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Abstract. We show that the treewidth and the minimum fill-in of an n-vertex graph can be
computed in time O(1.8899n). Our results are based on combinatorial proofs that an n-vertex graph
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1. Introduction. Exact exponential algorithms. The interest in exact (fast)
exponential algorithms dates back to Held and Karp’s paper [28] on the travelling
salesman problem in the early 1960s. We mention just a few examples: an O(1.4422n)
time algorithm for knapsack (Horowitz and Sahni [29]); O(1.2600n) and O(1.2109n)
time algorithms for independent set (Tarjan and Trojanowski [43] and Robson [40]);
3-coloring in time O(1.4422n) (Lawler [35]); and 3-SAT in time O(1.6181n) (Monien
and Speckenmeyer [36]).1

Nowadays, it is commonly believed that NP-hard problems cannot be solved in
polynomial time. For a number of NP-hard problems, we even have strong evidence
that they cannot be solved in subexponential time [30]. In order to obtain exact
solutions to these problems, the only hope is to design exact algorithms with good
exponential running times. In recent years there has been emerging interest in at-
tacking this question for concrete combinatorial problems: there are, for example,
an O∗(2n) time algorithm for coloring (Björklund and Husfeldt [5] and Koivisto
[34]); an O(1.3289n) time algorithm for 3-coloring (Beigel and Eppstein [3]); an
O(1.7325n) time algorithm for Max-Cut (Williams [45]); an algorithm for 3-SAT in
time O(1.4726n) (Brueggemann and Kern [15]); and an O(1.5129n) time algorithm
for dominating set (Fomin, Grandoni, and Kratsch [23]).

There are several explanations for the current revival of interest in fast exponential
algorithms within the algorithmic community.

• The design and analysis of exact algorithms leads to a better understanding
of NP-hard problems and initiates interesting new combinatorial and algo-
rithmic challenges.
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• For certain applications it is important to find exact solutions. With the
increased speed of modern computers, fast algorithms, even though they have
exponential running times in the worst case, may actually lead to practical
algorithms for certain NP-hard problems, at least for moderate instance sizes.

• Approximation algorithms, randomized algorithms, and different heuristics
are not always satisfactory. Each of these approaches has weak points such
as the necessity of exact solutions, difficulty of approximation, limited power
of the method itself, and many others.

• A reduction of the base of the exponential running time, say from O(2n) to
O(1.8n), increases the size of the instances solvable within a given amount of
time by a constant multiplicative factor. However, running a given exponential
algorithm on a faster computer can enlarge the mentioned size by only a
constant additive factor.

For overviews and introductions to the field see the recent surveys by Fomin,
Grandoni, and Kratsch [24], Iwama [31], Schöning [41], and Woeginger [46, 47].

Treewidth and minimum fill-in. Treewidth is one of the most basic parame-
ters in graph algorithms [7], and it plays an important role in structural graph theory.
It serves as one of the main tools in Robertson and Seymour’s graph minors project
[39]. Treewidth also plays a crucial role in parameterized complexity theory [19].
The minimum fill-in problem (also known as minimum chordal graph completion) has
important applications in sparse matrix computations and computational biology.

The problems of computing the treewidth and minimum fill-in of a graph are
known to be NP-hard even when the input is restricted to complements of bipartite
graphs (so called cobipartite graphs) [2, 48]. Despite the importance of treewidth al-
most nothing is known about how to cope with its intractability. For a long time the
best known approximation algorithm for treewidth had a factor logOPT [1, 11] (see
also [10]). Recently, Feige, Hajiaghayi, and Lee [21] obtained a factor

√
logOPT ap-

proximation algorithm for treewidth. Furthermore, it is an old open question whether
the treewidth can be approximated within a constant factor.

Treewidth is known to be fixed parameter tractable. Moreover, for any fixed k,
there is a linear time algorithm to compute the treewidth of graphs of treewidth at
most k (unfortunately there is a huge hidden constant in the running time) [6]. There
is a number of algorithms that, for a given graph G and integer k, either report that
the treewidth of G is at least k or produce a tree decomposition of width at most c1·k
in time c2

k ·nO(1), where c1, c2 are some constants (see, e.g., [1]). Fixed parameter
algorithms are known for the minimum fill-in problem as well [16, 32].

There exists an exact O(2.9512n) time algorithm that computes the treewidth of
a graph in polynomial space [9]. We are not aware of any previous work on exact
algorithms for the treewidth or minimum fill-in problem that solves the problem in
O(cn) time where c < 2. There are three relatively simple approaches resulting in
time O∗(2n) algorithms:

• One can reformulate the problems as problems of finding special vertex elimi-
nation orderings and then find an optimal permutation by using the dynamic
programming based technique as in the article of Held and Karp [28] for the
travelling salesman problem. The algorithm of Bodlaender et al. [9] also uses
this approach.

• With some modifications, the algorithm of Arnborg, Corneil, and Proskurowski
[2] for a given k deciding in time O(nk+1) if the treewidth of a graph is at most
k can be used to compute the treewidth (and similarly fill-in) in time O∗(2n).
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• Both problems can be solved by making use of the game theoretic approach,
by finding a specific path in the graph of possible states of a cop and robber
game [22].

However, it is not clear whether any of the aforementioned approaches can bring
us to an O(cn) time algorithm for some c < 2. Prior to our work, no exact algorithm
computing the treewidth or minimum fill-in of a graph in time O(cn) for some c < 2
was known.

Our results. In this paper we obtain the first exact algorithm computing the
treewidth in time O(cn) for c < 2. Additionally it can be adapted to solve a number
of other minimal triangulation problems such as minimum fill-in.

Our main result is an O(1.8899n) algorithm computing the treewidth and mini-
mum fill-in of a graph on n vertices. The algorithm can be regarded as dynamic pro-
gramming across partial solutions and is based on results of Bouchitté and Todinca
[13, 14]. The analysis of the running time is difficult and is based on combinatorial
properties of special structures in a graph, namely, potential maximal cliques, i.e.,
vertex subsets in a graph that can be maximal cliques in some minimal triangulation
of this graph. (See the next section for the definition.)

More precisely, first we modify the algorithm of Bouchitté and Todinca [13] which
computes the treewidth and minimum fill-in of a graph G with the given set ΠG of
all potential maximal cliques of G and then improve the analysis of its running time
to obtain an O∗(|ΠG|) time complexity. The most technical and difficult part of the
paper is the proof that all potential maximal cliques can be listed in time O(1.8899n).
Very roughly, our listing algorithm is based on the following combinatorial result:
every “large” potential maximal clique either is “almost” a minimal separator or can
be represented by a “small” vertex subset. The technique developed to prove this
combinatorial result can be interesting on its own.

For several special graph classes, for which both problems remain NP-complete,
we are able to prove that our approach guarantees significantly better bounds. To
exemplify this we show that, for the class of asteroidal triple (AT)-free graphs, the
number of minimal separators and the number of potential maximal cliques, and thus
the running time of our algorithm, is O∗(2n/2).

This paper is organized as follows. In section 2 we give basic definitions. In
section 3 we show how Bouchitté and Todinca’s approach can be used to compute
the treewidth and fill-in in time linear in the number of potential maximal cliques. In
section 4 we prove that every graph on n vertices has O(n·1.7087n) minimal separators.
In section 5 we show that an n-vertex graph contains O(1.8135n) potential maximal
cliques. This bound is of only combinatorial interest because it is not constructive, in a
sense, that we do not know how to use this bound to list all potential maximal cliques
in time O(1.8135n). In order to obtain a fast algorithm computing the treewidth and
the fill-in of a graph, we need an algorithm listing all potential maximal cliques. In
the remaining part of section 5 we derive the most difficult and important algorithmic
result of this paper, namely, that all potential maximal cliques of a graph can be listed
in time O(1.8899n). This result is based on a novel characterization of potential
maximal cliques. Combined with the results from section 3, this yields the main
result of the paper, that the treewidth and minimum fill-in can be computed in time
O(1.8899n). In section 6 we design a faster O∗(2n/2) time algorithm for AT-free
graphs. We conclude with open problems and final remarks in section 7.

2. Basic definitions. We denote by G = (V,E) a finite, undirected, and simple
graph with |V | = n vertices and |E| = m edges. For any nonempty subset W ⊆ V ,
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the subgraph of G induced by W is denoted by G[W ]. For S ⊆ V we often use G \ S
to denote G[V \ S]. The neighborhood of a vertex v is N(v) = {u ∈ V : {u, v} ∈ E},
N [v] = N(v) ∪ {v}, and for a vertex set S ⊆ V we set N(S) =

⋃
v∈S N(v) \ S,

N [S] = N(S)∪ S. A clique C of a graph G is a subset of V such that all the vertices
of C are pairwise adjacent. By ω(G) we denote the maximum clique-size of a graph G.

