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1. Introduction

One of the typical questions in graph theory is: How many subgraphs satisfying a
given property can a graph on n vertices contain? For example, the number of perfect
matchings in a simple k-regular bipartite graph on 2n vertices is always between
n!(k/n)n and (k!)n/k . (The first inequality was known as the van der Waerden
conjecture [van der Waerden 1926] and was proved in 1980 by Egorychev [1981]
and the second is due to Bregman [1973].) Another example is the famous Moon
and Moser [1965] theorem, stating that every graph on n vertices has at most 3n/3

maximal cliques (independent sets).
The dominating set problem is a classic NP-complete graph optimization problem

which fits into the broader class of domination and covering problems. Hundreds
of papers have been written on them (see, for example, the survey by Haynes et al.
[1998]). However, despite the importance of the minimum dominating set problem,
nothing better than the trivial O(2n/

√
n) bound (which is roughly the maximum

number of subsets of an n-set such that none of them is contained in the other) was
known on the number of minimal dominating sets in a graph.

Our interest is motivated by the design of fast exponential-time algorithms for
hard problems. The story of such algorithms dates back to the sixties and seven-
ties. In 1962 Held and Karp presented an O(2nn2)-time algorithm for the trav-
elling salesman problem which is still the fastest one known [Held and Karp
1962]. In 1977 Tarjan and Trojanowski [1977] gave an O(2n/3) algorithm for the
maximum independent set problem. The last decade has seen a growing interest
in fast exponential-time algorithms for NP-hard problems. Examples of recently
developed fast exponential algorithms are algorithms for maximum independent
set [Beigel 1999; Fomin et al. 2005a], satisfiability [Dantsin et al. 2002; Iwama and
Tamaki 2004; Williams 2005], coloring [Eppstein 2003], tree-width [Fomin et al.
2004], and many others. For a good overview of the field we refer to the recent
survey written by Woeginger [2003].

It appears that combinatorial bounds are of interest not only on their own but also
because they are used for algorithm design. Lawler [1976] used the Moon-Moser
bound on the number of maximal independent sets to construct an (1+ 3

√
3)n ·nO(1)-

time graph-coloring algorithm which was the fastest coloring algorithm for 25 years.
In 2003, Eppstein [2003] reduced the running time of graph coloring to O(2.4151n)
by introducing better combinatorial bounds on the number of maximal independent
sets of small size. In very recent papers Björklund and Husfeldt [2008] reduced
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the running time to O(2.3236n), and finally Björklund-Husfeld and Koivisto to
O(2n) [Björklund and Husfeldt 2006; Koivisto 2006]. A similar example is the
work of Byskov and Eppstein [2004], who obtain anO(2.1020n)-time algorithm for
deciding if a graph is five colorable, which is again based on a 1.7724n combinatorial
upper bound on the number of maximal bipartite subgraphs in a graph.

Previous Results. Although the minimum dominating set is a natural and very
interesting problem concerning the design and analysis of exponential-time algo-
rithms, no exact algorithm for it faster than 2n · nO(1) had been known until very
recently. In 2004 several different sets of authors obtained algorithms breaking the
trivial “2n-barrier.” The algorithm of Fomin et al. [2004] runs in time O(1.9379n).
The algorithm of Randerath and Schiermeyer [2004] uses matching techniques
to restrict the search space and runs in time O(1.8999n). Grandoni [2006, 2004],
described an O(1.8019n) algorithm and finally, Fomin et al. [2005a] reduced the
running time to O(1.5137n). Recently, the running time of this algorithm was im-
proved by van Rooij and Bodlaender to O(1.5063n) [2008]. All the mentioned
results cannot be used to list all minimal dominating sets. There was no known
algorithm listing all minimal dominating sets faster than the trivial time 2n · nO(1),
which is obtained by trying all possible vertex subsets of a graph and checking if
they are minimal dominating sets. The number of minimal dominating sets is an
obvious lower bound on the running time of a listing algorithm. However, besides
the trivial O(2n/

√
n) bound, nothing was known on this number.

There are not so many known exact algorithms for the domatic number. Applying
an algorithm similar to Lawler’s dynamic programming algorithm [Lawler 1976]
to the domatic number problem, one obtains a 3n · nO(1) algorithm. Nothing better
was known for this problem. For the three-domatic-number problem, which is a
special case of the domatic number problem where the number of dominating sets
is bounded to be at least 3, Reige and Rothe succeed in breaking the 3n barrier with
an O(2.9416n) algorithm [Reige and Rothe 2005]. The preliminary version of this
article [Fomin et al. 2005] has triggered a number of results on the domatic number.
We give a short overview of these results in the concluding section.

Our Results. In this article we construct an algorithm listing all minimal dominat-
ing sets in time O(1.7159n). The estimation of the running time of the algorithms
is based on the inductive proof that the number of minimal dominating sets in a
graph on n vertices is at most λn , with λ < 1.7159. The main idea of the proof is
inspired by the measure-and-conquer technique [Fomin et al. 2006, 2005a, 2005b]
from exact algorithms, which works as follows. The running time of exponential
recursive algorithms is usually bounded by measuring the progress made by the
algorithm at each branching step. Though these algorithms may be rather compli-
cated, the measures used in their analysis are often trivial. For example, in graph
problems the progress is usually measured in terms of number of nodes removed.
The idea behind measure and conquer is to choose the measure more carefully: A
good choice can lead to a tremendous improvement of the running-time bounds
(for a fixed algorithm). One of the main contributions of this article is showing that
the same basic idea can be successfully applied to derive stronger combinatorial
bounds. In particular, the inductive proof of Theorem 4.1 is based on the way we
choose the measure of the problem.

