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We present improved parameterized algorithms for the feedback vertex set problem
on both unweighted and weighted graphs. Both algorithms run in time O(5kkn2). The
algorithms construct a feedback vertex set of size at most k (in the weighted case this
set is of minimum weight among the feedback vertex sets of size at most k) in a given
graph G of n vertices, or report that no such feedback vertex set exists in G .
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1. Introduction

Let G be an undirected graph. A feedback vertex set (FVS) F in G is a set of vertices in G whose removal results in
an acyclic graph (or equivalently, every cycle in G contains at least one vertex in F ). The problem of finding a minimum
feedback vertex set in a graph is one of the classic NP-complete problems [14] and has many applications. The history of the
problem can be traced back to the early ’60s. For several decades, many different algorithmic approaches were tried on this
problem, including approximation algorithms, linear programming, local search, polyhedral combinatorics, and probabilistic
algorithms (see the survey of Festa et al. [10]). There are also exact algorithms that find a minimum FVS in a graph of n
vertices in time O(1.8899n) [17] and in time O(1.7548n) [11].

An important application of the FVS problem is deadlock recovery in operating systems [19], in which a deadlock is
presented by a cycle in a system resource-allocation graph G . In order to recover from deadlocks, we need to abort a set of
processes in the system, i.e., to remove a set of vertices in the graph G , so that all cycles in G are broken. Equivalently,
we need to find an FVS in G . The problem also has a version on weighted graphs, where the weight of a vertex can be
interpreted as the cost of aborting the corresponding process. In this case, we are looking for an FVS in G whose weight is
minimized.

In a practical system resource-allocation graph G , it can be expected that the size k of the minimum FVS in G , i.e., the
number of vertices in the FVS, is fairly small. This motivated the study of parameterized algorithms for the FVS problem
that find an FVS of k vertices in a graph of n vertices (where the weight of the FVS is minimized, in the case of weighted
graphs), and run in time f (k)nO(1) for a fixed function f (thus, the algorithms become practically efficient when the value k
is small).

This line of research has received considerable attention, mostly on the unweighted version of the problem. The first
group of parameterized algorithms of running time f (k)nO(1) for the FVS problem on unweighted graphs was given by

✩ This work was supported in part by the National Science Foundation of USA under the Grant CCF-0430683 and by the Research Council of Norway. The
extended abstract of this paper was presented at WADS 2007.

* Corresponding author.
E-mail addresses: chen@cs.tamu.edu (J. Chen), fomin@ii.uib.no (F.V. Fomin), yangliu@cs.tamu.edu (Y. Liu), sjlu@cs.tamu.edu (S. Lu), yngvev@ii.uib.no

(Y. Villanger).
0022-0000/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2008.05.002

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:chen@cs.tamu.edu
mailto:fomin@ii.uib.no
mailto:yangliu@cs.tamu.edu
mailto:sjlu@cs.tamu.edu
mailto:yngvev@ii.uib.no
http://dx.doi.org/10.1016/j.jcss.2008.05.002


J. Chen et al. / Journal of Computer and System Sciences 74 (2008) 1188–1198 1189
Bodlaender, Fellows [3,8] O(17(k4)!nO(1))

Downey and Fellows [9] O((2k + 1)kn2)

Raman et al. [16] O(max{12k, (4 log k)k}n2.376)

Kanj et al. [13] O((2 log k + 2 log log k + 18)kn2)

Raman et al. [15] O((12 log k/ log log k + 6)kn2.376)

Guo et al. [12] O((37.7)kn2)

Dehne et al. [7] O((10.6)kn3)

Fig. 1. The history of parameterized algorithms for the unweighted FVS problem.

Bodlaender [3] and by Downey and Fellows [8]. Since then a chain of dramatic improvements was obtained by different
researchers (see Fig. 1 for references).

Randomized parameterized algorithms have also been studied in the literature for the FVS problem, for both unweighted
and weighted graphs. The best known randomized parameterized algorithms for the FVS problems are due to Becker et
al. [2], who developed a randomized algorithm of running time O(4kkn2) for the FVS problem on unweighted graphs,
and a randomized algorithm of running time O(6kkn2) for the FVS problem on weighted graphs. To our knowledge, no
deterministic algorithm of running time f (k)nO (1) for any function f was known prior to our results for the weighted FVS
problem.

1.1. Our results

The main result of this paper is an algorithm that for a given integer k and a weighted graph G , either finds a minimum
weight FVS in G of at most k vertices, or correctly reports that G contains no FVS of at most k vertices. The running time of
our algorithm is O(5kkn2). This improves and generalizes a long chain of results in parameterized algorithms. Let us remark
that the running time of our (deterministic) algorithm comes close to that of the best randomized algorithm for the FVS
problem on unweighted graphs and is better than the running time of the previous best randomized algorithm for the FVS
problem on weighted graphs.

The general approach of our algorithm is based on the iterative compression method [18], which has been successfully
used recently for improved algorithms for the FVS and other problems [7,12,18]. The method starts with an FVS of k vertices
for a small subgraph of the given graph, and iteratively grows the small subgraph while keeping an FVS of k vertices in
the grown subgraph until the subgraph becomes the original input graph. This method makes it possible to reduce the
original FVS problem on general graphs to the FVS problem on graphs with a special decomposition structure. The main
contribution of the current paper is the development of a general algorithmic technique that identifies a dual parameter
in problem instances that limits the number of times where the original parameter k cannot be effectively reduced during
a branch and search process. In particular, for the FVS problem on graphs of the above special decomposition structure,
a measure is introduced that nicely combines the original parameter and the dual parameter and bounds effectively the
running time of a branch and search algorithm for the FVS problem. This technique leads to a simpler but significantly more
efficient parameterized algorithm for the FVS problem on unweighted graphs. Moreover, the introduction of the measure
greatly simplifies the processing of degree-2 vertices in a weighted graph, and enables us to solve the FVS problem on
weighted graphs in the same complexity as that for the problem on unweighted graphs. Note that this is significant because
no previous algorithms for the FVS problem on unweighted graphs can be extended to weighted graphs mainly because
of the lack of an effective method for handling degree-2 vertices. Finally, the technique of dual parameters seems to be
of general usefulness for the development of parameterized algorithms, and has been used more recently in solving other
parameterized problems [4,5].

