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a b s t r a c t

Minimal triangulations and potential maximal cliques are the main ingredients for a
number of polynomial time algorithms on different graph classes computing the treewidth
of a graph. Potential maximal cliques are also the main engine of the fastest so far, exact
(exponential) treewidth algorithm. Based on the recent results of Mazoit, we define the
structures that can be regarded as minimal triangulations and potential maximal cliques
for branchwidth: efficient triangulations and blocks. We show how blocks can be used
to construct an algorithm computing the branchwidth of a graph on n vertices in time
(2
√
3)n · nO(1).

© 2009 Published by Elsevier B.V.

1. Introduction

Treewidth is one of the most basic parameters in graph algorithms, and it plays an important role in structural graph
theory. Treewidth serves as themain tool in Robertson and Seymour’s GraphMinors project [27]. It is well known thatmany
intractable problems can be solved in polynomial (and very often in linear time) when the input is restricted to graphs of
bounded treewidth. See [3] for a comprehensive survey.
Branchwidth is strongly related to treewidth. It is known that for any graph G, bw(G) ≤ tw(G) + 1 ≤ 1.5 · bw(G).

Both bounds are tight and achievable on trees and complete graphs. Branchwidth was introduced by Robertson & Seymour,
and it appeared to be an even more appropriate tool than treewidth for Graph Minor Theory. Branchwidth was also used in
algorithms solving TSP [7], SAT [1], and parameterized algorithms [11,10,14,15].
Since both parameters are so close, one can expect that the algorithmic behavior of the problems is also quite similar.

However, this is not true. For example, on planar graphs, branchwidth is solvable in polynomial time [30] while computing
the treewidth of a planar graph in polynomial time is a long standing open problem. An even more striking example was
observed by Kloks et al. in [21]. It appeared that computing branchwidth is NP hard, even on split graphs,while the treewidth
of a split graph can be found in linear time.
The algorithmic behavior of branchwidth on different graph classes has beenmuch less investigated than treewidth. The

main reason for this is that the powerful machinery developed for study treewidth and including minimal triangulations,
minimal separators, potential maximal cliques, cannot be applied to branchwidth. As we already mentioned, the
branchwidth of a planar graph can be found in polynomial time [30] (see also [18]) but is NP complete on general graphs.
Later Kloks et al. [21] showed that branchwidth is NP complete when restricted to split and bipartite graphs, but is
computable in polynomial time on interval graphs. (See also the recent work of Paul and Telle [26].) Recently Mazoit [23]
proved that the branchwidth of a circular arc graph can be solved in polynomial time.
In his Ph.D. thesis [22], Mazoit investigated how the machinery that worked fine for treewidth (minimal triangulations

andpotentialmaximal cliques) can bemodified to be used for branchwidth. Based on the approach from [22],wedeveloped a

∗ Corresponding author. Fax: +33 5 40 00 66 69.
E-mail addresses: fomin@ii.uib.no (F.V. Fomin), Frederic.Mazoit@labri.fr (F. Mazoit), Ioan.Todinca@univ-orleans.fr (I. Todinca).

1 F. Mazoit received additional support by the ANR projet GRAAL.

0166-218X/$ – see front matter© 2009 Published by Elsevier B.V.
doi:10.1016/j.dam.2008.08.009



Author's personal copy

F.V. Fomin et al. / Discrete Applied Mathematics 157 (2009) 2726–2736 2727

number of structural results to design an exact (exponential) algorithm for branchwidth. Let us remark, that independently,
Paul and Telle [26] have initiated research targeting similar goals, and obtained a number of structural results that are similar
to ours. In particular, the notion of k-troika [26] is similar to the result on block-branchwidth obtained in Lemma 20. Paul
and Telle use k-troika to obtain a faster (and simpler) algorithm for interval graphs, and show how to generalize such an
algorithm to chordal graphs with clique trees having a polynomial number of sub-trees.
The last decade has led to much research in fast exponential-time algorithms. Examples of recently developed