Treewidth and minimum fill-in of graphs. The notion of treewidth is due
to Robertson and Seymour [38]. A tree decomposition of a graph G = (V,E), denoted
by TD(G), is a pair (X,T ) in which T = (VT , ET ) is a tree and X = {Xi | i ∈ VT } is
a family of subsets of V such that

(i)
⋃

i∈VT
Xi = V ;

(ii) for each edge e = {u, v} ∈ E there exists an i ∈ VT such that both u and v
belong to Xi; and

(iii) for all v ∈ V , the set of nodes {i ∈ VT | v ∈ Xi} induces a connected subtree
of T .

The maximum of |Xi| − 1, i ∈ VT , is called the width of the tree decomposition. The
treewidth of a graph G, denoted by tw(G), is the minimum width taken over all tree
decompositions of G.

A graph H is chordal (or triangulated) if every cycle of length at least four has a
chord, i.e., an edge between two nonconsecutive vertices of the cycle. A triangulation
of a graph G = (V,E) is a chordal graph H = (V,E′) such that E ⊆ E′. H is a
minimal triangulation if, for any intermediate set E′′ with E ⊆ E′′ ⊂ E′, the graph
F = (V,E′′) is not chordal.

The following result is very useful for our algorithms.
Theorem 2.1 (folklore). For any graph G, tw(G) ≤ k if and only if there is a

triangulation H of G such that ω(H) ≤ k + 1.
Thus the treewidth of a graph G can be defined as the minimum of ω(H) − 1

taken over all triangulations H of G, of ω(H) − 1.
The minimum fill-in of a graph G = (V,E), denoted by mfi(G), is the smallest

value of |EH − E|, where the minimum is taken over all triangulations H = (V,EH)
of G.

In other words, computing the treewidth of G means finding a (minimal) trian-
gulation with the smallest maximum clique-size, while computing the minimum fill-in
means finding a (minimal) triangulation with the smallest number of edges. Clearly,
in both cases it is sufficient to consider only minimal triangulations of G, which makes
minimal separators and potential maximal cliques important tools of our algorithmic
approach.

Minimal separators. Minimal separators and potential maximal cliques are
the most important tools used in our proofs. Let a and b be two nonadjacent vertices
of a graph G = (V,E). A set of vertices S ⊆ V is an a, b-separator if a and b are in
different connected components of the graph G\S. A connected component C of G\S
is a full component (associated to S) if N(C) = S. S is a minimal a, b-separator of
G if no proper subset of S is an a, b-separator. We say that S is a minimal separator
of G if there are two vertices a and b such that S is a minimal a, b-separator. Notice
that a minimal separator can be strictly included in another one. We denote by ΔG

the set of all minimal separators of G. A set of vertices Ω ⊆ V of a graph G is called
a potential maximal clique if there is a minimal triangulation H of G such that Ω is
a maximal clique of H. We denote by ΠG the set of all potential maximal cliques of
G. Clearly, |ΔG| ≤ 2n and |ΠG| ≤ 2n for every graph G on n vertices, and no better
upper bounds had been known prior to our work.
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The following result will be used to list all minimal separators of a graph.
Theorem 2.2 (see [4]). There is an algorithm listing all minimal separators of

an input graph G in O(n3|ΔG|) time.
There is a very useful relationship between the minimal separators of a graph and

its minimal triangulations. Two minimal separators S and T of a graph G are said
to be crossing if S is a minimal u, v-separator for a pair of vertices u, v ∈ T , in which
case T is a minimal x, y-separator for a pair x, y ∈ S. (See [33] and [37] for a full
proof.)

Theorem 2.3 (see [37]). The graph H is a minimal triangulation of the graph
G if and only if there is a maximal set of pairwise noncrossing minimal separators
{S1, S2, . . . , Sp} of G such that H can be obtained from G by completing each Si,
i ∈ {1, 2, . . . , p}, into a clique.

Although we do not use this characterization explicitly it is fundamental for our
paper.

Potential maximal cliques. The following structural characterization of po-
tential maximal cliques is extremely useful for our purposes.

For a set K ⊆ V , a connected component C of G\K is a full component associated
to K if N(C) = K.

Theorem 2.4 (see [13]). Let K ⊆ V be a set of vertices of the graph G = (V,E).
Let C(K) = {C1(K), . . . , Cp(K)} be the set of the connected components of G\K and
let S(K) = {S1(K), S2(K), . . . , Sp(K)}, where Si(K), i ∈ {1, 2, . . . , p}, is the set of
those vertices of K which are adjacent to at least one vertex of the component Ci(K).
Then K is a potential maximal clique of G if and only if

1. G \K has no full component associated to K, and
2. the graph on the vertex set K obtained from G[K] by completing each Si ∈

S(K) into a clique is a complete graph.
Moreover, if K is a potential maximal clique, then S(K) is the set of the minimal
separators of G contained in K.

Remark 2.5. By Theorem 2.4, for every potential maximal clique Ω of G, the
sets Si(Ω) are exactly the minimal separators of G contained in Ω. For each minimal
separator Si = Si(Ω), all vertices of Ω \ Si are contained in the same component of
G \ Si.

The following result is an easy consequence of Theorem 2.4.
Theorem 2.6 (see [13]). There is an algorithm that, given a graph G = (V,E)

and a set of vertices K ⊆ V , verifies if K is a potential maximal clique of G. The
time complexity of the algorithm is O(nm).

According to [14], the number of potential maximal cliques of a graph G is at
least |ΔG|/n and at most n|ΔG|2 + n|ΔG| + 1.

3. Computing treewidth and minimum fill-in. We describe a modification
of the algorithm of [13] that, given a graph, all its minimal separators, and all its
potential maximal cliques, computes the treewidth and the minimum fill-in of the
graph. The running time stated in [13] could be reformulated as O(n2 |ΔG| · |ΠG|).
We show how the algorithm can be implemented to run in time O(n3 · |ΠG|).

For a minimal separator S and a component C ∈ C(S) of G\S, we say that (S,C)
is a block associated to S. We sometimes use the notation (S,C) to denote the set of
vertices S ∪ C of the block. It is easy to notice that if X ⊆ V corresponds to the set
of vertices of a block, then this block (S,C) is unique: indeed, S = N(V \ X) and
C = X \ S.
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A block (S,C) is called full if C is a full component associated to S. The graph
R(S,C) = GS [S ∪ C] obtained from G[S ∪ C] by completing S into a clique is called
the realization of the block B.

Theorem 3.1 (see [33]). Let G be a noncomplete graph. Then

tw(G) = min
S∈ΔG

max
C∈C(S)

tw(R(S,C)),

mfi(G) = min
S∈ΔG

(
fill(S) +

∑
C∈C(S)

mfi(R(S,C))

)
,

where fill(S) is the number of nonedges of G[S].
Remark 3.2. In the equations of Theorem 3.1 we may take the minimum only

over the inclusion-minimal separators of G. Then all the blocks in the equations are
full.

Unfortunately, Theorem 3.1 is not sufficient for computing the treewidth and
the minimum fill-in. Therefore we now express the treewidth and the minimum fill-
in of realizations of full blocks from realizations of smaller full blocks. Let Ω be a
potential maximal clique of G. We say that a block (S′, C ′) is associated to Ω if C ′ is
a component of G \ Ω and S′ = N(C ′).

Theorem 3.3 (see [13]). Let (S,C) be a full block of G. Then

tw(R(S,C)) = min
S⊂Ω⊆(S,C)

max(|Ω| − 1, tw(R(Si, Ci))),

mfi(R(S,C)) = min
S⊂Ω⊆(S,C)

(
fill(Ω) − fill(S) +

∑
mfi(R(Si, Ci))

)
,

where the minimum is taken over all potential maximal cliques Ω such that S ⊂ Ω ⊆
(S,C) and (Si, Ci) are the blocks associated to Ω in G such that Si ∪ Ci ⊂ S ∪ C.

Theorem 3.4. There is an algorithm that, given a graph G together with the
list of its minimal separators ΔG and the list of its potential maximal cliques ΠG,
computes the treewidth and the minimum fill-in of G in O(n3 |ΠG|) time. Moreover,
the algorithm constructs optimal triangulations for the treewidth and the minimum
fill-in.

Proof. W.l.o.g. we may assume that the input graph G is connected (otherwise
we can run the algorithm for each connected component of G).