In the preliminary version of this article [Fomin et al. 2005], we obtain an upper
bound of 1.7697n on the number of minimal dominating sets. While the main line
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of the proof is basically the same, the improvement is obtained by a more careful
choice of the measure.

Based on the listing algorithm, we derive an O(2.8718n) algorithm for the do-
matic number. The previous fastest domatic-number algorithm was an (almost)
trivial algorithm of running time 3n · nO(1).

The rest of this article is organized as follows. In Section 2 we provide definitions
and auxiliary results. In Section 3 the main algorithm listing minimal set covers
is given and Section 4 is devoted to the analysis of the algorithm. In Section 5 we
describe an algorithm for domatic number and conclude with remarks and open
problems in Section 6.

2. Definitions and Preliminaries

Let G = (V, E) be a graph. A set D ⊆ V is called a dominating set for G if
every vertex of G is either in D or adjacent to some node in D. A dominating set
is minimal if all its proper subsets are not dominating. We define DOM(G) to be
the number of minimal dominating sets of G.

The domatic number DN(G) of a graph G is the maximum k such that the vertex
set V (G) can be split into k pairwise nonintersecting dominating sets. Since every
dominating set contains a minimal dominating set, the domatic number DN(G)
can be also defined as the maximum number of pairwise nonintersecting minimal
dominating sets in G.

A set cover instance (SC) is defined by a universe U of elements and by a
collection S of subsets of U . A set cover of (U,S) is a subcollection S ′ ⊆ S which
covers U , namely such that ∪R∈S ′ R = U . A set cover is minimal if it contains
no smaller cover. We denote by COV(U,S) the number of minimal set covers of
(U,S).

The problem of listing all minimal dominating sets in G can be naturally reduced
to listing all minimal set covers of (U,S), where U = V and S = {N [v] | v ∈ V }.
Note that N [v] = {v}∪{u | uv ∈ E} is the set of nodes dominated by v . Thus, D is a
dominating set of G if and only if {N [v]| v ∈ D} is a set cover of (U,S). In particular,
each minimal set cover of (U,S) corresponds to a minimal dominating set of G.

The following property of minimal set covers is easy to verify.

LEMMA 2.1. LetS∗ be a minimal cover of (U,S). Then for every subset R ∈ S∗
at least one of the elements u ∈ R is covered only by R.

In the next two sections we show how to compute DOM(G) in O(1.7159n) time.
Based on this result, in Section 5 we show how to compute the domatic number of
a graph in time O(2.8718n).

3. Listing Algorithm

In this section we describe a recursive algorithm which lists all the minimal dom-
inating sets of a given input graph G = (V, E). The basic idea is to consider
the natural set cover instance (U,S) = (V, {N [v] | v ∈ V }) induced by G, and
list all the corresponding minimal set covers in it. The set of all minimal domi-
nating sets in G is then easily derived from the set of all minimal set covers of
(U,S).
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Since U changes during the recursion, it is convenient to allow some sets R ∈ S
to contain elements not in U . Then by the cardinality |R| of R we mean the number
of elements of U in R, namely |R| = |R ∩ U |. The frequency |u| of u ∈ U is the
number of subsets R ∈ S containing u.

Given an SC instance (U,S) and a list C of selected subsets, we next describe
a procedure ListMSC(U,S, C) that lists all the sets of kind S∗ ∪ C, where S∗ is
a minimal cover of (U,S). In particular, ListMSC(U,S, ∅) lists all the minimal
covers of (U,S). Procedure ListMSC(U,S, C) is defined recursively. If U is empty,
the procedure simply returns C. Otherwise, the procedure removes from S all the
sets R of cardinality zero (which cannot belong to any minimal set cover). Now,
if S = ∅, the procedure halts (there is no set cover at all). In all the other cases
the procedure generates one or more subproblems (Ui ,Si , Ci ), and solves them
recursively.

It remains to describe how the subproblems are generated. There is a sequence
of cases. To avoid a confusing nesting of if-then-else statements, let us use the
following convention: The first case which applies is used first in the procedure.
Thus, inside a given case, the hypotheses of all previous cases are assumed false. For
each case we also provide comments justifying its correctness. When we remove
a set R from S, we will say that R is selected if we add it to C, and discarded
otherwise.

Case 0.a. There is u ∈ U of frequency 1. Let u be covered by R ∈ S. Every
minimal cover must contain R. Hence, we branch on the (unique) subproblem
obtained by selecting R,

(U1,S1, C1) = (U \ R, S \ {R}, C ∪ {R}) (1)

Case 0.b. There are u, v ∈ U such that {R ∈ S : u ∈ R} = {R ∈ S : v ∈ R}.
Consider the problem obtained by removing u from U : Every minimal cover for
the new problem is a minimal cover for the original problem, and vice versa. Hence
we branch on this new problem.