exponential algorithms are algorithms for Maximum Independent Set [20,28,12], (Maximum) Satisfiability [9,19,25,29,32],
Coloring [2,6], and many others (see the recent survey written by Woeginger [33] for an overview). There are several
relatively simple algorithms based on dynamic programming, computing the treewidth of a graph on n vertices in time
2n ·nO(1) whichwithmore careful analysis can be sped-up toO(1.89n) [13,31]. No such algorithm is known for branchwidth.
Thus treewidth seems to be amore simple problem for the design of exponential time algorithms than branchwidth. The

explanation for that is again, that all known exact algorithms for treewidth exploit the relations between treewidth,minimal
triangulations, minimal separators and potential maximal cliques. Branchwidth also can be seen as a triangulation problem,
however, while for treewidth one can work only with minimal triangulations, the situation with branchwidth is more
complicated. Luckily enough,we still can use some specific triangulations,whichwe call efficient triangulations. The efficient
triangulations were first used, under a different name, in [4]. In this paper we define the analogue of potential maximal
cliques for branchwidth, we call these structures blocks. We believe that blocks can be useful to work with branchwidth,
in the same way as potential maximal cliques for treewidth [5,13]. To exemplify that, we show how blocks can be used to
compute the branchwidth of a graph on n vertices in time (2

√
3)n · nO(1). Note that this is the fastest known exact algorithm

for this problem.
The paper is organized as follows. After giving the basic definitions, we introduce in Section 3 the notions of efficient

triangulations and block-branchwidth. They allow us to characterize the branchwidth by a formula very similar to one of
the classical definitions for treewidth. Using this result, in Section 4 we adapt an algorithm initially designed for treewidth,
for the computing of branchwidth. Section 5 is devoted to the computation of block-branchwidth. Eventually, we discuss
some open questions.

2. Basic definitions

We denote by G = (V , E), a finite undirected and simple graph with |V | = n vertices and |E| = m edges. Throughout
this paper we use a modified big-Oh notation that suppresses all polynomially bounded factors. For functions f and g we
write f (n) = O∗ (g(n)) if f (n) = g(n) · nO(1).
For any non-empty subsetW ⊆ V , the subgraph of G induced byW is denoted by G[W ]. If S is a set of vertices, we denote

by G− S the graph G[V \ S]. The neighborhood of a vertex v is N(v) = {u ∈ V : {u, v} ∈ E} and for a vertex set S ⊆ V we put
N(S) =

⋃
v∈S N(v) \ S. A clique C of a graph G is a subset of V , such that all the vertices of C are pairwise adjacent. Let ω(G)

denote the maximum clique size of G.
A graphG is chordal if every cycle ofGwith at least four vertices has a chord, that is, an edge between two non-consecutive

vertices of the cycle. Consider an arbitrary graph G = (V , E), and a supergraph H = (V , F) of G (i.e. E ⊆ F ). We say that H
is a triangulation of G if H is chordal. Moreover, if no strict sub-graph of H is a triangulation of G, then H is called a minimal
triangulation.
The notion of branchwidth is due to Robertson and Seymour [27]. A branch decomposition of a graph G = (V , E) is a

pair (T , τ ) in which T = (VT , ET ) is a ternary tree (i.e. each node is of degree one or three), and τ is a function mapping
each edge of G on a leaf of T . The vertices of T will be called nodes and its edges will be called branches. Let T1(e) and T2(e)
be the sub-trees of T obtained from T by removing e ∈ ET . We define the middle set of e, mid(e), as the set of vertices of
G both incident to edges mapped on leaves of T1(e) and T2(e). The maximum of {|mid(e)|, e ∈ ET }, is called the width of
the branch decomposition and is denoted by width (T , τ ). The branchwidth of a graph G (bw(G)) is the minimum width
over all branch decompositions of G. Note that the definitions of branch decomposition and branch-width also apply to
hypergraphs. As pointed by Robertson and Seymour [27], the definition of branch decomposition can be relaxed. A relaxed
branch decomposition of G = (V , E) is a pair (T , τ ) where T is an arbitrary tree of maximum vertex degree at most three
and τ maps each edge of G to at least one leaf of T . The middle sets of the branches and the width of the decomposition are
defined as before. From any relaxed branch decomposition, one can construct a branch decomposition of the same graph
without increasing the width.
The branchwidth is strongly related to a well-known graph parameter introduced by Robertson and Seymour, namely

the treewidth. One of the equivalent definitions for the treewidth of a graph G, tw(G), is

tw(G) = min {ω(H)− 1 | H is a triangulation of G} .

