n)when k = 5,O(1.50700n)

when k = 7, andO(1.41742n) when k = 9, and its running time isO(αn) with α <
√

2
for all k ≥ 11. Hence the algorithm of Lemma 3 is faster for all k ≥ 11, and the
algorithm of Lemma 5 is faster for k ∈ {5, 7, 9}. Combining Lemmata 3 and 5 we obtain
the following theorem.

Theorem 6. For any odd integer k ≥ 5, HOM(,Ck) can be solved in time
O∗

(
min

{(n
�n/k�

)
, 2n/2

})
.

To conclude this section, we consider a natural extensions of cycles. Let Wk be a
wheel obtained from Ck by adding a vertex u adjacent to all vertices v1, v2, . . . , vk of
Ck . If k is even then χ(Wk) = ω(Wk) = 3, and thus HOM(,Wk) is equivalent to the
well-studied 3-coloring problem by Lemma 1.

Hence we concentrate on HOM(,Wk) for odd wheels, and we assume that k ≥ 5
be an odd integer.

There is an easy way to use the algorithms of Lemmata 3 and 5 as building blocks
to obtain exponential-time algorithms for the HOM(,Wk) problem, where k ≥ 5 is an
odd integer.

Corollary 7. For any odd integer k ≥ 5, HOM(,Wk) can be solved in time
O∗

(
3n/3 ·min

{
2n/2,

(n
�n/k�

)})
.

Proof. First we show that if the input graph G is homomorphic to Wk , then there is a
homomorphism ψ such that ψ−1(u) is a maximal independent set of G, and then we
show how to construct an algorithm using this property. To establish the property, note
that ϕ−1(u) is an independent set of G for any homomorphism ϕ: G → Wk . If ϕ−1(u)
is not a maximal independent set of G then take any maximal independent set I of G
such that ϕ−1(u) ⊆ I . Now we construct a new mapping ψ as follows: ψ(v) = u for all
v ∈ I and ψ(v) = ϕ(v) for all v ∈ V \I , which is a homomorphism since u is adjacent
to all other vertices in Wk .

Thus our algorithm simply checks whether there is a maximal independent set I of
G such that G − I is homomorphic to Ck and uses an algorithm of Lemmata 3 and 5 to
verify whether G− I is homomorphic to Ck . Finally taking into account that a graph on n
vertices has at most 3n/3 maximal independent sets and that these sets can be enumerated
in time O∗(3n/3) [16], we obtain the claimed upper bound for the running time.

It is an interesting question whether faster algorithms solving HOM(,Wk) can be es-
tablished, and whether such algorithms must use an algorithm solving HOM(,Ck) as
subroutine.

Exact Algorithms for Graph Homomorphisms 389

4. Homomorphisms to Graphs of Bounded Treewidth

A tree decomposition ({Xi : i ∈ I }, T) of a graph G is said to be nice if a root of T can
be chosen such that every node i ∈ I of T has at most two children in the rooted tree T ,
and

1. if a node i ∈ I has two children j1 and j2 then Xi = X j1 = X j2 (i is called a join
node),

2. if a node i ∈ I has one child j , then either Xi ⊂ X j and |Xi | = |X j | − 1 (i is
called a forget node), or X j ⊂ Xi and |X j | = |Xi | − 1 (i is called an introduce
node),

3. if a node i ∈ I is a leaf of T , then |Xi | = 1 (i is called a leaf node).

Given a nice tree decomposition ({Xi : i ∈ I }, T), we denote by Ti the subtree of T
rooted at node i , for each i ∈ I . The parent of node i is denoted by p(i).

It is known that every graph G of treewidth at most t has a nice tree decomposition
({Xi : i ∈ I }, T) of width t such that |I | = O(t · n). Furthermore, given a tree decom-
position of G of width t , a nice tree decomposition of G of width t can be computed in
time O(n) [15].

There is anO(1.8899n)-time algorithm to compute the treewidth and an optimal tree
decomposition for any given graph [10], [18]. There is also a well-known linear-time
algorithm to compute the treewidth and an optimal tree decomposition for graphs of
bounded treewidth [2].

We now present an algorithm to decide whether for given graphs G and H there is
an homomorphism from G to H . The algorithm is based on dynamic programming on
a nice optimal tree decomposition of H .

Theorem 8. There is anO∗((tw(H)+3)|V (G)|) time algorithm taking as input a graph
G, a graph H , and an optimal tree decomposition of H , that decides whether G is
homomorphic to H and produces a homomorphism ϕ: G −→ H if there is one.

