
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Information Processing Letters 109 (2009) 795–798

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Sort and Search: Exact algorithms for generalized domination ✩

Fedor V. Fomin a,∗, Petr A. Golovach a, Jan Kratochvíl b, Dieter Kratsch c, Mathieu Liedloff d

a Department of Informatics, University of Bergen, 5020 Bergen, Norway
b Department of Applied Mathematics, and Institute for Theoretical Computer Science, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic
c Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France
d Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, 45067 Orléans Cedex 2, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 December 2008
Received in revised form 7 February 2009
Accepted 25 March 2009
Available online 27 March 2009
Communicated by K. Iwama

Keywords:
Exact algorithms
Domination
Graph algorithms

In 1994, Telle introduced the following notion of domination, which generalizes many
domination-type graph invariants. Let σ and � be two sets of non-negative integers.
A vertex subset S ⊆ V of an undirected graph G = (V , E) is called a (σ ,�)-dominating
set of G if |N(v) ∩ S| ∈ σ for all v ∈ S and |N(v) ∩ S| ∈ � for all v ∈ V \ S . In this paper,
we prove that decision, optimization, and counting variants of ({p}, {q})-domination are
solvable in time 2|V |/2 · |V |O (1) . We also show how to extend these results for infinite
σ = {p + m · �: � ∈ N0} and � = {q + m · �: � ∈ N0}. For the case |σ | + |�| = 3, these
problems can be solved in time 3|V |/2 · |V |O (1) , and similarly to the case |σ | = |�| = 1 it is
possible to extend the algorithm for some infinite sets.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a finite undirected graph without
loops or multiple edges. Here V is the set of vertices
and E the set of edges. Throughout the paper we reserve
n = |V |. We call two vertices u, v adjacent if they form
an edge, i.e., if uv ∈ E . The open neighborhood of a vertex
u ∈ V is the set of the vertices adjacent to it, denoted by
N(u) = {x: xu ∈ E}. A set of vertices S ⊆ V is dominating
if every vertex of G is either in S or adjacent to a vertex
in S . Finding a dominating set of the smallest possible size
is one of the basic optimization problems on graphs. This
problem is also known to be notoriously hard. The prob-
lem is NP-hard even for chordal graphs (cf. [6]), and the
parameterized version is W[2]-complete [2].

✩ A preliminary version of these results appeared in proceedings of
WADS’07 [F.V. Fomin, P. Golovach, D. Kratsch, J. Kratochvíl, M. Liedloff,
Branch and recharge: Exact algorithms for generalized domination, in:
Proceedings of WADS 2007, in: LNCS, vol. 4619, Springer, 2007, pp. 508–
519].

* Corresponding author.
E-mail addresses: fomin@ii.uib.no (F.V. Fomin), petrg@ii.uib.no

(P.A. Golovach), honza@kam.ms.mff.cuni.cz (J. Kratochvíl),
kratsch@univ-metz.fr (D. Kratsch), liedloff@univ-orleans.fr (M. Liedloff).

Many generalizations have been studied, such as in-
dependent dominating set, connected dominating set, ef-
ficient dominating set, etc. (cf. [6]). In [10], Telle intro-
duced the following framework of domination-type graph
invariants. Let σ and � be two non-empty sets of non-
negative integers. A vertex subset S ⊆ V of an undirected
graph G = (V , E) is called a (σ ,�)-dominating set of G if
|N(v) ∩ S| ∈ σ for all v ∈ S and |N(v) ∩ S| ∈ � for all
v ∈ V \ S . Table 1 shows a sample of previously defined
and studied graph invariants which can be expressed in
this framework.

We are interested in the computational complexity of
decision, search and counting problems related to (σ ,�)-
domination. Explicitly, we consider the following problems
for some special sets σ and �.

∃(σ ,�)-DS: Does an input graph G contain a (σ ,�)-
dominating set?

#-(σ ,�)-DS: Given a graph G , determine the number of
(σ ,�)-dominating sets of G .

Max-(σ ,�)-DS: Given a graph G , find a (σ ,�)-dominating
set of maximum size.