The remaining part of this paper is organized as follows. In Section 2, we provide in full details a simpler algorithm
and its analysis for unweighted graphs. This is done for clearer demonstration of our approach. We also indicate why this
simpler algorithm does not work for weighted graphs. In Section 3, we obtain the main result of the paper, the algorithm for
the weighted FVS problem. This generalization of the results from Section 2 is not straightforward and requires a number
of new structures and techniques.

2. On feedback vertex sets in unweighted graphs

In this section, we consider the FVS problem on unweighted graphs. We start with some terminologies. A forest is a graph
that contains no cycles. A tree is a forest that is connected (therefore, a forest can be equivalently defined as a collection
of disjoint trees). Let W be a subset of vertices in a graph G = (V , E). We will denote by G[W ] the subgraph of G that is
induced by the vertex set W . For simplicity we will use the notation G − w and G − W for respectively G[V \ {w}] and
G[V \ W ] where w ∈ V and W ⊆ V . A pair (V 1, V 2) of vertex subsets in a graph G = (V , E) is a forest bipartition of G if
V 1 ∪ V 2 = V , V 1 ∩ V 2 = ∅, and both induced subgraphs G[V 1] and G[V 2] are forests. For a vertex u ∈ V the degree of u will
be the number of edges incident to u.

Let G be a graph and let F be a subset of vertices in G . The set F is a feedback vertex set (shortly, FVS) of G if G − F is a
forest. The size of an FVS F is the number of vertices in F .
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Algorithm-1 Feedback(G, V 1, V 2,k)

Input: G = (V , E) is a graph with a forest bipartition (V 1, V 2), k is an integer.
Output: An FVS F of G such that |F | � k and F ⊆ V 1; or report “No” (i.e.,

no such an FVS exists).

1. if (k < 0) or (k = 0 and G is not a forest) then return “No”;
2. if (k � 0) and G is a forest then return ∅;
3. if a vertex w in V 1 has at least two neighbors in V 2 then
3.1. if two of the neighbors of w in V 2 belong to the same tree in G[V 2] then

F1 = Feedback(G − w, V 1 \ {w}, V 2,k − 1);
if F1 = “No” then return “No” else return F1 ∪ {w};

3.2. else
F1 = Feedback(G − w, V 1 \ {w}, V 2,k − 1);
F2 = Feedback(G, V 1 \ {w}, V 2 ∪ {w},k);
if F1 �= “No” then return F1 ∪ {w} else return F2;

4. else pick any vertex w that has degree � 1 in G[V 1];
4.1. if w has degree � 1 in the original graph G then

return Feedback(G − w, V 1 \ {w}, V 2,k);
4.2. else return Feedback(G, V 1 \ {w}, V 2 ∪ {w},k).

Fig. 2. Algorithm for unweighted feedback vertex set problem.

Our main problem is formally defined as follows.

feedback vertex set: given a graph G and an integer k, either find an FVS of size at most k in G , or report that no such
FVS exists.

Before we present our algorithm for the feedback vertex set problem, we first consider a special version of the problem,
defined as follows:

f-bipartition fvs: given a graph G , a forest bipartition (V 1, V 2) of G , and an integer k, either find an FVS of size at
most k for the graph G in the subset V 1, or report that no such an FVS exists.

Note that the main difference between the f-bipartition fvs problem and the original feedback vertex set problem is that
we require that the FVS in the f-bipartition fvs is contained in the given subset V 1.

Observe that certain structures in the input graph G can be easily processed and then removed from G . For example, if a
vertex v has a self-loop (i.e., an edge whose both ends are incident to v), then the vertex v is necessarily contained in every
FVS in G . Thus, we can directly include v in the objective FVS. If two vertices v and w are connected by multiple edges
(i.e., there are more than one edge whose one end is v and the other end is w), then one of v and w must be contained in
the objective FVS. Thus, we can branch into two recursive calls, one includes v , and the other includes w , in the objective
FVS. All these operations are more efficient than the algorithm of running time O(5kkn2) developed in the current paper.
Therefore, for a given input graph G , we always first apply a preprocessing that applies the above operations and removes
all self-loops and multiple edges in the graph G . In consequence, we can assume, without loss of generality, that the input
graph G contains neither self-loops nor multiple edges.

The algorithm, Feedback(G, V 1, V 2,k), for the f-bipartition fvs problem is given in Fig. 2. We first discuss the correct-
ness of the algorithm. The correctness of step 1 and step 2 of the algorithm is obvious. Now consider step 3. Let w be a
vertex in V 1 that has at least two neighbors in V 2.

If the vertex w has two neighbors in V 2 that belong to the same tree T in the induced subgraph G[V 2], then the tree T
plus the vertex w contains at least one cycle. Since our search for an FVS is restricted to V 1, the only way to break the
cycles in T ∪ {w} is to include the vertex w in the objective FVS. Moreover, the objective FVS of size at most k exists in G
if and only if the remaining graph G − w has an FVS of size at most k − 1 in the subset V 1 \ {w} (note that (V 1 \ {w}, V 2)

is a valid forest bipartition of the graph G − w). Therefore, step 3.1 correctly handles this case.
If no two neighbors of the vertex w belong to the same tree in the induced subgraph G[V 2], then the vertex w is either

in the objective FVS or not in the objective FVS. If w is in the objective FVS, then we should be able to find an FVS F1 in
the graph G − w such that |F1| � k − 1 and F1 ⊆ V 1 \ {w} (again note that (V 1 \ {w}, V 2) is a valid forest bipartition of the
graph G − w). On the other hand, if w is not in the objective FVS, then the objective FVS for G must be contained in the
subset V 1 \ {w}. Also note that in this case, the subgraph G[V 2 ∪ {w}] induced by the subset V 2 ∪ {w} is still a forest since
no two neighbors of w in V 2 belong to the same tree in G[V 2]. In consequence, (V 1 \ {w}, V 2 ∪ {w}) still makes a valid
forest bipartition for the graph G . Therefore, step 3.2 handles this case correctly.

