
SIAM J. DISCRETE MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 466–476

SPANNING DIRECTED TREES WITH MANY LEAVES∗

NOGA ALON† , FEDOR V. FOMIN‡ , GREGORY GUTIN§ , MICHAEL KRIVELEVICH† ,

AND SAKET SAURABH‡

Abstract. The Directed Maximum Leaf Out-Branching problem is to find an out-branching
(i.e., a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In
this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show
that (1) every strongly connected n-vertex digraph D with minimum in-degree at least 3 has an out-
branching with at least (n/4)1/3 − 1 leaves; (2) if a strongly connected digraph D does not contain
an out-branching with k leaves, then the pathwidth of its underlying graph UG(D) is O(k log k), and
if the digraph is acyclic with a single vertex of in-degree zero, then the pathwidth is at most 4k. The

last result implies that it can be decided in time 2O(k log2 k) · nO(1) whether a strongly connected
digraph on n vertices has an out-branching with at least k leaves. On acyclic digraphs the running
time of our algorithm is 2O(k log k) · nO(1).

Key words. out-branching, maximum leaf, fixed parameter tractability, rooted tree, directed
graphs

AMS subject classifications. 05C05, 05C85, 68R10, 68W05

DOI. 10.1137/070710494

1. Introduction. In this paper, we initiate the combinatorial and algorithmic
study of a natural generalization of the well-studied Maximum Leaf Spanning Tree

(MLST) problem on connected undirected graphs [9, 14, 17, 21, 18, 22, 24, 31, 33].
Given a digraph D, a subdigraph T of D is an out-tree if T is an oriented tree with
only one vertex s of in-degree zero (called the root). If T is a spanning out-tree, i.e.,
V (T) = V (D), then T is called an out-branching of D. The vertices of T of out-degree
zero are called leaves. The Directed Maximum Leaf Out-Branching (DMLOB)
problem is to find an out-branching in a given digraph with the maximum number of
leaves.

It is well known that MLST is NP-hard for undirected graphs [23], which means
that DMLOB is NP-hard for symmetric digraphs (i.e., digraphs in which the existence
of an arc xy implies the existence of the arc yx) and, thus, for strongly connected
digraphs. We can show that DMLOB is NP-hard for acyclic digraphs as follows:
Consider a bipartite graph G with bipartition X, Y and a vertex s �∈ V (G). To obtain
an acyclic digraph D from G and s, orient the edges of G from X to Y and add all
arcs sx, x ∈ X . Let B be an out-branching in D. Then the set of leaves of B is
Y ∪X ′, where X ′ ⊂ X , and for each y ∈ Y there is a vertex z ∈ Z = X \X ′ such that
zy ∈ A(D). Observe that B has maximum number of leaves if and only if Z ⊆ X is of

∗Received by the editors December 10, 2007; accepted for publication (in revised form) Septem-
ber 17, 2008; published electronically January 16, 2009. Preliminary extended abstracts of this paper
have been presented at FSTTCS 2007 [3] and ICALP 2007 [2].

http://www.siam.org/journals/sidma/23-1/71049.html
†Department of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel (nogaa@post.tau.ac.il,

krivelev@post.tau.ac.il). The research of these authors was supported in part by USA-Israeli BSF
grants and by grants from the Israel Science Foundation.

‡Department of Informatics, University of Bergen, POB 7803, 5020 Bergen, Norway (fomin@ii.
uib.no, saket@ii.uib.no). The research of the second author was supported in part by the Norwegian
Research Council.

§Corresponding author. Department of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK (gutin@cs.rhul.ac.uk). This author’s research was supported in part
by EPSRC.

466

SPANNING DIRECTED TREES WITH MANY LEAVES 467

minimum size among all sets Z ′ ⊆ X such that NG(Z ′) = X. However, the problem
of finding Z ′ of minimum size such that NG(Z ′) = X is equivalent to the Set Cover
problem ({NG(y)| y ∈ Y } is the family of sets to cover), which is NP-hard.

The combinatorial study of spanning trees with maximum number of leaves in
undirected graphs has an extensive history. Linial conjectured around 1987 that
every connected graph on n vertices with minimum vertex degree δ has a spanning
tree with at least n(δ − 2)/(δ + 1) + cδ leaves, where cδ depends on δ. This is indeed
the case for all δ ≤ 5. Kleitman and West [28] and Linial and Sturtevant [30] showed
that every connected undirected graph G on n vertices with minimum degree at least
3 has a spanning tree with at least n/4 + 2 leaves. Griggs and Wu [24] proved that
the maximum number of leaves in a spanning tree is at least n/2 + 2 when δ = 5 and
at least 2n/5 + 8/5 when δ = 4. All these results are tight. The situation is less clear
for δ ≥ 6; the first author observed that Linial’s conjecture is false for all large values
of δ. Indeed, the results in [1] imply that there are undirected graphs with n vertices
and minimum degree δ in which no tree has more than (1− (1+o(1)) ln (δ+1)

δ+1)n leaves,
where the o(1)-term tends to zero and δ tends to infinity, and this is essentially tight.
See also [4, pp. 4–5] and [11] for more information.