Proof. Let n = |V (G)| and t = tw(H). First our algorithm transforms the given
optimal tree decomposition of H into a nice tree decomposition ({Yi : i ∈ J },U) of
width t . Then we modify this nice tree decomposition as follows. For every nonroot
node i ∈ J of tree U we add a new nochange node i ′ as the parent of i , and we let the
old parent of i in tree U become the parent of i ′ in the new tree. We let Xi ′ = Xi = Yi .
In this way we obtain a new tree decomposition ({Xi : i ∈ I }, T) of H of width t . In the
new tree T , the parent of every node of U is a nochange node, which is more convenient
for our following argumentation. Furthermore, the bags of the parent and of a child of
node i in T differ by at most one vertex.

We define two auxiliary subsets of vertices of H for each node i ∈ I of T : Vi =⋃
j∈V (Ti)

X j and X̃i = Xi ∩ X p(i). Notice that X̃i = Xi if p(i) is an introduce, join, or

nochange node, and that X̃i = Xi\{u} if p(i) is a forget node with X p(i) = Xi\{u}. For
r , the root of T , we define X̃r = Xr .

The following simple observation is essential for our algorithm.

390 F. V. Fomin, P. Heggernes, and D. Kratsch

Observation. Letϕ: G −→ H be a homomorphism, and let X ⊆ V (H) be a separator
of H such that for each connected component D of H − X , V (G) �= ϕ−1(D ∪ X). Then
ϕ−1(X) is a separator of G. Furthermore, for each connected component D of H − X ,
the set ϕ−1(D) is a connected component of G − ϕ−1(X).

Proof. Vertices mapped to different components D and D′ of H − X cannot be ad-
jacent, and thus there are no edges of G with one extremity in ϕ−1(D) and the other
in ϕ−1(D′). Consequently, ϕ−1(D) �= ∅ and ϕ−1(D′) �= ∅ implies that G − ϕ−1(X) is
disconnected, and its components are all of the form ϕ−1(D), where D is a component
of H − X .

Our algorithm computes for each node i ∈ I of T in a bottom-up fashion all
characteristics of i , defined as follows.

Definition. A tuple (S; (v1, S1), (v2, S2), . . . , (vli , Sli); Q; i) is a characteristic of node
i ∈ I of T if the following conditions are satisfied:

1. S ⊆ V (G), the sets S1, S2, . . . , Sli (some of which might be empty) are disjoint
subsets of S and

⋃li
j=1 Sj = S.

2. X̃i = {v1, v2, . . . , vli }.
3. If X̃i is a separator of H then Q ⊆ V (G)\S is a (possibly empty) union of

connected components of G − S. Otherwise either Q = ∅, or Q = V (G)\S.
4. There is a homomorphism ϕ from G[S ∪ Q] to H [Vi] such that ϕ−1(X̃i) = S

and for every j ∈ {1, 2, . . . , li }, ϕ−1(vj) = Sj .

Notice that characteristics are defined in such a way that G is homomorphic to H if
and only if there is at least one characteristic for the root r of T satisfying S∪Q = V (G).
In fact, any characteristic of a node i satisfying S ∪ Q = V (G) corresponds to a
homomorphism ϕ: G −→ H , and thus the following algorithm may terminate after
discovering such a characteristic.

For each forget, introduce, nochange, and join node i ∈ I of T , our algorithm
computes by dynamic programming all characteristics (S; (v1, S1), . . . , (vli , Sli); Q; i)
of node i using for each of i’s children the set of all its characteristics. Included
is a cleaning step to be carried out after all characteristics of a node i have been
computed, based on the following observation. If (S; (v1, S1), . . . , (vli , Sli); Q′; i) and
(S; (v1, S1), . . . , (vli , Sli); Q′′; i) are characteristics of i then (S; (v1, S1), . . . , (vli , Sli);
Q′ ∪ Q′′; i) is also a characteristic of i , and we may discard the first two characteristics.
Thus in the cleaning step for all tuples (S; (v1, S1), . . . , (vli , Sli)) the largest set Q for
which (S; (v1, S1), . . . , (vli , Sli); Q; i) is a characteristic of i is stored and all other such
tuples are deleted. Consequently, after the cleaning step the set of all characteristics of
node i contains for each (S; (v1, S1), . . . , (vli , Sli)) at most one characteristic.

Consequently the number of characteristics of a node i of T (after cleaning) is at
most

∑n
�=0

(n
�

) · (t + 1)� = (t + 2)n since |X̃�| ≤ t + 1.
Now we describe how the set of all characteristics can be computed from the char-

acteristics of the children for the different types of nodes in T .

Exact Algorithms for Graph Homomorphisms 391

Leaf Node. Let i be a leaf node, thus Xi = {u} for some vertex u of H . For a subset
S of V (G), there is a homomorphism ϕ from G[S] to H [Vi] with Vi = {u} if and only
if ϕ−1({u}) = S, and hence S is an independent set. Furthermore, (S; (u, S); ∅; i) is a
characteristic of the leaf node i if and only if S is an independent set of G.