Now we consider step 4. At this point, every vertex in V 1 has at most one neighbor in V 2. Moreover, since the induced
subgraph G[V 1] is a forest, there must be a vertex w in V 1 that has degree at most 1 in G[V 1] (note that V 1 cannot be
empty at this point since otherwise the algorithm would have stopped at step 2). If the vertex w also has degree at most 1
in the original graph G , then removing w does not help breaking any cycles in G . Therefore, the vertex w can be discarded.
This case is correctly handled by step 4.1. Otherwise, the vertex w has degree at most 1 in the induced subgraph G[V 1] but
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has degree larger than 1 in the original graph G . Observing that w has at most one neighbor in V 2, we can derive that the
degree of w in the original graph G must be exactly 2. Moreover, w has exactly two neighbors u and v such that v is in
V 1 and u is in V 2.

Since the vertex w has degree 2 in the original graph G , and the vertex v is adjacent to w , we have that every cycle
in G that contains w has to contain v . In consequence, if w is contained in the objective FVS, then we can simply replace
it by v . Therefore, in this case, we can safely assume that the vertex w is not in the objective FVS. This can be easily
implemented by moving the vertex w from the set V 1 to the set V 2, and recursively working on the modified instance, as
given in step 4.2 of the algorithm (note that (V 1 \ {w}, V 2 ∪ {w}) is a valid forest bipartition of the graph G , because by our
assumption, the vertex w will be a degree-1 vertex in the induced subgraph G[V 2 ∪ {w}]).

Now we are ready to present the following lemma.

Lemma 1. The algorithm Feedback(G, V 1, V 2,k) correctly solves the f-bipartition fvs problem. The running time of the algorithm
is O(2k+ln2), where n is the number of vertices in G, and l is the number of connected components in the induced subgraph G[V 2].

Proof. The correctness of the algorithm has been verified by the above discussion. Now we consider the complexity of the
algorithm.

The recursive execution of the algorithm can be described as a search tree T . We first count the number of leaves in
the search tree T . Note that only step 3.2 of the algorithm corresponds to branches in the search tree T . Let T (k, l) be the
total number of leaves in the search tree T for the algorithm Feedback(G, V 1, V 2,k), where l is the number of connected
components (i.e., trees) in the forest G[V 2]. Inductively, the number of leaves in the search tree T1 corresponding to the
recursive call Feedback(G − w, V 1 \ {w}, V 2,k − 1) is at most T (k − 1, l). Moreover, we assumed at step 3.2 that w has at
least two neighbors in V 2 and that no two neighbors of w in V 2 belong to the same tree in G[V 2]. Therefore, the vertex w
“merges” at least two trees in G[V 2] into a single tree in G[V 2 ∪ {w}]. Hence, the number of trees in G[V 2 ∪ {w}] is at most
l − 1. In consequence, the number of leaves in the search tree T2 corresponding to the recursive call Feedback(G, V 1 \ {w},
V 2 ∪ {w},k) is at most T (k, l − 1). This gives the following recurrence relation:

T (k, l) � T (k − 1, l) + T (k, l − 1).

Also note that none of the (non-branching) recursive calls in the algorithm (steps 3.1, 4.1, and 4.2) would increase the
values k and l, and that T (0, l) = 1 for all l and T (k,0) = 1 for all k (by steps 1–2). From all these facts, we can easily derive
that T (k, l) = O(2k+l).

Finally, observe that along each root-leaf path in the search tree T , the total number of executions of steps 1, 2, 3, 3.1,
4.1, and 4.2 of the algorithm is O(n) because each of these steps either stops immediately, or reduces the size of the set V 1
by at least 1 (and the size of V 1 is never increased during the execution of the algorithm). It remains to explain how each
of the steps can be executed in O(n) time.

Before the first call to the Feedback algorithm, we use O(n2) time, because this will happen only once. The three
graphs, G1 = G[V 1], G2 = G[V 2], and G12 = (V , E \ (E(G1) ∪ E(G2))) can be trivially constructed in O(n2) time. G1 and G2
are forests, and G12 is a bipartite graph with the two vertex sets V 1 and V 2 as independent sets.

Steps 1, 2, 4.1, and 4.2 can be easily performed in O(n) time. For step 3, we simply search for a vertex of V 1 that has
degree at least 2 in G12, and for step 4 we search in G1 for a leaf (vertex of degree at most 1). The condition for step 3.1
is that no two neighbors of w belong to the same tree in G[V 2], which can be checked by simply marking each neighbor
of w , and doing a search in the forest G[V 2].

Each of the steps 3.1, 3.2, 4.1, and 4.2 changes one or more of the graphs G1, G2, G12, and we have to argue that these
manipulations can also be done in O(n) time. Looking closely at these steps, we can observe that only two operations are
required. The first is to delete a vertex in V 1, which corresponds to deleting the vertex and all incident edges in G1 and G12.
The second operation is to move a vertex w from V 1 to V 2, which corresponds to deleting w from G1 and updating G2
and G12 as follows: add w to V (G2) and to V 2 of G12, and read the set of edges incident to w in G , and add edges
between w and vertices in V 2 to G2 and between w and V 1 to G12. Using double linked lists and pointers it is possible to
delete a vertex and all incident edges in O(n) time, and to insert edges in O(1) time.

Therefore, the computation time along each root-leaf path in the search tree T is O(n2). In conclusion, the running time
of the algorithm Feedback(G, V 1, V 2,k) is O(2k+ln2). This completes the proof of the lemma. �

Following the idea of iterative compression proposed by Reed et al. [18], we formulate the following problem:

fvs reduction: given a graph G and an FVS F of size k + 1 for G , either construct an FVS of size at most k for G , or
report that no such an FVS exists.

Lemma 2. The fvs reduction problem on an n-vertex graph G can be solved in time O(5kn2).

Proof. We use the algorithm Feedback to solve the fvs reduction problem. Let F be the FVS of size k + 1 in the graph
G = (V , E). Every FVS F ′ of size at most k for G is a union of a subset F1 of at most k − j vertices in V \ F and a subset
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F2 of j vertices in F , for some integer j, 0 � j � k. Note that since we assume that no vertex in F \ F2 is in the FVS F ′ , the
induced subgraph G[F \ F2] must be a forest. For each j, 0 � j � k, we enumerate all subsets of j vertices in F . For each
such subset F2 in F such that G[F \ F2] is a forest, we seek a subset F1 of at most k − j vertices in V \ F such that F1 ∪ F2
is an FVS in G .