(U1,S1, C1) = (U \ {u}, S, C) (2)

Case 1. There is u ∈ U belonging only to subsets of cardinality 1. Let S ′ =
{R1, R2, . . . , R|u|} be the set of all subsets containing u. Note that |u| ≥ 2 by Case
0. By Lemma 2.1, every minimal cover must contain exactly one of the Ri ’s. Thus
we branch on the |u| subproblems.

(Ui ,Si , Ci ) = (U \ {u}, S \ S ′, C ∪ {Ri }), i ∈ {1, 2, . . . , |u|} (3)

Let us denote by Smax the set of all the subsets in S of maximum cardinality.
Case 2. There is R ∈ Smax containing an element of frequency 2. Let S ′ be

the set of subsets sharing an element of frequency 2 with R (R excluded). If
we discard R, we must select all the sets in S ′. Thus we branch on the two
subproblems.

(U1,S1, C1) = (U \ (∪R′∈S ′ R′), S \ (S ′ ∪ {R}), C ∪ S ′) (4)
(U2,S2, C2) = (U \ R, S \ {R}, C ∪ {R}) (5)
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Case 3. There is a set R ∈ Smax , with |R| ≥ 3. In this case we simply branch by
either selecting or discarding R.

(U1,S1, C1) = (U \ R, S \ {R}, C ∪ {R}) (6)
(U2,S2, C2) = (U, S \ {R}, C) (7)

Case 4. There is R ∈ Smax which contains another subset R′ ∈ S (i.e., R′ ⊆ R).
Also in this case we branch by either selecting or discarding R. Note that when we
select R, we can also discard R′ (whose cardinality becomes zero). Then we have
the following.

(U1,S1, C1) = (U \ R, S \ {R, R′}, C ∪ {R}) (8)
(U2,S2, C2) = (U, S \ {R}, C) (9)

Now we can assume that all the hypotheses of Cases 0–4 are false. Observe that
then by Case 3 the maximum cardinality of a set is 2, and by Cases 1 and 4 there are
no sets of cardinality 1. Hence all the sets have cardinality exactly 2 (in particular,
S = Smax ). Therefore, by Cases 0 and 2 all the elements have frequency at least 3.
Moreover, by Case 4 the sets are all distinct.

Case 5. (All the hypotheses of Cases 0–4 are false.) Let u ∈ U be an element
of maximum frequency, and R = {u, v} ∈ S be a subset containing u. Denote by
Su = {R′ ∈ S \ {R} | u ∈ R′} and Sv = {R′ ∈ S \ {R} | v ∈ R′} the sets of all
the other subsets of S containing u and v , respectively. By Lemma 2.1, if S∗ is a
minimal cover containing R, then either S∗ ∩ Su = ∅, or S∗ ∩ Sv = ∅. This is
because otherwise each element of R would be covered by some other set in S∗. In
this case we branch on the three subproblems.

(U1,S1, C1) = (U \ R, S \ (Su ∪ {R}), C ∪ {R}) (10)
(U2,S2, C2) = (U \ R, S \ (Sv ∪ {R}), C ∪ {R}) (11)
(U3,S3, C3) = (U, S \ {R}, C) (12)

4. Bounding the Number of Minimal Dominating Sets

In this section we show that the algorithm of the previous section lists all the
minimal dominating sets of an n-node graph G in time O(1.7159n). This im-
plies that the same upper bound holds for the number of minimal dominating sets
of G.

As usual, we bound the progress made by the algorithm at each branching step
by measuring how much the size of the subproblems decreases with respect to the
original problem. This leads to a list of recurrences in the size, which can be solved
in the standard way. It remains to decide what the size of a (sub)problem is. At
each branching step we remove some sets and/or elements. So a natural choice for
the size of a problem is the total number of sets and elements. (The number of sets
would be even more natural, but it leads to a time bound of the kind �(2n).)

Here we measure the size in a refined way. Intuitively, elements of small fre-
quency allow using stronger domination rules. For example, if there is an element
of frequency one, we can remove one set and at least one element while generating a
unique subproblem (Case 0). Something similar holds for sets of small cardinality.
On the other hand, when we remove a set of large cardinality, we reduce the fre-
quency of many elements. A dual property holds for elements of large frequency. As
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a consequence, removing sets of large cardinality and elements of large frequency
pays off in the long term. This kind of phenomenon is not taken into account with
the simple measure given earlier, where all the sets and elements have the same
weight.

This suggests the idea to assign a different weight to elements/sets of different
frequency/cardinality. More precisely, we will use the following measure k(U,S)
of the size of a set cover instance (U,S). We have

k(U,S) =
∑
S∈S

α|S| +
∑
u∈U

β|u|,

where the weights αi ’s and β j ’s are real numbers to be fixed later. We impose
constraints on the weights

1 ≤ α1 < α2 < α3 < α4 = αi , ∀i ≥ 5,

and

0 = β1 < β2 < β3 < β4 < β5 = 1 = β j , ∀ j ≥ 6.