In this paper we prove an analogue of the Kleitman–West result for directed
graphs: Every strongly connected digraph D of order n with minimum in-degree at
least 3 has an out-branching with at least (n/4)1/3 − 1 leaves. Unlike in the case of
symmetric digraphs, in the case of all strongly connected digraphs, there is no linear
lower bound: We show that there are strongly connected digraphs with minimum
in-degree 3 in which every out-branching has at most O(

√
n) leaves.

Unlike its undirected counterpart which has attracted a lot of attention in all
algorithmic paradigms like approximation algorithms [22, 31, 33], parameterized al-
gorithms [9, 17, 18], exact exponential time algorithms [21], and also combinatorial
studies [14, 24, 28, 30], the Directed Maximum Leaf Out-Branching problem
has been neglected until the appearance of our conference papers [2] and [3].

Our second combinatorial result relates the number of leaves in a DMLOB of a
directed graph D with the pathwidth of its underlying graph UG(D). (We postpone
the definition of pathwidth till the next section.) If an undirected graph G contains
a star K1,k as a minor, then it is possible to construct a spanning tree with at least k
leaves from this minor. Otherwise, there is no K1,k minor in G, and it is possible to
prove that the pathwidth of G is O(k). (See, e.g., [8].) Actually, a much more general
result due to Bienstock et al. [7] is that any undirected graph of pathwidth at least k
contains all trees on k vertices as a minor. We prove a result that can be viewed
as a generalization of known bounds on the number of leaves in a spanning tree of
an undirected graph in terms of its pathwidth to strongly connected digraphs. We
show that either a strongly connected digraph D has a DMLOB with at least k leaves
or the pathwidth of UG(D) is O(k log k). For an acyclic digraph with a DMLOB
having k leaves, we prove that the pathwidth is at most 4k. This almost matches the
bound for undirected graphs. These combinatorial results are useful in the design of
parameterized algorithms.

In parameterized algorithms, for decision problems with input size n and a pa-
rameter k, the goal is to design an algorithm with runtime f(k)nO(1), where f is a
function of k alone. (For DMLOB such a parameter is the number of leaves in the
out-tree.) Problems having such an algorithm are said to be fixed parameter tractable
(FPT). The book by Downey and Fellows [15] provides an introduction to the topic
of parameterized complexity. For recent developments see the books by Flum and

468 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

Grohe [20] and by Niedermeier [32].
The parameterized version of DMLOB is defined as follows: Given a digraph D

and a positive integral parameter k, does D contain an out-branching with at least
k leaves? We denote the parameterized versions of DMLOB by k-DMLOB. If in the
above definition we do not insist on an out-branching and ask whether there exists an
out-tree with at least k leaves, we get the parameterized Directed Maximum Leaf

Out-Tree problem (denoted k-DMLOT).
Our combinatorial bounds, combined with dynamic programming on graphs of

bounded pathwidth, imply the first parameterized algorithms for k-DMLOB on strongly
connected digraphs and acyclic digraphs. We remark that the algorithmic results pre-
sented here also hold for all digraphs if we consider k-DMLOT rather than k-DMLOB.
This answers an open question of Fellows [12, 19, 25]. However, we restrict ourselves
mainly to k-DMLOB for clarity and the harder challenges it poses, and we briefly
consider k-DMLOT only in the last section.

This paper is organized as follows. In section 2 we provide additional terminology
and notation as well as some well-known results. We introduce locally optimal out-
branchings in section 3. Bounds on the number of leaves in maximum leaf out-
branchings of strongly connected and acyclic digraphs are obtained in section 4. In
section 5 we prove upper bounds on the pathwidth of the underlying graph of strongly
connected and acyclic digraphs that do not contain out-branchings with at least k
leaves. In section 6 we show that k-DMLOT is FPT. We give a brief overview of
further research triggered by our papers [2] and [3] in section 7.

2. Preliminaries. Let D be a digraph. By V (D) and A(D) we represent the
vertex set and arc set of D, respectively. An oriented graph is a digraph with no
directed 2-cycle. Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the
digraph induced by V ′. The underlying graph UG(D) of D is obtained from D by
omitting all orientations of arcs and by deleting one edge from each resulting pair of
parallel edges. The connectivity components of D are the subdigraphs of D induced by
the vertices of components of UG(D). A digraph D is strongly connected if, for every
pair x, y of vertices, there are directed paths from x to y and from y to x. A maximal
strongly connected subdigraph of D is called a strong component. A vertex u of D is
an in-neighbor (out-neighbor) of a vertex v if uv ∈ A(D) (vu ∈ A(D), respectively).
The in-degree d−(v) (out-degree d+(v)) of a vertex v is the number of its in-neighbors
(out-neighbors).