Fix a subset F2 in F , where |F2| = j. Note that the graph G has an FVS F1 ∪ F2 of size at most k, where F1 ⊆ V \ F , if
and only if the subset F1 of V \ F is an FVS for the graph G − F2 and |F1| � k − j. Therefore, to solve the original problem,
we construct an FVS F1 for the graph G − F2 such that |F1| � k − j and F1 ⊆ V \ F .

Since F is an FVS for G , we have that the induced subgraph G[V \ F ] = G − F is a forest. Moreover, by our assumption,
the induced subgraph G[F \ F2] is also a forest. Note that (V \ F ) ∪ (F \ F2) = V \ F2, which is the vertex set for the graph
G ′ = G − F2. Therefore, (V \ F , F \ F2) is a forest bipartition of the graph G ′ . Thus, an FVS F1 for the graph G ′ such that
|F1| � k − j and F1 ⊆ V \ F can be constructed by the algorithm Feedback(G ′, V \ F , F \ F2,k − j).

Since |F | = k + 1 and |F2| = j, we have that |F \ F2| = k + 1 − j. Therefore, the forest G[F \ F2] contains at most
k + 1 − j connected components. By Lemma 1, the running time of the algorithm Feedback(G ′, V \ F , F \ F2,k − j) is

O(2(k− j)+(k+1− j)n2) = O(4k− jn2). Now for all integers j, 0 � j � k, we enumerate all subsets F2 of j vertices in F and
apply the algorithm Feedback(G ′, V \ F , F \ F2,k − j) for those F2 such that G[F \ F2] is a forest. As we discussed above,
the graph G has an FVS of size at most k if and only if for some F2 ⊆ F , the algorithm Feedback(G ′, V \ F , F \ F2,k − j)
produces an FVS F1 for the graph G ′ . The running time of this procedure is

k∑
j=0

(
k + 1

j

)
· O

(
4k− jn2) =

k∑
j=0

(
k + 1

k − j + 1

)
O

(
4k− j+1n2) = O

(
5kn2).

This completes the proof of the lemma. �
Finally, by combining Lemma 2 with iterative compression, we obtain the main result of this section.

Theorem 3. The feedback vertex set problem on an n-vertex graph is solvable in time O(5kkn2).

Proof. To solve the feedback vertex set problem, for a given graph G = (V , E), we start by applying Bafna et al.’s 2-
approximation algorithm for the minimum feedback vertex set problem [1]. This algorithm runs in O(n2) time, and either
returns an FVS F ′ of size at most 2k, or verifies that no FVS of size at most k exists. If no FVS is returned, the algorithm is
terminated with the conclusion that no FVS of size at most k exists. In the case of the opposite result, we use any subset
V ′ of k vertices in F ′ , and put V 0 = V ′ ∪ (V \ F ′). Of course, the induced subgraph G[V 0] has an FVS of size k, namely
the set V ′ (G[V 0 \ V ′] is a forest). Let F ′ \ V ′ = {v1, v2, . . . , v |F ′|−k}, and let V i = V 0 ∪ {v1, . . . , vi} for i ∈ {0,1, . . . , |F ′| − k}.
Inductively, suppose that we have constructed an FVS Fi for the graph G[V i], where |Fi | = k. Then the set F ′

i+1 = Fi ∪{vi+1}
is obviously an FVS for the graph G[V i+1] and |F ′

i+1| = k + 1.

Now the pair (G[V i+1], F ′
i+1) is an instance for the fvs reduction problem. Therefore, in time O(5kn2), we can either

construct an FVS Fi+1 of size k for the graph G[V i+1], or report that no such an FVS exists. Note that if the graph G[V i+1]
does not have an FVS of size k, then the original graph G cannot have an FVS of size k. In this case, we simply stop and
claim the non-existence of an FVS of size k for the original graph G . On the other hand, with an FVS Fi+1 of size k for
the graph G[V i+1], our induction proceeds to the next graph G[V i+1], until we reach the graph G = G[V |F ′|−k]. This process
runs in time O(5kkn2) since |F ′| − k � k, and solves the feedback vertex set problem. �
3. Feedback vertex set in weighted graphs

In this section, we discuss the feedback vertex set problem on weighted graphs. A weighted graph G = (V , E) is an
undirected graph, where each vertex u ∈ V is assigned a weight that is a positive real number. The weight of a vertex set
A ⊆ V is the sum of the vertex weights of all vertices in A. We denote by |A| the cardinality of A. The (parameterized)
feedback vertex set problem on weighted graphs is formally defined as follows:

weighted-fvs: given a weighted graph G and an integer k, either find an FVS F of minimum weight for G such that
|F | � k, or report that no FVS of size at most k exists in G .

The algorithm for the weighted case has several similarities with the unweighted case, but has also a significant differ-
ence. The difference is that step 4.2 of Algorithm-1 becomes invalid for weighted graphs. A degree-2 vertex w in the set V 1
cannot simply be excluded from the objective FVS. If the weight of w is smaller than that of its parent v in G[V 1], it may
become necessary to include w instead of v in the objective FVS.

To overcome this difficulty, we introduce a new partition structure of the vertices in a weighted graph.

Definition 4. A triple (V 0, V 1, V 2) is an independent-forest partition (IF-partition) of a graph G = (V , E) if (V 0, V 1, V 2) is a
partitioning of V (i.e., V 0 ∪ V 1 ∪ V 2 = V , and V 0, V 1, and V 2 are pairwise disjoint), such that
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(1) G[V 1] and G[V 2] are forests;
(2) G[V 0] is an independent set;
(3) Every vertex u in V 0 is of degree 2 in G , with both neighbors in V 2.

The following problem is the analogue of the f-bipartition fvs problem on weighted graphs.

weighted if-partition fvs: given a weighted graph G , an IF-partition (V 0, V 1, V 2) of G , and an integer k, either find an
FVS F of minimum weight for G that satisfies the conditions |F | � k and F ⊆ V 0 ∪ V 1, or report that no such an FVS
exists.

To develop and analyze our algorithm for the weighted if-partition fvs problem, we need the following concept of
measure for the problem instances. For a vertex subset V ′ in the graph G , we will denote by #c(V ′) the number of connected
components in the induced subgraph G[V ′].