The assumption that the weights are an increasing function of the cardinality and
of the frequency helps to simplify the analysis. The constraints α4 = αi , ∀i ≥ 5
and β5 = β j , ∀ j ≥ 6 are only due to computational reasons: We need to compute
the weights numerically, and we are not able to do so for an unbounded number of
weights. Anyway, trying with some more free variables we experimentally observed
that the improvement of the bound is negligible. We set β1 = 0, since elements of
frequency 1 can be filtered out in polynomial time. Since the result does not change
by scaling all the weights by the same positive factor, we also imposed β5 = 1.

The following quantities will turn out to be useful in the analysis. Let α0 = β0 =
0. For i ≥ 1 we denote by

�αi = αi − αi−1 and �βi = βi − βi−1

the decrease of the size of the problem after reducing the cardinality of a subset
and the frequency of an element from i to i − 1, respectively. We also define

�α≤i = min
1≤ j≤i

{�α j } and �β≤i = min
3≤ j≤i

{�β j }.

Note that �α≤i is the minimum decrease of the size of the problem after reducing
by 1 the cardinality of 1 set of cardinality at most i . Similarly, �β≤i is the minimum
decrease of the size of the problem after reducing by 1 the frequency of one element
whose frequency is between 3 and i . Observe moreover that �αi = �α≤i = 0 for
i ≥ 5 and �βi = �β≤i = 0 for i ≥ 6. This will allow us to deal with a finite
(though very large) number of recurrences only. For the same reason, we imposed
α1 ≥ 1.

We will sometimes omit | · | in the subscript for notational convenience. For
example, we will use αR for α|R|, and �βu for �β|u|.

THEOREM 4.1. For any graph G on n vertices, all its minimal dominating sets
can be listed in time O(1.7159n).

PROOF. Consider the listing algorithm described in the previous section. With
a slight notational abuse, here we denote by COV(U,S) the number of set covers
listed by ListMSC(U,S, C) (the value of C does not influence such a number).
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Clearly, COV(U,S) is an upper bound on the number of minimal set covers of
(U,S) (all the minimal set covers are listed, but some of them may be listed several
times). Observe that the running time of the algorithm is within a polynomial factor
from COV(U,S).

Let k = k(U,S) be the size of the problem, according to the measure described
before. By COV(k) we denote the maximum value of COV(U,S) among all the SC
instances (U,S) of size k. We will show that COV(k) ≤ λk , for some constant λ > 1
which depends on the weights. We proceed by induction on k. Clearly, COV(0) ≤ 1.
Suppose that COV(k ′) ≤ λk ′

for every 0 ≤ k ′ < k, and consider any instance (U,S)
of size k. Clearly, if the procedure halts on (U,S), then COV(U,S) ≤ 1 ≤ λk .
Thus, let us consider all the possible branchings, following the structure of the
algorithm.

Case 0.a. There is u ∈ U of frequency 1. Recall that R � u. Let (U1,S1) be the
SC instance given by (1). Since

k(U1,S1) ≤ k − αR ≤ k − α1,

by the inductive hypothesis,

COV(U,S) ≤ COV(k(U1,S1)) ≤ λk−α1 . (13)

By Case 0.a, from now on we can assume |u| ≥ 2 for every element u.
Case 0.b. There are u, v ∈ U such that {R ∈ S : u ∈ R} = {R ∈ S : v ∈ R}.

Let (U1,S1) be the SC instance given by (2). Recall that U1 = U \ {u}. By Case 0.a,
|u| ≥ 2. Then

k(U1,S1) ≤ k − βu ≤ k − β2,

and by the inductive hypothesis,

COV(U,S) ≤ COV(k(U1,S1)) ≤ λk−β2 . (14)

Case 1. There is u ∈ U belonging only to subsets of cardinality 1. Consider the
subproblems (Ui ,Si ), i ∈ {1, 2, . . . , |u|}, given by (3). In each subproblem we
remove the element u, together with all the |u| subsets containing it. Observe that
|u| ≥ 2 by Case 0. Thus

COV(U,S) ≤
|u|∑

i=1

COV(k(Ui ,Si )) ≤ |u| · COV(k − |u| α1 − βu) ≤ |u|λk−|u|α1−βu .

For |u| ≥ 5, by assumption βu = 1. Moreover, by the assumption α1 ≥ 1,

max
|u|≥5

{|u|λ−|u|α1−1
} = 5λ−5α1−1.

Hence, in order to show that COV(U,S) ≤ λk , we can restrict our attention to the
set of recurrences

∀ 2 ≤ r ≤ 5 : COV(U,S) ≤ rλk−r α1−βr . (15)

By Case 1, from now on every R ∈ Smax satisfies |R| ≥ 2.
Observe that, by the assumptions on the weights, for a set R and an element

u, αR := α|R| = αmin{|R|,5} and βR := β|R| = βmin{|u|,6}. By the same argument,
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�αR = �αmin{|R|,5} and �βR = �βmin{|u|,6}. This observation will be crucial to
obtain a finite number of recurrences in the following cases.