Robertson and Seymour show that the two parameters differ by atmost a factor of 1.5. More precisely, for any graphGwe
have bw(G) ≤ tw(G)+ 1 ≤ 1.5bw(G). In particular, if G is a complete graph, its treewidth is n− 1, while its branchwidth
is d2n/3e (see [27]). Clearly, when computing the treewidth of a graph, we can restrict to minimal triangulations. This
observation, and the study ofminimal triangulations of graphs, led to several results about treewidth computation, including
an exact algorithm in O∗(1.89n) time.
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The branch decompositions of a graph can also be associated with triangulations. Indeed, given a branch decomposition
(T , τ ) of G = (V , E), we associate with each x ∈ V the sub-tree Tx of T covering all the leaves of T containing edges incident
to x. It is well-known that the intersection graph of the sub-trees of a tree is chordal [16]. Thus the intersection graph of the
trees Tx is a triangulation of G. We denote such a triangulation by H(T , τ ). Note that for each branch e ∈ ET , mid(e) is the set
of vertices x, such that e belongs to Tx. In particular, mid(e) induces a clique in H(T , τ ), not necessarily maximal. (We shall
point out later that, for each maximal cliqueΩ of H(T , τ ), there exists a node u of T such that u ∈ Tx for all x ∈ Ω .)

Lemma 1. Let (T , τ ) be a branch decomposition of G. There is a branch decomposition (T ′, τ ′) of H(T , τ ) such that:
(1) T is a sub-tree of T ′.
(2) For each branch of T , its middle sets in (T , τ ) and (T ′, τ ′) are equal.
(3) width(T ′, τ ′) = width(T , τ ).

In particular, if (T , τ ) is an optimal branch-decomposition of G, we have bw (H(T , τ )) = bw(G).

Proof. If the width of (T , τ ) is at most one, then every edge of G has at least one endpoint of degree one. In this case, it is
easy to show that G = H(T , τ ), and thus we put (T ′, τ ′) = (T , τ ).
Suppose that the width of (T , τ ) is at least two. For each edge {x, y} of E(H(T , τ )) \ E(G), the sub-trees Tx and Ty have a

branch e in common. We divide the branch e by a node v (i.e. we put on e a vertex v of degree two), add a leafw adjacent to
v and map the edge {x, y} onw. Since the width of (T , τ ) is at least two, this does not increase the width.
If (T , τ ) is optimal, then bw(H(T , τ )) ≤ bw(G). Conversely, since G is a sub-graph of H(T , τ ), bw(G) ≤ bw(H(T , τ )) and

Lemma follows. �

For treewidth, triangulations appeared to be a very convenient and powerful tool. One of the main properties of
triangulations for treewidth which was heavily exploited in numerous algorithms is the following fact: for any graph G
there is a minimal triangulation H of G, such that tw(G) = tw(H). By Lemma 1, there is a similar relation for branch
decomposition. However, and here is the first big difference to treewidth, optimal branch decompositions may never lead
to minimal triangulations.

Proposition 2. Let K−9 be the graph obtained from the complete graph on 9 vertices by removing a unique edge {a, b}. For every
optimal branch-decomposition (T , τ ) of K−9 , H(T , τ ) is not a minimal triangulation of K

−

9 .

