
Algorithmica (2008) 52: 293–307
DOI 10.1007/s00453-007-9152-0

On the Minimum Feedback Vertex Set Problem: Exact
and Enumeration Algorithms

Fedor V. Fomin · Serge Gaspers ·
Artem V. Pyatkin · Igor Razgon

Received: 6 October 2007 / Accepted: 26 November 2007 / Published online: 8 December 2007
© Springer Science+Business Media, LLC 2007

Abstract We present a time O(1.7548n) algorithm finding a minimum feedback ver-
tex set in an undirected graph on n vertices. We also prove that a graph on n vertices
can contain at most 1.8638n minimal feedback vertex sets and that there exist graphs
having 105n/10 ≈ 1.5926n minimal feedback vertex sets.

Keywords Minimum feedback vertex set · Maximum induced forest · Exact
exponential algorithm · Number of minimal feedback vertex sets

1 Introduction

The problem of finding a minimum feedback vertex set in a graph, i.e. the smallest
set of vertices whose deletion makes the graph acyclic, has many applications and

Preliminary extended abstracts of this paper appeared in the proceedings of SWAT’06 [29] and
IWPEC’06 [18].
Additional support of F.V. Fomin, S. Gaspers and A.V. Pyatkin by the Research Council of Norway.
The work of A.V. Pyatkin was partially supported by grants of the Russian Foundation for Basic
Research (project code 05-01-00395), INTAS (project code 04–77–7173).
I. Razgon is supported by Science Foundation Ireland (Grant Number 05/IN/I886).

F.V. Fomin · S. Gaspers (�)
Department of Informatics, University of Bergen, 5020 Bergen, Norway
e-mail: Serge.Gaspers@ii.uib.no

F.V. Fomin
e-mail: Fedor.Fomin@ii.uib.no

A.V. Pyatkin
Sobolev Institute of Mathematics, SB RAS, 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia
e-mail: artem@math.nsc.ru

I. Razgon
Computer Science Department, University College Cork, Cork, Ireland
e-mail: i.razgon@cs.ucc.ie

mailto:Serge.Gaspers@ii.uib.no
mailto:Fedor.Fomin@ii.uib.no
mailto:artem@math.nsc.ru
mailto:i.razgon@cs.ucc.ie

294 Algorithmica (2008) 52: 293–307

its history can be traced back to the early ’60s (see the survey of Festa et al. [13]).
It is also one of the classical NP-complete problems from Karp’s list [22]. Thus not
surprisingly, for several decades, many different algorithmic approaches were tried on
this problem including approximation algorithms [1, 2, 12, 23], linear programming
[9], local search [4], polyhedral combinatorics [7, 20], probabilistic algorithms [26],
and parameterized complexity [10, 11, 21].

The problem is approximable within a factor of 2 in polynomial time [1]. It was
also extensively studied from the point of view of parameterized complexity. There
was a chain of improvements (see e.g. [28]) concluding with two 2O(k)nO(1)-time
algorithms obtained independently by different research groups [10, 21]. It had been
open for a long time whether computing a feedback vertex set of a directed graph is
fixed-parameter tractable. Very recently this question has been resolved positively by
two independent groups [8, 30].

In recent years the topic of exact (exponential-time) algorithms for NP-hard prob-
lems has led to much research (see the surveys [16, 33]). However, despite much
progress on exponential-time solutions to other graph problems such as chromatic
number [3, 5, 24], maximum independent set [19, 31], and minimum dominating set
[15], no algorithm faster than the trivial 2n · nO(1) was known for feedback vertex set
until recently. For some special graph classes, like bipartite graphs or graphs of max-
imum degree 4, algorithms of running time O(1.8621n) and O(1.945n) respectively
can be found in the literature [14, 27].

The first exact algorithm breaking the trivial 2n barrier is due to the fourth au-
thor [29]. The running time O(1.8899n) of the algorithm from [29] was reduced by
the first three authors in [18] to O(1.7548n). Both results are based on the algo-
rithm which can be seen as a branching algorithm (or a variation of Davis-Putnam-
style exponential-time backtracking). The main idea behind breaking the 2n barrier is
based on the choice of the measure of the subproblems recursively generated by the
algorithm. A good choice of the measure leads us to a significantly better worst case
time analysis of the branching algorithm. The exact algorithm given in this paper
that finds a minimum feedback vertex set in time O(1.7548n) resulted by merging
preliminary results announced in [29] and [18].

By making use of similar ideas, we show that every graph on n vertices contains
at most 1.8638n minimal feedback vertex sets. It is the first known upper bound for
the number of minimal feedback vertex sets breaking the trivial O(2n/

√
n) bound

(which is roughly the maximum number of subsets of an n-set such that none of
them is contained in the other). This bound has algorithmic consequences as well.
By the result of Schwikowski and Speckenmeyer [32], all minimal feedback vertex
sets can be enumerated with polynomial time delay. Thus our result implies that the
running time of the algorithm by Schwikowski and Speckenmeyer is O(1.8638n).
We also show that there exist graphs with at least 1.5926n minimal feedback vertex
sets.