We denote by �(D) the maximum number of leaves in an out-tree of a digraph D
and by �s(D) we denote the maximum possible number of leaves in an out-branching of
a digraph D. When D has no out-branching, we write �s(D) = 0. The following simple
result gives necessary and sufficient conditions for a digraph to have an out-branching.
This assertion allows us to check whether �s(D) > 0 in time O(|V (D)| + |A(D)|).

Proposition 1 (see [6]). A digraph D has an out-branching if and only if D has
a unique strong component with no incoming arcs.

Let P = u1u2 . . . uq be a directed path in a digraph D. An arc uiuj of D is a
forward (backward) arc for P if i ≤ j − 2 (j < i, respectively). Every backward arc of
the type vi+1vi is called double.

For a natural number n, [n] denotes the set {1, 2, . . . , n}.
A tree decomposition of an (undirected) graph G is a pair (X, U) where U is a

tree whose vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection of
subsets of V (G) such that

1.
⋃

i∈V (U) Xi = V (G),

SPANNING DIRECTED TREES WITH MANY LEAVES 469

2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi| − 1}.
The treewidth of a graph G is the minimum width over all tree decompositions of G.

If in the definitions of a tree decomposition and treewidth we restrict U to be a
path, then we have the definitions of path decomposition and pathwidth. We use the
notation tw(G) and pw(G) to denote the treewidth and the pathwidth of a graph G.

We also need an equivalent definition of pathwidth in terms of vertex separators
with respect to a linear ordering of the vertices. Let G be a graph and let σ =
(v1, v2, . . . , vn) be an ordering of V (G). For j ∈ [n] put Vj = {vi : i ∈ [j]} and
denote by ∂Vj all vertices of Vj that have neighbors in V \ Vj . Setting vs(G, σ) =
maxi∈[n] |∂Vi|, we define the vertex separation of G as

vs(G) = min{vs(G, σ) : σ is an ordering of V (G)}.

The following assertion is well known. It follows directly from the results of
Kirousis and Papadimitriou [27] on interval width of a graph; see also [26].

Proposition 2 (see [26, 27]). For any graph G, vs(G) = pw(G).

3. Locally optimal out-branchings. Our bounds are based on finding locally
optimal out-branchings. Given a digraph D and an out-branching T , we call a vertex
leaf, link, or branch if its out-degree in T is 0, 1, or ≥ 2 respectively. Let S+

≥2(T) be
the set of branch vertices, S+

1 (T) the set of link vertices, and L(T) the set of leaves
in the tree T . Let P2(T) be the set of maximal paths consisting of link vertices. By
p(v) we denote the parent of a vertex v in T ; p(v) is the unique in-neighbor of v. We
call a pair of vertices u and v siblings if they do not belong to the same path from the
root r in T . We start with the following well-known and easy to observe facts.

Fact 1. |S+
≥2(T)| ≤ |L(T)| − 1.

Fact 2. |P2(T)| ≤ 2|L(T)| − 1.
Now we define the notion of local exchange which is intensively used in our proofs.
Definition 3. �-Arc Exchange (�-AE) optimal out-branching: An out-

branching T of a directed graph D with k leaves is �-AE optimal if, for all arc subsets
F ⊆ A(T) and X ⊆ A(D) − A(T) of size �, (A(T) \ F) ∪ X is either not an out-
branching, or an out-branching with at most k leaves. In other words, T is �-AE
optimal if it cannot be turned into an out-branching with more leaves by exchanging �
arcs.

Let us remark that, for every fixed �, an �-AE optimal out-branching can be
obtained in polynomial time. In our proofs we use only 1-AE optimal out-branchings.
We need the following simple properties of 1-AE optimal out-branchings.

Lemma 1. Let T be a 1-AE optimal out-branching rooted at r in a digraph D.
Then the following hold:

(a) For every pair of siblings u, v ∈ V (T) \ L with d+
T (p(v)) = 1, there is no arc

e = (u, v) ∈ A(D) \ A(T).
(b) For every pair of vertices u, v /∈ L, d+

T (p(v)) = 1, which are on the same
path from the root with dist(r, u) < dist(r, v) there is no arc e = (u, v) ∈
A(D) \ A(T) (here dist(r, u) is the distance to u in T from the root r).

(c) There is no arc (v, r), v /∈ L, such that the directed cycle formed by the
(r, v)-path and the arc (v, r) contains a vertex x such that d+

T (p(x)) = 1.
Proof. The proof easily follows from the fact that the existence of any of these

arcs contradicts the local optimality of T with respect to 1-AE.

470 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

4. Combinatorial bounds. We start with a lemma that allows us to obtain
lower bounds on �s(D).

Lemma 2. Let D be an oriented graph of order n in which every vertex is of
in-degree 2, and let D have an out-branching. If D has no out-tree with k leaves, then
n ≤ 4k3.

Proof. Let us assume that D has no out-tree with k leaves. Consider an out-
branching T of D with p < k leaves which is 1-AE optimal. Let r be the root of
T .