Min-(σ ,�)-DS: Given a graph G , find a (σ ,�)-dominating
set of minimum size.

0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.03.023

Author's personal copy

796 F.V. Fomin et al. / Information Processing Letters 109 (2009) 795–798

Table 1
Examples of (σ ,�)-dominating sets, N is the set of positive integers, N0

is the set of non-negative integers.

σ � (σ ,�)-dominating set

N0 N dominating set
{0} N0 independent set
N0 {1} efficient dominating set
{0} {1} 1-perfect code
{0} {0,1} strong stable set
{0} N independent dominating set
{1} {1} total perfect dominating set
N N total dominating set
{1} N0 induced matching
{r} N0 r-regular induced subgraph

It is interesting to note that already the existence prob-
lem is NP-complete for many parameter pairs σ and �,
including some of those listed in Table 1 (1-perfect code
and total perfect dominating set). In fact, Telle [10] proves
that ∃(σ ,�)-DS is NP-complete for every two finite non-
empty sets σ ,� such that 0 /∈ �.

In this paper we show that for a sufficiently large set
of decision, optimization, and even counting (σ ,�)-dom-
inating problems there are exact algorithms of running
time O ∗(2n/2).1 Our approach is built on a classical tech-
nique of Horowitz and Sahni [7], and Schroeppel and
Shamir [9] (see also the survey of Woeginger [11]). The ba-
sic idea is a clever use of sorting and searching, and thus
we call it Sort and Search.

Let us briefly recall the main ideas of this paradigm.
The original problem of size n, say an input graph G on
n vertices, is divided into two subproblems, say two dis-
joint vertex subsets V 1 and V 2 of size n/2. For each subset
S ⊆ V i (i ∈ {1,2}) a vector of length n is assigned and
stored in a table Ti . The definition of the vectors is of
course problem dependent. Now T1 and T2 contain each
at most 2n/2 different vectors. Then each solution of the
problem corresponds to a vector �a of the first subproblem
and a vector �b of the second one such that the sum of the
two vectors is a fixed goal vector �c. All such pairs (�a, �b) of
satisfying vectors can be found by searching for each first
vector �a ∈ T1 the vector �c − �a in T2. When the vectors of
the second table are sorted in lexicographic order in a pre-
processing, then searching a vector can be done in O (n)

times the length of the vectors, and thus the overall run-
ning time of the algorithm is O ∗(2n/2). For more details on
searching in a lexicographically ordered table, we refer to
vol. 3 of “The Art of Computer Programming” by Knuth [8,
p. 409 ff.].

We establish O ∗(2n/2) time algorithms for the ∃(σ ,�)-

DS, Min-(σ ,�)-DS, Max-(σ ,�)-DS and the #-(σ ,�)-DS

problem in the case that σ and � are singletons. These
results are extended to infinite σ = {p + m · �: � ∈ N0}
and � = {q + m · �: � ∈ N0}, for m � 2 and p,q ∈ {0,1, . . . ,

m − 1}. Finally, we show that for the case |σ | + |�| = 3,
these problems can be solved in time O ∗(3n/2), and sim-
ilarly to the case |σ | = |�| = 1 it is possible to generalize
the algorithm for some infinite sets.

1 As has recently become standard, we write f (n) = O ∗(g(n)) if f (n) �
p(n) · g(n) for some polynomial p(n).

2. Sort and Search algorithms for the case |σ | = |�| = 1

Even very special case of ∃(σ ,�)-DS, namely Perfect

Code (∃({0}, {1})-DS), is NP-complete. It is known that Per-

fect Code can be solved in time O (1.1730n) by reduction
to the exact satisfiability problem (called XSAT) [1]. Our
use of Sort and Search is inspired by the aforementioned
algorithms.

Theorem 1. ∃({p}, {q})-DS, #-({p}, {q})-DS, Max-({p}, {q})-

DS and Min-({p}, {q})-DS are solvable in time O ∗(2n/2).