The combinatorial bound on the number of feedback vertex sets is of independent
interests. One of the very natural questions in graph theory is: how many minimal
(maximal) vertex subsets satisfying a given property can be contained in a graph on n

vertices? The trivial bound is O(2n/
√

n). Surprisingly, for very few problems better

Algorithmica (2008) 52: 293–307 295

bounds, i.e. bounds of the form O(cn) for c < 2, are known. One example of such a
bound is the celebrated Moon and Moser [25] theorem stating that every graph on n

vertices has at most 3n/3 maximal cliques (independent sets). Another example is the
result from [17], where it is shown that the number of minimal dominating sets is at
most 1.7170n.

The rest of the paper is organized as follows. Sect. 2 contains preliminary results.
In Sect. 3 we present a time O(1.7548n) algorithm finding a minimum feedback
vertex set in a graph on n vertices. In Sect. 4 we prove that every graph on n vertices
has at most 1.8638n minimal feedback vertex sets and that there exists an infinite
family of graphs having 1.5926n minimal feedback vertex sets.

2 Preliminaries

Let G = (V ,E) be an undirected graph on n vertices. For V ′ ⊆ V we denote by
G[V ′] the graph induced by V ′ and by G \ V ′ the graph induced by V \ V ′. For a
vertex v ∈ V let N(v) be the set of its neighbors. We denote by �(G) the maximum
vertex degree of G.

A set X ⊆ V is called a feedback vertex set or an FVS if G \ X is a forest. An
FVS is minimal if it does not contain any other FVS as a proper subset, and minimum
if it has minimum cardinality among all FVS’s in a graph. Let us note that X is a
minimal (minimum) FVS if and only if G \ X is a maximal (maximum) induced
forest. Thus the problem of finding a minimum FVS is equivalent to the problem
of finding a maximum induced forest or an MIF. Similarly, the number of minimal
feedback vertex sets in a graph is equal to the number of maximal induced forests.
For the description of the algorithm it is more convenient to work with MIF than with
FVS.

We call a subset F ⊆ V acyclic if G[F] is a forest and independent if G[F] has no
edges. The notions of maximal and maximum independent sets are defined similarly
to those of FVS’s. If F is acyclic then every connected component of G[F] on at least
two vertices is called non-trivial.

If T is a non-trivial component then we denote by Id(T , t) the operation of con-
tracting all edges of T into one vertex t and removing appeared loops. Note that this
operation may create multiedges in G. We denote by Id∗(T , t) the operation Id(T , t)

followed by the removal of all vertices connected with t by multiedges.
For an acyclic subset F ⊆ V , denote by MG(F) and by M∗

G(F) the set of
all maximal and maximum acyclic supersets of F in G, respectively (we omit the
subindex G when it is clear from the context which graph is meant). Let M∗ =
M∗(∅). Then the problem of finding a MIF can be stated as finding an element of
M∗. We solve a more general problem, namely finding an element of M∗(F) for an
arbitrary acyclic subset F .

To simplify the description of the algorithm, we suppose that F is always an inde-
pendent set. The next proposition justifies this assumption.

Proposition 1 Let G = (V ,E) be a graph, F ⊆ V be an acyclic subset of vertices
and T be a non-trivial component of F . Denote by G′ the graph obtained from G by
the operation Id∗(T , t) and let F ′ = F ∪ {t} \ T . Then

296 Algorithmica (2008) 52: 293–307

• X ∈ MG(F) if and only if X′ ∈MG′(F ′), and
• X ∈ M∗

G(F) if and only if X′ ∈M∗
G′(F ′),

where X′ = X ∪ {t} \ T .

Proof Assume that X ∈ MG(F). If after the operation Id(T , t) a vertex v is con-
nected with t by a multiedge, then the set T ∪ {v} is not acyclic in G. Hence, no
element of MG(F) may contain v. In other words, X does not contain any vertices
removed by the transformation from G to G′ and hence X′ = X ∪ {t} \ T is a set of
vertices of G′. Moreover, X′ is an acyclic subset of G′. To see this, assume by con-
tradiction that X′ induces a cycle C′ in G′. Then C′ necessarily includes t because
otherwise C′ is induced by X in G in contradiction to the acyclicity of X. Let x1
and x2 be two neighbors of t in C′. It follows that there is a path in G from x1 to x2
including vertices of T only. Replace t in C′ by such a path. As a result we obtain a
cycle induced by X in G in contradiction to the acyclicity of X. It remains to show
that X′ is a maximal acyclic subset of G′. For this purpose, assume that there is a
vertex v ∈ V (G′) \ X′ such that X′ ∪ {v} is an acyclic subset. Then X ∪ {v} is an
acyclic subset of G (any cycle in X ∪ {v} can be transformed into a cycle in X′ ∪ {v}
by the operation Id(T , t)) larger than X in contradiction to the maximality of X.

Arguing similarly, we can prove that if X′ ∈ MG′(F ′) then X ∈MG(F) and that
X ∈ M∗

G(F) if and only if X′ ∈M∗
G′(F ′). �

By using the operation Id∗ on every non-trivial component of F , we obtain an
independent set F ′.

The following proposition is used to justify the main branching rule of the algo-
rithm.

