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Abstract We introduce nondeterministic graph searching with a controlled amount
of nondeterminism and show how this new tool can be used in algorithm design
and combinatorial analysis applying to both pathwidth and treewidth. We prove
equivalence between this game-theoretic approach and graph decompositions called
q-branched tree decompositions, which can be interpreted as a parameterized ver-
sion of tree decompositions. Path decomposition and (standard) tree decomposition
are two extreme cases of q-branched tree decompositions. The equivalence between
nondeterministic graph searching and q-branched tree decomposition enables us to
design an exact (exponential time) algorithm computing q-branched treewidth for all
q ≥ 0, which is thus valid for both treewidth and pathwidth. This algorithm performs
as fast as the best known exact algorithm for pathwidth. Conversely, this equivalence
also enables us to design a lower bound on the amount of nondeterminism required
to search a graph with the minimum number of searchers.
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1 Introduction

Treewidth and pathwidth are among the most key parameters in graph algorithms,
also playing important roles in structural graph theory. Both parameter serve as the
important tools in Robertson and Seymour’s Graph Minors project [19]. Many in-
tractable problems can be solved in polynomial time when the input is restricted
to graphs of bounded treewidth. (See Bodlaender’s survey [5] for a comprehensive
overview.) Treewidth also plays a crucial role in Downey and Fellows parameterized
complexity theory [8]. Moreover, treewidth is the basic ingredient for many applica-
tions in artificial intelligence, databases and logical-circuit design. To mention just
a few of these applications: Exact inference in Bayesian networks, reasoning with
structured constraint-satisfaction problems, propositional satisfiability and first-order
logic. See [2] for further references.

In this paper we introduce the new notion of q-branched treewidth which can be
interpreted as a parameterized version of treewidth. Loosely speaking, a rooted tree
decomposition is q-branched if every path from the root of the tree to a leaf contains
at most q branching nodes (nodes with at least two children). This notion is a natural
generalization of path and tree decompositions: For q = ∞, q-branched treewidth is
equivalent to the treewidth, and, for q = 0, q-branched treewidth is equivalent to the
pathwidth of a graph.

Both parameters, pathwidth and treewidth, have nice game-theoretic interpreta-
tions. (See a survey of Bienstock [4].) Pathwidth can be described as a search game
where searchers, looking for a fugitive, are successively placed to and removed from
vertices of the graph. (Kirousis and Papadimitriou [15] called this version of search-
ing by node searching.) The purpose of searching is to capture the fugitive that is
invisible and moves arbitrarily fast along paths in the graph. The fugitive is not al-
lowed to run through the vertices currently occupied by searchers. So the fugitive is
caught when a searcher is placed on the vertex it occupies, and it has no possibility to
leave the vertex because all the neighbors are occupied (guarded) by searchers. The
goal of search games is to find a search strategy that guarantees the fugitive’s capture.
The pathwidth of a graph G is equal to the minimum number of searchers needed for
a successful search strategy on G, minus one.

Treewidth also can be described as a search game, where a team of searchers are
trying to catch a visible fugitive. It was shown by Seymour and Thomas [20] that
the minimum number of searchers required to catch the fugitive on a graph G in
this game is equal to the treewidth of G plus one. (An alternative game-theoretic
interpretation of treewidth in terms of searching was given by Dendris et al. [7] who
restrict the ability of the (called inert) fugitive to move only when a searcher is placed
at the vertex where the fugitive currently stands.)

Game theoretic interpretation of width parameters is interesting not only in its
own. Very often it provides a deeper insight to the problem yielding new structural
and algorithmic results. Good examples are proofs of min-max theorems on treewidth
by Seymour and Thomas [20], the polynomial time algorithm computing branch-
width of a planar graph in [21], the linear time algorithm on trees for computing
cutwidth in [17], as well as the computation of the topological bandwidth in [16], and
the vertex separation number in [9]. It is therefore natural to ask if there is a game
theoretic interpretation of the q-branched treewidth.
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Our Results To answer the question above, we introduce a new game model pro-
viding a unique approach to both search models of Kirousis-Papadimitriou, and
Seymour-Thomas. In our search game the searchers can query an oracle which pos-
sesses information about the position of the fugitive. However the number of times the
searchers can query the oracle is limited. This situation can be interpreted as using
powerful but expensive intelligence service with limited resources. More formally,
q-limited graph searching is a graph searching game in which the search program is
allowed to perform nondeterministic search steps. In the same spirit as in the field of
complexity theory addressing limited nondeterminism (cf., e.g., [13] for a survey),
the number of nondeterministic steps of the search program is however limited. The
parameter q limits the program to at most q nondeterministic steps.

We first show a formal equivalence between q-limited graph searching and
q-branched treewidth. Precisely, we prove that a graph G has a q-branched treewidth
≤ k if and only if it can be searched with at most k + 1 searchers by a search strategy
using at most q nondeterministic steps. Moreover, we establish a one-to-one corre-
spondence between the q-branched tree decompositions of G of width ≤ k and the
q-limited search strategies using ≤ k + 1 searchers.