Proof. Let p,q ∈ N0. Let G = (V , E) be the input graph
and let k = �n/2	. As explained in the introduction, the al-
gorithm partitions the set of vertices into V 1 = {v1, v2,

. . . , vk} and V 2 = {vk+1, . . . , vn}. Then for each sub-
set S1 ⊆ V 1, it computes the vector �s1 = (x1, . . . , xk,

xk+1, . . . , xn) where

xi =
⎧⎨
⎩

p − |N(vi) ∩ S1| if 1 � i � k and vi ∈ S1,

q − |N(vi) ∩ S1| if 1 � i � k and vi /∈ S1,

|N(vi) ∩ S1| if k + 1 � i � n,

and for each subset S2 ⊆ V 2, it computes the correspond-
ing vector �s2 = (x1, . . . , xk, xk+1, . . . , xn) where

xi =
⎧⎨
⎩

|N(vi) ∩ S2| if 1 � i � k,

p − |N(vi) ∩ S2| if k + 1 � i � n and vi ∈ S2,

q − |N(vi) ∩ S2| if k + 1 � i � n and vi /∈ S2.

After computing all these vectors (the total number of
vectors is at most 2k+1), we sort vectors corresponding to
V 2 lexicographically. Then for each vector �s1 representing
S1 ⊆ V 1, we use binary search to tests whether there ex-
ists a vector �s2 representing S2 ⊆ V 2, such that �s2 = �s1.
Note that the choice of the vectors guarantees that �s2 = �s1
if and only if S1 ∪ S2 is a ({p}, {q})-dominating set. Such
a vector �s1 can be found in time n log 2n/2 among the lex-
icographically ordered vectors of V 2. Thus ∃({p}, {q})-DS

is solvable in time O ∗(2n/2). the overall running time is
O ∗(2n/2).

Now we consider #-({p}, {q})-DS. The algorithm of the
previous theorem only needs to be modified as follows:
Instead of storing all vectors corresponding to V 1 and V 2
multiple copies are removed and each vector is stored with
an entry indicating its number of occurrences. Denote by
X1 the set of all different vectors corresponding to sub-
sets of V 1, and by X2 the set of vectors corresponding to
subsets of V 2. Let #1(�s1) be the number of subsets of V 1
which correspond to �s1 ∈ X1, and let #2(�s2) be the number
of subsets of V 2 corresponding to �s2. As for ∃({p}, {q})-DS,
for every �s ∈ X1, we check whether �s is included to X2 as
well. Then the number of different (σ ,�)-dominating sets
is ∑
�s∈X1∩X2

#1(�s) · #2(�s)

if X1 ∩ X2 �= ∅, and this number is 0 otherwise.
Furthermore, for Max-({p}, {q})-DS, with each vector

�s ∈ Xi we store the subset Si(�s) ⊆ V i of maximum cardi-
nality that generates this vector. It can be easily seen that a
(σ ,�)-dominating set of maximum size (if it exists) is the

Author's personal copy

F.V. Fomin et al. / Information Processing Letters 109 (2009) 795–798 797

set S = S1(�s∗) ∪ S2(�s∗) such that �s∗ is a vector of X1 ∩ X2
with |S1(�s∗)| + |S2(�s∗)| = max�s∈X1∩X2

|S1(�s)| + |S2(�s)|. It is
not hard to see that Min-({p}, {q})-DS can be solved in the
same way by replacing maximum by minimum. �

Now we extend our approach to certain infinite σ and
�. Let m � 2 be a fixed integer and k ∈ {0,1, . . . ,m − 1}.
We denote by k + mN0 the set {k + m · �: � ∈ N0}.

Theorem 2. Let m � 2 and p,q ∈ N0 . The problems
∃(p + mN0,q + mN0)-DS, #-(p + mN0,q + mN0)-DS, Max-

(p + mN0,q + mN0)-DS, and Min-(p + mN0,q + mN0)-DS

are solvable in time O ∗(2n/2).