Definition 5. Let (G, V 0, V 1, V 2,k) be an instance of the weighted if-partition fvs problem with an IF-partition (V 0, V 1, V 2).
The deficiency of the instance (G, V 0, V 1, V 2,k) is defined as

τ (k, V 0, V 1, V 2) = k − (|V 0| − #c(V 2) + 1
)
.

Intuitively, τ (k, V 0, V 1, V 2) of the instance (G, V 0, V 1, V 2,k) is an upper bound on the number of vertices in the objective
FVS that are in the set V 1 (this will become clearer during our discussion below). Our algorithm for the weighted if-

partition fvs problem is based on the following observation: once we have correctly determined all vertices in the objective
FVS that are in the set V 1, the problem will become solvable in polynomial time, as shown in the following lemma.

Lemma 6. Let (G, V 0, V 1, V 2,k) be an instance of the weighted if-partition fvs problem with an IF-partition (V 0, V 1, V 2) of an n-
vertex graph G. If V 1 = ∅, or V 2 = ∅, or τ (k, V 0, V 1, V 2) � 0, then a solution to the instance (G, V 0, V 1, V 2,k) can be constructed in
time O(n2).

Proof. First of all, note that if k < 0, then the solution to the instance is “No”: we cannot remove a negative number of
vertices from G . Thus, in the following discussion, we assume that k � 0.

If V 2 = ∅, then by the definition, V 0 should also be an empty set. Thus, the graph G = G[V 1] is a forest, and the solution
to the instance (G, V 0, V 1, V 2,k) is the empty set ∅.

Now consider the case V 1 = ∅. Then we need to find a minimum-weight subset of at most k vertices in the set V 0 whose
removal from the graph G = G[V 0 ∪ V 2] results in a forest. We will solve this problem by creating a new graph H, such
that an optimal solution for (G, V 0, V 1, V 2,k) corresponds to the edges which are not used in a maximum weight spanning
tree of H.

Construct a new graph H = (V , E ), where each vertex μ in V corresponds to a connected component in the induced
subgraph G[V 2], and each edge [μ,ν] in E corresponds to a vertex v in the set V 0 such that the two neighbors of v are in
the connected components in G[V 2] that correspond to the two vertices μ and ν , respectively, in H. Intuitively, the graph
H can be obtained from the graph G = G[V 0 ∪ V 2] by “shrinking” each connected component in G[V 2] into a single vertex
and “smoothing” each degree-2 vertex in V 0 (note that the graph H may contain multiple edges and self-loops). Moreover,
we give each edge in H a weight that is equal to the weight of the corresponding vertex in V 0. Thus, the graph H is a graph
with edge weights. Observe that there is a one-to-one correspondence between the connected components in the graph H
and the connected components in the graph G . Moreover, since each connected component in the induced subgraph G[V 2]
is a tree, a connected component in the graph H is a tree if and only if the corresponding connected component in the
graph G is a tree. Most importantly, removing a vertex in V 0 in the graph G corresponds to removing the corresponding
edge in the graph H. Therefore, the problem of constructing a minimum-weight vertex set in V 0 whose removal from G
results in a forest is equivalent to the problem of constructing a minimum-weight edge set in the graph H whose removal
from H results in a forest.

Let H1, . . . , Hs be the connected components of the graph H, where for each i, the component Hi has ni vertices and
mi edges. An edge set Ei in Hi whose removal from Hi results in a forest is of the minimum weight if and only if the
complement graph Hi − Ei is a spanning tree of the maximum weight in Hi . Thus, the union E ′ = ⋃s

i=1(Hi − Ti) is a
minimum-weight edge set whose removal from H results in a forest, where for each i, Ti is a maximum-weight spanning
tree in the graph Hi . Since the maximum-weight spanning tree Ti in Hi can be constructed in time O(n2

i ) by modifying the
well-known minimum spanning tree algorithms (the algorithms work even for graphs with self-loops and multiple edges)
[6], we conclude that the minimum-weight edge set E ′ in H can be constructed in time

∑s
i=1 O(n2

i ) = O(n2). Also note
that the number of edges in the set E ′ is equal to

∑s
i=1(mi − ni + 1) = |E | − |V | + s.

Correspondingly, in case V 1 = ∅, each minimum-weight FVS in V 0 for the graph G contains exactly |E | − |V | + s vertices,
and such an FVS can be constructed in time O(n2). Note that |E | = |V 0|, |V | is equal to the number #c(V 2) of connected
components in the induced subgraph G[V 2], and s (which is the number of connected components in H) is equal to the
number #c(G) of connected components in the graph G = G[V 0 ∪ V 2]. Thus, each minimum-weight FVS in V 0 for the graph
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Algorithm-2 W-Feedback(G, V 0, V 1, V 2,k)

Input: G = (V , E) is a graph with an IF-partition (V 0, V 1, V 2), k is an integer.
Output: a minimum-weight FVS F of G such that |F | � k and F ⊆ V 0 ∪ V 1;

or report “No” (i.e., no such an FVS exists).

1. if (V 1 = ∅) or (V 2 = ∅) or (τ (k, V 0, V 1, V 2) � 0) then
solve the problem in time O(n2);

2. if (k < 0) or (k = 0 and G is not a forest) then return “No”;
3. if a vertex w in V 1 has degree less than 2 in G then

return W-Feedback(G − w, V 0, V 1 \ {w}, V 2,k);
4. else if a vertex w in V 1 has at least two neighbors in V 2 then
4.1 if two neighbors of w are in the same tree of G[V 2] then

return ({w} ∪ W-Feedback(G − w, V 0, V 1 \ {w}, V 2,k − 1));
4.2 else

F1 = W-Feedback(G − w, V 0, V 1 \ {w}, V 2,k − 1);
F2 = W-Feedback(G, V 0, V 1 \ {w}, V 2 ∪ {w},k);
return min-w(F1 ∪ {w}, F2);

5 else pick a lowest leaf w1 in any tree T in G[V 1];
let w be the parent of w1 in T , and let w1, . . . , wt be the children of w in T ;

5.1 if (w has a neighbor in V 2) or (w has more than one child in T ) then
F1 = W-Feedback(G − w, V 0, V 1 \ {w}, V 2,k − 1);
F2 = W-Feedback(G, V 0 ∪ {w1, . . . , wt }, V 1 \ {w, w1, . . . , wt }, V 2 ∪ {w},k);
return min-w(F1 ∪ {w}, F2);

5.2 else
if the weight of w1 is larger than the weight of w then

return W-Feedback(G, V 0, V 1 \ {w1}, V 2 ∪ {w1},k);
else return W-Feedback(G, V 0 ∪ {w1}, V 1 \ {w, w1}, V 2 ∪ {w},k).