Then we use q-limited graph searching to design an exact (exponential-time) al-
gorithm computing the q-branched treewidth of a graph. The interest in exact and
fast exponential-time algorithms solving hard problems dates back to the sixties and
seventies [14, 22]. The last decade has led to much research in fast exponential-time
algorithms. We refer to Woeginger’s survey [23] for an overview. However despite of
the importance of treewidth and pathwidth, and despite the fact that much progress on
exponential-time solutions to other graph problems have been made, the only worst-
case bound known so far for finding pathwidth is 2n · nO(1). This can be obtained
by adopting classical TSP dynamic programming approach [14]. For treewidth, the
fastest known exponential algorithm is an O(1.96n) algorithm due to Fomin et al.
[12]. In this paper we design an algorithm computing q-branched treewidth of a graph
on n vertices in time 2n · nO(1) for any q ≥ 0.

Finally, the equivalence between q-limited graph searching and q-branched tree
decomposition enables us to design a lower bound on the amount of nondeterminism
required to search a graph with the minimum number of searchers. Precisely, we
prove that, for any graph G of treewidth tw(G) = k, the smallest q ≥ 0 such that
G can be searched by k + 1 searchers using a q-limited search program is at least
log2(pw(G)/tw(G)) where pw(G) is the pathwidth of G.

2 Formal Definitions

In this section, we formally define the two notions of q-branched treewidth and
q-limited graph searching. Later on, these two notions will be shown to be equiv-
alent.

Branched Treewidth A tree decomposition of graph G is a pair (T ,X ) where T is
a tree of node set I , and X = {Xi, i ∈ I } is a collection of subsets of V (G) satisfying
the following three conditions:



Algorithmica

Fig. 1 Spectral width of
graph G

1. V (G) = ⋃
i∈I Xi ;

2. For any edge e of G, there is a set Xi ∈ X containing both end-points of e;
3. For any triple i1, i2, i3 of nodes of T , if i2 is on the path from i1 to i3 in T , then

Xi1 ∩ Xi3 ⊆ Xi2 .

The width of a tree decomposition is defined as width(T ,X ) = maxi∈I |Xi | − 1.
A rooted tree decomposition of a graph G is a tree decomposition (T ,X ) of G where
T is rooted at some node r ∈ I . It is denoted by (T ,X , r). A branching node of
a rooted tree decomposition is a node with at least 2 children.

Definition 1 For any q ≥ 0, a q-branched tree decomposition of a graph G is a rooted
tree decomposition (T ,X , r) of G such that every path in T from the root r to a leaf
contains at most q branching nodes.

Thus a path decomposition rooted at one of its extremities is a 0-branched tree
decomposition, and a (standard) tree decomposition is a ∞-branched tree decompo-
sition.

Definition 2 For any graph G, the q-branched treewidth twq(G) of G is the mini-
mum width of any q-branched tree-decomposition of G.

Therefore, pw(G) = tw0(G) and tw(G) = tw∞(G). Figure 1 displays the “spec-
tral width” of a graph G, i.e., the graph of the function fG : N → N such that
fG(q) = twq(G). In this figure, τ(G) = min{q ≥ 0 | twq(G) = tw(G)} and π(G) =
max{q ≤ τ(G) | twq(G) = pw(G)}.

The exact shape of the spectral width is left as an open question, however Theo-
rem 3 gives a lower bound for it.

2.1 Graph Searching

Search games are games between a fugitive and searchers in a graph. The fugitive and
the searchers occupy vertices of the graphs. The goal of the fugitive is to escape from
the searchers. It is caught when a searcher is placed on the vertex currently occupied
by the fugitive. The fugitive permanently knows where the searchers are, and moves
arbitrarily fast, but it cannot meet a searcher without being caught. The searchers do
not know the position of the fugitive.
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More formally, a search program is a (deterministic) program that takes as input
a graph G and an integer k ≥ 1, and returns an ordered sequence of search steps. This
sequence is called the search strategy for G. Each step is an operation that consists
in either “placing a searcher at v ∈ V (G)” or “removing a searcher from v ∈ V (G)”.
After a searcher s has been placed at v, and before s is removed from v, vertex v is
said to be occupied by searcher s. When a vertex has been occupied by a searcher, it
becomes clear. Vertices that have not been cleared yet are called contaminated. The
search program is correct if it satisfies the following constraints:

1. no more than k searcher are simultaneously occupying vertices of G;
2. a step “place a searcher at v” occurs at most once, for every vertex v;
3. when a searcher is removed from a vertex v, for any path P between v and conta-

minated vertices, there is a searcher occupying a vertex of P .