We will bound the number n of vertices in T as follows. Every vertex of T is
either a leaf, or a branch vertex, or a link vertex. By Facts 1 and 2 we already have
bounds on the number of leaf and branch vertices as well as the number of maximal
paths consisting of link vertices. So to get an upper bound on n in terms of k, it
suffices to bound the length of each maximal path consisting of link vertices. Let us
consider such a path P and let x, y be the first and last vertices of P , respectively.

The vertices of V (T) \ V (P) can be partitioned into four classes as follows:
(a) ancestor vertices: the vertices which appear before x on the (r, x)-path of T ;
(b) descendant vertices: the vertices appearing after the vertices of P on paths

of T starting at r and passing through y;
(c) sink vertices: the vertices which are leaves but not descendant vertices;
(d) special vertices: none-of-the-above vertices.
Let P ′ = P − x, let z be the out-neighbor of y on T , and let Tz be the subtree

of T rooted at z. By Lemma 1, there are no arcs from special or ancestor vertices to
the path P ′. Let uv be an arc of A(D) \ A(P ′) such that v ∈ V (P ′). There are two
possibilities for u: (i) u �∈ V (P ′) or (ii) u ∈ V (P ′) and uv is backward for P ′ (there
are no forward arcs for P ′ since T is 1-AE optimal). Note that every vertex of type
(i) is either a descendant vertex or a sink. Since every vertex of D is of in-degree
2, the backward arcs for P ′ form a vertex-disjoint collection of out-trees with roots
at vertices that are not terminal vertices of backward arcs for P ′. These roots are
terminal vertices of arcs in which first vertices are descendant vertices or sinks.

We denote by {u1, u2, . . . , us} and {v1, v2, . . . , vt} the sets of vertices on P ′ which
have in-neighbors that are descendant vertices and sinks, respectively. Let the out-
tree formed by backward arcs for P ′ rooted at w ∈ {u1, . . . , us, v1, . . . , vt} be denoted
by T (w), and let l(w) denote the number of leaves in T (w). Observe that the following
is an out-tree rooted at z:

Tz ∪ {(in(u1), u1), . . . , (in(us), us)} ∪
s⋃

i=1

T (ui),

where {in(u1), . . . , in(us)} are the in-neighbors of {u1, . . . , us} on Tz. This out-tree
has at least

∑s
i=1 l(ui) leaves, and, thus,

∑s
i=1 l(ui) ≤ k−1. Let us denote the subtree

of T rooted at x by Tx and let {in(v1), . . . , in(vt)} be the in-neighbors of {v1, . . . , vt}
on T − V (Tx). Then we have the following out-tree:

(T − V (Tx)) ∪ {(in(v1), v1), . . . , (in(vt), vt)} ∪
t⋃

i=1

T (vi)

with at least
∑t

i=1 l(vi) leaves. Thus,
∑t

i=1 l(vi) ≤ k − 1.
Consider a path R = p0p1 . . . pr formed by backward arcs. Observe that the arcs

{pipi+1 : 0 ≤ i ≤ r − 1} ∪ {pjp
+
j : 1 ≤ j ≤ r} form an out-tree with r leaves,

where p+
j is the out-neighbor of pj on P. Thus, there is no path of backward arcs of

SPANNING DIRECTED TREES WITH MANY LEAVES 471

length more than k − 1. Every out-tree T (w), w ∈ {u1, . . . , us}, has l(w) leaves, and,
thus, its arcs can be decomposed into l(w) paths, each of length at most k − 1. Now
we can bound the number of arcs in all the trees T (w), w ∈ {u1, . . . , us}, as follows:∑s

i=1 l(ui)(k − 1) ≤ (k − 1)2. We can similarly bound the number of arcs in all the
trees T (w), w ∈ {v1, . . . , vs}, by (k − 1)2. Recall that the vertices of P ′ can be either
terminal vertices of backward arcs for P ′ or vertices in {u1, . . . , us, v1, . . . , vt}. Observe
that s + t ≤ 2(k − 1) since

∑s
i=1 l(ui) ≤ k − 1 and

∑t
i=1 l(vi) ≤ k − 1.

Thus, the number of vertices in P is bounded from above by 1+2(k−1)+2(k−1)2.
Therefore,

n = |L(T)| + |S+
≥2(T)| + |S+

1 (T)|

= |L(T)| + |S+
≥2(T)| +

∑

P∈P2(T)

|V (P)|

≤ (k − 1) + (k − 2) + (2k − 3)(2k2 − 2k + 1)

< 4k3.

Thus, we conclude that n ≤ 4k3.
Theorem 4. Let D be a strongly connected digraph with n vertices.
(a) If D is an oriented graph with minimum in-degree at least 2, then �s(D) ≥

(n/4)1/3 − 1.
(b) If D is a digraph with minimum in-degree at least 3, then �s(D) ≥ (n/4)1/3−1.
Proof. Since D is strongly connected, we have �(D) = �s(D) > 0. Let T be a 1-AE

optimal out-branching of D with maximum number of leaves. (a) Delete some arcs
from A(D) \ A(T), if needed, such that the in-degree of each vertex of D becomes 2.
Now the inequality �s(D) ≥ (n/4)1/3 − 1 follows from Lemma 2 and the fact that
�(D) = �s(D).