Proposition 2 Let G = (V ,E) be a graph, F ⊆ V be an independent subset of ver-
tices and v
∈ F be a vertex adjacent to exactly one vertex t ∈ F . Then

1. For every X ∈ M(F), either v or at least one vertex of N(v) \ {t} is in X.
2. There exists X ∈ M∗(F) such that either v or at least two vertices of N(v) \ {t}

are in X.

Proof (1) If there is X ∈ M(F) such that v
∈ X and no vertex of N(v) \ {t} is in
X, then X ∪ {v} is also an induced forest of G. Thus X is not maximal, which is a
contradiction.

(2) Let us consider X ∈ M∗(F) such that v
∈ X. By item 1, at least one vertex
z ∈ N(v) \ {t} is in X. For the sake of contradiction, let us assume that z is the only
such vertex. Since X is maximal, we have that X ∪ {v} is not acyclic. Because v is of
degree at most 2 in G[X ∪ {v}], we conclude that all the cycles in G[X ∪ {v}] must
contain z. Then the set X ∪ {v} \ {z} is in M∗(F) and satisfies the conditions. �

Consequently, if N(v) = {t, v1, v2, . . . , vk}, then there exists X ∈ M∗(F) satisfy-
ing one of the following properties:

1. v ∈ X;
2. v
∈ X, vi ∈ X for some i ∈ {1,2, . . . , k − 2} while vj
∈ X for all j < i;
3. v, v1, v2, . . . , vk−2
∈ X but vk−1, vk ∈ X.

Algorithmica (2008) 52: 293–307 297

In particular, if k ≤ 1, then v ∈ X for some X ∈M∗(F).
The following proposition is needed to handle the case where every vertex in V \F

is adjacent to a vertex t ∈ F . We reduce this case to finding a maximal (respectively
maximum) independent set in the graph G[V \ F] with some additional edges.

Proposition 3 Let G = (V ,E) be a graph and F be an independent set in G such
that V \ F = N(t) for some t ∈ F . Consider the graph G′ = G[N(t)] and for every
pair of vertices u,v ∈ N(t) having a common neighbor in F \ {t} add an edge uv to
G′. Denote the obtained graph by H and let I ⊆ N(t). Then F ∪ I ∈ MG(F) if and
only if I is a maximal independent set in H . In particular, F ∪ I ∈ M∗

G(F) if and
only if I is a maximum independent set in H .

Proof Let X ∈ MG(F) and u,v ∈ V \ F . If uv ∈ E then u,v, t form a triangle. If
there is a vertex w ∈ F \ {t} adjacent to both u and v then tuwv is a 4-cycle. In both
cases, X cannot contain u and v at the same time. Therefore, X ∈ MG(F) if and
only if X \ F is a maximal independent set in H . �

There are several fast exponential algorithms computing a maximum independent
set in a graph. We use the polynomial space algorithm of Robson.

Proposition 4 ([31]) Let G be a graph on n vertices. Then a maximum independent
set in G can be found in time O(1.2278n).

We need also the following well known result of Moon and Moser [25]:

Proposition 5 ([25]) A graph on n vertices has at most 3n/3 maximal independent
sets.

3 Computing a Minimum Feedback Vertex Set

In this section we show how to compute the minimum size of a feedback vertex set.
Our algorithm can easily be turned into an algorithm computing at least one such set.
Instead of working with feedback vertex sets directly, the algorithm finds the maxi-
mum size of an induced forest in a graph. In fact, it solves a more general problem:
for any acyclic set F it finds the maximum size of an induced forest containing F .

During the work of the algorithm one vertex t ∈ F is called an active vertex. The
algorithm branches on a chosen neighbor of t . Let v ∈ N(t). Denote by K the set
of all vertices of F other than t that are adjacent to v. Let G′ be the graph obtained
after the operation Id(K ∪ {v}, u). We say that a vertex w ∈ V \ {t} is a generalized
neighbor of v in G if w is the neighbor of u in G′. Denote by gd(v) the generalized
degree of v which is the number of its generalized neighbors.

The description of the algorithm consists of a sequence of cases and subcases. To
avoid a confusing nesting of if-then-else statements let us use the following conven-
tion: the first case which applies is used in the algorithm. Thus, inside a given case,
the hypotheses of all previous cases are assumed to be false.

298 Algorithmica (2008) 52: 293–307

Algorithm mif(G,F) computing for a given graph G and an acyclic set F the
maximum size of an induced forest containing F is described by the following pre-
processing and main procedures (let us note that mif(G,∅) computes the maximum
size of an induced forest in G).

Preprocessing

1. If G consists of k ≥ 2 connected components G1,G2, . . . ,Gk , then the algorithm
is called on each of the components and

mif(G,F) =
k∑

i=1

mif(Gi,Fi),

where Fi = Gi ∩ F for all i ∈ {1,2, . . . , k}.
2. If F is not independent, then apply operation Id∗(T , vT) on an arbitrary non-trivial

component T of F . If T contains the active vertex then vT becomes active. Let
G′ be the resulting graph and let F ′ be the set of vertices of G′ obtained from F .
Then

mif(G,F) = mif(G′,F ′) + |T | − 1.