The algorithm for computing the treewidth and the minimum fill-in of a graph,
using its minimal separators and its potential maximal cliques, is given below. It is a
slightly different version of the algorithm given in [13].
Input: G, all its potential maximal cliques and all its minimal separators
Output: tw(G) and mfi(G)
begin

compute all the full blocks (S,C) and sort them by the number of vertices
for each full block (S,C) taken in increasing order

tw(R(S,C)) := |S ∪ C| − 1 if (S,C) is inclusion-minimal
and tw(R(S,C)) := ∞ otherwise

mfi(R(S,C)) := fill(S ∪ C) if (S,C) is inclusion-minimal
and mfi(R(S,C)) := ∞ otherwise

for each p.m.c. Ω with S ⊂ Ω ⊆ (S,C)
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compute the blocks (Si, Ci) associated to Ω s.t. Si ∪ Ci ⊂ S ∪ C
tw(R(S,C)) := min(tw(R(S,C)),

max
i

(|Ω| − 1, tw(R(Si, Ci))))

mfi(R(S,C)) := min(mfi(R(S,C)),
fill(Ω) − fill(S) +

∑
i(mfi(R(Si, Ci))))

end for

end for

let Δ∗
G be the set of inclusion-minimal separators of G

tw(G) := min
S∈Δ∗

G

max
C∈C(S)

tw(R(S,C))

mfi(G) := minS∈Δ∗
G
(fill(S) +

∑
C∈C(S) mfi(R(S,C)))

end

For the sake of completeness we shortly discuss the correctness proof. Accord-
ing to Theorem 3.3, at the end of the outer for loop the values of tw(R(S,C))
and mfi(R(S,C)) are correctly computed for each full block (S,C) of G. Then the
treewidth and the minimum fill-in of the graph are computed using Theorem 3.1 and
the fact that in Theorem 3.1 one can work only with inclusion-minimal separators.

Let us show how the algorithm can be implemented such that its running time is
O(n3 · |ΠG|).

To store and manipulate the minimal separators, potential maximal cliques, and
blocks we use data structures that allow us to search, to insert, or to check whether
an element is inclusion-minimal in O(n) time.

During a preprocessing step, we realize the following operations.
• Compute the list of all full blocks and, for each minimal separator S, store

a pointer towards each full block of type (S,C). These operations are per-
formed as follows. For each minimal separator S, we compute the connected
components of G \ S. For each such component C, if N(C) = S, then the
block (S,C) is full, so we add it to the list of full blocks and store the pointer
from S to (S,C). Note that this procedure will generate all the full blocks,
and each of them is encountered exactly once. For a given minimal separator
S, there are at most n full blocks associated to it, and thus at most n pointers
to be stored. The insertion of these blocks into the list of full blocks requires
O(n) time for each block. Hence the whole step costs O(n2|ΔG|) time.

• For each potential maximal clique Ω, store a pointer to each full block as-
sociated to it as follows: compute the components Ci of G \ Ω, and then
(N(Ci), Ci) are precisely the blocks associated to Ω. In particular there are
at most n such blocks. This computation can be done in O(n2) time for each
potential maximal clique, hence globally in O(n2|ΠG|) time.

• Compute all the good triples (S,C,Ω), where (S,C) is a full block and Ω is
a potential maximal clique such that S ⊂ Ω ⊆ S ∪ C. Moreover, for each
good triple we store a pointer from (S,C) to Ω. By Theorem 2.4, there are
at most n minimal separators S ⊂ Ω, each of them being the neighborhood
of a component of G \Ω, and for each such S there is exactly one component
G \ S intersecting Ω (in particular there are at most n|ΠG| good triples).
For each component C ′ of G \ Ω we take S = N(C ′), find the component
C of G \ S intersecting Ω, and store the pointer from (S,C) to Ω. Thus
this computation takes O(nm) time for each potential maximal clique, hence
O(nm|ΠG|) globally.

Hence this preprocessing step costs O(n2|ΔG|+nm|ΠG|). Sorting the blocks by their
size can be done in O(n|ΔG|) time using a bucket sort.
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Observe that the cost of one iteration of the inner for loop is O(n2), by the fact
that there are at most n blocks associated to a potential maximal clique. With the
data structures obtained during the preprocessing step, each full block (S,C) keeps
a pointer towards each potential maximal clique Ω such that (S,C,Ω) form a good
triple. Thus the number of iterations of the two nested loops is exactly the number
of good triples, that is, at most n|ΠG|. It follows that the two loops cost O(n3|ΠG|)
time.

After the execution of the loops, computing the set Δ∗
G of inclusion-minimal sep-

arators costs O(n|ΔG|) time. Each inclusion-minimal separator S keeps the list of its
associated blocks, obtained during the preprocessing step. Computing the maximum
required by the two last instructions costs O(n) time for a given S. This last step
costs O(n|ΔG|) time.

Altogether, the algorithm runs in time O(n2 · |ΔG| + n3 · |ΠG|). It is known [14]
that each minimal separator is contained in at least one potential maximal clique.
According to Theorem 2.4, each potential maximal clique contains at most n minimal
separators. Therefore |ΠG| ≥ |ΔG|/n. We conclude that the algorithm runs in O(n3 ·
|ΠG|) time.

The algorithm can be easily transformed in order to output not only the treewidth
and the minimum fill-in of the graph, but also optimal triangulations with respect to
these parameters. It is sufficient to keep, for each full block, the set of potential
maximal cliques realizing the minimum treewidth and fill-in of its realization. At the
end of the algorithm, the potential maximal cliques of the chosen blocks will be the
maximal cliques of the computed optimal triangulation: optimal tree decomposition
or minimum triangulation.

Using Theorem 3.4, the only missing ingredient of our treewidth and minimum fill-
in algorithms is an algorithm listing all (minimal separators and) potential maximal
cliques of a graph in time O∗(cn) for some c < 2. This requires exponential upper
bounds of the type O∗(cn) for some c < 2 for the number of minimal separators and
for the number of potential maximal cliques in a graph on n vertices. In the next two
sections we discuss this issue.

4. The number of minimal separators. In this section we show that any
graph with n vertices has O(1.7087n) minimal separators. For the main algorithm
of this paper the upper bound O(1.8899n) would be sufficient. However, bounding
the number of minimal separators in a graph is a nice combinatorial problem, and we
prefer to give here the best upper bound we were able to find.

Let S be a separator in a graph G = (V,E). For x ∈ V \ S, we denote by Cx(S)
the component of G \ S containing x. The following lemma is an exercise in [27].

Lemma 4.1 (folklore). A set S of vertices of G is a minimal a, b-separator if
and only if a and b are in different full components associated to S. In particular, S
is a minimal separator if and only if there are at least two distinct full components
associated to S.

Here is one of the main combinatorial results of our paper.
Theorem 4.2. For any graph G, |ΔG| = O(1.7087n).
Proof. For a constant α, 0 < α < 1, we distinguish two types of minimal separa-

tors: small separators, of size at most αn, and big separators, of size more than αn.
We denote the cardinalities of these sets by #small sep and #big sep. Notice that
|ΔG| = #small sep + #big sep.

The number of big separators. Let S be a minimal separator. By Lemma 4.1, there
are at least two full components associated to S. Hence at least one of these full
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components has at most n(1 − α)/2 vertices. For every S ∈ ΔG we choose one of
these full components and call it the small component of S, denoted by s(S).

By the definition of a full component, S = N(s(S)). In particular, for distinct
minimal separators S and T , we have that s(S) 
= s(T ). Therefore the number #big

sep of big minimal separators is at most the number of small components, and we
conclude that #big sep does not exceed the number of subsets of V of cardinality
at most n(1 − α)/2; i.e.,

#big sep ≤
�n(1−α)/2	∑

i=1

(
n

i

)
.

By making use of Stirling’s formula we deduce that

#big sep ≤ n(1 − α)

2

(
πn(1 − α)

(1 + α)

2

)− 1
2

[(
1 − α

2

)− 1−α
2

(
1 + α

2

)− 1+α
2

]n

.

The number of small separators. To count small separators we use a different tech-
nique. Let S be a minimal separator, let x be a vertex of a full component Cx(S)
associated to S with minimum number of vertices, and let X ⊂ V be a vertex subset.
We say that (x,X) is a bad pair associated to S if Cx(S) ⊆ X ⊆ V \ S.

Claim 1. Let S 
= T be two minimal separators and let (x,X) and (y, Y ) be two
bad pairs associated to S and T , respectively. Then (x,X) 
= (y, Y ).

Proof. Since Cx(S) ⊆ X and X∩S = ∅, we have that the connected component of
G[X] containing x is Cx(S). Similarly, the connected component of G[Y ] containing
y is Cy(T ).

Thus if x = y and X = Y , then Cx(S) = Cy(T ). Since Cx(S) is a full component
associated to S in G, we have that S = N(Cx(S)) and T = N(Cy(T )). Therefore
S = T , which is a contradiction.