Proof. We show that for every optimal branch-decomposition (T , τ ) of K−9 , the vertices a and b are adjacent in H(T , τ ).
Since K−9 is chordal, this would imply that H(T , τ ) is not a minimal triangulation of K

−

9 .
Since the branchwidth of a graph on n vertices is at most d2n/3e (see [27]), we have that bw(K−9 ) ≤ 6. Let (T , τ ) be

an optimal decomposition of K−9 . Assume that the vertices a and b are not adjacent in H(T , τ ). Then there is a branch e of
T separating, in T , the sub-trees Ta and Tb. By Lemma 1, every path joining a and b in H(T , τ ) intersects the vertex subset
mid(e). Therefore mid(e) separates a and b in the graph G. There are at least 7 vertex disjoint paths connecting a and b in
K−9 . By Menger’s theorem, mid(e) has at least 7 vertices, contradicting the fact that the width of (T , τ ) is at most 6. �

Since optimal branch decompositions do not necessarily lead to minimal triangulations, many existing tools that make
use of minimal triangulations can not be applied on branchwidth. The second important difference with treewidth is that
the branchwidth problem remains NP-hard, even for a restricted class of chordal graphs, the split graphs [21] — for which
the treewidth problem is trivial. Nevertheless, our technique for computing the branchwidth relies on a structural result
stating that, for any graph G, there is an optimal branch decomposition (T , τ ), such that H(T , τ ) is an efficient triangulation
of G. The efficient triangulations, defined in the next section, behave somehow similar to minimal triangulations.

3. Branchwidth and efficient triangulations

Let a and b be two non adjacent vertices of a graph G = (V , E). A set of vertices S ⊆ V is an a, b-separator if, in the graph
G − S, a and b in are in different connected components. S is a minimal a, b-separator if no proper subset of S is an a, b-
separator. We say that S is aminimal separator of G if there are two vertices a and b, such that S is a minimal a, b-separator.
A connected component C of G− S is a set of vertices such that G[C] is a maximal connected subgraph of G− S. We denote
by C(S) the set of connected components of G− S and by∆G the set of all minimal separators of G.

Definition 3. A triangulation H of G is efficient if
(1) each minimal separator of H is also a minimal separator of G;
(2) for each minimal separator S of H , the connected components of H − S are exactly the connected components of G− S.

Efficient triangulationswere introduced in [4] (actually the authors used to call them ‘‘minimal triangulations’’). In particular,
all the minimal triangulations of G are efficient [24].

Definition 4. A (possibly relaxed) branch decomposition (T , τ ) of G = (V , E) respects a set of vertices S ⊆ V if there is a
branch e of T such that S ⊆ mid(e).
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One of the main ingredients of our result is the following result of Mazoit.

Proposition 5 ([22,23]). There is an optimal branch decomposition (T , τ ) of G, such that the chordal graph H(T , τ ) is an efficient
triangulation of G. Moreover, (T , τ ) respects each minimal separator of H.

Before giving the next definition, let us provide some intuition. We want to define a structure in a graph G that corresponds
to a maximal clique in some efficient triangulation of G. The following properties of maximal cliques in chordal graph are
important for our purposes.

Proposition 6 ([5]). Let H be a chordal graph andΩ be a maximal clique of H. Then for each connected component Ci of H−Ω ,

• the neighborhood Si = N(Ci) is a minimal separator;
• Ω \ Si is non empty and is contained in a connected component of H − Si.

Definition 7. A set of vertices B ⊆ V of G is called a block if, for each connected component Ci of G− B,

• its neighborhood Si = N(Ci) is a minimal separator;
• B \ Si is non empty and is contained in a connected component of G− Si.

We say that the minimal separators Si border the block B and we denote by S(B) the set of minimal separators that
border B.

LetBG denote the set of blocks of G. Note that V is a block with S(V ) = ∅.
By Proposition 6, every maximal clique of a chordal graph is a block of H . We prove that if H is an efficient triangulation

of G, then every maximal cliqueΩ of H is a block of G.

Lemma 8. Let H be an efficient triangulation of G. Then every maximal cliqueΩ of H is a block of G. Conversely, for each block
B of G, there is an efficient triangulation H(B) of G such that B is a maximal clique in H.

Proof. Let H be an efficient triangulation of G. By Proposition 6 every maximal clique Ω of H is a block. By definition of
efficient triangulations, a block of H is also a block of G.
Conversely, let B be a block of G and let C1, . . . , Cp be the connected components of G − B. Also let Si = N(Ci), for all

1 ≤ i ≤ p. Let H(B) be the graph obtained from G by turning B and each set Si ∪ Ci into a clique. The minimal separators of
H(B) are exactly S1, . . . , Sp. Moreover, for each Si, the connected components of H− Si are exactly the components of G− Si.