Case 2. There is R ∈ Smax containing an element of frequency 2. In this case

COV(U,S) ≤ COV(k(U1,S1)) + COV(k(U2,S2)),

where (U1,S1) and (U2,S2) are given by Eqs. (4) and (5). Let us upper bound the
size of problems (U1,S1) and (U2,S2). Recall that S ′ is the set of subsets sharing
an element of frequency 2 with R. In the subproblem (U1,S1) we remove R, all the
sets in S ′, and all the elements U ′ = ∪R′∈S ′ R′ covered by S ′. Moreover, we reduce
by 1 the frequency of all the elements of R \ U ′. In the subproblem (U2,S2) we
remove R and its elements. Moreover, for each u ∈ R, the cardinality of (|u| − 1)
sets is decreased by 1. Since R ∈ Smax , each time we remove one element from
a set, the reduction of the size of the problem is at least �α≤|R| = �α≤min{|R|,5}
(since |R| is the maximum cardinality of any set). More precisely, if the cardinality
of a given set is reduced from i to j , then the size of the problem decreases by
αi − α j ≥ ( j − i)�α≤|R|. In order to simplify the analysis, we distinguish two
subcases.

Case 2.a. At least one element u of frequency 2 is contained in a subset R′ ∈ S
such that R′ ⊆ R. In subproblem (U1,S1) we remove both subsets R and R′, and
all the elements of R′. Let r = min{|R|, 5} ∈ [2, 5] and r ′ = min{|R′|, 5} ∈ [1, r ].
Observe that, for any element u, βu ≥ β2 (since the minimum frequency is 2 and
βi is nondecreasing in i). Thus

k(U1,S1) ≤ k − αR − αR′ −
∑
u∈R′

βu ≤ k − αR − αR′ − |R′|β2 ≤ k − αr − αr ′ − r ′β2.

In subproblem (U2,S2) we remove both subsets R and R′, and all the elements of
R. By the same arguments as before, we get

k(U2,S2) ≤ k − αR − αR′ −
∑
u∈R

βu ≤ k − αr − αr ′ − rβ2.

Altogether, we obtain the set of recurrences

∀ 2 ≤ r ≤ 5, 1 ≤ r ′ ≤ r :
COV(U,S) ≤ λk−αr −αr ′−r ′β2 + λk−αr −αr ′−rβ2 . (16)

Case 2.b. There is no R′ ∈ S containing an element of frequency 2 such that
R′ ⊆ R. Let R|r be the r = min{|R|, 5} elements of R of smallest frequency. For
2 ≤ i ≤ 5, we denote by ri the number of elements of R|r of frequency i , and by r6
the number of the remaining elements of R|r (of frequency 6 or larger). Note that∑6

i=1 ri = ∑6
i=2 ri = r ≤ 5. Observe also that each element of R of frequency 2

lies in a distinct set from S ′. In fact, otherwise there would be two elements u and
v , |u| = |v| = 2, belonging to R and to some R′ ∈ S ′; this is excluded by Case
0.b. Therefore |S ′| ≥ r2. We eventually observe that there is at least one element
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9:10 F. V. FOMIN ET AL.

v ∈ U ′ \ R. Hence

k(U1,S1) ≤ k − αR −
∑
R′∈S ′

αR′ −
∑
u∈U ′

βu −
∑

u∈R\U ′
�βu

≤ k − αR − |S ′|α2 − βv −
∑

u∈R∩U ′
βu −

∑
u∈R\U ′

�βu

≤ k − αR − r2α2 − βv −
∑

u∈R∩U ′
�βu −

∑
u∈R\U ′

�βu

= k − αR − r2α2 − βv −
∑
u∈R

�βu

≤ k − αr − r2α2 − β2 −
5∑

i=2

ri�βi ,

where we used the fact that βu ≥ �βu and �βu = 0 for |u| ≥ 6. Analogously,
observing that �α≤ j = �α j = 0 for j ≥ 5 and hence �α≤|R| = �α≤r , and
recalling that β5 = βi for i ≥ 6,

k(U2,S2) ≤ k − αR −
∑
u∈R

βu −
∑
u∈R

(|u| − 1)�α≤|R|

≤ k − αr −
6∑

i=2

riβi −
6∑

i=2

ri (i − 1)�α≤r .

Altogether,

∀ 2 ≤ r ≤ 5, ri ≥ 0, r2 ≥ 1,

6∑
i=2

ri = r :

COV(U,S) ≤ λk−αr −r2α2−β2−
∑5

i=2 ri �βi

+ λk−αr −
∑6

i=2 ri βi −
∑6

i=2 ri (i−1)�α≤r . (17)

By Case 2, in the following we can assume |u| ≥ 3 for every u ∈ R ∈ Smax .
Case 3. There is a set R ∈ Smax , with |R| ≥ 3. Let (U1,S1) and (U2,S2) be given

by Eqs. (6) and (7). In the subproblem (U1,S1) we remove R and we decrease the
frequency of its elements by 1. Hence, with the usual notation,

k(U1,S1) ≤ k − αR −
∑
u∈R

�βu ≤ k − αr −
5∑

i=3

ri�βi .