By Lemma 4.1, there are at least two full components associated to every small
separator S. For a full component Cx(S) associated to S with the minimum number
of vertices, |V \ (S ∪ Cx(S))| ≥ n · (1 − α)/2. For any Z ⊆ V \ (S ∪ Cx(S)), the pair
(x, Z ∪ Cx(S)) is a bad pair associated to S. Therefore there are at least 2n·(1−α)/2

distinct bad pairs associated to S. Hence by Claim 1, the total number of bad pairs
is at least #small sep · 2n·(1−α)/2. On the other hand, the number of bad pairs is at
most n · 2n. We conclude that

#small sep ≤ n2n·(1+α)/2.

Finally, choosing α = 0.5456, we obtain

|ΔG| = #small sep + #big sep = O(n · 1.7087n).

Let us note that, by Theorem 2.2, Theorem 4.2 yields that all minimal separators
of a graph can be listed in time O(1.7087n).

5. The number of potential maximal cliques. In this section we prove that
the number of potential maximal cliques in a graph with n vertices is O(1.8135n) and
then show that there exists an algorithm to list all potential maximal cliques of any
graph in time O(1.8899n).

We bound the number of potential maximal cliques by counting specific potential
maximal cliques called nice potential maximal cliques. Later these nice potential max-
imal cliques are used to generate and to bound the number of all potential maximal
cliques.
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Definition 5.1. Let Ω be a potential maximal clique of a graph G, and let
S ⊂ Ω be a minimal separator of G. We say that S is an active separator for Ω
if Ω is not a clique in the graph GS(Ω)\{S}, obtained from G by completing all the
minimal separators contained in Ω except S. If S is active, a pair of vertices x, y ∈ S
nonadjacent in GS(Ω)\{S} is called an active pair. Otherwise, S is called inactive for
Ω.

Definition 5.2. We say that a potential maximal clique Ω is nice if at least one
of the minimal separators contained in Ω is active for Ω.

We define Πn as the maximum number of nice potential maximal cliques in a
graph on n vertices. By the theorem and lemma below, the number of potential
maximal cliques is polynomially bounded by the number of nice potential maximal
cliques and minimal separators.

Theorem 5.3 (see [14]). Let Ω be a potential maximal clique of G, and let a be
a vertex of G and G′ = G \ {a}. Then one of the following cases holds:

1. either Ω or Ω \ {a} is a potential maximal clique of G′;
2. Ω = S ∪ {a}, where S is a minimal separator of G;
3. Ω is nice.

Lemma 5.4. A graph G on n vertices has at most n2|ΔG|+nΠn potential maximal
cliques.

Proof. Let x1, x2, . . . , xn be the vertices of G and Gi = G[{x1, . . . , xi}] for all i ∈
{1, 2, . . . , n}. By Theorem 5.3, for each i ∈ {2, 3, . . . , n}, |ΠGi

| ≤ |ΠGi−1
|+n|ΔGi

|+Πi.
By [14, Corollary 4], |ΔGi | ≤ |ΔG| for any i ∈ {1, . . . , n}. This yields that

|ΠGn | ≤
n∑

i=1

n|ΔGi | + Πi ≤ n2|ΔGn | + nΠn.

5.1. Nonconstructive upper bound on the number of potential maxi-
mal cliques. We show that the number of potential maximal cliques in a graph is
O(1.8135n). This bound is obtained by finding an upper bound on the number of
nice potential maximal cliques. We do this by computing two numbers (as for the
separator bound): the number of nice potential maximal cliques of size less than αn
and the number of nice potential maximal cliques of size at least αn for 0 < α < 1.

Definition 5.5. We say that the pair (Z, z) is a vertex representation of a
potential maximal clique Ω in G where Z ⊂ V and z ∈ Z if Ω = N(Z)∪{z} and G[Z]
is connected.

Lemma 5.6. Let Ω be a potential maximal clique of G and let z ∈ Ω. Then
(Z, z) is a vertex representation of Ω if and only if Z is the vertex set of the connected
component of G \ (Ω \ {z}) containing z.

Proof. Suppose that (Z, z) is a vertex representation of Ω. Vertex z is contained
in Z, and thus every neighbor of z not in Ω has to be contained in Z. By applying
this argument recursively, every connected component C of G \ Ω, where z ∈ N(C),
is contained in Z. On the other hand, these are the only vertices in Z, because the
rest are separated by Ω \ {z}.

Conversely, let Z be the vertex set of the component of G \ (Ω \ {z}) containing
z. Clearly N(Z)∪{z} is contained in Ω, so it remains to prove that any x ∈ Ω\{z} is
contained in N(Z). By Theorem 2.4, x is adjacent to z or there is a component C of
G \Ω such that both x and z are in N(C). Since C ⊂ Z the conclusion follows.

Lemma 5.7. Let Ω be a nice potential maximal clique of size αn. Then there
exists a vertex representation (U, u) of Ω such that |U | ≤ 2n(1 − α)/3 + 1.
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Proof. Let S be a minimal separator active for Ω, let x, y ∈ S be an active pair,
and let z be a vertex contained in Ω \ S. By Lemma 5.6, every vertex in a potential
maximal clique defines a unique vertex representation. Let (X,x), (Y, y), (Z, z) be the
unique vertex representations defined by Ω and, respectively, x, y, and z (Lemma 5.6).

Let us now prove that one of the sets X,Y, Z contains at most 2n(1 − α)/3 + 1
vertices. By Lemma 5.6, we can observe that if (U, u) is a vertex representation of Ω,
then G[U \{u}] is formed exactly by the set of connected components of G\Ω having u
in their neighborhood. We partition the connected components of G\Ω into three sets:

• A1 = (X \ {x}) ∩ (Y \ {y}),
• A2 = (X \ {x}) \ (Y \ {y}), and
• A3 = (V \ Ω) \ (A1 ∪A2).

Let us emphasize that
• |A1 ∪A2 ∪A3| = n(1 − α) (because A1 ∪A2 ∪A3 = V \ Ω and |Ω| = αn),
• the sets A1, A2, A3 are pairwise disjoint,
• X \ {x} = A1 ∪A2,
• Y \ {y} ⊆ A1 ∪A3, and
• Z \{z} ⊆ A2∪A3 (by construction, G[A1] is the union of components of G\Ω

that see both x and y; since S is an active separator for Ω, x, y is an active
pair, and z 
∈ S, it follows by Definition 5.1 that none of these components
can see z; thus A1 ∩ Z = ∅).

One of the vertex sets A1, A2, A3, say A1, is of size at least n(1 − α)/3; then
|A2| + |A3| ≤ 2n(1 − α)/3. Since Z \ {z} ⊆ A2 ∪ A3, we have that |Z \ {z}| ≤
2n(1 − α)/3, and thus there exists a vertex representation (U, z) = (Z, z) of Ω such
that |U | ≤ (2n(1 − α)/3) + 1.

Lemma 5.8. For a constant 0 < α < 1 and a graph G, the number Π≥αn of nice

potential maximal cliques of size at least αn is at most n
∑2n(1−α)/3

i=1

(
n
i

)
.

Proof. By Lemma 5.7, every potential maximal clique Ω of size at least αn has
a vertex representation (X,x) such that |X \ {x}| ≤ 2n(1 − α)/3. Thus Π≥αn is at
most the number of pairs (X,x), where |X \{x}| ≤ 2n(1−α)/3 and x ∈ V \X, which

is at most n
∑2n(1−α)/3

i=1

(
n
i

)
.

Lemma 5.9. For a constant 0 < α < 1 and a graph G, the number Π<αn of nice
potential maximal cliques of size less than αn is at most n · 2n(2+α)/3.

Proof. We say that (x,X) is a bad pair associated to Ω if Ω = N(Cx)∪{x}, where
Cx is the connected component of G[X ∪ {x}] containing x.

To prove that a bad pair is unique for a potential maximal clique, we let (x,X)
be a bad pair associated to Ωx, and let (y, Y ) be a bad pair associated to Ωy, where
Ωx 
= Ωy. We claim that (x,X) 
= (y, Y ). Targeting a contradiction, we assume
that x = y and that X = Y . From the definition of a bad pair, we know that
N(X) ∪ {x} = N(Y ) ∪ {y}. But this is a contradiction because N(X) ∪ {x} = Ωx,
N(Y ) ∪ {y} = Ωy, and Ωx 
= Ωy.

By Lemma 5.7, every potential maximal clique Ω of size less than αn has a vertex
representation (U, u) such that |V \ (Ω ∪ U)| ≥ n(1 − α)/3. Thus we can create
2n(1−α)/3 unique bad pairs (u,X) for Ω by selecting X = U ∪ Z, where Z is any of
the 2n(1−α)/3 subsets of V \N [U ]. The number of bad pairs is at most n · 2n, and we
get that n · 2n ≥ Π<αn · 2n(1−α)/3.