Proof. For #-(p +mN0,q +mN0)-DS, the algorithm in The-
orem 1 is modified such that for each subset S1 ⊆ V 1, we
compute the vector �s1 = (x1, . . . , xk, xk+1, . . . , xn) where

xi =
⎧⎨
⎩

(p − |N(vi) ∩ S1|) mod m if 1 � i � k and vi ∈ S1,

(q − |N(vi) ∩ S1|) mod m if 1 � i � k and vi /∈ S1,

|N(vi) ∩ S1| mod m if k + 1 � i � n,

and for each subset S2 ⊆ V 2, the algorithm computes the
corresponding vector �s2 = (x1, . . . , xk, xk+1, . . . , xn), where

xi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|N(vi) ∩ S2| mod m if 1 � i � k,

(p − |N(vi) ∩ S2|) mod m

if k + 1 � i � n and vi ∈ S2,

(q − |N(vi) ∩ S2|) mod m

if k + 1 � i � n and vi /∈ S2.

Again, after computing at most 2k+1 vectors, the algo-
rithm sorts the vectors representing V 2 lexicographically.
By making use of binary search, for each vector �s1 repre-
senting S1 ⊆ V 1, we search for a vector �s2, representing
some S2 ⊆ V 2, and such that �s2 = �s1.

For #-(p +mN0,q+mN0)-DS, Max-(p +mN0,q+mN0)-

DS and Min-(p + mN0,q + mN0)-DS, the modification of
the algorithm is similar to the one from Theorem 1, and
we omit it here. �

The results of Theorem 2 can be used for the case
when σ and � are the sets of even or odd integers [3,5].
These problems are of importance in the coding theory. Let
EVEN be the set of all even non-negative integers and ODD
be the set of odd positive integers. It was shown in [5]
that ∃(EVEN,EVEN)-DS, ∃(EVEN,ODD)-DS, ∃(ODD,EVEN)-

DS and ∃(ODD,ODD)-DS can be solved in polynomial time
while maximization and minimization problems are NP-
hard. The next claim follows immediately from Theorem 2.

Corollary 3. For σ ,� ∈ {EVEN,ODD}, the problems #-(σ ,�)-

DS, Max-(σ ,�)-DS and Min-(σ ,�)-DS are solvable in time
O ∗(2n/2).

Variants of these problems for red/blue bipartite graphs
were considered in [3]. Suppose that G = (R, B, E) is a
bipartite graph with R, B a bipartition of the vertex set.
Vertices of R are called red and vertices of B are blue. Let
S ⊆ R be a non-empty set of red vertices. It is said that S

is an even set if for every vertex v ∈ B , |N(v)| ∈ EVEN, and
S is an odd set if for every vertex v ∈ B , |N(v)| ∈ ODD. The
proof of the following theorem is based on combining the
Sort and Search approach with dynamic programming.

Theorem 4. Let G = (R, B, E) be a red/blue bipartite graph.
All even or odd sets can be counted, and maximum or mini-
mum even or odd sets can be found in time O ∗(2min{|R|/2,|B|}) =
O ∗(2n/3).

Proof. We prove this claim for the counting problem for
even sets. (All other problems can be solved similarly.) Let
R = {u1, . . . , uk} and B = {v1, . . . , vr}.

If k/2 � r, then we apply the following Sort and Search
algorithm. Let s = �k/2	. We partition the set of vertices
R into R1 = {u1, . . . , us} and R2 = {us+1, . . . , uk}. For each
subset S1 ⊆ R1, we compute its corresponding vector �s1 =
(x1, . . . , xr), where

xi =
{

0 if |N(vi) ∩ R1| ∈ EVEN,

1 if |N(vi) ∩ R1| ∈ ODD.

Similarly for each subset S2 ⊆ R2, we compute the corre-
sponding vector �s2 = (x1, . . . , xr), such that

xi =
{

0 if |N(vi) ∩ R2| ∈ EVEN,

1 if |N(vi) ∩ R2| ∈ ODD.