A fugitive program in a graph G is a deterministic automaton F whose states
are all possible triples (S,X,v) where S ⊂ V (G), X ⊆ S, and v ∈ V (G) \ S. If the
automaton is in state (S,X,v), then the fugitive is currently occupying vertex v, the
searchers are occupying vertices in X, and S is the set of clear vertices. Given a state
(S,X,v) of the automaton, the transition function of the fugitive program returns
a new state (S,X,v′) where v and v′ are constrained to be in the same connected
component of G \ S. Then the fugitive moves in G from vertex v to vertex v′. The
initial state of the fugitive program is the state (∅,∅, v0) for some v0 ∈ V (G).

A search game is then a game between the fugitive program and the search pro-
gram. A configuration of the game is a triple (S,X,v) where S is the set of clear
vertices, X is the set of vertices occupied by searchers, and v is the position of the
fugitive. From constraint 3 of the search program, we always have δ(S) ⊆ X, where
δ(S) denotes the set of vertices in S that have a neighbor in G \ S. Initially, the fugi-
tive is placed in v0, where (∅,∅, v0) is the initial state of the fugitive program, i.e.,
the initial configuration of the game is (∅,∅, v0). Then the search program and the
fugitive program play alternatively. Each step of the search program transforms the
current configuration (S,X,v) of the game into a configuration (S ∪ {u},X ∪ {u}, v)

(in case of a step “place a searcher at u”), or into a configuration (S,X \ {u}, v) (in
case of a step “remove a searcher from u”).

The search program wins the game if the game reaches a configuration in which
v ∈ X. Otherwise the fugitive wins. If the search program wins, then the fugitive is
said to be caught. Note that the fugitive wins if the search program cannot carry on
without violating one of its three constraints.

The search program that places a different searcher on every vertex of the graph
wins against any fugitive. It however requires n searchers on graphs of order n.

Definition 3 The search number of G, denoted by s(G), is the minimum number of
searchers required by a search program to win against any fugitive in G.

2.2 Nondeterministic Graph Searching

A nondeterministic search program is a search program that can do nondetermin-
istic steps. Each nondeterministic step consists in a query operation. Given the set
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Fig. 2 A graph G with
s0(G) = 2k ≥ s1(G) = k + 1

S ⊂ V (G) of clear vertices, a query returns a connected component C of G \ S, and
all vertices in G \ C are cleared. The choice of C is nondeterministic. Alternatively,
it can be viewed as given by an oracle answering on a query by letting the searchers
know in which component is the fugitive. A nondeterministic search program is thus
a nondeterministic program that takes as input a graph G and an integer k ≥ 1, and
returns an ordered sequence of search steps, each of them being one of the following
three operations:

• place a searcher at v ∈ V (G);
• remove a searcher from v ∈ V (G);
• query the oracle.

Of course, the program must satisfy the same three constraints as any (deterministic)
search program.

A nondeterministic search program wins the game against a fugitive F if there ex-
ists an execution of the program which results in clearing the node currently occupied
by the fugitive.

We are interested in the tradeoff between the number of searchers used by a search
program and the number of query steps performed by the program. For any q ≥ 0,
a q-limited nondeterministic search program is a nondeterministic search program
that performs at most q query steps. Therefore, a q-limited nondeterministic search
program wins the game against a fugitive F if it can catch the fugitive by querying
at most q times an oracle that returns the connected component where is currently
hidden the fugitive.

Definition 4 The q-limited nondeterministic search number sq(G) of a graph G,
or simply the q-limited search number of G, is the minimum number of searchers
required by a q-limited nondeterministic search program to win against any fugitive
in G.

Therefore, the 0-limited nondeterministic search number of a graph is its search
number, i.e., s0(G) = s(G). We will prove in the next section that the ∞-limited
nondeterministic search number s∞(G) of a graph G is equal to its visible-search
number.

As an example, let us consider the graph G depicted on Fig. 2, where every circle
represents a k-clique (k ≥ 1), and a bold line between two cliques represents a perfect
matching between them. We prove that s0(G) = 2k ≥ s1(G) = k + 1. It is easy to see
that 2k searchers are sufficient to capture any invisible fugitive in G: place a searcher
at every vertex of the central clique, then successively clear the remaining cliques
using the k remaining searchers. Moreover, Theorem 4 proves that s0(G) ≥ 2k. On
the other hand, if one query is allowed, k + 1 searchers are sufficient to capture any
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invisible fugitive in G: first place a searcher at every vertex of the central clique,
then perform a query. Let C be the clique where the fugitive is standing after the
query step. Finally, successively place the free searcher at a vertex v of C that is not
occupied yet, and remove the searcher standing at the neighbour of v in the central
clique. This 1-limited nondeterministic search program eventually captures the fugi-
tive. Thus, s1(G) ≤ k+1. The reverse inequality follows from the fact that tw(G) ≥ k

since G has a (k + 1)-clique as a minor.

3 Branched Treewidth vs. Limited Graph Searching

In this section, we show that the q-branched treewidth and the q-limited search num-
ber are actually the same, up to 1. This equality will be later shown to be useful for
the design of algorithms and for the computation of combinatorial bounds.

Theorem 1 For any q ≥ 0, for any graph G, twq(G) = sq(G) − 1.