Introduce Node. Let i be an introduce node with child j . Thus Xi = X j ∪ {u} for
some vertex u ∈ V (H)\Vj , and consequently X̃ j = X j . Notice that the parent of i is a
nochange node, and thus Xi = X p(i) and X̃i = X̃ j ∪ {u}.

All characteristics of node i can be obtained by extending characteristics (S; (v1, S1),

. . . , (vlj , Slj); Q; j)of node j . Since X̃i = X̃ j∪{u}, each characteristic of i obtained from
(S; (v1, S1), . . . , (vlj , Slj); Q; j) is of the form (S ∪ S′; (v1, S1), . . . , (vlj , Slj), (u, S′);
Q; i) where S′ ⊆ V (G)\(S ∪ Q) is an independent set in G, and for all x ∈ NG[S](S′),
ϕ(x) ∈ NH (u). These conditions can be checked in polynomial time. Finally one charac-
teristic of j extends to at most 2n−|S| characteristics of i , since S′ must be an independent
set of G − S. Therefore we compute at most

∑n
�=0

(n
�

) · (t + 1)� · 2n−� = (t + 3)n

characteristics to obtain the set of all characteristics of an introduce node.

Forget Node. Let i be a forget node with child j . Thus Xi = X j\{u} for some vertex
u ∈ X j , and consequently X̃ j = Xi . The parent of i is a nochange node, and thus
Xi = X p(i) and X̃i = X̃ j .

X̃i = X̃ j implies that each characteristic of i can be obtained directly from a
characteristic of j by simply replacing j with i . Hence (S; (v1, S1), . . . , (vlj , Slj); Q; j)
is a characteristic of j if and only if (S; (v1, S1), . . . , (vlj , Slj); Q; i) is a characteristic
of i .

Nochange Node. Let i be nochange node with child j . Thus Xi = X j . If the parent of i
is an introduce or join node, then X̃i = X̃ j . In this case (S; (v1, S1), . . . , (vlj , Slj); Q; j)
is a characteristic of j if and only if (S; (v1, S1), . . . , (vlj , Slj); Q; i) is a characteristic
of i . Thus each characteristic of i can be obtained by one characteristic of j .

If the parent of i is a forget node then X p(i) = Xi\{u} for some vertex u ∈ Xi , and
thus X̃i = X̃ j\{u}. Now X̃i = X̃ j\{u} implies that each characteristic of i can be obtained
from a characteristic of j , say (S; (v1, S1), . . . , (vlj , Slj); Q; j), by removing the pair
(vq , Sq) where u = vq and replacing Q by Q′ = Q ∪ Sq , obtaining (S; (v1, S1), . . . ,

(vq−1, Sq−1), (vq+1, Sq+1), . . . , (vli , Sli); Q′; i).
Thus again each characteristic of j extends into one characteristic of i .

Join Node. Let i be a join node with children j1 and j2; thus Xi = X j1 = X j2 . The
parent of i is a nochange node, thus X̃i = X̃ j1 = X̃ j2 = Xi .

Let (S′; (v1, S′1), . . . , (vlj1
, S′lj1

); Q′; j1) be a characteristic of j1, and let
(S′′; (v1, S′′1), . . . , (vlj2

, S′′lj2
); Q′′; j2) be a characteristic of j2. Both extend into a charac-

teristic of node i if li = lj1 = lj2 and S′k = S′′k for all k = 1, 2, . . . , j1, and thus S′ = S′′.
In this case (S′; (v1, S′1), . . . , (vli , S′li

); Q; i) is a characteristic of i if Q = Q′ ∪ Q′′ and
Q′ ∩ Q′′ = ∅, and there is no edge between a vertex of Q′ and a vertex of Q′′ in G.

Note that by the cleaning step for each tuple (S′; (v1, S′1), . . . , (vli , S′li
)) there is at

most one such characteristic for j1, and thus Q′ is unique, and there is at most one such
characteristic for j2, and thus Q′′ is unique. Hence at most one characteristic of i will be

392 F. V. Fomin, P. Heggernes, and D. Kratsch

obtained for each choice of the set S ⊆ V (G) and each partition of S into at most t + 1
subsets. Therefore we compute at most

∑n
�=0

(n
�

) · (t + 1)� = (t + 2)n characteristics to
obtain the set of all characteristics of a join node.

Finally, notice that the number of nodes in the decomposition is a polynomial in
|V (H)|, and that suitable standard data structures, like binary search trees, guarantee
that the characteristics of a node can be stored such that find and insert operations can
be done in polynomial (logarithmic in the size of the stored data) time. Thus the overall
running time of our algorithm is O∗(tw(H)+ 3)|V (G)|).