Denote by X1 the set of all different vectors corresponding
to subsets of V 1, and by X2 the set of vectors correspond-
ing to subsets of V 2. Let #1(�s1) be the number of subsets
of R1 corresponding to �s1 ∈ X1, and let #2(�s2) be the num-
ber of subsets of R2 corresponding to �s2. After vectors are
computed, we sort the vectors of X2 lexicographically. For
each vector �s1 ∈ X1 we search for a vector �s2 ∈ X2 such
that �s2 = �s1. The total number of non-empty even sets is∑
�s∈X1∩X2

#1(�s) · #2(�s) − 1,

and then the running time of this procedure is O ∗(2|R|/2).
For the case k/2 > r, we use dynamic programming

approach across the subsets. For every subset S ⊆ R , let
�s(S) = (x1, . . . , xr), where

xi =
{

0 if |N(vi) ∩ S| ∈ EVEN,

1 if |N(vi) ∩ S| ∈ ODD.

For every i ∈ {1, . . . ,k}, and every vector �s ∈ Z
r
2, we put

#(i,�s) = ∣∣{S ⊆ {u1, . . . , ui}: �s(S) = �s}∣∣.
We also put #(0,�s) = 0 for all non-zero vectors �s, and
#(0, �0) = 1. For i ∈ {1, . . . ,k}, we denote by �zi the vector
(y1, . . . , yr), where

y j =
{

1 if v j ∈ N(ui),

0 if v j /∈ N(ui).

Since #(i,�s) = #(i − 1,�s) + #(i − 1,�s + �zi), we have that
all values #(i,�s) can be computed in time O ∗(2|B|) by a
dynamic programming approach considering the values i
by increasing order. It remains to note that the number of
non-empty even sets is #(k, �0) − 1. �

Author's personal copy

798 F.V. Fomin et al. / Information Processing Letters 109 (2009) 795–798

3. Extending the Sort and Search approach

It is possible to extend (albeit with a worse running
time) our results for single-element sets for the case when
one set contains two elements and the other set is a sin-
gleton.

Theorem 5. The problems ∃(σ ,�)-DS, #-(σ ,�)-DS, Max-

(σ ,�)-DS, and Min-(σ ,�)-DS are solvable in time O ∗(3n/2)

if |σ | + |�| = 3.

Proof. We prove the theorem for ∃(σ ,�)-DS and σ =
{p1, p2}, � = {q}. Let G = (V , E) be a graph and k = �n/2	.
As in all algorithms above, we partition the set of vertices
V into V 1 = {v1, v2, . . . , vk} and V 2 = {vk+1, . . . , vn}. Now
for every partition of V 1 into three sets {S(1)

1 , S(1)
2 , S(1)}

(some of these sets can be empty), we compute the vector
�s1 = (x1, . . . , xk, xk+1, . . . , xn) where

xi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 − |N(vi) ∩ S(1)
1 | if 1 � i � k and vi ∈ S(1)

1 ,

p2 − |N(vi) ∩ S(1)
2 | if 1 � i � k and vi ∈ S(1)

2 ,

q − |N(vi) ∩ S(1)| if 1 � i � k and vi ∈ S(1),

|N(vi) ∩ (S(1)
1 ∪ S(1)

2)| if k + 1 � i � n.

Symmetrically, for each partition of V 2 into three sets
{S(2)

1 , S(2)
2 , S(2)}, we compute the corresponding vector

�s2 = (x1, . . . , xk, xk+1, . . . , xn), where

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|N(vi) ∩ (S(2)
1 ∪ S(2)

2)|
if 1 � i � k,

p1 − |N(vi) ∩ S(2)
1 |

if k + 1 � i � n and vi ∈ S(2)
1 ,

p2 − |N(vi) ∩ S(2)
2 |

if k + 1 � i � n and vi ∈ S(2)
2 ,

q − |N(vi) ∩ S(2)|
if k + 1 � i � n and vi ∈ S(2).

After computing these 3k+1 vectors, the algorithm sorts
vectors of V 2 lexicographically, and for each vector �s1 (cor-
responding to a partition of V 1), search for a vector �s2
from V 2, such that �s2 = �s1. Note that �s2 = �s1 if and only
if (S(1)

1 ∪ S(1)
2) ∪ (S(2)

1 ∪ S(2)
2) is a ({σ }, {�})-dominating

set. Since the search of �s2 can be done in time n log 3n/2,
we have that the overall running time of the algorithm is
O ∗(3n/2).