(b) Let P be the path formed in the proof of Lemma 2. (Note that A(P) ⊆ A(T).)
Delete every double arc of P , in case there are any, and delete some more arcs from
A(D) \ A(T), if needed, to ensure that the in-degree of each vertex of D becomes 2.
It is not difficult to see that the proof of Lemma 2 remains valid for the new digraph
D. Now the inequality �s(D) ≥ (n/4)1/3 − 1 follows from Lemma 2 and the fact that
�(D) = �s(D).

Remark 5. It is easy to see that Theorem 4 also holds for acyclic digraphs D with
�s(D) > 0.

While we do not know whether the bounds of Theorem 4 are tight, we can show
that no linear bounds are possible. The following result is formulated for part (b) of
Theorem 4, but a similar result holds for part (a) as well.

Theorem 6. For each t ≥ 6 there is a strongly connected digraph Ht of order
n = t2 + 1 with minimum in-degree 3 such that 0 < �s(Ht) = O(t).

Proof. Let V (Ht) = {r} ∪ {ui
1, u

i
2, . . . , u

i
t | i ∈ [t]} and

A(Ht) =
{
ui

ju
i
j+1, u

i
j+1u

i
j | i ∈ [t], j ∈ {0, 1, . . . , t − 4}

}

⋃{
ui

ju
i
j−2 | i ∈ [t], j ∈ {3, 4, . . . , t − 2}

}

⋃{
ui

ju
i
q | i ∈ [t], t − 3 ≤ j �= q ≤ t

}
,

where ui
0 = r for every i ∈ [t]. It is easy to check that 0 < �s(Ht) = O(t).

472 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

5. Pathwidth of underlying graphs and parameterized algorithms. By
Proposition 1, an acyclic digraph D has an out-branching if and only if D possesses
a single vertex of in-degree zero.

Theorem 7. Let D be an acyclic digraph with a single vertex of in-degree zero.
Then either �s(D) ≥ k or the underlying undirected graph of D is of pathwidth at
most 4k and we can obtain this path decomposition in polynomial time.

Proof. Assume that �s(D) ≤ k − 1. Consider a 1-AE optimal out-branching T of
D. Notice that |L(T)| ≤ k − 1. Now remove all the leaves and branch vertices from
the tree T . The remaining vertices form maximal directed paths consisting of link
vertices. Delete the first vertices of all paths. As a result we obtain a collection Q of
directed paths. Let H = ∪P∈QP . We will show that every arc uv with u, v ∈ V (H)
is in H. Let P ′ ∈ Q. As in the proof of Lemma 2, we see that there are no forward
arcs for P ′. Since D is acyclic, there are no backward arcs for P ′.

Suppose uv is an arc of D such that u ∈ R′ and v ∈ P ′, where R′ and P ′

are distinct paths from Q. As in the proof of Lemma 2, we see that u is either a
sink or a descendent vertex for P ′ in T . Since R′ contains no sinks of T , u is a
descendent vertex, which is impossible as D is acyclic. Thus, we have proved that
pw(UG(H)) = 1.

Consider a path decomposition of H of width 1. We can obtain a path decompo-
sition of UG(D) by adding all the vertices of L(T)∪S+

≥2(T)∪F (T), where F (T) is the
set of first vertices of maximal directed paths consisting of link vertices of T , to each
of the bags of a path decomposition of H of width 1. Observe that the pathwidth of
this decomposition is bounded from above by

|L(T)|+ |S+
≥2(T)| + |F (T)| + 1 ≤ (k − 1) + (k − 2) + (2k − 3) + 1 ≤ 4k − 5.

The bounds on the various sets in the inequality above follows from Facts 1 and 2.
This proves the theorem.

Corollary 1. For acyclic digraphs, the problem k-DMLOB can be solved in
time 2O(k log k) · nO(1).

Proof. The proof of Theorem 7 can be easily turned into a polynomial time
algorithm to either build an out-branching of D with at least k leaves or show that
pw(UG(D)) ≤ 4k and provide the corresponding path decomposition. A standard
dynamic programming over the path (tree) decomposition (see, e.g., [5]) gives us an
algorithm of running time 2O(k log k) · nO(1).

The following simple lemma is well known; see, e.g., [13].
Lemma 3. Let T = (V, E) be an undirected tree and let w : V → R

+ ∪ {0} be
a weight function on its vertices. There exists a vertex v ∈ T such that the weight of
every subtree T ′ of T − v is at most w(T)/2, where w(T) =

∑
v∈V w(v).

Let D be a strongly connected digraph and let T be an out-branching of D with
λ leaves. Consider the following decomposition of T (called a β-decomposition) which
will be useful in the proof of Theorem 8.