Fig. 3. Algorithm for weighted FVS problem.

G contains exactly |V 0| − #c(V 2) + #c(G) vertices, and such a minimum-weight FVS can be constructed in time O(n2).
Therefore, for the given instance (G, V 0, V 1, V 2,k) of the weighted if-partition fvs problem with V 1 = ∅, the solution is
“No” if k < |V 0| − #c(V 2) + #c(G); and the solution is an O(n2) time constructible FVS of |V 0| − #c(V 2) + #c(G) vertices in
V 0 if k � |V 0| − #c(V 2) + #c(G).

This completes the proof that when V 1 = ∅, a solution to the instance (G, V 0, V 1, V 2,k) can be constructed in
time O(n2).

Now consider the case τ (k, V 0, V 1, V 2) � 0. If V 2 = ∅, then by the first part of the proof, the lemma holds. Thus, we
assume that V 2 �= ∅. As analyzed above, to break every cycle in the induced subgraph G[V 0 ∪ V 2] we have to remove at
least |V 0| − #c(V 2) + #c(V 0 ∪ V 2) vertices in the set V 0. Therefore, if τ (k, V 0, V 1, V 2) � 0, then k � |V 0| − #c(V 2) + 1 �
|V 0| − #c(V 2) + #c(V 0 ∪ V 2) (note that V 2 �= ∅ so #c(V 0 ∪ V 2) � 1). Thus, in this case, all k vertices in the objective FVS
must be in the set V 0 in order to break all cycles in the induced subgraph G[V 0 ∪ V 2], and no vertex in the objective
FVS can be in the set V 1. Hence, if the induced subgraph G[V 1 ∪ V 2] contains a cycle, then the solution to the instance
is “No.” On the other hand, suppose that G[V 1 ∪ V 2] is a forest, then the graph G has another IF-partition (V ′

0, V ′
1, V ′

2),
where V ′

0 = V 0, V ′
1 = ∅, and V ′

2 = V 1 ∪ V 2. It is easy to verify that in this case the instance (G, V ′
0, V ′

1, V ′
2,k) with the

IF-partition (V ′
0, V ′

1, V ′
2) has the same solution set as the instance (G, V 0, V 1, V 2,k) with the IF-partition (V 0, V 1, V 2). Since

V ′
1 = ∅, by the second part of the proof, a solution to the instance (G, V ′

0, V ′
1, V ′

2,k) with the IF-partition (V ′
0, V ′

1, V ′
2) can

be constructed in time O(n2). This completes the proof of the lemma. �
We are now in a position to introduce our main algorithm, which is given in Fig. 3 and solves the weighted if-partition

fvs problem. The subroutine min-w(S1, S2) on two vertex subsets S1 and S2 in the algorithm returns among S1 and S2 the
one with a smaller weight (or any one of them if the weights are tied). To simplify our descriptions, we take the conventions
that “No” is a special vertex set of an infinitely large weight and that any set plus “No” gives a “No.” Therefore, the value
of min-w(S1, S2) will be (1) “No” if both S1 and S2 are “No”; (2) S1 if S2 is “No”; (3) S2 if S1 is “No”; and (4) the one of
smaller weight among S1 and S2 if both S1 and S2 are not “No.”

For each tree in the forest G[V 1], we fix a root so that we can talk about the “lowest leaf” in a tree in G[V 1].

Lemma 7. The algorithm W-Feedback(G, V 0, V 1, V 2,k) correctly solves the weighted if-bipartition fvs problem, and its running
time is O(2τ (k,V 0,V 1,V 2)n2), where n is the number of vertices in the graph G.

Proof. We first verify the correctness of the algorithm. Step 1 of the algorithm is justified by Lemma 6. Justifications for
steps 2, 3, 4, 4.1, and 4.2 are exactly the same as that for steps 1, 4.1, 3, 3.1, and 3.2 in Algorithm-1 for unweighted graphs.
Now consider step 5. When the algorithm reaches step 5, the following conditions hold:

(1) the sets V 1 and V 2 are not empty;
(2) every vertex in the set V 1 has degree at least 2 in the graph G; and
(3) every vertex in the set V 1 has at most one neighbor in the set V 2.
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Condition (1) holds because of step 1; condition (2) holds because of step 3; and condition (3) holds because of step 4.
By condition (1) and because the induced subgraph G[V 1] is a forest, step 5 can always pick the vertex w1. By conditions

(2) and (3), the vertex w1 has a unique neighbor in V 2. Also by conditions (2) and (3), the vertex w1 must have a parent
w in the tree T in G[V 1]. In consequence, the vertex w1 has degree exactly 2 in G . Finally, since w1 is the lowest leaf in
the tree T , all children w1, . . . , wt of w in the tree T are also leaves in T . By conditions (2) and (3) again, each child wi of
w has a unique neighbor in the set V 2, and every child wi of w has degree exactly 2 in the graph G .

Step 5.1 simply branches on the vertex w . To include the vertex w in the objective FVS, we simply remove w from the
graph G (and from the set V 1), and recursively look for an FVS in V 0 ∪ (V 1 \ {w}) of size at most k − 1. Note that in this
case, the sets V 0 and V 2 are unchanged, and the triple (V 0, V 1 \ {w}, V 2) obviously makes a valid IF-partition for the graph
G − w . On the other hand, to exclude the vertex w from the objective FVS, we move w from V 1 to V 2. First note that since
the vertex w has at most one neighbor in V 2, the induced subgraph G[V 2 ∪{w}] is still a forest. Moreover, since all children
w1, . . . , wt of w have degree 2 in the graph G and each wi has a unique neighbor in the set V 2, after moving w from
V 1 to V 2, all these degree-2 vertices w1, . . . , wt have their both neighbors in the set V 2 ∪ {w}. Therefore, these vertices
w1, . . . , wt now can be moved to the set V 0. In particular, the triple (V 0 ∪ {w1, . . . , wt}, V 1 \ {w, w1, . . . , wt}, V 2 ∪ {w}) is
a valid IF-partition of the vertex set of the graph G . This recursive branching is implemented by the two recursive calls in
step 5.1.