In the subproblem (U2,S2) we remove R and its elements. Moreover, for each
u ∈ R, the cardinality of (|u| − 1) sets is decreased by 1.

k(U2,S2) ≤ k − αR −
∑
u∈R

βu −
∑
u∈R

(|u| − 1)�α≤|R|

≤ k − αr −
6∑

i=3

riβi −
6∑

i=3

ri (i − 1)�α≤r .
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We can conclude that

∀ 3 ≤ r ≤ 5, ri ≥ 0,

6∑
i=3

ri = r :

COV(U,S) ≤λk−αr −
∑5

i=3 ri �βi

+ λk−αr −
∑6

i=3 ri βi −
∑6

i=3 ri (i−1)�α≤r . (18)

By Cases 1 and 3, we can assume in the following that |R| = 2 for all R ∈ Smax .
Case 4. There is R ∈ Smax , which contains another subset R′ ∈ S (R′ ⊆ R). Let

(U1,S1) and (U2,S2) be given by (8) and (9). In subproblem (U1,S1) we remove
R = {u, v} and we decrease by 1 the cardinality of its elements. Define u′ =
min{|u|, 6} ∈ [3, 6] and v ′ = min{|v|, 6} ∈ [3, 6]. Note that βu = βu′ , and hence
�βu = �βu′ . Analogously, βv = βv ′ and �βv = �βv ′ . Therefore,

k(U1,S1) ≤ k − αR −
∑
u∈R

�βu = k − α2 − �βu′ − �βv ′ .

In subproblem (U2,S2) we remove R, R′, and the elements of R. Moreover, for
each w ∈ R, we decrease by 1 the cardinality of (|w | − 1) sets if w ∈ R \ R′ and
of (|w | − 2) sets if w ∈ R′. Then, for r ′ = |R′| ∈ [1, 2],

k(U2,S2) ≤ k − αR − αR′ −
∑
w∈R

βw −
∑

w∈R\R′
(|w | − 1)�α≤|R| −

∑
w∈R′

(|w | − 2)�α≤|R|

= k − α2 − αr ′ − βu′ − βv ′ − (|u| + |v| − 2 − r ′)�α≤2

≤ k − α2 − αr ′ − βu′ − βv ′ − (u′ + v ′ − 2 − r ′)�α≤2.

Altogether,

∀ 1 ≤ r ′ ≤ 2, 3 ≤ u′ ≤ 6, 3 ≤ v ′ ≤ 6 :

COV(U,S) ≤ λk−α2−�βu′−�βv ′

+ λk−α2−αr ′−βu′−βv ′−(u′+v ′−2−r ′)�α≤2 .
(19)

Case 5. (All the hypotheses of Cases 0–4 are false.) In this case

COV(U,S) ≤ COV(U1,S1) + COV(U2,S2) + COV(U3,S3),

where (U1,S1), (U2,S2), and (U3,S3) are given by (10), (11), and (12). In the first
two subproblems we remove R = {u, v} as well as its elements, and we either
remove Su or Sv . Recall that Su ⊆ Smax (Sv ⊆ Smax ) is the collection of subsets
whose intersection with R is {u} ({v}). By Case 4, R cannot contain any other set.
As a consequence, |Su| = |u| − 1 and |Sv | = |v| − 1. By the same argument, we
also know that any two sets of Su (Sv ) do not share any element besides {u} ({v}):
In fact, otherwise the two sets would be contained in each other. It follows that
when we remove Su (Sv ), we decrease exactly by 1 the frequency of each element
w �= u in Su (w �= u in Sv ). Since Su and Sv belong to Smax , and any element
in Smax has frequency between 3 and |u| by the previous cases, the consequent
reduction of size of the problem is �βw ≥ �β≤|u| := min3≤ j≤|u|{�β j }. Defining
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u′ = min{|u|, 6} ∈ [3, 6] and v ′ = min{|v|, 6} ∈ [3, u′], we obtain

k(U1,S1) ≤ k − αR −
∑
R′∈Su

αR′ −
∑
w∈R

βw −
∑
R′∈Sv

�αR′ −
∑

w∈R′\R,R′∈Su

�βw

≤ k − α2 − (|u| − 1)α2 − βu − βv − (|v| − 1)�α2 − (|u| − 1)�β≤|u|
≤ k − u′ α2 − βu′ − βv ′ − (v ′ − 1)�α2 − (u′ − 1)�β≤u′ .

Similarly,

k(U2,S2) ≤ k − v ′ α2 − βu′ − βv ′ − (u′ − 1)�α2 − (v ′ − 1)�β≤u′ .

In the last subproblem we remove R, and we decrease by 1 the frequencies of its
elements.

k(U3,S3) ≤ k − αR −
∑
w∈R

�βw = k − α2 − �βu − �βv = k − α2 − �βu′ − �βv ′

Altogether, for all u′, v ′ such that 3 ≤ u′ ≤ 6 and 3 ≤ v ′ ≤ u′, we have that

COV(U,S) ≤ λk−u′ α2−βu′−βv ′−(v ′−1)�α2−(u′−1)�β≤u′

+ λk−v ′ α2−βu′−βv ′−(u′−1)�α2−(v ′−1)�β≤u′

+ λk−α2−�βu′−�βv ′ . (20)

Summarizing from Cases 0–5 we obtain recurrences (13)–(20). For given values
of α’s and β’s, we wish to find a value of λ (the smallest possible) such that the
righthand sides of the inequalities (13)–(20) are upper bounded by λk . The value
of λ is a function of the weights α’s and β’s, and computing the best weights
is an interesting optimization problem in its own. We refer to Eppstein’s work
[Eppstein 2004] on quasiconvex programming, which provides a general framework
for solving this type of problem.