Proof Let (T ,X , r) be a q-branched decomposition of width k. For a node i of
T let d(i) be the set of descendants of i in T . We define the search program of
k + 1 searchers querying the oracle at most q times as follows. Initially the searchers
are placed on the vertices of Xr . Suppose that, at some step of searching, for some
node i of T the searchers are on vertices Xi and the set of contaminated vertices
is

⋃
j∈d(i) Xj \ Xi . Note that if i is a leaf, G is cleared. Let i be a non-leaf node

of T . Depending on the number of children of i we choose different strategy for
the searchers.

Case A. i has only one child l. We remove first the searchers from Xi \ Xl and then
place searchers to Xl . Since the cardinality of Xi and Xl is at most k + 1 we use
at most k + 1 searchers. By properties 2 and 3 of tree decompositions, for every
contaminated vertex v ∈ ⋃

j∈d(i) Xj \ Xi and every cleared vertex u, every (u, v)-
path contains a vertex from Xi ∩ Xl . Thus after removing the searchers from Xi \ Xl

no recontamination occurs and we arrive at the situation when the searchers are at Xl

and the set of contaminated vertices is
⋃

j∈d(l) Xj \ Xl .

Case B. i has more than one child. In this case the searchers query the oracle. Let
C be the connected component of G[⋃j∈d(i) Xj \ Xi] returned by the oracle. Then
there is a unique child l of i such that C ∩ Xl = ∅. We remove the searchers from
Xi \ Xl and then place searchers to Xl . Again, in this case we arrive at the situation
when the searchers are at Xl and the set of contaminated vertices is

⋃
j∈d(l) Xj \ Xl .

Eventually, the searchers reach the situation when they are placed on the vertices
Xi where i is leaf of T and thus the whole graph is cleared. The number of searchers
used is at most maxj∈V (T ) |Xj | ≤ k + 1. Since for every leaf i, the path from r to i

contains at most q branches, the case B occurs at most q times, thus the searchers
query the oracle at most q times. Hence sq(G) ≤ twq(G) + 1.

We prove twq(G) ≤ sq(G) − 1 by proving a slightly stronger claim.
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Claim 1 Suppose that there is a search program of k +1 searchers on G with at most
q queries and such that, initially, searchers are placed on vertices X ⊆ V (G). Then
there is a q-branched tree decomposition (T ,X , r) with Xr = X and of width ≤ k.

To prove the claim we proceed by induction on q . For q = 0, the required path de-
composition P = (X0,X1, . . . ,Xm) is constructed by taking X0 = X, and, for i ≥ 1,
Xi to be the vertex set occupied by searchers after the ith step. To check that P is the
path decomposition we observe that every vertex should be at some step occupied by
a searcher and thus is contained in some node of P . Every pair of adjacent vertices
{u,v} is contained in some node of P because otherwise fugitive can avoid capture by
choosing u or v at every step of searching. The third property of tree decompositions
follows from the constraints 2 and 3 of graph searching.

Let q ≥ 1 and suppose that for all q ′ < q , the claim is correct. Consider a winning
search program of k + 1 searchers with at most q queries to the oracle. Suppose that
the first time the searchers query the oracle occurs at step t ≥ 0. Let X be the set
of vertices occupied by the searchers and S be the cleared vertices at this step. Let
G1,G2, . . . ,Gp be the subgraphs of G obtained from the connected components of
G \ S by adding X. Each of these subgraphs is searchable by k + 1 searchers with
at most q − 1 queries with the search starting from X. By induction assumption, for
each 1 ≤ i ≤ p, there is a rooted tree decomposition (T (i),Y(i), ri) of Gi with at
most q − 1 branches and with the root ri of T (i) satisfies Yri = X.

We construct a tree decomposition (T ,Y, r) of G as follows. Let X1, . . . ,Xt be
the vertices occupied by the searchers at the first t steps of searching. In particular
Xt = X. We construct the path decomposition (X1, . . . ,Xt ) rooted at X1. Then we
add the tree decompositions (T (i),Y(i), ri), 1 ≤ i ≤ p, and identify every ri to the
node t of the path decomposition. The resulting tree decomposition is a q-branched
tree decomposition of width ≤ k. �

4 Exact Exponential Algorithm

For any q ≥ 0, the decision problem that takes as input a graph G and an integer k ≥
1, and returns whether or not twq(G) ≤ k, is NP-complete. Indeed, it is known [3] that
the problem of deciding whether tw(G) ≤ k is NP-complete, even when restricted to
the co-bipartite graphs, i.e., the complements of bipartite graphs. Since, for any co-
bipartite graph G, tw(G) = pw(G), the NP-completeness of deciding twq(G) ≤ k

follows from the fact that tw(G) ≤ twq(G) ≤ pw(G) for any q ≥ 0. By the recent
result of Feige et al. [10], the treewidth of a graph G can be approximated up to
multiplicative factor O(

√
log tw(G)) in polynomial time. However, for pathwidth,

no approximation algorithm is known for general graphs (except by combining the
ones for treewidth with the fact that pw(G) ≤ O(logn) · tw(G) for any graph G on n

vertices). Note that some recent results prove that pathwidth can be approximated up
to a constant factor for some classes of planar graphs [1, 6, 11]. On the other hand,
as mentioned in the introduction, several exact (exponential) algorithms have been
designed for treewidth, and for pathwidth as well. In this section, we show that one
can design an exact algorithm that applies to q-branched treewidth, for all q ≥ 0.
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This algorithm uses the correspondence between q-branched treewidth and q-limited
search number.