Main Procedures

1. If F = V then MG(F) = {V }. Thus,

mif(G,F) = |V |.
2. If F = ∅ and �(G) ≤ 1 then MG(F) = {V } and

mif(G,F) = |V |.
3. If F = ∅ and �(G) ≥ 2 then the algorithm chooses a vertex t in G of degree at

least 2. Then t is either contained in a maximum induced forest or not. Thus the
algorithm branches on two subproblems and returns the maximum:

mif(G,F) = max { mif(G,F ∪ {t}),
mif(G \ {t},F)}.

4. If F contains no active vertex then choose an arbitrary vertex t ∈ F as an active
vertex. Denote the active vertex by t from now on.

5. If V \F = N(t) then the algorithm constructs the graph H from Proposition 3 and
computes a maximum independent set I in H . Then

mif(G,F) = |F | + |I |.
6. If there is v ∈ N(t) with gd(v) ≤ 1 then add v to F .

mif(G,F) = mif(G,F ∪ {v}).

Algorithmica (2008) 52: 293–307 299

7. If there is v ∈ N(t) with gd(v) ≥ 4 then either add v to F or remove v from G.

mif(G,F) = max { mif(G,F ∪ {v}),
mif(G \ {v},F)}.

8. If there is v ∈ N(t) with gd(v) = 2 then denote its generalized neighbors by w1
and w2. Either add v to F or remove v from G but add w1 and w2 to F . If adding
w1 and w2 to F induces a cycle, we just ignore the last branch.

mif(G,F) = max { mif(G,F ∪ {v}),
mif(G \ {v},F ∪ {w1,w2})}.

9. If all vertices in N(t) have exactly three generalized neighbors then at least one
of these vertices must have a generalized neighbor outside N(t), since the graph
is connected and the condition of the case Main 5 does not hold. Denote such a
vertex by v and its generalized neighbors by w1, w2 and w3 in such a way that
w1
∈ N(t). Then we either add v to F ; or remove v from G but add w1 to F ; or
remove v and w1 from G and add w2 and w3 to F . Similarly to the previous case,
if adding w2 and w3 to F induces a cycle, we just ignore the last branch.

mif(G,F) = max { mif(G,F ∪ {v}),
mif(G \ {v},F ∪ {w1}),
mif(G \ {v,w1},F ∪ {w2,w3})}.

The correctness and the running time of the algorithm are analyzed in the following.

Theorem 6 Let G be a graph on n vertices. Then a maximum induced forest of G

can be found in time O(1.7548n).

Proof Let us consider the algorithm mif(G,F) described above. The correctness of
Preprocessing 1 and Main 1, 2, 3, 4, 7 is clear. The correctness of Main 5 follows from
Proposition 3, while the correctness of Preprocessing 2 and Main 6, 8, 9 follows from
Proposition 1 and 2 (indeed, applying Proposition 2 to the vertex u of the graph G′
shows that for some X ∈MG(F) either v or at least two of its generalized neighbors
are in X).

In order to evaluate the time complexity of the algorithm we use the following
measure:

μ = |V \ F | + α|V \ (F ∪ N(t))|,
where α = 0.955. In other words, each vertex in F has weight 0, each vertex in N(t)

has weight 1, each other vertex has weight 1 +α, and the size of the problem is equal
to the sum of the vertex weights. We will prove that a problem of size μ can be solved
in time O(xμ) where

x < 1.33328.

300 Algorithmica (2008) 52: 293–307

During its execution, the algorithm naturally explores the search tree whose nodes
are associated with the pairs (G,F) to which the algorithm is recursively applied.
Since the algorithm spends polynomial time per node of the search tree, its running
time is polynomially related to the number of nodes of the search tree.

Observe that each path from the root to a leaf of the tree is of length O(n). To
observe this, it is sufficient to show that if (G,F) corresponds to a non-leaf node of
the tree and (G1,F1) corresponds to a child of (G,F) then either (G1,F1) is a leaf
or

|V (G1)| + |V (G1) \ F1| ≤ |V (G)| + |V (G) \ F | − 1.

For the preprocessing cases and the cases Main 3, 6, 7, 8, 9, this immediately follows
from the description. Cases Main 1, 2 correspond to the leaf nodes. As Case Main 4
never occurs in two consecutive nodes of the search tree, its statement may be re-
formulated as “choose an arbitrary vertex t as new active vertex and go through the
list of cases again to select the appropriate one”. That is, the node corresponding to
the case Main 4 may be analyzed together with the next node where t is specified.
Finally in case Main 5, the graph H has exactly μ vertices since each vertex that is
not in F has weight 1. By Theorem 4, a maximum independent set in H can be found
in time O(1.2278μ). Thus, in the considered case we may represent (G,F) as the
parent of 1.2278μ leaves which reflect the runtime spent for processing the subtree
rooted by (G,F) and hence preserve the polynomial relation of the number of nodes
of the search tree to the running time.

The argumentation in the previous paragraph verifies that each path from the root
to a leaf of the tree is of length O(n). It follows that the number of nodes of the
search tree is O(n) multiplied by the number of leaves of the search tree. Taking into
account that the running time of the algorithm is polynomially related to the number
of nodes of the search tree, we obtain T (μ) = O(f (μ) · nO(1)), where T (μ) is the
worst-case runtime of the algorithm called on the problem of size μ and f (μ) is
the largest number of leaves of the search tree corresponding to an execution of the
algorithm when applied to a problem of size μ. We use induction on μ to prove that
f (μ) ≤ xμ. Then, since the polynomial is suppressed by rounding the exponential
base, we have T (μ) = O(1.33328μ). Clearly, f (0) = 1. Suppose that f (k) ≤ xk for
every k < μ and consider a problem of size μ.