Lemma 5.10. The number of nice potential maximal cliques in a graph G with n
vertices is O(1.8135n).

Proof. The number of nice potential maximal cliques Πn is at most Π≥αn +Π<αn

for 0 ≤ α ≤ 1. By using Lemmas 5.8 and 5.9, we have that Πn ≤ n ·
∑2n(1−α)/3

i=1

(
n
i

)
+
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n ·2n(2+α)/3. By making use of Stirling’s formula for α = 0.5763, we obtain the bound
O(1.81349n).

Theorem 5.11. For every graph G on n vertices, |ΠG| = O(1.8135n).
Proof. By Lemma 5.4, G has at most n2|ΔG| + nΠn potential maximal cliques.

By Theorem 4.2 and Lemma 5.10, this yields that ΠG = O(n21.7087n +n1.81349n) =
O(1.8135n).

5.2. Listing potential maximal cliques. Notice that the proof of Lemma 5.9
is nonconstructive; i.e., the proof cannot be turned into an algorithm listing potential
maximal cliques, which is required by the algorithms computing treewidth and fill-in.

Roughly speaking, the idea of this subsection is to show that each potential max-
imal clique of a graph can be identified by a set of vertices of size at most n/3. The
algorithm for generating all the potential maximal cliques of a graph lists all the sets
of vertices of size at most n/3 and then, by applying a polynomial time procedure for
each set, generates all the potential maximal cliques of the input graph. A potential
maximal clique can be recognized by the following three representations.

Definition 5.12. Let Ω be a potential maximal clique of G. The triple (S, a, b)
is called a separator representation of Ω if S is a minimal separator of G, a ∈ S,
b ∈ V \S, and Ω = S∪(N(a)∩Cb), where Cb is the component of G\S containing b.

The number of all possible separator representations of a graph is at most n2|ΔG|.
Unfortunately, not every nice potential maximal clique has a separator representation.
The two definitions below allow us to represent a potential maximal clique by using
a small vertex set.

Definition 5.13. For a potential maximal clique Ω of G, we say that a pair
(X, c), where X ⊂ V and c ∈ X, is a partial representation of Ω if Ω = N(Cc)∪ (X \
Cc), where Cc is the connected component of G[X] containing c.

Definition 5.14. For a potential maximal clique Ω of G, we say that a triple
(X,x, c), where X ⊂ V and x, c 
∈ X, is an indirect representation of Ω if Ω =
N(Cc ∪Dx ∪ {x}) ∪ {x}, where

• Cc is the connected component of G \N [X] containing c;
• Dx is the vertex set of the union of all connected components C ′ of G[X] such

that x ∈ N(C ′).
Let us note that for a given vertex set X and two vertices x, c one can check

in polynomial time whether the pair (X, c) is a partial representation or if the triple
(X,x, c) is a separator representation or indirect representation of a (unique) potential
maximal clique Ω.

The next step is to partition the vertex sets of the graph into smaller sets that
can be used to create one of the three representations for the nice potential maximal
clique. First the following theorem is required.

Theorem 5.15 (see [14]). Let Ω be a potential maximal clique of G and S ⊂ Ω
a minimal separator, active for Ω. Let (S,C) be the block associated to S containing
Ω, and let x, y ∈ Ω be an active pair. Then Ω \ S is a minimal x, y-separator in
G[C ∪ {x, y}].

We are now ready to divide the set of connected components of G\Ω into subsets.
Lemma 5.16. Let Ω be a nice potential maximal clique, S be a minimal separator

active for Ω, x, y ∈ S be an active pair, and C be the component of G \ S containing
Ω \ S. There is a partition (Dx, Dy, Dr) of C \ Ω such that N(Dx ∪ {x}) ∩ C =
N(Dy ∪ {y}) ∩ C = Ω \ S.

Proof. By Theorem 5.15, Ω\S is a minimal x, y-separator in G[C∪{x, y}]. Let Cx

be the full component associated to Ω\S in G[C∪{x, y}] containing x, Dx = Cx\{x},
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and let Cy be the full component associated to Ω \ S in G[C ∪ {x, y}] containing y,
Dy = Cy \ {y}, and Dr = C \ (Ω ∪Dx ∪Dy). Since Dx ∪ {x} and Dy ∪ {y} are full
components of Ω\S, we have that N(Dx∪{x})∩C = N(Dy ∪{y})∩C = Ω\S.

By the lemma below we get that every potential maximal clique Ω that is not
defined by the closed neighborhood of a vertex or defined by a separator representation
has a neighbor outside of Ω in a full connected component of S.

Lemma 5.17. Let Ω be a potential maximal clique of G, S be a minimal separator
contained in Ω, and C be the component of G \ S intersecting Ω. Then one of the
following holds:

1. there is a vertex a such that Ω = N [a];
2. Ω has a separator representation;
3. Ω = N(C \ Ω).

Proof. Suppose that there is a vertex a ∈ Ω having no neighbor in C \ Ω. We
consider first the case a ∈ Ω \ S. We claim that in this case Ω = N [a]. Because
a ∈ Ω \ S ⊆ C, we conclude that N [a] ⊆ Ω. Thus to prove the claim we need to
show that Ω ⊆ N [a]. For sake of contradiction, suppose that there is b ∈ Ω which
is not adjacent to a. By Theorem 2.4, every two nonadjacent vertices of a potential
maximal clique are contained in some minimal separator Si(Ω). Thus both a and b
should have neighbors in a component Ci(Ω) of G \ Ω. Since a ∈ Ω \ S ⊆ C, we have
that Ci(Ω) ⊆ C \ Ω. But this contradicts the assumption that a has no neighbors in
C \ Ω.

The case a ∈ S is similar. Suppose that Ω \ S 
= N(a) ∩ C; i.e., there is a vertex
b ∈ Ω \ S nonadjacent to a. Then again, a and b are contained in some minimal
separator and thus should have neighbors in a component Ci(Ω) ⊆ C of G \ Ω which
is a contradiction.

Since C is a component of G\S and S is contained in Ω, we have that N(C \Ω) ⊆
Ω. If every vertex of Ω is adjacent to a vertex of C \ Ω, then Ω = N(C \ Ω).

We state now the main tool for upper bounding the time required to list the set
of nice potential maximal cliques.

Lemma 5.18. Let Ω be a nice potential maximal clique of G. Then one of the
following holds:

1. there is a vertex a such that Ω = N [a];
2. Ω has a separator representation;
3. Ω has a partial representation (X, c) such that |X| ≤ n/3;
4. Ω has a indirect representation (X,x, c) such that |X| ≤ n/3.

Proof. Let S be a minimal separator active for Ω, x, y ∈ S be an active pair, and
C be the component of G \ S containing Ω \ S. By Lemma 5.16, there is a partition
(Dx, Dy, Dr) of C \Ω such that N(Dx ∪ {x})∩C = N(Dy ∪ {y})∩C = Ω \S. If one
of the sets Dx, Dy, say Dx, is empty, then N(Dx ∪{x})∩C = N(x)∩C = Ω \S, and
thus the triple (S, x, z) is a separator representation of Ω.

Suppose that none of the first two conditions of the lemma holds. Then Dx and
Dy are nonempty. In order to argue that Ω has a partial representation (X, c) or an
indirect representation (X,x, c) such that |X| ≤ n/3, we partition the graph further.
Let R = Ω \ S, and let DS be the union of all full components associated to S in
G \ Ω. The vertex set Dx is the union of vertex sets of all connected components C ′

of G\ (Ω∪DS) such that x is contained in the neighborhood of C ′. Thus a connected
component C ′ of G\(Ω∪DS) is contained in Dx if and only if x ∈ N(C ′). Similarly, a
connected component C ′ of G \ (Ω∪DS) is contained in Dy if and only if y ∈ N(C ′).
We also define Dr = V \ (Ω ∪ DS ∪ Dx ∪ Dy), which is the set of vertices of the
components of G \ (Ω ∪DS) which are not in Dx and Dy.
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We partition S in the following sets:
• Sx = (S \N(Dx)) ∩N(Dy);
• Sy = (S \N(Dy)) ∩N(Dx);
• Sxy = S \ (N(Dy) ∪N(Dx));
• Sxy = S ∩N(Dy) ∩N(Dx).