Basically, given a graph G and an integer k ≥ 1, our algorithm computes the small-
est number of queries required to catch an invisible fugitive in G, using at most
k searchers. For this purpose, our algorithm labels the vertices of the configuration
digraph H of G with non-negative integers. Roughly speaking, any vertex of H con-
sists of a configuration of the search game, and any arc of H corresponds to a search
step. The label of a configuration represents the smallest number of queries required
to capture the fugitive using at most k searchers and starting from this configuration.
Hence, when our algorithm completes, the label of the initial configuration is equal
to the smallest number of queries required to catch an invisible fugitive in G, using
at most k searchers.

Theorem 2 There exists an algorithm that, for any n-node graph G, computes
twq(G) and an optimal q-branched tree decomposition of G, in time O(2nn logn).

Proof Based on Theorem 1, we design an algorithm that computes sq(G), and a
winning q-limited search strategy for G. This strategy can be then transformed into
a q-branched tree decomposition using the arguments in the proof of Theorem 1. Let
G be a graph, and fix k ≥ 1. We define the configuration digraph H as follows.

V (H) = {S ⊆ V (G) s.t. |δ(S)| ≤ k}.
A set S of clear vertices for which |δ(S)| > k is unreachable by a search program
using k searchers, and thus it is not included in V (H). The nodes in H are called
H -configurations, to avoid confusion with the configurations of the search game. The
edge-set of H has two types of directed edges: place edges, and query edges. A place
edge, or simply p-edge, is an edge (S,S′) where |δ(S)| < k and S′ = S ∪ {v}, v /∈ S.
Clearly, a p-edge corresponds to the placement of a searcher at node v. A query
edge, or simply q-edge, is an edge (S,S′) where S′ = G \ C and C is a connected
component of G \ S. It is assumed that there is a q-edge (S,G \ C) only if G \ S has
at least two connected components (i.e., there is no self-loop in H ). Thus, a q-edge
(S,G \ C) corresponds to a query to the oracle that returns C. The objective of our
algorithm is to find a path in the configuration digraph H from S = ∅ to S = V (G)

that can be put in correspondence with a search strategy.
For the purpose of finding such a path, we label every node of V (H) by a non-

negative integer. The labeling starts from the H -configuration V (G) and goes back-
wards. The H -configuration V (G) is labeled 0. All the other H -configurations are
labeled ∞. All the H -configurations without any outgoing edge are declared finished.
(In particular V (G) is finished.) All the other H -configurations are declared pending.
We proceed as long as there is at least one pending H -configuration S satisfying one
of the two following conditions:

Case 1. S has an outgoing p-edge e connecting to an H -configuration S′ that is
finished. (Informally, this case occurs if the labeling has not yet considered
the game configuration (S, δ(S), v), v /∈ S, from which the next search step
is: place a searcher at S′ \ S.)
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Case 2. S has all its outgoing q-edges e1, . . . , ed connecting to H -configurations
S′

1, . . . , S
′
d that are finished. (Informally, this case occurs if the labeling has

not yet considered the game configuration (S, δ(S), v), v /∈ S, from which
the next search step is: query the oracle.)

In case 1, we update the label of S by:

label(S) = min{label(S), label(S′)}
and the edge e is removed from H . In case 2, we update the label of S by:

label(S) = min{label(S), 1 + max
1≤i≤d

label(Si)}

and all the edges e1, . . . , ed are removed from H . In both cases, if the pending
H -configuration S has no more outgoing edges because of the edge(s) removal, then
S is declared finished.

Claim 2 The labeling process terminates.

To prove the claim, notice that H is a directed acyclic graph because every edge
goes from an H -configuration S to another H -configuration S′ with |S′| > |S| (recall
that we did not allowed self-loops in H ). Removing edges from H preserves this
property. Therefore every node becomes eventually finished and thus the labeling
process terminates.

Claim 3 The H -configuration ∅ is labeled q < ∞ if and only if q is the smallest
number of queries required to clear G using ≤ k searchers. The H -configuration ∅
is labeled ∞ if one cannot clear G using ≤ k searchers, independently of the number
of queries to the oracle.

We prove that claim by proving a slightly more general result: for any H -
configuration S = V (G), S is finished and labeled label(S) ≤ q = ∞ if and only
if one can clear G starting from S with ≤ k searchers and performing ≤ q queries.
By starting from S, it is meant that we assume an initial configuration of the search
game in which S is clear, |δ(S)| searchers are placed at the vertices of δ(S), and the
fugitive is at some vertex of G \ S. We proceed by induction on q = label(S).