�

Note that the treewidth of a graph can be expressed by the following equation:

tw(G) = min
H triangulation of G

max{|Ω| − 1 | Ω maximal clique of H}. (1)

The minimum can be taken over all minimal triangulations H of G. A similar formula can be obtained for branchwidth (see
Theorem 13 or [22]).

Definition 9 (Block-Branchwidth). Let B be a block of G and K(B) be the complete graph with vertex set B. A relaxed branch
decomposition of K(B) respecting each minimal separator S ∈ S(B) is called a block-branch decomposition of the block B.
The block-branchwidth bbw(B) of B is the minimum width over all the block-branch decompositions of B.

Equivalently, bbw(B) is the branchwidth of the hypergraph obtained from the complete graph with vertex set B by adding
a hyperedge S for each minimal separator S bordering B. The block-branchwidth will allow us to express the branchwidth
of G by a formula similar to Eq. (1).
Before stating the main theorem of this section, let us make some easy observations.

Definition 10. Let G = (V , E) be a graph and G1 and G2 be two sub-graphs of G such that G = G1 ∪ G2. Let (T1, τ1) and
(T2, τ2) be relaxed branch decompositions of G1 and G2. We say that a relaxed branch-decomposition (T , τ ) of G is obtained
by gluing a branch e1 of T1 and e2 of T2, if (T , τ ) is obtained from (T1, τ1) and (T2, τ2) by putting a vertex vi of degree two on
ei, i = 1, 2, and by adding a new edge {v1, v2}.

The proof of the next lemma follows from the definition of gluing.

Lemma 11. Let (T , τ ) be the relaxed branch-decomposition obtained by gluing the branches e1 and e2 of decompositions (T1, τ1)
and (T2, τ2). Suppose that one of the following holds:

• mid(T1,τ1)(e1) ⊆ mid(T2,τ2)(e2), or
• mid(T1,τ1)(e1) ∩mid(T2,τ2)(e2) = V1 ∩ V2.

Thenwidth(T , τ ) = max {width(T1, τ1),width(T2, τ2)}. Moreover, for each branch of T1 (resp. of T2), its middle set in (T , τ )
is the same as in (T1, τ1) (resp. (T2, τ2)).
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Fig. 1. Branch decomposition of G[W ] respecting the set Si .

Lemma 12. Let (T , τ ) be a relaxed branch decomposition of a graph G = (V , E) and let S1, S2, . . . , Sp be a set of cliques of
G, such that (T , τ ) respects each Si. Let W ⊆ V be a set of vertices containing S1, S2, . . . , Sp. Then there is a relaxed branch
decomposition (T ′, τ ′) of G[W ], such that
• (T ′, τ ′) respects each set Si;
• width(T ′, τ ′) ≤ width(T , τ ).

Proof. A relaxed branch decomposition of G[W ] can be obtained from (T , τ ) by removing edges that are not in G[W ].
However, this decomposition does not necessary respect all sets Si. So we apply the following trick (see Fig. 1).
For each Si, let (Ti, τi) be an arbitrary branch decomposition of the clique K(Si) with vertex set Si. We glue this

decomposition to T on the branch ei of T which respects Si. That is, we add a node on ei and a node on some branch of
Ti and make them adjacent. We denote this new edge by e′i . The middle set of e

′

i is exactly Si. In this way we obtain a relaxed
branch decomposition (T ′′, τ ′′) of G of the same width as (T , τ ). By removing from T ′′ all the leaves that do not correspond
to edges in G[W ], we obtain a relaxed branch decomposition (T ′, τ ′) of G[W ]. Every edge {x, y} of G[Si] is mapped on some
leaf of T and on some leaf of Ti, thus every vertex of Si is in the middle set of e′i in the relaxed branch decomposition (T

′, τ ′).
Thus (T ′, τ ′) respects all sets Si. By Lemma 11, width(T ′, τ ′) ≤ width(T , τ ). �

The following result is taken from Mazoit’s Ph.D. thesis, we provide the proof here for completeness.