Assign weight 1 to all leaves of T and weight 0 to all nonleaves of T . By Lemma 3,
T has a vertex v such that each component of T − v has at most λ/2+1 leaves (if v is
not the root and its in-neighbor v− in T is a link vertex, then v− becomes a new leaf).
Let T1, T2, . . . , Ts be the components of T − v and let l1, l2, . . . , ls be the numbers of
leaves in the components. Notice that λ ≤

∑s
i=1 li ≤ λ + 1 (we may get a new leaf).

We may assume that ls ≤ ls−1 ≤ · · · ≤ l1 ≤ λ/2 + 1. Let j be the smallest index such
that

∑j
i=1 li ≥ λ

2 + 1. Consider two cases: (a) lj ≤ (λ + 2)/4 and (b) lj > (λ + 2)/4.

SPANNING DIRECTED TREES WITH MANY LEAVES 473

In case (a), we have

λ + 2
2

≤
j∑

i=1

li ≤
3(λ + 2)

4
and

λ − 6
4

≤
s∑

i=j+1

li ≤
λ

2
.

In case (b), we have j = 2 and

λ + 2
4

≤ l1 ≤ λ + 2
2

and
λ − 2

2
≤

s∑

i=2

li ≤
3λ + 2

4
.

Let p = j in case (a) and p = 1 in case (b). Add to D and T a copy v′ of v (with
the same in- and out-neighbors). Then the number of leaves in each of the out-trees

T ′ = T [{v} ∪ (∪p
i=1V (Ti))] and T ′′ = T [{v′} ∪ (∪s

i=p+1V (Ti))]

is between λ(1 + o(1))/4 and 3λ(1 + o(1))/4. Observe that the vertices of T ′ have at
most λ+1 out-neighbors in T ′′ and the vertices of T ′′ have at most λ+1 out-neighbors
in T ′ (we add 1 to λ due to the fact that v “belongs” to both T ′ and T ′′).

Similarly to deriving T ′ and T ′′ from T , we can obtain two out-trees from T ′ and
two out-trees from T ′′ in which the numbers of leaves are approximately between a
quarter and three quarters of the number of leaves in T ′ and T ′′, respectively. Observe
that after O(log λ) “dividing” steps, we will end up with O(λ) out-trees with just one
leaf, i.e., directed paths. These paths contain O(λ) copies of vertices of D (such as
v′ above). After deleting the copies, we obtain a collection of O(λ) disjoint directed
paths covering V (D).

Theorem 8. Let D be a strongly connected digraph. Then either �s(D) ≥ k or
the underlying undirected graph of D is of pathwidth O(k log k).

Proof. We may assume that �s(D) < k. Let T be a 1-AE optimal out-branching,
and let λ be the number of leaves in T . Consider a β-decomposition of T . The
decomposition process can be viewed as a tree T rooted in a node (associated with)
T . The children of T in T are nodes (associated with) T ′ and T ′′; the leaves of
T are the directed paths of the decomposition. The first layer of T is the node T ,
the second layer consists of T ′ and T ′′, the third layer consists of the children of T ′

and T ′′, etc. In what follows, we do not distinguish between a node Q of T and the
tree associated with the node. Assume that T has t layers. Notice that the last layer
consists of (some) leaves of T and that t = O(log k), which was proved above (note
that λ ≤ k − 1).

Let Q be a node of T at layer j. We will prove that

(1) pw(UG(D[V (Q)])) < 2(t − j + 2.5)k.

Since t = O(log k), (1) for j = 1 implies that the underlying undirected graph of D is
of pathwidth O(k log k).

We first prove (1) for j = t when Q is a path from the decomposition. Let
W = (L(T)∪S+

≥2(T)∪F (T))∩V (Q), where F (T) is the set of first vertices of maximal
paths of T consisting of link vertices. As in the proof of Theorem 7, it follows from
Facts 1 and 2 that |W | < 4k. Obtain a digraph R by deleting from D[V (Q)] all arcs
in which at least one end-vertex is in W and which are not arcs of Q. As in the proof
of Theorem 7, it follows from Lemma 1 and 1-AE optimality of T that there are no
forward arcs for Q in R. Let Q = v1v2 . . . vq. For every j ∈ [q], let Vj = {vi : i ∈ [j]}.

474 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

If for some j the set Vj contained k vertices, say {v′1, v′2, . . . , v′k}, having in-neighbors
in the set {vj+1, vj+2, . . . , vq}, then D would contain an out-tree with k leaves formed
by the path vj+1vj+2 . . . vq together with a backward arc terminating at v′i from a
vertex on the path for each 1 ≤ i ≤ k, a contradiction. Thus vs(UG(D2[P])) ≤ k. By
Proposition 2, the pathwidth of UG(R) is at most k. Let (X1, X2, . . . , Xs) be a path
decomposition of UG(R) of width at most k. Then (X1 ∪ W, X2 ∪ W, . . . , Xs ∪ W) is
a path decomposition of UG(D[V (Q)]) of width less than k + 4k. Thus,

(2) pw(UG(D[V (Q)])) < 5k.