It is now clear that the following steps do not contribute to the exponential factor
of the running time of the algorithm: Preprocessing 1, 2 and Main 1, 2, 4, 6.

If the condition of the case Main 5 then, by construction the number of leaves is
1.2278μ which is smaller than 1.33328μ.

In all the remaining cases the algorithm is called recursively on smaller problems.
We consider these cases separately.

In the case Main 3 every vertex has weight 1 + α. So, removing v leads to a
problem of size μ − 1 − α. Otherwise, v becomes active after the next Main 4 step.
Then all its neighbors become of weight 1, and we obtain a problem of size at most
μ − 1 − 3α since v has degree at least 2. Thus

f (μ) ≤ f (μ − 1 − α) + f (μ − 1 − 3α) ≤ (xμ−1−α + xμ−1−3α) ≤ xμ

by the induction assumption and the choice of x and α.

Algorithmica (2008) 52: 293–307 301

In the case Main 7 removing the vertex v decreases the size of the problem by 1.
If v is added to F then we obtain a non-trivial component in F , which is contracted
into a new active vertex t ′ at the next Preprocessing 2 step. Those of the generalized
neighbors of v that had weight 1 will be connected with t ′ by multiedges and thus
removed during the next Preprocessing 2 step. If a generalized neighbor of v had
weight 1 + α then it will become a neighbor of t ′, i.e. of weight 1. Thus, in any case
the size of the problem is decreased by at least 1 + 4α. So, we have that

f (μ) ≤ f (μ − 1) + f (μ − 1 − 4α) ≤ (xμ−1 + xμ−1−4α) ≤ xμ.

In the case Main 8 we distinguish three subcases depending on the weights of the
generalized neighbors of v. Let i be the number of generalized neighbors of v having
weight 1 + α. Adding v to F reduces the weight of a generalized neighbor either
from 1 to 0 or from 1 + α to 1. Removing v from the graph reduces the weight of
both generalized neighbors of v to 0 (since we add them to F). According to this, we
obtain three recurrences: for i ∈ {0,1,2},

f (μ) ≤ f (μ − (3 − i) − iα) + f (μ − 3 − iα) ≤ (xμ−3+i−iα + xμ−3−iα) ≤ xμ.

The case Main 9 is considered analogously to the case Main 8, except that at least
one of the generalized neighbors of v has weight 1+α, that is i ≥ 1 (i = 0 is excluded
by Main 5). In this case, we have for i ∈ {1,2,3},

f (μ) ≤ f (μ − (4 − i) − iα) + f (μ − 2 − α) + f (μ − 4 − iα)

≤ (xμ−4+i−iα + xμ−2−α + xμ−4−iα) ≤ xμ.

Thus

f (μ) ≤ xμ.

Since every vertex of G is of weight at most 1 + α, we have that the running time
of the algorithm is

T (μ) = O(xμ) = O(x(1+α)n) = O(1.333281.955n) = O(1.7548n). �

The improved running time of the algorithm, compared to the algorithm in [29] is
based on Main 5 and Main 9 and their analysis. The removal of these cases and re-
placing gd(v) ≥ 4 by gd(v) ≥ 3 in Case Main 7 results in the O(1.8899n) algorithm
presented in [29].

Remark The only tight recurrence is the one of case Main 7 when v has degree 4.
Thus, an improvement of this case would improve the overall (upper bound of the)
running time of the algorithm.

4 On the Number of Minimal Feedback Vertex Sets

In this section we use the Branch & Reduce method in order to obtain an upper
bound of 1.8638n for the number of maximal induced forests (and thus the number

302 Algorithmica (2008) 52: 293–307

of minimal feedback vertex sets) in a graph G on n vertices. It follows from the
result of Schwikowski and Speckenmeyer [32] that all maximal induced forests and
all minimal feedback vertex sets can be enumerated in time O(1.8638n).

We also give a lower bound, namely we exhibit an infinite family of graphs, all
having 105n/10 ≈ 1.5926n maximal induced forests. Thus, the worst-case running
time of the algorithm in [32] is between O(1.5926n) and O(1.8638n).

First, we prove the upper bound for the number of maximal induced forests.

Theorem 7 A graph G on n vertices contains at most 1.8638n maximal induced
forests.

Proof To prove the theorem, we show that |MG(∅)| ≤ 1.8638n. We will prove a
slightly stronger statement, namely that for any acyclic subset F of G = (V ,E),
|MG(F)| ≤ 1.8638n. By Proposition 1 we may assume that F is independent. For a
graph G, an independent set F and a vertex t ∈ F (we call such a vertex t an active
vertex), we use the same kind of measure as in the previous section:

μ(G,F, t) = |V \ F | + α|V \ (F ∪ N(t))|,
where

α = 0.5491.

In the case where F = ∅, we put

μ(G,∅) = |V |(1 + α).

Note, that μ(G,F, t) ≤ μ(G,∅) = (1+α)n for every F and t ∈ F . Let f (G,F) =
|MG(F)| be the number of maximal induced forests containing F and let f (μ) be a
maximum f (G,F) among all triples (G,F, t) of measure at most μ. We claim that
for x = 1.49468,

f (μ) ≤ xμ.