Thus Sx is the set of vertices in S with no neighbor in Dx and with at least one
neighbor in Dy, Sy is the set of vertices in S with no neighbor in Dy and with at least
one neighbor in Dx, Sxy is the set of vertices in S with neighbors in neither Dx nor
Dy, and, finally, Sxy is the set of vertices in S with neighbors in both Dx and Dy.
Notice that the vertex sets DS , Dx, Dy, Dr, R, Sx, Sy, Sxy, and Sxy are pairwise
disjoint. The set Sxy is mentioned only to complete the partition of S and will not
be used in the rest of the proof.

Both for size requirements and because of the definition of indirect representation
we cannot use the sets Sx, Sy, and Sxy directly; they have to be represented by
the sets Zx, Zy, and Zr, which are subsets of the vertex sets Dy, Dx, and Dr. By
the definition of Sx and Sy it follows that there exist two vertex sets Zx ⊆ Dy and
Zy ⊆ Dx such that Sx ⊆ N(Zx) and Sy ⊆ N(Zy). Let Z be such a set of minimum
cardinality. By Lemma 5.17, Ω = N(Dx∪Dy∪Dr) since cases 1 and 2 of Lemma 5.17
correspond to cases 1 and 2 of the lemma we are proving. Thus, there exists a vertex
set Zr ⊆ Dr such that Sxy ⊆ N(Zr). Let Z be such a set of minimum cardinality. A
sketch of how these vertex sets relate to each other is given in Figure 5.1.

xyS

Dy Z_
x

Dx Zy
_

Dr
Z_

r
D R

S

S

y
_

x
_

xy
__

S

S

Fig. 5.1. The figure shows a sketch of how the vertex sets DS , Dx, Dy , Dr, R, Sx, Sy , Sxy , and
Sxy partition the graph G, and how the sets Zx, Zy , and Zr relate to this partition.

Let C∗ be a connected component of G[DS ] (let us remind that N(C∗) = S). We
define the following sets:

• X1 = C∗ ∪R;
• X2 = Dx ∪ Zx ∪ Zr;
• X3 = Dy ∪ Zy ∪ Zr.

First we claim that
• the pair (X1, c), where c ∈ C∗, is a partial representation of Ω;
• the triple (X2, x, c), where c ∈ C∗, is an indirect representation of Ω;
• the triple (X3, y, c), where c ∈ C∗, is an indirect representation of Ω.

In fact, the pair (X1, c) = (C∗ ∪ R, c) is a partial representation of Ω because
N(C∗) ∩R = ∅, C∗ induces a connected graph, and Ω = N(C∗) ∪R.

To prove that (X2, x, c) = (Dx∪Zx∪Zr, x, c) is an indirect representation of Ω, we
have to show that Ω = N(Cc∪D′

x∪{x})∪{x}, where Cc is the connected component
of G \ N [X2] containing c, and D′

x is the vertex set of the union of all connected
components C ′ of G[X2] such that x ∈ N(C ′). Notice that (S ∪ C∗) ∩ X2 = ∅ and
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that S ⊆ N(X2) since S ⊆ N(Dx ∪ Zx ∪ Zr) and X2 = Dx ∪ Zx ∪ Zr. Hence the
connected component Cc of G \N [X2] containing c is C∗.

Every connected component C ′ of G[X2] is contained in Dx, Zx, or Zr since Ω ∩
(Dx∪Zx∪Zr) = ∅ and Ω separates Dx, Zx, and Zr. From the definition of Dx it follows
that x ∈ N(C ′) for every component C ′ of G[Dx], and from the definition of Dy and Dr

it follows that x 
∈ N(C ′) for every component C ′ of G[Zx∪Zr]. We can now conclude
that Dx is the vertex set of the union of all connected components C ′ of G[X2] such
that x ∈ N(C ′). It remains to prove that Ω = N(C∗∪Dx∪{x})∪{x}. By Lemma 5.16,
we have that Ω\S = R is a subset of N(Dx∪{x}) and N(Dy∪{y}), and we remember
that N(C∗) = S. From this observation it follows that Ω = N(C∗ ∪Dx ∪ {x}) ∪ {x}
since N(C∗ ∪Dx ∪ {x}) = (S ∪R) \ {x}.

By similar arguments, (X3, y, c) is an indirect representation of Ω.
To conclude the proof of the lemma, we argue that at least one of the vertex sets

X1, X2, or X3 used to represent Ω contains at most n/3 vertices.
We partition the graph into the following three sets:
• V1 = DS ∪R;
• V2 = Dx ∪ Sx ∪ Sxy;
• V3 = Dy ∪ Sy ∪Dr.

These sets are pairwise disjoint, and at least one of them is of size at most n/3; to
prove the lemma we show that |X1| ≤ |V1|, |X2| ≤ |V2|, and |X3| ≤ |V3|.

|X1| ≤ |V1|. Since C∗ ⊆ DS , we have that X1 = C∗ ∪R ⊆ V1 = DS ∪R.
|X2| ≤ |V2|. To prove the inequality we need the additional result

(5.1) |Zx| ≤ |Sx|, |Zy| ≤ |Sy|, and |Zr| ≤ |Sxy|.

In fact, since Zx is the smallest subset of Dy such that Sx ⊆ N(Zx), we have that
for any vertex u ∈ Zx, Sx 
⊆ N(Zx \ {u}). Thus u has a private neighbor in Sx, or in
other words there exists v ∈ Sx such that {u} = N(v) ∩ Zx. Therefore Sx contains
at least one vertex for every vertex in Zx, which yields |Zx| ≤ |Sx|. The proofs of
inequalities |Zy| ≤ |Sy| and |Zr| ≤ |Sxy| are similar.

Now the proof of |X2| ≤ |V2|, which is equivalent to |Dx∪Zx∪Zr| ≤ |Dx∪Sx∪Sxy|,
follows from (5.1) and the fact that all subsets on each side of the inequality are
pairwise disjoint.

|X3| ≤ |V3|. This inequality is equivalent to |Dy ∪ Zy ∪ Zr| ≤ |Dy ∪ Sy ∪ Dr|.
Again, the sets on each side of the inequality are pairwise disjoint. |Zr| ≤ |Dr| because
Zr ⊆ Dr, and |Zy| ≤ |Sy| by (5.1).

Thus min{|X1|, |X2|, |X3|} ≤ n/3, which concludes the proof of the lemma.
Lemma 5.19. The set of nice potential maximal cliques in a graph G on n vertices

can be listed in listed in O∗(
(

n
n/3

)
) time.

Proof. By Lemma 5.18, the number of possible partial representations (X, c) and

indirect representations (X,x, c) with |X| ≤ n/3 is at most 2n2
∑n/3

i=1

(
n
i

)
. By Theo-

rem 4.2, the number of all possible separator representations is at most n2|ΔG| ≤
n2

(
n

n/3

)
, and we deduce that the number of nice potential maximal cliques is at

most 2n2
∑n/3

i=1

(
n
i

)
. Moreover, these potential maximal cliques can be computed in

O∗(
(

n
n/3

)
) time as follows. We enumerate all the triples (S, a, b) where S is a minimal

separator and a, b are vertices, and check if the triple is the separator representation
of a potential maximal clique Ω; if so, we store this potential maximal clique. We also
enumerate all the potential maximal cliques of type N [a], a ∈ V (G) in polynomial
time. Finally, by listing all the sets X of at most n/3 vertices and all the couples
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of vertices (x, c), we compute all the nice potential maximal cliques with a partial
representation (X, c) or an indirect representation (X,x, c).

Theorem 5.20. There is an algorithm to list all potential maximal cliques of a
graph G on n vertices in time O(1.8899n).

Proof. Let x1, x2, . . . , xn be the vertices of G and Gi = G[{x1, . . . , xi}] for all
i ∈ {1, 2, . . . , n}. Theorem 5.3 and Lemma 5.19 imply that |ΠGi

| ≤ |ΠGi−1
|+n|ΔGi

|+
2n2

∑n/3
i=1

(
n
i

)
for all i ∈ {2, 3, . . . , n}. By Theorem 4.2, |ΠG| ≤ 2n3

∑n/3
i=1

(
n
i

)
.

Clearly, if we have the potential maximal cliques of Gi−1, the potential maximal
cliques of Gi can be computed in O∗(|ΠGi−1

| +
(

n
n/3

)
) time by making use of Theo-

rems 5.3 and 4.2 and Lemma 5.19. The graph G1 has a unique potential maximal
clique, namely, {x1}. Therefore ΠG can be listed in time O∗(

(
n

n/3

)
) time which is

O(1.8899n).
Theorems 3.4 and 5.20 imply the main result of this paper.
Theorem 5.21. For a graph G on n vertices, the treewidth and the minimum

fill-in of G can be computed in O(1.8899n) time.