Now assume that we have proved (1) for j = i and show it for j = i−1. Let Q be a
node of layer i−1. If Q is a leaf of T , we are done by (2). Thus, we may assume that Q
has children Q′ and Q′′ which are nodes of layer i. In the β-decomposition of T given
before this theorem, we saw that the vertices of T ′ have at most λ + 1 out-neighbors
in T ′′ and the vertices of T ′′ have at most λ + 1 out-neighbors in T ′. Similarly, we
can see that (in the β-decomposition of this proof) the vertices of Q′ have at most k
out-neighbors in Q′′ and the vertices of Q′′ have at most k out-neighbors in Q′ (since
λ ≤ k − 1). Let Y denote the set of the above-mentioned out-neighbors on Q′ and
Q′′; |Y | ≤ 2k. Delete from D[V (Q′)∪V (Q′′)] all arcs in which at least one end-vertex
is in Y and which do not belong to Q′ ∪ Q′′.

Let G denote the obtained digraph. Observe that G is disconnected and G[V (Q′)]
and G[V (Q′′)] are components of G. Thus, pw(UG(G)) ≤ b, where

(3) b = max{pw(UG(G[V (Q′)])), pw(UG(G[V (Q′′)]))} < 2(t − i + 2.5)k.

Let (Z1, Z2, . . . , Zr) be a path decomposition of G of width at most b. Then (Z1 ∪
Y, Z2 ∪ Y, . . . , Zr ∪ Y) is a path decomposition of UG(D[V (Q′)∪ V (Q′′)]) of width at
most b + 2k < 2(t − (i − 1) + 2.5)k. This completes the proof.

Similarly to the proof of Corollary 1, we obtain the following corollary.
Corollary 2. For a strongly connected digraph D, the problem k-DMLOB can

be solved in time 2O(k log2 k) · nO(1).

6. k-DMLOT is FPT. Observe that while our results are for strongly con-
nected digraphs, they can be extended to a larger class of digraphs. Notice that
�(D) ≥ �s(D) for each digraph D. Let L be the family of digraphs D for which
either �s(D) = 0 or �s(D) = �(D). The following assertion shows that L includes
a large number of digraphs including all strongly connected digraphs and acyclic di-
graphs (and, also, the well-studied classes of semicomplete multipartite digraphs, and
quasi-transitive digraphs; see [6] for the definitions).

Proposition 3 (see [2]). Suppose that a digraph D satisfies the following prop-
erty: for every pair R and Q of distinct strong components of D, if there is an arc
from R to Q, then each vertex of Q has an in-neighbor in R. Then D ∈ L.

Let B be the family of digraphs that contain out-branchings. The results of this
paper proved for strongly connected digraphs can be extended to the class L ∩ B of
digraphs since in the proofs we use only the following property of strongly connected
digraphs D: �s(D) = �(D) > 0.

For a digraph D and a vertex v, let Dv denote the subdigraph of D induced by
all vertices reachable from v. Using the 2O(k log2 k) ·nO(1) algorithm for k-DMLOB on
digraphs in L ∩ B and the facts that (i) Dv ∈ L ∩ B for each digraph D and vertex
v and (ii) �(D) = max{�s(Dv)|v ∈ V (D)} (for details, see [2]), we can obtain an
2O(k log2 k) · nO(1) algorithm for k-DMLOT on all digraphs. For acyclic digraphs, the
running time can be reduced to 2O(k log k) · nO(1).

SPANNING DIRECTED TREES WITH MANY LEAVES 475

7. Consequent research. Research initiated by [2] and [3] was continued by
Bonsma and Dorn who proved in [10] that every strongly connected digraph of order
n with minimum in-degree at least 3 has an out-branching with at least

√
n/4 leaves.

Thus, the maximum guaranteed number λ(n) of leaves in a strongly connected digraph
of order n with minimum in-degree at least 3 is Θ(

√
n). It would be interesting to

obtain the maximum constant c such that λ(n) ≥ c
√

n.
Using several ideas of this paper, some new ideas and treewidth rather than

pathwidth, Bonsma and Dorn [10] designed algorithms of complexity 2O(k log k)nO(1)

for both k-DMLOT and k-DMLOB. Using another approach, Kneis, Langer, and
Rossmanith [29] obtained a 4knO(1) time algorithm for k-DMLOB. It is not difficult
to see that this algorithm implies an 4knO(1) time algorithm for k-DMLOT.

We conclude by pointing out that in a recent paper [16], Drescher and Vetta de-
scribe an O(

√
opt)-approximation algorithm for DMLOB, where opt is the maximum

number of leaves in an out-branching of the input digraph.

Acknowledgment. We would like to thank the referees for a number of useful
suggestions.

REFERENCES

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs Combin., 6 (1990), pp. 1–4.
[2] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh, Parameterized algo-

rithms for directed maximum leaf problems, in Automata, Languages and Programming
(ICALP 2007), Lecture Notes in Comput. Sci. 4596, Springer-Verlag, Berlin, 2007, pp. 352–
362.