Since for F = ∅ every vertex of G has weight 1 + α, the claim implies that
|MG(∅)| ≤ x(1+α)n ≤ 1.494681.5491n ≤ 1.8638n, which proves the theorem.

Let us observe that the claim is true for μ = 0. In fact, for μ = 0 we have that F =
V . Thus MG(F) = {V } and f (0) = 1. To prove the claim we proceed by induction
assuming that f (k) ≤ xk for every k < μ. Let (G,F, t) be an instance of measure μ.

We consider several cases. As in the previous section, we assume that inside a
given case, the hypotheses of all previous cases are assumed to be false.

Case 1: G is not connected. Denote by G1,G2, . . . ,Gk the components of G.
Let Fi denote the intersection of F and the vertices of Gi , for i = 1,2, . . . , k. If
the vertices of V \ F are present in at least two components, then, by the induction
assumption,

f (μ) =
k∏

i=1

f (Gi,Fi) ≤
k∏

i=1

xμ(Gi,Fi) = x
∑k

i=1 μ(Gi,Fi) = xμ.

Algorithmica (2008) 52: 293–307 303

Otherwise, each component which does not contain vertices of V \ F has exactly
one maximal induced forest (see the next case) and the component including all the
vertices of V \ F (which determines the overall number of the maximal induced
forests) has less vertices than G. Hence we may consider that we prove the theorem
by two-dimensional induction, the first dimension is the induction on μ, the second
dimension is induction on the number of vertices of the underlying graph. The con-
sidered case follows from the induction assumption of the second dimension. In fact,
this is the only place in the proof where the second dimension is ever used.

Case 2: F = ∅. If �(G) ≤ 1 then MG(F) = {V }, i.e. f (G,F) = 1. Otherwise,
let t be a vertex in G of degree at least 2. Then every maximal forest either contains
t , or does not. Thus the number of maximal forests in G is equal to the number of
maximal forests containing t , that is f (G, {t}), plus the number of maximal forests
not containing t , that is f (G \ {t},∅). Since

μ(G, {t}, t) ≤ μ − 1 − 3α

and

μ(G \ {t},∅) ≤ μ − 1 − α,

we use the induction assumption and arrive at

f (μ) ≤ f (μ − 1 − 3α) + f (μ − 1 − α) ≤ xμ−1−3α + xμ−1−α ≤ xμ.

From now on we denote by t ∈ F an active vertex (if F
= ∅ contains no such
vertex, we may always choose an arbitrary vertex as active, reducing the measure).

Case 3: V \ F = N(t). Then by Proposition 3, f (μ) is equal to the number of
maximal independent sets in the graph H from Proposition 3. Since all vertices of
V \ F have weight 1, H has μ vertices. By Proposition 5,

f (μ) ≤ 3μ/3 ≤ xμ.

Now we assume that V \ F
= N(t), that F
= ∅ and that G is connected. Then
there is a vertex v ∈ N(t) such that at least one of its generalized neighbors lies not
in N(t) (and thus contributes the weight 1 + α to the measure). Among all such
vertices we choose a vertex v of minimum generalized degree. Similarly to the proof
of Theorem 6, it follows from Propositions 1 and 2 that every X ∈ MG(F) must
contain either v or at least one of its generalized neighbors.

Case 4: gd(v) = 0. In this case every X ∈MG(F) contains v and thus f (G,F) =
f (G,F ∪ {v}). Since μ(G,F ∪ {v}, t) < μ, we have that f (μ) ≤ xμ.

Case 5: gd(v) = 1. Every forest X ∈ MG(F) either contains v, or does not contain
v and contains its generalized neighbor w1. The measure μ(G,F ∪ {v}, t) is at most
μ − 1 − α, and the measure μ(G \ {v},F ∪ {w1}, t) is at most μ − 2 − α. Hence

f (μ) ≤ f (μ − 1 − α) + f (μ − 2 − α) ≤ xμ−1−α + xμ−2−α ≤ xμ.

Case 6: gd(v) = 2. Let us denote the generalized neighbors of v by w1 and w2
and let us assume that w1
∈ N(t). Then every forest X from MG(F)

304 Algorithmica (2008) 52: 293–307

– Either contains v;
– or does not contain v and contains w1;
– or does not contain v and w1 but contains w2.

Let us note that if w2 ∈ N(t) and v belongs to a maximal induced forest X, then w2
does not belong to X. Thus if w2 ∈ N(t), then the number of forests in M(F) is at
most

f (G \ {w2},F ∪ {v}) + f (G \ {v},F ∪ {w1}) + f (G \ {v,w1},F ∪ {w2}).
Thus

f (μ) ≤ f (μ − 2 − α) + f (μ − 2 − α) + f (μ − 3 − α)

≤ 2xμ−2−α + xμ−3−α ≤ xμ.

If w2
∈ N(t), then

f (μ) ≤ f (μ − 1 − 2α) + f (μ − 2 − α) + f (μ − 3 − 2α)

≤ xμ−1−2α + xμ−2−α + xμ−3−2α ≤ xμ.