If we reach step 5.2, then the two conditions in step 5.1 do not hold. Therefore, in addition to conditions (1)–(3), the
following two conditions also hold:

(4) the vertex w has no neighbor in V 2; and
(5) the vertex w has a unique child w1 in the tree T .

By conditions (2), (4), and (5), the vertex w has degree exactly 2 in the graph G (and w is not the root of the tree T ).
Therefore, the vertices w1 and w are two adjacent degree-2 vertices in the graph G . Observe that in this case, a cycle in
the graph G contains the vertex w1 if and only if it also contains the vertex w . Therefore, we can safely assume that the
one of larger weight among w1 and w is not in the objective FVS. If the larger weight vertex is w1, then the first recursive
call in step 5.2 is executed, which moves w1 from set V 1 to set V 2 (note that the triple (V 0, V 1 \ {w1}, V 2 ∪ {w1}) is a
valid IF-partition of G because w1 has a unique neighbor in V 2). If the larger weight vertex is w , then the second recursive
call in step 5.2 is executed, which moves w from V 1 to V 2. Note that since both neighbors of the degree-2 vertex w1
are in the set V 2 ∪ {w}, after adding w to the set V 2, we can also move the vertex w1 from V 1 to V 0. Thus, the triple
(V 0 ∪ {w1}, V 1 \ {w, w1}, V 2 ∪ {w}) is a valid IF-partition of the graph G .

We also remark that by our assumption, the input graph G contains neither multiple edges nor self-loops. Moreover, the
graph in each of the recursive calls in the algorithm is either the original G , or G with a vertex deleted. Therefore, the graph
in each of the recursive calls in the algorithm also contains neither multiple edges nor self-loops.

Since all possible cases are covered in the algorithm, we conclude that when the algorithm W-Feedback stops, it must
output a correct solution to the given instance (G, V 0, V 1, V 2,k).

To analyze the running time, as in the unweighted case, we first count the number of leaves in the search tree
corresponding to the execution of the algorithm. Let T (k, V 0, V 1, V 2) be the number of leaves in the search tree for
algorithm W-Feedback(G, V 0, V 1, V 2,k). We prove by induction on the value τ (k, V 0, V 1, V 2) that T (k, V 0, V 1, V 2) �
max(1,2τ (k,V 0,V 1,V 2)). First of all, if τ (k, V 0, V 1, V 2) � 0, then by step 1 of the algorithm, we have T (k, V 0, V 1, V 2) = 1.

First consider the branching steps, i.e., step 4.2 and step 5.1. In case step 4.2 of the algorithm is executed, we have
recursively

T (k, V 0, V 1, V 2) � T
(
k − 1, V 0, V 1 \ {w}, V 2

) + T
(
k, V 0, V 1 \ {w}, V 2 ∪ {w}). (1)

Since

τ1 = τ
(
k − 1, V 0, V 1 \ {w}, V 2

)
= (k − 1) − (|V 0| − #c(V 2) + 1

)
= τ (k, V 0, V 1, V 2) − 1

< τ(k, V 0, V 1, V 2),

and

τ2 = τ
(
k, V 0, V 1 \ {w}, V 2 ∪ {w})

= k − (|V 0| − #c
(

V 2 ∪ {w}) + 1
)

� k − (|V 0| −
(
#c(V 2) − 1

) + 1
)

= τ (k, V 0, V 1, V 2) − 1

< τ(k, V 0, V 1, V 2),
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where we have used the fact #c(V 2 ∪ {w}) � #c(V 2) − 1 because in this case, we assume that the vertex w has two
neighbors in two different trees in G[V 2], therefore, adding w to V 2 merges at least two connected components in G[V 2]
and reduces the number of connected components by at least 1.

Therefore, by the inductive hypothesis, T (k −1, V 0, V 1 \ {w}, V 2) � 2τ1 , and T (k, V 0, V 1 \ {w}, V 2 ∪{w}) � 2τ2 . Combining
these with Inequality (1), we get

T (k, V 0, V 1, V 2) � T
(
k − 1, V 0, V 1 \ {w}, V 2

) + T
(
k, V 0, V 1 \ {w}, V 2 ∪ {w})

� 2τ1 + 2τ2

� 2τ (k,V 0,V 1,V 2)−1 + 2τ (k,V 0,V 1,V 2)−1

= 2τ (k,V 0,V 1,V 2).

In conclusion, the induction goes through for step 4.2 of the algorithm.
Now we consider step 5.1, which is the least trivial case, and makes the major difference from the unweighted cases.

Let V ′
0 = V 0 ∪ {w1, . . . , wt}, V ′

1 = V 1 \ {w, w1, . . . , wt}, and V ′
2 = V 2 ∪ {w}. The execution of step 5.1 gives the following

inequality:

T (k, V 0, V 1, V 2) � T
(
k − 1, V 0, V 1 \ {w}, V 2

) + T
(
k, V ′

0, V ′
1, V ′

2

)
.

As we have shown above, by the inductive hypothesis, we have

T
(
k − 1, V 0, V 1 \ {w}, V 2

)
� 2τ (k,V 0,V 1,V 2)−1. (2)

To estimate the value T (k, V ′
0, V ′

1, V ′
2), first note that |V ′

0| = |V 0| + t . Moreover, at this point, we must have either that the
vertex w has a neighbor in V 2 or that the vertex w has more than one child in the tree T in G[V 1].

If w has a neighbor in V 2, then adding w to V 2 will “attach” the vertex w to a connected component in G[V 2]. In
consequence, the number of connected components in G[V 2] will be equal to that in G[V 2 ∪ {w}] (recall that w has only
one neighbor in V 2). In this case (note that t � 1), we have

τ
(
k, V ′

0, V ′
1, V ′

2

) = k − (∣∣V ′
0

∣∣ − #c
(

V ′
2

) + 1
)

= k − ((|V 0| + t
) − #c(V 2) + 1

)
� τ (k, V 0, V 1, V 2) − 1.