Theorem 13 ([22]).

bw(G) = min
H efficient triangulation of G

max{bbw(Ω) | Ω maximal clique of H}. (2)

Proof. Let (T , τ ) be an optimal branch decomposition of G, such that H = H(T , τ ) is an efficient triangulation of G. Such a
decomposition exists by Proposition 5. We prove that bbw(Ω) ≤ bw(G) for each maximal cliqueΩ of H . Construct, like in
Lemma 1 a branch decomposition (T ′, τ ′) ofH having the samewidth as (T , τ ). LetΩ be amaximal clique of G. By Lemma 8,
Ω is a block of G and by Proposition 5 each minimal separator borderingΩ is contained in the middle set of some branch of
T , and thus of T ′. By Lemma 12, there is a relaxed branch decomposition (T ′′, τ ′′) of G[Ω] respecting eachminimal separator
on the border ofΩ , which is a block-branch decomposition ofΩ .
Conversely, let H be an efficient triangulation of G. We claim that bw(G) ≤ max{bbw(Ω) | Ω maximal clique of H}.

For each maximal clique Ω of G, let (TΩ , τΩ) be an optimal block-branch decomposition of the block Ω . We glue these
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decompositions into a relaxed branch decomposition of H . For this purpose, we use a clique tree associated to the chordal
graph graph H (see e.g. [17]). A clique tree is defined by a tree T = (VT , ET ) and a one-to-one mapping between the nodes
of T and the maximal cliques of H such that, for eachΩ,Ω ′ maximal cliques of H , their intersection is contained in all the
cliques associated to nodes on the unique path from uΩ to uΩ ′ in T (uΩ and uΩ ′ denote the nodes associated withΩ andΩ ′
respectively). Moreover, for each branch e = {uΩ , uΩ ′} of T , S = Ω ∩Ω ′ is a minimal separator borderingΩ andΩ ′ [17].
Let eS (resp. e′S) be a branch of TΩ (resp. TΩ ′ ) whose middle set contains S. We obtain a relaxed branch decomposition of H
by gluing the branches eS and e′S , for all branches {uΩ , uΩ ′} of T . By the properties of the clique tree, the middle set of each
newly created edge connecting TΩ and TΩ ′ is exactly S = Ω ∩Ω ′. Consequently, the middle sets of the branches contained
in some TΩ do not change. Hence bw(H) ≤ max{bbw(Ω) | Ω maximal clique of H}. Since G is a sub-graph of H , we have
that bw(G) ≤ bw(H) and Theorem follows. �

4. Computing the branchwidth from the block-branchwidth

A potential maximal clique of a graph G is a set of verticesΩ , such that there is a minimal triangulation H of G in which
Ω introduces a maximal clique [5]. Using the Eq. (1), Bouchitté and Todinca show that, given a graph and all its potential
maximal cliques, the treewidth of the graph can be computed in polynomial time. The result is refined in [13], where it
is shown that for a given a graph G and the set ΠG of its potential maximal cliques, there is an algorithm computing the
treewidth of G in O(n3|ΠG|) time.
According to Lemma 8, a vertex subsetΩ of G can be a maximal clique of an efficient triangulation H of G if and only if

Ω is a block of G. Hence, in our case the blocks play the same role as the potential maximal cliques in [13].
Using Eq. (2) instead of Eq. (1) and blocks instead of potential maximal cliques, we transform the algorithm from [13] into

an algorithm takingG, the setBG of all its blocks and the block-branchwidth of each block B, and computing the branchwidth
of G in O(n3|BG|) time.
Given a minimal separator S of G and a connected component C of G − S, let R(S, C) denote the graph obtained from

G[S ∪ C] by completing S into a clique.

Definition 14. We denote by bw+(S,G), the minimum width over all relaxed branch decompositions of G respecting S.

Our algorithm computes bw+ (S, R(S, C)), for each pair (S, C) where S is a minimal separator of G and C is a connected
component of G− S.
The result claimed in the following lemma is similar to Corollary 4.5 in [5].