5. Concluding Remarks and Open Questions

Consider the problem HOM(,). For input graphs graphs G and H , within which time
bound can be decided whether G is homomorphic to H? The trivial solution brings us a
O∗(|V (H)||V (G)|)-time algorithm. There is a faster algorithm through recent results on
the constraint satisfaction problem with at most two variables per constraint (2-CSP).
Williams [19] obtained an O(dn·ω/3)-time algorithm for 2-CSP, where ω < 2.376 is
the matrix product exponent over a ring, d is the domain size, and n is the number of
variables. As a consequence of Williams’ result, we have that HOM(,) can be solved
in time O(|V (H)|0.793|V (G)|).

In this paper we observed that if the right-side graph H is of bounded treewidth, then
HOM(, H) can be solved in time c|V (G)| · |V (H)|O(1) for some constant c (depending
on tw(H)). Can it be that the problem HOM(,) is solvable within running times

1. f (|V (H)|) · |V (G)|O(1) or
2. f (|V (G)|) · |V (H)|O(1)

for some computable function f : N → N? (Unfortunately) the answer to both questions
is negative up to some widely believed assumptions in complexity theory.

In fact, for question 1, an f (|V (H)|) · |V (G)|O(1)-time algorithm is also a poly-
nomial-time algorithm for the NP-complete 3-coloring problem implying that P = NP.
To answer question 2, we use the widely believed assumption from parameterized com-
plexity [9] that the p-clique problem is not fixed parameter tractable, or in other words,
that there is no algorithm for finding a clique of size p in a graph on n vertices in time
f (p) · nO(1) unless FPT =W[1], a collapse of a parameterized hierarchy which is con-
sidered to be very unlikely. Since Kp is homomorphic to H if only if H has a clique of
size at least p, the problem HOM(Kp,) problem is equivalent to finding a p-clique in
H . Therefore, the existence of an f (|V (G)|) · |V (H)|O(1)-time algorithm for HOM(,)
would imply that the p-clique problem is fixed parameter tractable, thus FPT =W[1].

Now our question is whether a running time ofO(|V (H)|ε|V (G)|) for some constant
ε > 0 is the best that we can hope for? Can the problem HOM(,) be solved, say by a
c|V (G)|+|V (H)|-time algorithm for some constant c?

References

[1] B. Aspvall, M. Plass, and R.E. Tarjan. A linear-time algorithm for testing the truth of certain quantified
Boolean formulas. Information Processing Letters 8 (1979), 121–123.

Exact Algorithms for Graph Homomorphisms 393

[2] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
Journal on Computing 25 (1996), 1305–1317.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer
Science 209 (1998), 1–45.

[4] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). Journal of Algorithms 54 (2005), 444–453.
[5] J. M. Byskov. Enumerating maximal independent sets with applications to graph colouring. Operations

Research Letters 32 (2004), 547–556.
[6] J. M. Byskov and D. Eppstein. An algorithm for enumerating maximal bipartite subgraphs. Unpublished.
[7] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction, bounded treewidth, and finite-

variable logics. In Principles and Practice of Constraint Programming (CP 2002), pp. 310–326. LNCS
2470. Springer-Verlag, Berlin, 2002.

[8] J. Diaz, M. Serna, and D. M. Thilikos. Counting H -colorings of partial k-trees. Theoretical Computer
Science 281 (2002), 291–309.

[9] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, New York, 1999.
[10] F. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth and min fill-in. In

Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP
2004), pp. 568–580. LNCS 3124. Springer-Verlag, Berlin, 2004.

[11] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other
side. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2003), pp. 552–561, 2003.

[12] P. Hell and J. Nešetřil. On the complexity of H -coloring. Journal of Combinatorial Theory Series B 48
(1990), 92–110.

[13] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press, Oxford, 2004.
[14] M. Hujter and Z. Tuza. The number of maximal independent sets in triangle-free graphs. SIAM Journal

on Discrete Mathematics 6 (1993), 284–288.
[15] T. Kloks. Treewidth. Computations and Approximation. LNCS 842. Springer-Verlag, Berlin, 1994.
[16] J.W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics 3 (1965), 23–28.
[17] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of

Algorithms 7 (1986), 309–322.
[18] Y. Villanger. Improved exponential-time algorithms for treewidth and minimum fill-in. In Proceedings

of the 7th Latin American Symposium (LATIN 2006), pp. 800–811. LNCS 3887. Springer-Verlag, Berlin,
2006.

[19] R. Williams. A new algorithm for optimal constraint satisfaction and its implications. Theoretical
Computer Science 348 (2005), 357–365.

Received October 12, 2005, and in final form March 14, 2006. Online publication May 11, 2007.