If q = 0, then there is a path P in H from S to V (G) using only p-edges. Let
(S′, S′′) ∈ P , with S′′ = S′ ∪ {v}. The portion of the search strategy corresponding to
that edge consists in removing one by one all searchers occupying vertices /∈ δ(S′),
and placing a searcher at v. Hence one can catch the fugitive without performing
queries by starting from S and following the edges of P until one reaches the config-
uration V (G). Conversely, if one can clear G starting from S with ≤ k searchers and
performing no queries, then there is a path in H from S to V (G) composed on only
p-edges. These edges are defined by placement steps in the search strategy.

Assume now that the result holds for q , and consider S such that label(S) =
q + 1. We define a good edge as a p-edge (S′, S′′) such that label(S) = label(S′) =
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label(S′′). From S, start traveling in H by using good edges only, until one reaches a
configuration S∗ with

label(S) = label(S∗) = 1 + max
i=1,...,d

label(S∗
i ),

where the edges (S∗, S∗
i ), i = 1, . . . , d , are all the q-edges out-going from S∗. This

configuration S∗ exists because

(1) a good edge (S′, S′′) satisfies |S′′| > |S′|, and
(2) label(S′) = label(S′′) = label(S) < ∞.

Therefore, if a configuration S∗ as specified above would not be met, then, by (1)
an H -configuration with out-degree 0 would eventually be reached, and by (2) this
H -configuration could only be V (G) since otherwise its label would be ∞. Since
label(S) = q + 1 > 0, by induction this would contradict the fact that there is no path
from S to V (G) composed of p-edges only. So S∗ is well defined.

For all i = 1, . . . , d , label(S∗
i ) ≤ q . Therefore, by induction hypothesis, one can

clear G starting from any S∗
i using ≤ k searchers, and queering ≤ q times the oracle.

The search strategy from S starts by performing place and remove steps according
to the path in H from S to S∗. The search then queries the oracle at S∗, and gets
into one of the configurations S∗

i . The rest of the search follows from the induction
hypothesis.

Conversely, assume that one can clear G starting from S with ≤ k searchers and
performing q +1 queries. Consider a corresponding search strategy in G, and assume
that the first query to the oracle occurs at step t . The t − 1 first steps can be put in
correspondence with a path P in H starting at S, and that contains good edges only.
Let (S∗,X∗, v∗) be the configuration of the game after step t − 1. P connects S with
the H -configuration S∗. The query at step t corresponds to the outgoing q-edges
(S∗, S∗

i ), i = 1, . . . , d , of S∗. From each of the S∗
i s, the search proceeds with at most

q queries. Hence, by induction, label(S∗
i ) ≤ q . Therefore, label(S∗) ≤ q + 1. Since

P is a path of good edges, we get label(S) = label(S∗) ≤ q + 1.
For each k, the running time of the labeling procedure is linear in the number of

edges of H , which is O(2nn). Thus by binary search we can find the search number
and twq(G) in O(2nn logn). �

5 Bounding the Nondeterminism

In this section, we compute a lower bound on the number of nondeterministic steps
a search program must perform in a graph G in order to clear the graph with the
minimum possible number of searchers, i.e., tw(G) + 1 searchers. Moreover, we
prove that this bound is tight.

Theorem 3 For any graph G and q ≥ 1, twq−1(G) ≤ 2 twq(G).

Proof We first need a technical result. Let G be a graph and let (T ,X , r) be a tree
decomposition of G rooted at r . For each i ∈ V (T ), the subtree of T rooted at i
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is denoted by Ti . The subgraph of G induced by the vertices in the nodes of Ti is
denoted by G[Ti]. Let (T ′,X ′, i) be a tree decomposition of G[Ti] such that Xi = X′

i .
Let Tnew be the tree obtained from T and T ′ by removing Ti from T , and replacing
it by T ′ rooted at i. Let Xnew = {Yj , j ∈ V (Tnew)} be the family of subsets of V (G)

such that Yj = X′
j if j ∈ V (T ′) and Yj = Xj if j ∈ V (Tnew) \ V (T ′). Clearly, we

have:

Claim 4 (Tnew,Xnew) is a tree decomposition of G. Moreover, if width(T ,X ) = k

and width(T ′,X ′) = k′, then width(Tnew,Xnew) ≤ max{k, k′}.

Let (T ,X , r) be an optimal q-branched tree decomposition of G rooted at r , i.e.,
(T ,X ) is of width twq(G). We define the lowest-branching nodes of T as those nodes
i ∈ V (T ) such that

(1) i has at least two children in T , and
(2) for any j ∈ V (Ti) \ {i}, j has at most one child.