The problems ∃(σ ,�)-DS with σ = {p} and � = {q1,q2}
are solved similarly. Moreover the algorithm can easily be
extended to solve the counting, maximization and mini-
mization version of the problem as it was done in Theo-
rem 1 for single-element sets. �

The algorithms of Theorem 5 can be modified to han-
dle some infinite sets as it was done in Theorem 2. In that

case, all components of vectors are taken modulo m and
the addition and/or subtraction of vector components is
taken modulo m.

Corollary 6. Let m � 2 and p1, p2,q1,q2 ∈ N0 . The problems
∃(σ ,�)-DS, #-(σ ,�)-DS, Max-(σ ,�)-DS and Min-(σ ,�)-DS

are solvable in time O ∗(3n/2) for pairs of sets σ = (p1 +mN0)∪
(p2 + mN0), � = q1 + mN0 and σ = p1 + mN0 , � = (q1 +
mN0) ∪ (q2 + mN0).

4. Conclusion

We considered exact algorithms for (σ ,�)-dominating
set problems for some special sets σ and �, assuming they
are the same for all vertices. However it is possible to de-
fine a more general problem. Let G be a graph such that
for any vertex v ∈ V , two non-empty sets of non-negative
integers σ(v) and ρ(v) are given. A vertex subset S ⊆ V
of the graph G is called now a (σ ,�)-dominating set of G
if |N(v) ∩ S| ∈ σ(v) for all v ∈ S and |N(v) ∩ S| ∈ �(v) for
all v ∈ V \ S . It should be noted that all of our algorithms
can be adopted to solve these problems too.

A natural open question is whether (σ ,�)-dominating
set problem can be solved in time (2 − ε)n for some ε >

0 for any choice of sets σ and �. It does not seem that
Sort and Search can be used to settle this question. In [4],
we suggested a different approach for obtaining (2 − ε)n

algorithms for various choices of σ and �, but we are still
far from the complete answer.

References

[1] V. Dahlöf, P. Jonsson, R. Beigel, Algorithms for four variants of the
exact satisfiability problem, Theoret. Comput. Sci. 320 (2004) 373–
394.

[2] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer-
Verlag, New York, 1999.

[3] R.G. Downey, M.R. Fellows, A. Vardi, G. Whitte, The parameterized
complexity of some fundamental problems in coding theory, SIAM J.
Comput. 29 (1999) 545–570.

[4] F.V. Fomin, P. Golovach, D. Kratsch, J. Kratochvíl, M. Liedloff, Branch
and recharge: Exact algorithms for generalized domination, in: Pro-
ceedings of WADS 2007, in: LNCS, vol. 4619, Springer, 2007, pp. 508–
519.

[5] M.M. Halldorsson, J. Kratochvíl, J.A. Telle, Mod-2 independence and
domination in graphs, Internat. J. Found. Comput. Sci. 11 (2000) 355–
363.

[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination
in Graphs, Marcel Dekker, New York, 1998.

[7] E. Horowitz, S. Sahni, Computing partitions with applications to the
knapsack problem, J. ACM 21 (1974) 277–292.

[8] D.E. Knuth, Sorting and Searching, second edition, The Art of Com-
puter Programming, vol. 3, Addison-Wesley, 1997.

[9] R. Schroeppel, A. Shamir, A T = O (2n/2), S = O (2n/d) algorithm for
certain NP-complete problems, SIAM J. Comput. 3 (1981) 456–464.

[10] J.A. Telle, Complexity of domination-type problems in graphs, Nordic
J. Comput. 1 (1994) 157–171.

[11] G.J. Woeginger, Exact algorithms for NP-hard problems: A survey,
in: Combinatorial Optimization – Eureka, You Shrink!, in: LNCS,
vol. 2570, Springer-Verlag, Berlin, 2003, pp. 185–207.