[3] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh, Better algorithms
and bounds for directed maximum leaf problems, in FSTTCS 2007: Foundations of Soft-
ware Technology and Theoretical Computer Science, Lecture Notes in Comput. Sci. 4855,
Springer-Verlag, Berlin, 2007, pp. 316–327.

[4] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., John Wiley & Sons, New York,
2000.

[5] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted
to partial k-trees, Discrete Appl. Math., 23 (1989), pp. 11–24.

[6] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, Springer-
Verlag, London, 2001.

[7] D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a forest,
J. Combin. Theory Ser. B, 52 (1991), pp. 274–283.

[8] H. L. Bodlaender, On linear time minor tests and depth-first search, J. Algorithms, 14 (1993),
pp. 1–23.

[9] P. S. Bonsma, T. Brueggermann, and G. J. Woeginger, A faster FPT algorithm for finding
spanning trees with many leaves, in Mathematical Foundations of Computer Science 2003,
Lecture Notes in Comput. Sci. 2747, Springer-Verlag, Berlin, 2003, pp. 259–268.

[10] P. S. Bonsma and F. Dorn, Tight bounds and faster algorithms for directed max-leaf, in
Proceedings of the 16th European Symposium on Algorithms, Lecture Notes in Comput.
Sci. 5193, Springer-Verlag, Berlin, 2008, pp. 222-233.

[11] Y. Caro, D. B. West, and R. Yuster, Connected domination and spanning trees with many
leaves, SIAM J. Discrete Math., 13 (2000), pp. 202–211.

[12] M. Cesati, Compendium of Parameterized Problems, http://bravo.ce.uniroma2.it/home/
cesati/research/compendium.pdf, 2006.

[13] F. R. K. Chung, Separator theorems and their applications, in Paths, Flows, and VLSI-Layout
(Bonn, 1988), Algorithms Combin. 9, Springer-Verlag, Berlin, 1990, pp. 17–34.

[14] G. Ding, Th. Johnson, and P. Seymour, Spanning trees with many leaves, J. Graph Theory,
37 (2001), pp. 189–197.

[15] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, New York,
1999.

[16] M. Drescher and A. Vetta, An approximation algorithm for the maximum leaf spanning
arborescence problem, ACM Trans. Algorithms, to appear.

476 ALON, FOMIN, GUTIN, KRIVELEVICH, AND SAURABH

[17] V. Estivill-Castro, M. R. Fellows, M. A. Langston, and F. A. Rosamond, FPT is P-
time extremal structure I, in Proceedings of ACiD, College Publications, London, 2005,
pp. 1–41.

[18] M. R. Fellows, C. McCartin, F. A. Rosamond, and U. Stege, Coordinated kernels and
catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other
problems, in Proceedings of the 20th Conference on Foundations of Software Technology
and Theoretical Computer Science, Lecture Notes in Comput. Sci. 1974, Springer-Verlag,
Berlin, 2000, pp. 240–251.

[19] M. Fellows, private communications, 2005–2006.
[20] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag, Berlin, 2006.
[21] F. V. Fomin, F. Grandoni, and D. Kratsch, Solving connected dominating set faster than

2n, Algorithmica, 52 (2008), pp. 153–166.
[22] G. Galbiati, A. Morzenti, and F. Maffioli, On the approximability of some maximum

spanning tree problems, Theoret. Comput. Sci., 181 (1997), pp. 107–118.
[23] M. R. Garey and D. S. Johnson, Computers and Intractability, W.H. Freeman, New York,

1979.
[24] J. R. Griggs and M. Wu, Spanning trees in graphs of minimum degree four or five, Discrete

Math., 104 (1992), pp. 167–183.
[25] G. Gutin and A. Yeo, Some parameterized problems on digraphs, Comput. J., 51 (2008),

pp. 363–371.
[26] N. G. Kinnersley, The vertex separation number of a graph equals its path-width, Inform.

Process. Lett., 42 (1992), pp. 345–350.
[27] L. M. Kirousis and C. H. Papadimitriou, Interval graphs and searching, Discrete Math., 55

(1985), pp. 181–184.
[28] D. J. Kleitman and D. B. West, Spanning trees with many leaves, SIAM J. Discrete Math.,

4 (1991), pp. 99–106.
[29] J. Kneis, A. Langer, and P. Rossmanith, A new algorithm for finding trees with many

leaves, in Proceedings of the 19th International Symposium on Algorithms and Computa-
tion (ISAAC), Lecture Notes in Comput. Sci. 5369, Springer-Verlag, Berlin, 2008, pp. 270–
281.

[30] N. Linial and D. Sturtevant, unpublished result, 1987.
[31] H.-I. Lu and R. Ravi, Approximating maximum leaf spanning trees in almost linear time, J.

Algorithms, 29 (1998), pp. 132–141.
[32] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, Oxford,

UK, 2006.
[33] R. Solis-Oba, 2-approximation algorithm for finding a spanning tree with maximum number

of leaves, in Algorithms—ESA ’98, Lecture Notes in Comput. Sci. 1461, Springer-Verlag,
Berlin, 1998, pp. 441–452.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