Let � be the set of paths from r to a leaf in T containing exactly q branching nodes.
Let J be the set of the lowest-branching nodes that belong to some path in �. Let
i ∈ J . Ti consists in the node i and d ≥ 2 paths P1, . . . ,Pd pending at i. We define
the path T ′ obtained by concatenating the Pis, i.e., T ′ = (i,P1, . . . ,Pd). Any node j

of T ′ is a node of T , hence we can define X′
j = Xi ∪ Xj . Let X ′ = {X′

j | j ∈ V (T ′)}.
(T ′,X ′) is a path decomposition of G[Ti] of width ≤ 2 twq(G). Let T

(i)
new be the tree

obtained from T and T ′ by removing Ti from T , and replacing it by T ′ rooted at i.
Let X (i)

new = {Yj , j ∈ V (T
(i)
new)} be the family of subsets of V (G) such that Yj = X′

j

if j ∈ V (T ′) and Yj = Xj if j ∈ V (T
(i)

new) \ V (T ′). By the claim above, (T
(i)
new,X (i)

new)

is a tree decomposition of G of width ≤ 2 twq(G).
We repeat this process for every node i ∈ J . Since for every two nodes i = i′ in J ,

Ti ∩Ti′ = ∅, every application of the replacement process is independent from the pre-
vious ones. Therefore, we eventually obtain a rooted tree decomposition (T ∗,X ∗, r)
of G of width ≤ 2 twq(G). By construction, any path from r to a leaf of T ∗ contains
at most q − 1 branching nodes. Therefore twq−1(G) ≤ 2 twq(G). �

Theorem 3 implies the following bound on the “spectrum width” of a graph. Re-
call that τ(G) denotes the smallest number of queries required to catch an invisible
fugitive in G, using at most tw(G) + 1 searchers.

Corollary 1 For any graph G, τ(G) ≥ log2(�pw(G)/tw(G)�).

Proof By the definition, τ(G) is the smallest q ≥ 0 such that twq(G) = tw(G).
By making use of Theorem 3 τ(G) times, we arrive at pw(G) = tw0(G) ≤
2τ(G)tw(G). �

The next theorem shows that the bound of Theorem 3 is tight.

Theorem 4 For every q ≥ 1 and k ≥ 1, there is a graph Gk,q such that twq(Gk,q) = k

and twq−1(Gk,q) ≥ 2 · twq(Gk,q) − 1.
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Proof For q ≥ 1 we define a rooted tree Tq recursively. T1 is isomorphic to complete
bipartite graph K1,3 and the root of T1 is the vertex of degree three. For q ≥ 2, the
tree Tq is formed from three disjoint copies of Tq−1 by connecting the roots of these
trees to the new root vertex r . Thus Tq \ {r} consists of three copies of Tq−1.

We define Gk,q as the graph obtained from Tq by replacing every vertex u of
V (Tq) by a complete graph Ku on k vertices, and replacing every edge {u,v} by
a perfect matching between the two complete graphs Ku and Kv .

Let us prove first that twq(Gk,q) = k. By Theorem 1, to prove that twq(Gk,q) ≤ k,
it is sufficient to show that sq(Gk,q) ≤ k + 1. The search program of k + 1 searchers
querying the oracle q times can be defined as follows. Initially k searchers are placed
at the clique Kr corresponding to the root vertex and query the oracle for the first
time. Let v,u and w be the children of r . After the first query, only one of the cliques
Kv,Ku and Kw , say Kv , is contaminated. By making use of k + 1 searchers it is pos-
sible to move the searchers one by one from Kr to Kv . The vertex v, corresponding
to the clique Kv is the root of the tree Tq−1 obtained from Tq by removal r . Now the
situation repeats, the contaminated subgraph together with Kv form Gk,q−1 and sim-
ple induction on q implies sq(Gk,q) ≤ k + 1. Moreover, for any q ≥ 1, Gk,q admits
the complete graph on k + 1 vertices as a minor. Thus, twq(Gk,q) = k.

The proof of twq−1(Gk,q) ≥ 2k − 1 is by induction on q .
For q = 1 the graph Gk,1 consists from the central clique Kc connected by perfect

matchings to three peripheral cliques Kv , Ku, and Kw . We claim that tw0(Gk,1) ≥
2k − 1. 0-branched tree decomposition of Gk,1 is a pair (T ,X ) where T is a path of
node set I , and X = {Xi, i ∈ I } is a collection of subsets of V (Gk,1). It is well known,
and follows from the properties 2 and 3 of tree decompositions, that every clique of
Gk,1 should be in some node Xi . W.l.o.g. let us assume that Kv ⊆ Xi1 , Ku ⊆ Xi2 ,
and Kw ⊆ Xi3 , and that i1 ≤ i2 ≤ i3. If i1 = i2, or i2 = i3, then Xi2 contains at least
2k vertices, and tw0(Gk,1) ≥ 2k − 1. So let us assume that i1 < i2 < i3. But then
by making use of the properties 2 and 3 of tree decompositions it is easy to verify
that the node Xi2 contains all vertices of Kc . Thus Xi2 ⊇ Kc ∪ Ku, and its size is at
least 2k.