We obtained numerically the following feasible values of the weights: α1 =
2.328463, α2 = 2.505092, α3 = 2.670885, α4 = 2.720886, β2 = 0.120153,
β3 = 0.772504, β4 = 0.973506. For these values of the weights, a feasible value
of λ is λ = 1.156154. Recall that in order to check that λ = 1.156154 is feasible,
it is sufficient to check that the righthand sides of inequalities (13)–(20) are upper
bounded by λk . For example, let us consider recurrence (18) with r = 4, r3 = 2,
r4 = 1, and r6 = 1. We have �β3 = 0.652351, �β4 = 0.201002, and �α≤4 =
min{�α1, �α2, �α3, �α4} = 0.050001. Thus, we need to check that

λk ≥ λk−αr −
∑5

i=3 ri �βi + λk−αr −
∑6

i=3 ri βi −
∑6

i=3 ri (i−1)�α≤r

= λk−α4−2�β3−�β4 + λk−α4−2β3−β4−β6−(2·1+1·3+1·5)�α≤4

= λk−2.720886−2·0.652351−0.201002 + λk−2.720886−2·0.772504−0.973506−1−10·0.050001

= λk−4.22659 + λk−6.73941.

Since

λ−4.22659 + λ−6.73941 = 1.156154−4.22659 + 1.156154−6.73941 < 0.9177 < 1,

we have that

λk ≥ λk−4.22659 + λk−6.73941.
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While checking by hand all inequalities is tedious, by making use of a simple
program the reader may verify that also the other inequalities are satisfied (the
pseudocode of this program is provided in the Appendix).

For any graph G on n vertices, the size of the corresponding SC instance (U,S)
is at most β5|U | + α4|S| = (1 + α4) n. It follows that

DOM(G) ≤ COV((1 + α4)n) < 1.156154(1+2.720886)n < 1.7159n.

This completes the proof.

We remark that, in the preceding proof, any feasible choice of the weights and
of λ provides an upper bound on DOM(G) (though possibly not the best possible).
Hence, the mentioned values and the set of recurrences are all we need to check
the correctness of the claim. We also remark that using a real-valued induction
variable is crucial with our approach: Restricting ourselves to integral variables
would either weaken the bounds obtained or make the analysis considerably more
complicated. Note that the correctness of the induction is guaranteed by the fact that
the sizes are always non-negative by definition and that the size of each subproblem
decreases at least by a constant positive quantity (with respect to the size of the
original problem).

Theorem 4.1 implies the following combinatorial result, which is interesting on
its own.

COROLLARY 4.2. Every graph on n vertices contains at most 1.7159n minimal
dominating sets.

5. Computing the Domatic Number

The algorithm listing minimal set covers (and minimal dominating sets) can be
used to compute the domatic number of a graph G = (V, E). Our algorithm has
similarities with the classical algorithm computing the chromatic number due to
Lawler [1976] (see also Eppstein [2003]), but the analysis of our algorithm is based
on Theorem 4.1.

For every set X ⊆ V denote by DN(G|X ) the maximum number of pairwise
nonintersecting subsets of X such that each of these subsets is a minimal dominating
set in G. Clearly, DN(G|V ) = DN(G) is the domatic number of G. Note that if X
is not dominating, then DN(G|X ) = 0.

We use an array A, indexed by the 2n subsets X of V , for which we compute
the numbers DN(G|X ). Initially the array is set to zero. Then we run through the
subsets X of V , in increasing cardinality order. To compute A[X ], we run through
all minimal dominating sets D ⊆ X of G, and put

A[X ] = max{A[X \ D] + 1 | D ⊆ X and D is a minimal dominating set in G}.
Finally, after running through all subsets, we return the value in A[V ] as the domatic
number of G.

THEOREM 5.1. The domatic number of a graph G on n vertices can be computed
in time O(2.8718n).

PROOF. The correctness of the algorithm DN can be shown by an easy induction.
Let X be a subset of V . Suppose that after running the algorithm, for every proper
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subset S of X , the value A[S] is equal to DN(G|S). Note that A[∅] = 0. If X contains
no dominating subsets (i.e., X is not dominating), then we have that A[X ] = 0 =
DN(G|X ). Otherwise, DN(G|X ) is equal to max{DN(G|(X \ D)) + 1}, where the
maximum is taken over all the minimal dominating sets D ⊆ X , and thus the value
A[X ] computed by the algorithm is equal to DN(G|X ).

For a set X ⊆ V , let DOM(G|X ) be the number of minimal dominating sets
of G which are subsets of X . To estimate the running time of the algorithm, let
us bound first DOM(G|X ). We consider the following modified reduction to SC:
U = V and S = {N [v] | v ∈ X}. Then DOM(G|X ) = COV(U,S). Note that
the size of this problem is at most β5|U | + α4|S| = n + α4|X |. By the proof of
Theorem 4.1, COV(U,S) ≤ COV(n + α4 |X |) ≤ λn+α4|X |, where the values of the
αi ’s, β j ’s, and of λ must satisfy the constraint that the righthand sides of recurrences
(13)–(20) are upper bounded by λk . Using the listing algorithm of Section 3, we
can list in time O(λn+α4|X |) all the minimal dominating sets contained in X . Hence
the running time of the algorithm is bounded by

O
(

nO(1)
n∑

i=0

(
n

i

)
λn+α4 i

)
= O

(
λn(1 + λα4 )nnO(1)

)
.