6. AT-free graphs. In this section we establish exact algorithms to compute
the treewidth and the minimum fill-in of AT-free graphs which are faster than the
ones obtained for general graphs in the previous section. Both algorithms are based on
new upper bounds on the number of minimal separators and the number of potential
maximal cliques in AT-free graphs.

Three pairwise nonadjacent vertices of a graph G form an asteroidal triple (AT)
if any two of them are connected by a path avoiding the neighborhood of the third
vertex. Graphs without asteroidal triples are called AT-free.

Corneil, Olariu, and Stewart studied structural properties of AT-free graphs in
their fundamental paper [17]. Among other results, they showed that every connected
AT-free graph has a dominating pair, where two vertices x and y of G form a dom-
inating pair (DP for short) if the vertex set of each x, y-path is a dominating set of
G.

AT-free graphs contain cocomparability graphs, permutation graphs, interval
graphs, and cobipartite graphs. Thus the treewidth problem and the minimum fill-in
problem remain NP-hard when restricted to AT-free graphs [2, 48].

Remark 6.1. There is a well-known cobipartite (and thus AT-free) graph con-
sisting of two cliques of size n/2 and a perfect matching between them which has
precisely 2n/2 − 2 minimal separators. It is not hard to show that this is indeed the
largest number of minimal separators of a cobipartite graph on n vertices.

First we show that |ΠG| = O∗(|ΔG|) for AT-free graphs, improving a result in
[13, Corollary 5.2]. This also establishes an algorithm to list the potential maximal
cliques of an AT-free graph in O∗(|ΔG|) time. Then we prove that an AT-free graph
on n vertices has at most 2n/2 +3 minimal separators.

First let us summarize some structural properties of potential maximal cliques in
AT-free graphs.

Lemma 6.2 (Proposition 5.1 of [13]). Let Ω be a potential maximal clique of an
AT-free graph G. Then the set S(Ω) of minimal separators contained in Ω has at
most two inclusion-maximal elements.

Lemma 6.3 (Theorem 3.10 of [13]). Let G be a graph and Ω be a potential
maximal clique of G such that S(Ω) has a unique inclusion-maximal element S. Then
Ω \ S is a connected component of G \ S.

Let S and T be two noncrossing minimal separators of G, incomparable with
respect to inclusion. Thus S meets a unique component of G \ T , say CS(T ), and T
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meets a unique component of G \ S, say CT (S). We define the piece between S and
T as P (S, T ) = S ∪ T ∪ (CT (S) ∩ CS(T )).

Lemma 6.4 (Theorem 3.11 of [13]). Let G be a graph and Ω be a potential
maximal clique of G such that S(Ω) has exactly two inclusion-maximal elements S
and T . Then Ω = P (S, T ).

Lemma 6.5. Let G be an AT-free graph and Ω be a potential maximal clique of
G such that S(Ω) has two inclusion-maximal elements S and T . Choose s ∈ S \ T .
Then Ω = S ∪ (N(s) ∩ CT (S)).

Proof. By Lemma 6.4, Ω = P (S, T ). Clearly s is in the unique component CS(T )
of G\T meeting S, so N(s)∩CT (S) ⊆ P (S, T ). Consequently, S∪(N(s)∩CT (S)) ⊆ Ω.

Conversely, suppose there is a vertex t ∈ Ω, not contained in S ∪ (N(s)∩CT (S)).
Let S′ = (S \ {s}) ∪ (N(s) ∩ CT (S)). Clearly S′ separates s and any vertex of
CT (S) \ S′ in G; in particular S′ separates s and t. It follows that there is a minimal
separator S′′ ⊆ S′ of G, contained in Ω and separating two vertices of Ω. According
to Theorem 2.4, for each minimal separator U contained in Ω, Ω intersects exactly
one component of G \ U , which is a contradiction.

Theorem 6.6. An AT-free graph G has at most n2|ΔG| + n|ΔG| + 1 potential
maximal cliques. Furthermore, there is an algorithm to list the potential maximal
cliques of an AT-free graph in O∗(|ΔG|) time.

Proof. If G has no minimal separator, then G is a complete graph, and its vertex
set is the unique potential maximal clique of G.

Suppose now that G is not complete. Fix a minimal separator S of G. By
Lemma 6.3, the number of potential maximal cliques Ω such that S is the unique
inclusion-maximal element of S(Ω) is bounded by the number of connected compo-
nents of G \ S. Hence, there are at most n such potential maximal cliques.

Now let us consider the potential maximal cliques Ω for which S is one of the two
inclusion-maximal separators contained in S(Ω). For any component C of G\S, there
are, by Lemma 6.5, at most |S| such potential maximal cliques contained in S ∪C. It
follows that there are at most n2 potential maximal cliques of this type.

Therefore, G contains at most (n2 +n)|ΔG|+1 potential maximal cliques. These
combinatorial arguments can easily be transformed into an algorithm listing the po-
tential maximal cliques of an AT-free graph in time O∗(|ΔG|).

Hence Theorem 3.4 implies that to construct an O(1.4142n) algorithm computing
the treewidth and the minimum fill-in of an AT-free graph it is enough to prove that
the number of minimal separators in an AT-free graph is O(1.4142n).

Our proof that the number of minimal separators in an AT-free graph is at most
2n/2 +3 relies on properties of 2LexBFS, i.e., a combination of two runs of lexicographic
breadth-first-search (also called 2-sweep LexBFS), on AT-free graphs established by
Corneil, Olariu, and Stewart in [18].

Definition 6.7. A vertex ordering xn, xn−1, . . . , x1 is said to be a 2LexBFS
ordering of G if some 2LexBFS(G) returns the vertices in this order (starting with
xn) during the second sweep of LexBFS on G where xn is supposed to be the last vertex
of the first sweep of LexBFS on G.

We shall write u ≺ v if u = xi, v = xj , and i < j. A 2LexBFS ordering and
the levels L0 = {xn}, L1 = N(xn), . . . , Li = {xj : d(xj , xn) = i}, . . . , Lr are called
a 2LexBFS scheme of G. Consider any 2LexBFS scheme. Clearly all neighbors of
a vertex v ∈ Li are contained in Li−1 ∪ Li ∪ Li+1. For a vertex v ∈ Li we denote
N(v) ∩ Li−1 by N↑(v), and we denote N(v) ∩ Li+1 by N↓(v).

Theorem 6.8 (see [18]). Every 2LexBFS ordering xn, xn−1, . . . , x1 of a con-
nected AT-free graph has the dominating pair-property (DP-property); i.e., for all



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT ALGORITHMS FOR TREEWIDTH AND MINIMUM FILL-IN 1075

i ∈ {1, 2, . . . , n}, (xn, xi) is a dominating pair of the graph G[{xi, xi+1, . . . , xn}].
The following easy consequence of Theorem 6.8 is useful.
Lemma 6.9. Let xn, xn−1, . . . , x1 be a 2LexBFS ordering of an AT-free graph G,

and let L0, L1, . . . , Lr be the corresponding 2LexBFS scheme. Let s > r, xs, xr ∈ Li

and {xr, xs} /∈ E. Then N↑(xr) ⊆ N↑(xs).
Proof. Let w ∈ N↑(xr) \ N↑(xs). Then the path xr, w, ui−2, . . . , u1, xn with

uj ∈ Lj and uj−1 ∈ N↑(uj) for all j = i − 2, . . . , 1 contains no neighbor of xs,
contradicting the DP-property of a 2LexBFS scheme of an AT-free graph.

Theorem 6.10. An AT-free graph on n vertices has at most 2n/2+3 minimal
separators.

Proof. Let G be an AT-free graph. Let xn, xn−1, . . . , x1 be a 2LexBFS ordering
of G, and let L0, L1, . . . , Lr be the levels of the corresponding 2LexBFS scheme.

Let S be any minimal separator of G. Let C and C ′ be two (not necessarily full)
components of G \ S. We claim that at most one level of the 2LexBFS scheme may
contain vertices of C and C ′. Suppose not. Let Li and Li+1 be levels containing
vertices of C and C ′. Then there are edges {u, v} in C and {w, x} in C ′ such that
u,w ∈ Li and v, x ∈ Li+1. W.l.o.g. assume u ≺ w. Then Lemma 6.9 implies that w
and v are adjacent, a contradiction.

Let C and C ′ be two (not necessarily full) components of G \ S such that both
contain vertices of some level of the 2LexBFS scheme, say Li. Furthermore, assume
C ∩Li−1 
= ∅ and C ′ ∩Li−1 = ∅. Hence there is an edge {u, v} in C such that u ∈ Li

and v ∈ Li−1. Then for each w ∈ C ′ holds w ≺ u. Otherwise u ≺ w, w ∈ Li, and
Lemma 6.9 would imply that w and v are adjacent, a contradiction.