Case 7: gd(v) = 3. Denote the generalized neighbors of v by w1,w2, and w3
according to the rule that wj
∈ N(t) and wk ∈ N(t) imply j < k. Then for every
forest X from MG(F) holds one of the following

– X contains v;
– X does not contain v and contains w1;
– X does not contain v and w1 but contains w2;
– X does not contain v, w1 and w2 but contains w3.

Let i be the number of generalized neighbors of v that are not adjacent to t . For
i = 1,2, we have

f (μ) ≤ f (μ − 4 + i − iα) + f (μ − 2 − α) + f (μ − 3 − iα) + f (μ − 4 − iα)

≤ xμ−4+i−iα + xμ−2−α + xμ−3−iα + xμ−4−iα ≤ xμ.

For i = 3,

f (μ) ≤ f (μ − 1 − 3α) + f (μ − 2 − α) + f (μ − 3 − 2α) + f (μ − 4 − 3α)

≤ xμ−1−3α + xμ−2−α + xμ−3−2α + xμ−4−3α ≤ xμ.

Case 8: gd(v) ≥ 4. Then every forest X from MG(F) either contains v or does
not. Thus

f (μ) ≤ f (μ − 1 − 4α) + f (μ − 1) ≤ xμ−1−4α + xμ−1 ≤ xμ. �

Remark The two tight recurrences here are in the case Main 7, when i = 1 and when
i = 3. Again, an improvement of this case would provide a better bound on the num-
ber of minimal feedback vertex sets.

Algorithmica (2008) 52: 293–307 305

Fig. 1 Generating graph for the
lower bound

Now, we prove the lower bound for the number of maximal induced forests.

Theorem 8 There exists an infinite family of graphs all having 105n/10 ≈ 1.5926n

maximal induced forests.

Proof The infinite family consists of disjoint copies of the graph given in Fig. 1.
The same family of graphs has been used in [6] to show that the number of maximal
bipartite subgraphs is lower bounded by 1.5926n.

A pair of vertices in the graph of Fig. 1 are two vertices whose labels differ by 5.
This graph has 5 · 24 = 80 maximal induced forests containing one vertex from 4 of
the pairs, 5 · 22 = 20 containing one pair and one vertex from each of the opposite
pairs and 5 containing two pairs. In total, it has 105 maximal induced forests.

It is clear that the maximal induced forests of a disconnected graph are the union
of one maximal induced forest of each component. Their number thus equals the
product of the number of maximal induced forests of each component. By taking
multiple copies of the graph in Fig. 1, we get the lower bound of 105n/10. �

5 Conclusion

In this paper we presented a time O(1.7548n) algorithm finding a minimum feedback
vertex set in an undirected graph on n vertices. We also proved that a graph on n

vertices can contain at most 1.8638n minimal feedback vertex sets and that there
exist graphs having 105n/10 ≈ 1.5926n minimal feedback vertex sets. The design and
analysis of algorithms establishing the first two results is based on the following three
ideas. The first one is considering the complementary problem of maximum induced
forest instead the straightforward computing of the feedback vertex set. The second
idea is a generalization of the maximum induced problems according to which a
subset of vertices F of the given graph G is introduced and the task is to find the
largest forest including F as a subset. The third idea is a good choice of the measure
of the subproblems recursively generated by the algorithm. This good choice led us
to a significantly better worst case time analysis of the proposed algorithm.

There are two possible directions of further research related to the topic of this
paper. The first is the design of a faster algorithm for computing a minimum feed-
back vertex set (or maximum induced forest). One potential possibility for a faster

306 Algorithmica (2008) 52: 293–307

computation of a maximum induced forest is to use the methodology developed for
computing a maximum independent set, like that proposed in [19]. This possibility
seems promising because, as demonstrated by algorithms in the present paper, the
maximum induced forest and the maximum independent set problems are intimately
connected and hence the methodology which is useful for one of them might be use-
ful for the other. Another possible research direction is to design faster exponential
time algorithms for a problem which generalizes the maximum induced forest prob-
lem. For example, one can consider a problem which gets as input a class of graphs
and the task is to find a maximum induced subgraph of the given graph which belongs
to this class.

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set
problem. SIAM J. Discrete Math. 12, 289–297 (1999)

2. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the feedback vertex
set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput. 27,
942–959 (1998)

3. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings
of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 575–
582. IEEE Computer Society, Los Alamitos (2006)

4. Brunetta, L., Maffioli, F., Trubian, M.: Solving the feedback vertex set problem on undirected graphs.
Discrete Appl. Math. 101, 37–51 (2000)

5. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper.
Res. Lett. 32, 547–556 (2004)

6. Byskov, J.M., Madsen, B.A., Skjernaa, B.: On the number of maximal bipartite subgraphs of a graph.
J. Graph Theory 48, 127–132 (2005)

7. Cai, M.-C., Deng, X., Zang, W.: A min-max theorem on feedback vertex sets. Math. Oper. Res. 27,
361–371 (2002)

8. Chen, J., Liu, Y., Lu, S.: Directed feedback vertex set problem is FPT. Dagstuhl Seminar Series,
Seminar 07281 (2007), available electronically at http://kathrin.dagstuhl.de/files/Materials/07/07281/
07281.ChenJianer.Paper.pdf

9. Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual interpretation of
two 2-approximation algorithms for the feedback vertex set problem in undirected graphs. Oper. Res.
Lett. 22, 111–118 (1998)

10. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k)n3) FPT
algorithm for the undirected feedback vertex set problem. In: Proceedings of the 11th Annual Inter-
national Conference on Computing and Combinatorics (COCOON 2005). Lecture Notes in Comput.
Sci., vol. 3595, pp. 859–869. Springer, Berlin (2005)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
12. Even, G., Naor, J., Schieber, B., Zosin, L.: Approximating minimum subset feedback sets in undi-

rected graphs with applications. SIAM J. Discrete Math. 13, 255–267 (2000)
13. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Handbook of Combinatorial

Optimization, Supplement vol. A, pp. 209–258. Kluwer Academic, Dordrecht (1999)
14. Fomin, F.V., Pyatkin, A.V.: Finding minimum feedback vertex set in bipartite graph. Reports in Infor-

matics 291, University of Bergen (2005)
15. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination—a case study. In: Proceed-

ings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP 2005).
Lecture Notes in Comput. Sci., vol. 3580, pp. 191–203. Springer, Berlin (2005)

16. Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (expo-
nential) algorithms. Bull. EATCS 87, 47–77 (2005)

17. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.: Bounding the number of minimal dominating
sets: a measure and conquer approach. In: Proceedings of the 16th Annual International Symposium
on Algorithms and Computation (ISAAC 2005). Lecture Notes in Comput. Sci., vol. 3827, pp. 573–
582. Springer, Berlin (2005)

http://kathrin.dagstuhl.de/files/Materials/07/07281/07281.ChenJianer.Paper.pdf
http://kathrin.dagstuhl.de/files/Materials/07/07281/07281.ChenJianer.Paper.pdf

Algorithmica (2008) 52: 293–307 307

18. Fomin, F.V., Gaspers, S., Pyatkin, A.V.: Finding a minimum feedback vertex set in time O(1.7548n).
In: Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC
2006). Lecture Notes in Comput. Sci., vol. 4169, pp. 184–191. Springer, Berlin (2006)

19. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n) independent set
algorithm. In: 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 18–
25. ACM and SIAM, New York (2006)

20. Funke, M., Reinelt, G.: A polyhedral approach to the feedback vertex set problem. In: Integer Pro-
gramming and Combinatorial Optimization. Lecture Notes in Comput. Sci., vol. 1084, pp. 445–459.
Springer, Berlin (1996)

21. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized vertex cover prob-
lems. In: Proceedings of the 9th International Workshop on Algorithms and Data Structures (WADS
2005). Lecture Notes in Comput. Sci., vol. 3608, pp. 36–48. Springer, Berlin (2005)

22. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations,
pp. 85–103. Plenum, New York (1972)

23. Kleinberg, J., Kumar, A.: Wavelength conversion in optical networks. J. Algorithms 38, 25–50 (2001)
24. Koivisto, M.: An O(2n) algorithm for graph coloring and other partitioning problems via inclusion-

exclusion. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), pp. 583–590. IEEE Computer Society, Los Alamitos (2006)

25. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3, 23–28 (1965)
26. Pardalos, P.M., Qian, T., Resende, M.G.C.: A greedy randomized adaptive search procedure for the

feedback vertex set problem. J. Comb. Optim. 2, 399–412 (1999)
27. Raman, V., Saurabh, S., Sikdar, S.: Improved exact exponential algorithms for vertex bipartization

and other problems. In: Proceedings of the 9th Italian Conference on Theoretical Computer Science
(ICTCS 2005). Lecture Notes in Comput. Sci., vol. 3701, pp. 375–389. Springer, Berlin (2005)

28. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undi-
rected feedback vertex set. In: Proceedings of the 13th International Symposium on Algorithms and
Computation (ISAAC 2002). Lecture Notes in Comput. Sci., vol. 2518, pp. 241–248. Springer, Berlin
(2002)

29. Razgon, I.: Exact computation of maximum induced forest. In: Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT 2006). Lecture Notes in Comput. Sci., pp. 160–171. Springer,
Berlin (2006)

30. Razgon, I.: Directed feedback vertex set is fixed-parameter tractable. Dagstuhl Seminar Series, Sem-
inar 07281 (2007), available electronically at http://kathrin.dagstuhl.de/files/Submissions/07/07281/
07281.RazgonIgor.Paper!.pdf

31. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440 (1986)
32. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems.

Discrete Appl. Math. 117, 253–265 (2002)
33. Woeginger, G.: Exact algorithms for NP-hard problems: a survey. In: Combinatorial Optimization—

Eureka, You Shrink!. Lecture Notes in Comput. Sci., vol. 2570, pp. 185–207. Springer, Berlin (2003)

http://kathrin.dagstuhl.de/files/Submissions/07/07281/07281.RazgonIgor.Paper!.pdf
http://kathrin.dagstuhl.de/files/Submissions/07/07281/07281.RazgonIgor.Paper!.pdf

	On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms
	Abstract
	Introduction
	Preliminaries
	Computing a Minimum Feedback Vertex Set
	Preprocessing
	Main Procedures

	On the Number of Minimal Feedback Vertex Sets
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