We numerically found the following values for the weights: α1 = 2.450844, α2 =
2.692202, α3 = 2.856464, α4 = 2.924811, β2 = 0.120446, β3 = 0.756800,
β4 = 0.960327, and λ = 1.148698. Then O(λn(1 + λα4 )n nO(1)) = O(2.8718n).
This concludes the proof.

6. Conclusions and Open Problems

Using measure and conquer, we have shown that the minimal dominating sets of
a graph on n vertices can be listed in time O(1.7159n). We think that this work
opens an interesting line of research, namely using measure and conquer to list
combinatorial objects and to develop new combinatorial lower and upper bounds.

As an application of our listing algorithm we obtained a faster exponential al-
gorithm to compute the domatic number of a graph. Our algorithm runs in time
O(2.8718n), thus improving on the trivial 3n · nO(1) algorithm, and even on the
O(2.9416n) algorithm in Reige and Rothe [2005] for the special case of the
three domatic number. The preliminary version of this article [Fomin et al. 2005],
where we obtained the upper bound 1.7697n on the number of minimal domi-
nating sets, has been used in some other works on domatic number. Riege et al.
[2007] obtained an O(2.695n)-time algorithm for three domatic number by com-
bining the result from Fomin et al. [2005] with techniques for SAT. Björklund et al.
[2006a, 2006b] used Fomin et al. [2005] to obtain a polynomial-space algorithm
with running time O(2.8805n). Björklund et al. [2006a, 2006b] also observed how
to compute the domatic number of a graph in time 2n · nO(1) and exponential space.
Let us note that while our Lawler-type algorithm for domatic number uses expo-
nential space, by making use of the technique of Björklund et al. [2008], it can be
turned into a polynomial-space algorithm.

Let us conclude with some open questions.

—Lower and Upper Bounds. Dieter Kratsch (private communication) found graphs
(n/6 disjoint copies of the octahedron) containing 15n/6 ≈ 1.5704n minimal
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dominating sets. We conjecture that Kratsch’s graphs are those graphs with the
maximum number of minimal dominating sets. This suggests the possibility that
our bound for the maximum number of minimal dominating sets might be further
improved. Finding a tighter bound, possibly by means of a refined measure, is
an interesting open problem, both from a combinatorial and from an algorithmic
point of view.

—Listing with Polynomial Time Delay. There is a number of listing algorithms in
the literature that list combinatorial objects with a polynomial-time delay. The
existence of such an algorithm for minimal dominating sets is an interesting open
problem.

Appendix

Figure 1 C-like pseudo-code to check a value of λ for given (feasible) values of the weights α’s and β’s:

the function returns true if the righthand sides of Recurrences (15)–(20) are upper bounded by λk , and false

otherwise. This is trivially true for Recurrences (13)–(14).

boolean feasible(α1, α2, α3, α4, β2, β3, β4, λ){
α0 = β0 = β1 = 0; β5 = β6 = 1; α5 = α4;
compute �βi for 2 ≤ i ≤ 6 and �β≤i for 3 ≤ i ≤ 6; compute �α j and �α≤ j for 2 ≤ j ≤ 5;
for(r = 2 . . . 5) //Case 1

if(rλ−rα1−βr > 1) return false;
for(r = 2 . . . 5) //Case 2.a

for(r ′ = 1 . . . r )
if(λ−αr −αr ′ −r β2 + λ−αr −αr ′ −r ′ β2 > 1) return false;

for(r = 2 . . . 5) //Case 2.b
for(r2 = 1 . . . r )

for(r3 = 0 . . . r − r2)
for(r4 = 0 . . . r − r2 − r3)

for(r5 = 0 . . . r − r2 − r3 − r4)
r6 = r − r2 − r3 − r4 − r5;

if(λ−αr −∑6
i=2 ri βi −

∑6
i=2 ri (i−1)�α≤r + λ−αr −r2 α2−β2−∑5

i=2 ri �βi > 1) return false;
for(r = 3 . . . 5) //Case 3

for(r3 = 0 . . . r )
for(r4 = 0 . . . r − r3)

for(r5 = 0 . . . r − r3 − r4)
r6 = r − r3 − r4 − r5;

if(λ−αr −∑6
i=3 ri βi −

∑6
i=3 ri (i−1)�α≤r + λ−αr −∑5

i=3 ri �βi > 1) return false;
for(r ′ = 1 . . . 2) //Case 4

for(u′ = 3 . . . 6)
for(v ′ = 3 . . . 6)

if(λ−α2−αr ′ −βu′ −βv ′ −(u′+v ′−2−r ′)�α≤2 + λ−α2−�βu′ −�βv ′ > 1) return false;
for(u′ = 3 . . . 6) //Case 5

for(v ′ = 3 . . . u′)
if(λ−u′ α2−βu′ −βv ′ −(v ′−1) �α2−(u′−1) �β≤u′

+λ−v ′ α2−βu′ −βv ′ −(u′−1) �α2−(v ′−1) �β≤u′ + λ−α2−�βu′ −�βv ′ > 1) return false;
return true; //All the inequalities satisfied

}
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