Finally we claim that in this case c′ ≺ c for each vertex c ∈ C and each vertex
c′ ∈ C ′. This is obviously true if one of c and c′ is not in Li. It remains to consider
the case c ∈ Li, c

′ ∈ Li. To the contrary assume c ≺ c′. Since C contains vertices of
Li and Li−1, there is a path in C starting in c passing through vertices of C ∩Li only
until it passes through an edge {u, v} in C with u ∈ Li and v ∈ Li−1. This path can
be extended to a path from c to xn that does not contain a neighbor of c′ although
c ≺ c′, a contradiction to the DP-property.

Now we are able to upper bound the number of those minimal separators in
an AT-free graph in which no full component contains only vertices of one level.
Simply divide the vertex set into two halves: A = {xn, xn−1, . . . , x�n/2	+1} and B =
{xn/2�, . . . , x1}. Now consider two full components C and C ′ of a minimal separator
S of G, i.e., S = N(C) = N(C ′). Then either C or C ′ is a subset of either A or B,
and surely each of C and C ′ uniquely determines S. Hence we simply consider all
subsets of A and all subsets of B as possible full components of a minimal separator
of G. Consequently, there are at most 2n/2 +1 minimal separators of this type.

It remains to upper bound the number of all those minimal separators S of an
AT-free graph G for which each full component is neither a subset of A nor a subset
of B. Hence at least one full component of S contains only vertices from one level of
the 2LexBFS scheme.

Let S be such a minimal separator of G. Let C and C ′ be two full components of
G \ S. W.l.o.g. assume C ⊆ Li. Hence xn/2� ∈ Li, and thus the level Li is uniquely
determined.

C ′∩
⋃i−1

j=0 Lj = ∅ since otherwise c ≺ c′ for all c ∈ C and all c′ ∈ C ′, and either C or
C ′ is a subset of A or B. Similarly C ′ must contain vertices of Li. Consequently, C ′ ⊆⋃r

j=i Lj . It is easy to see that C ⊆ Li and S = N(C) imply N(C ′) = S ⊆
⋃i+1

j=i−1 Lj .

Furthermore, N(C) = N(C ′) = S implies S ∩ Li−1 = N↑(C ∩ Li) = N↑(C ′ ∩ Li).

Now let us consider the graph G′ = G \
⋃i−1

j=0 Lj . Then S′ = S \
⋃i−1

j=0 Lj is
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a separator of G′; C and C ′ are components of G′ \ S′. Furthermore, every vertex
of S′ ⊆ S has a neighbor in C and C ′, and thus S′ is a minimal separator of G′.
Consequently, every minimal separator S of G for which no full component is a subset
of A or B corresponds uniquely to a minimal separator of G′. Notice that G′ has at
most n− 1 vertices since we remove at least one vertex of Li−1 from G to obtain G′.

Let f(n) be a function such that f(n) is an upper bound for the number of
minimal separators in an n-vertex AT-free graph. Then we establish the recurrence
f(n) ≥ 2n/2+1 + f(n− 1) and conclude with f(n) = 4 · 2n/2+1 = 8 · 2n/2.

Combining Theorems 3.4, 6.6, and 6.10, we obtain algorithms for AT-free graphs
that are faster than the corresponding ones for general graphs.

Theorem 6.11. There are algorithms to compute the treewidth and the minimum
fill-in of an AT-free graph in O(1.4142n) time.

7. Open problems and final remarks. Planar graphs. The computational
complexity of treewidth restricted to planar graphs is a longstanding open problem
in graph algorithms. The treewidth of planar graphs can be approximated within a
constant factor of 1.5. More precisely, Seymour and Thomas [42] gave a polynomial
algorithm for computing the branchwidth of planar graphs, and the latter parameter
differs by at most a factor of 1.5 from the treewidth.

In the case of planar graphs with n vertices, the treewidth is at most O(
√
n).

Theorem 7.1 (see [26]). For any planar graph G on n vertices, tw(G) ≤
3.182

√
n + O(1).

Also, given a graph G and a number k, one can decide if tw(G) ≤ k in O∗(nk)
time, either using the algorithm of Arnborg Corneil, and Proskurowski [2] or our
technique, restricted to potential maximal cliques of size at most k + 1.

Consequently, the treewidth of planar graphs can be computed in time O∗(n3.182
√
n)

= 2O(
√
n logn).

Unfortunately, although the structure of potential maximal cliques in planar
graphs is very particular [12], our approach cannot be used for obtaining algorithms
of running time 2O(

√
n) for planar treewidth. This is because the number of “large”

potential maximal cliques in planar graphs can be “large.”
Claim 2. For any integer N , there is a planar graph on n > N vertices with at

least 20.49
√
n logn potential maximal cliques of size at least 2

√
n + 2.

Proof. Consider the planar graph Gp depicted in Figure 7.1. It has n = p2 +p+3
vertices. The set of vertices S = {a1, b1i1 , a2, b2i2 , . . . , ap, bpip , ap+1} forms a c, d-
minimal separator for any values i1, i2, . . . , ip between 1 and p. By making use of
Theorem 2.4, it is not hard to see that S ∪ {c} is a potential maximal clique of
size p + 1 in Gp. Consequently, G has at least pp potential maximal cliques. If
p ≥ 2, we have p >

√
n− 1; thus the number of potential maximal cliques is at least

(
√
n− 1)

√
n−1.

Since we do not know if the treewidth of a planar graph can be computed in
polynomial time, an interesting task is to design an algorithm of running time 2O(

√
n).

As we mentioned, this will need new techniques.

Combinatorial bounds. The running time estimation of our algorithms is
based on combinatorial upper bounds on the number of minimal separators and an
upper bound for the time to list all potential maximal cliques of a graph. Finding
better bounds on the number of minimal separators and potential maximal cliques in
a graph is an interesting combinatorial challenge.

How many potential maximal cliques can be in a graph? We have shown that the
number of potential maximal cliques in a graph on n vertices is at most O(1.8135n).
Unfortunately, it is not clear if the same bound can be obtained by an algorithm
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Fig. 7.1. Planar graphs with many large potential maximal cliques.

listing potential maximal cliques. Of course, such an algorithm can be used to speed
up our algorithm for treewidth and fill-in. A related interesting question is whether
it is possible to list potential maximal cliques with polynomial time delay.

How many minimal separators can be in a graph? We are aware of the following
construction providing the lower bound 3n/3 ≈ 1.4422n on the number of minimal
separators: Let G be a graph on n = 3k + 2 vertices. G has two vertices a, b that
are connected by k vertex disjoint paths of length 4. Every minimal a, b-separator in
G contains exactly one inner vertex of each a, b-path. Thus the number of minimal
separators in G is at least 3n/3 ≈ 1.4422n. However, the gap between the lower bound
and the upper bound O(1.7087n) from Theorem 4.2 is still big. A related question is
whether it is possible to list the minimal separators with polynomial delay.

For some special graph classes, the use of minimal separators can imply faster
algorithms for triangulation problems. For example, we have shown that every AT-
free graph on n vertices has at most 2n/2 +3 minimal separators and that this upper
bound is tight up to a multiplicative constant factor. The interesting question here
is whether similar techniques can be used for other graph classes, such as bipartite
graphs and graphs of small degree.

Related problems. Our algorithms for treewidth and minimum fill-in can also
be used for solving other problems that can be expressed in terms of minimal tri-
angulations such as finding a tree decomposition of minimum cost [8] or computing
treewidth of weighted graphs. However, there are two “width” parameters related
to treewidth, namely bandwidth and pathwidth, and one parameter called profile,
related to minimum fill-in, that do not fit into this framework. Bandwidth can be
computed in time O∗(10n) [20], and reducing Feige’s bounds is a challenging problem.
Pathwidth (and profile) can be expressed as vertex ordering problems and thus solved
in O∗(2n) time by applying a dynamic programming approach similar to Held and
Karp’s approach [28] for the travelling salesman problem. Let us note that reach-
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ing time complexity O∗(cn) for any constant c < 2, even for the Hamiltonian cycle
problem, is a longstanding problem. So it is unlikely that some modification of Held
and Karp’s approach would provide us with a better exact algorithm for pathwidth
or profile. It is tempting to ask if one can reach time complexity O∗(cn), for any
constant c < 2, for these problems.

Acknowledgment. We are grateful to Hans Bodlaender for nice discussions and
for pointing out that the algorithm of Arnborg, Corneil, and Proskurowski [2] can be
used to compute treewidth and minimum fill-in in time O∗(2n).
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[13] V. Bouchitté and I. Todinca, Treewidth and minimum fill-in: Grouping the minimal sepa-
rators, SIAM J. Comput., 31 (2001), pp. 212–232.
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