Let us assume that for every q ≤ p, p ≥ 1, twq−1(Gk,q) ≥ 2k − 1. Again we use
game-theoretic interpretation of branched treewidth. Let � be a search program of
2k−1 searchers with q = p+1 queries on Gk,q . We show that � cannot be a winning
strategy.

Let us consider the situation that occurs exactly before the step when the searchers
query the oracle for the first time. Let X be the set of cleared vertices of Gk,q at this
step and let S be the set of vertices occupied by the searchers. How big can be the
set X? Let l ≥ 0 and let Ku1,Ku2 , . . . ,Kul

be the maximal cliques of Gk,q contained
in X. We already have shown that without querying the oracle, 2k − 1 searchers
can not clean Gk,1. Thus every connected component of the subgraph of Tq induced
by the vertices u1, u2, . . . , ul is a path. Moreover, by property 3 of search programs,
every path connecting contaminated vertex with a vertex of X should contain a vertex
occupied by a searcher. Since |S| ≤ 2k−1, we conclude that l ≤ 3. Moreover, if l = 3,
then one of the cliques Ku1,Ku2 ,Ku3 corresponds to a leaf of Tq and one of the other
cliques is adjacent to it.

At the step of � when the searchers query the oracle for the first time three differ-
ent cases are to considered.
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Case 1. l = 0. In this case the only cleared vertices before the searchers query
the oracle for the first time are the vertices of S. Every minimal separator of Gk,q

is of size at least k, so if S contains a minimal separator P , then every connected
component of Gk,q \ P contains at most k − 1 searchers. Every minimal separator
of Gk,q is contained in the union of two adjacent cliques, which yields that after the
query, there is a component C of Gk,q \ P containing Gk,q−1 as a subgraph such
that the only cleared vertices of C are those occupied by searchers. By the induction
assumption, sq−2(Gk,q−1) ≥ 2k, and the program of 2k − 1 searchers cannot win on
C with q − 2 queries.

Case 2. l = 1 and the clique Ku1 corresponds to a leaf of T . Let Ku′ be the
clique adjacent to Ku1 . Property 3 of search programs implies that in this case |S ∩
(Ku1 ∪Ku′)| ≥ k. Thus the graph Gk,q \ (Ku1 ∪Ku′) contains at most k −1 searchers
and after the query the only cleared vertices of C = Gk,q \ (Ku1 ∪ Ku′) are those
occupied by searchers. Since C also contains Gk,q−1 as a subgraph, we have that by
the induction assumption, sq−2(C) ≥ 2k.

Case 3. One of the cliques Kui
corresponds to a non leaf vertex of T . Then by

making use of Property 3 of search programs, one can conclude that the vertices
of one of the cliques, say Ku1 should be occupied by the searchers. This implies
that at the step of � when the searchers query the oracle for the first time, there is
a connected component C of Gk,q \ Kur (let us remind that r is the root of T ), such
that C contains Gk,q−1 as a subgraph, V (C)∩⋃

1≤i≤l Kui
= ∅, and there are at most

k − 1 searchers on C. Thus sq−2(C) ≥ 2k.
In all three cases, we showed that, after the first query, there always exists a sub-

graph C of Gk,q such that 2k − 1 searchers with q − 2 queries cannot clear C. Thus
� is not a winning program. By Theorem 1, twq−1(Gk,q) ≥ 2k − 1. �

Corollary 2 For any k ≥ 1, τ(Gk,1) = log2(�pw(Gk,1)/tw(Gk,1)�).

6 Conclusion

In this paper, we introduced a nondeterministic graph searching game, with a con-
trolled amount of nondeterminism. The objective of this concept was to unify path-
width and treewidth, at least as far as the design of algorithms, and the computation of
combinatorial bounds in concerned. We believe that this is a promising field of inves-
tigations, as illustrated by the design of an exact algorithm for q-branched treewidth,
valid for any q ≥ 0. Still, a lot of work has to be done before being able to design
common tools for both pathwidth and treewidth.

In particular, it would be interesting to design a polynomial-time algorithm com-
puting the q-limited search number (or equivalently the q-branched treewidth) of
trees. As far as algorithm design is concerned, it would also be quite interesting to de-
sign an O(cn)-time exact algorithm for the q-branched treewidth of arbitrary graphs,
with c < 2. Such an algorithm is known [12] in the case of treewidth (i.e., q = ∞),
but not for pathwidth (i.e., q = 0). Note also that the running time of our algorithm
does not depend on q . It would be interesting to design an algorithm for q-branched
treewidth, with parametrized time complexity in both n and q .
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Last but not least, it is known that, for node-search (i.e., 0-limited graph search-
ing) and visible-search (i.e., ∞-limited graph searching), removing constraint 3 of
the search program does not enable to decrease the number of searchers. Recently,
Mazoit and Nisse [18] proved that “recontamination does not help” for q-limited
graph searching, for any q ≥ 0. That is, for any graph G, any integer k ≥ 1 and any
integer q ≥ 0, if k searchers can capture any invisible fugitive in G performing at
most q queries, they can do it monotoneously.
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