Now let us assume that the vertex w has no neighbor in V 2 but has more than one child in the tree T in G[V 1] (i.e.,
t � 2). Then |V ′

0| = |V 0| + t � |V 0| + 2. In this case, adding the vertex w to the set V 2 increases the number of connected
components in G[V 2] by 1 (since w has no neighbor in V 2, the vertex w will become a single-vertex connected component
in the induced subgraph G[V 2 ∪ {w}]). That is, #c(V 2 ∪ {w}) = #c(V 2) + 1. Therefore,

τ
(
k, V ′

0, V ′
1, V ′

2

) = k − (∣∣V ′
0

∣∣ − #c
(

V ′
2

) + 1
)

= k − ((|V 0| + t
) − #c

(
V 2 ∪ {w}) + 1

)
� k − ((|V 0| + 2

) − (
#c(V 2) + 1

) + 1
)

� τ (k, V 0, V 1, V 2) − 1.

In conclusion, in all cases in step 5.1, we will have τ (k, V ′
0, V ′

1, V ′
2) � τ (k, V 0, V 1, V 2) − 1. Therefore, now we can apply

the induction and get

T
(
k, V ′

0, V ′
1, V ′

2

)
� 2τ (k,V ′

0,V ′
1,V ′

2) � 2τ (k,V 0,V 1,V 2)−1.

Combining this with the inequalities (1) and (2), we conclude that

T (k, V 0, V 1, V 2) � 2τ (k,V 0,V 1,V 2)

holds for the case of step 5.1.
We should also remark that it can be verified that for all non-branching recursive calls in the algorithm, i.e., steps 3, 4.1,

and 5.2, the instance deficiency is never increased. In particular, if the first recursive call in step 5.2 is executed, then since
the vertex w1 has a unique neighbor in V 2, #c(V 2) = #c(V 2 ∪ {w1}). Thus,

τ
(
k, V 0, V 1 \ {w1}, V 2 ∪ {w1}

) = k − (|V 0| − #c
(

V 2 ∪ {w1}
) + 1

)
= k − (|V 0| − #c(V 2) + 1

)
= τ (k, V 0, V 1, V 2).
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If the second recursive call in step 5.2 is executed, then #c(V 2 ∪ {w}) = #c(V 2) + 1 because w has no neighbor in V 2 and
w will become a single-vertex connected component in the induced subgraph G[V 2 ∪ {w}]. Therefore,

τ
(
k, V 0 ∪ {w1}, V 1 \ {w, w1}, V 2 ∪ {w})
= k − (∣∣V 0 ∪ {w1}

∣∣ − #c
(

V 2 ∪ {w}) + 1
)

= k − ((|V 0| + 1
) − (

#c(V 2) + 1
) + 1

)
= τ (k, V 0, V 1, V 2).

Summarizing all the above discussions, we complete the inductive proof that the number of leaves in the search tree for
the algorithm W-Feedback(G, V 0, V 1, V 2,k) is at most 2τ (k,V 0,V 1,V 2) .

In the same way as in the proof for the unweighted case, we observe that along each root-leaf path in the search tree,
the total number of executions of steps 1, 2, 3, 4, 4.1, 4.2, 5, 5.1, and 5.2 of the algorithm is O(n) because each of these
steps either stops immediately, or reduces the size of the set V 1 by at least 1. Step 1 is only preformed in leaf nodes of the
tree, and thus only adds O(n2) time to the total. By similar arguments as the one used for the unweighted case, all steps
except step 1 can be preformed in O(n) time. Therefore, the running time of the algorithm W-Feedback(G, V 0, V 1, V 2,k) is
O(2τ (k,V 0,V 1,V 2)n2). �

With Lemma 7, we can now proceed in the same way as for the unweighted case to solve the original weighted-fvs

problem. Consider the following weighted version of the fvs reduction problem.

weighted fvs reduction: given a weighted graph G and an FVS F of size k + 1 for G , either construct an FVS F ′ of
minimum weight that satisfies |F ′| � k, or report that no such an FVS exists.

Note that in the definition of weighted fvs reduction, we do not require that the given FVS F of size k + 1 have the
minimum weight.

Lemma 8. The weighted fvs reduction problem on an n-vertex graph is solvable in time O(5kn2).

Proof. The proof proceeds similarly to the proof of Lemma 2. For the given FVS F of size k + 1 in the graph G = (V , E),
every FVS F ′ of size at most k for G (including the one with the minimum weight) is a union of a subset F1 of at most
k − j vertices in V \ F and a subset F2 of j vertices in F , for some integer j, 0 � j � k, where (V \ F , F \ F2) is a forest
bipartition of the graph G0 = G − F2. Therefore, we can enumerate all subsets F2 of j vertices in F , for each j, 0 � j � k,
such that (V \ F , F \ F2) is a forest bipartition of the graph G0 = G − F2, and construct the minimum-weight FVS F0 of G0
satisfying |F0| � k − j. Note that the forest bipartition (V \ F , F \ F2) of G0 is in fact a special IF-partition (V 0, V 1, V 2) of G0,
where V 0 = ∅, V 1 = V \ F , and V 2 = F \ F2. Therefore, by Lemma 7, a minimum-weight FVS F0 of G0 satisfying |F0| � k − j
can be constructed in time

O
(
2τ (k− j,V 0,V 1,V 2)n2) = O

(
2(k− j)−(0−#c(F\F2)+1)n2) = O

(
4k− jn2),

where we have used the fact #c(F \ F2) � |F \ F2| = k + 1 − j. Now the proof proceeds exactly the same way as in Lemma 2,
and concludes that the weighted fvs reduction problem can be solved in time O(5kn2). �

Using Theorem 3 and Lemma 8, we obtain the main result of this paper.

Theorem 9. The weighted-fvs problem on an n-vertex graph is solvable in time O(5kkn2).

Proof. Let (G,k) be a given instance of the weighted-fvs problem. As we explained in the proof of Theorem 3, we can first
construct, in time O(5kkn2), an FVS F of size k + 1 for the graph G (the weight of F is not necessarily the minimum). Then
we simply apply Lemma 8. �
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