Lemma 15. For any graph G,

bw(G) = min
{
d2n/3e,min

S∈∆G
max
C∈C(S)

bw+ (S, R(S, C))
}
.

Proof. Clearly bw(G) ≤ d2n/3e. To prove

bw(G) ≤ min
S∈∆G

max
C∈C(S)

bw+ (S, R(S, C)) ,

let S be a minimal separator of G. For each connected component Ci of G − S, let (TCi , τCi) a relaxed branch decomposition
of R(S, Ci), such that S is contained in the middle set of some branch eCi . Note that G is the union of the subgraphs
R(S, C1), . . . , R(S, Cp). By iteratively gluing the branch-decompositions (TCi , τCi) along the branches eCi , we obtain a relaxed
branch-decomposition (T , τ ) of G. Moreover, since for every i and j, mid(eCi) ∩mid(eCj) = S = V (R(S, Ci)) ∩ V

(
R(S, Cj)

)
.

By Lemma 11, the width of (T , τ ) is at most the maximumwidth of (TCi , τCi), over all components Ci of G− S, hence bw(G)
is at most this maximum.
Conversely, let (T , τ ) be an optimal branch decomposition of G inducing an efficient triangulation H(T , τ ). If H(T , τ ) is

the complete graph, then bw(G) = bw(H(T , τ )) = d2n/3e. Otherwise let S be aminimal separator of H . By the definition of
an efficient triangulation, S is also a minimal separator of G and every connected component C of H − S is also a component
of G−S. We show that bw+ (S, R(S, C)) ≤ bw(G). By Proposition 5, S is in themiddle set of some branch of T . Recall that S is
a clique inH(T , τ ). LetH ′ be the subgraph ofH(T , τ ) induced by S∪C . By Lemma 12,H ′ has a relaxed branch decomposition
(T ′, τ ′) of width at most bw(G), such that S is contained in themiddle set of some branch of T ′. Since R(S, C) is a subgraph of
H ′, wehave that by Lemma12, there is a relaxedbranchdecomposition ofR(S, C) respecting S, ofwidth atmostwidth(T ′, τ ′).
Thus bw+ (S, R(S, C)) ≤ width(T ′, τ ′) ≤ bw(G). We conclude that bw(G) ≥ maxC∈C(S) bw+ (S, R(S, C)). �

The next result is the analogue of Corollary 4.5 in [5].

Lemma 16. Let S be a minimal separator of G and C be a component of G− S. Suppose that S ′ = N(C) is strictly contained in
S. Then

bw+ (S, R(S, C)) = max
{
|S|, bw+

(
S ′, R(S ′, C)

)}
.
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Proof. Note that since R(S ′, C) is a subgraph of R(S, C), by Lemma 12, bw+
(
S ′, R(S ′, C)

)
≤ bw+ (S, R(S, C)). By definition,

bw+ (S, R(S, C)) ≥ |S|, hence

bw+ (S, R(S, C)) ≥ max
{
|S|, bw+

(
S ′, R(S ′, C)

)}
.

Let (T ′, τ ′) be a relaxed branch decomposition of R(S ′, C), with S ′ being contained in the middle set of a branch e′S . Take
an optimal relaxed branch decomposition (TS, τS) of the clique K(S). Let es be an branch of (TS, τS). By gluing (T ′, τ ′) and
(T , τ ) on the branches eS and e′S , we obtain the relaxed branch decomposition of R(S

′, C) respecting S. By Lemma 11, the
width of this decomposition does not exceed max{|S|, bw+(S ′, R(S ′, C))}. �

The following lemma from [5] uses minimal triangulations and potential maximal cliques but despite that, its proof also
holds for efficient triangulations and blocks.

Lemma 17 (Lemma 4.6 in [5]). Let S be a minimal separator of a graph G and let C be a connected component of G− S such that
N(C) = S. For every efficient triangulation H(S, C) of R(S, C), there is a maximal cliqueΩ of H(S, C) such that S ⊂ Ω andΩ
is a block of G.

The following lemma is similar to Corollary 4.8 in [5].

Lemma 18. Let S be a minimal separator of G and C be a component of G− S such that S = N(C). Then

bw+ (S, R(S, C)) = min
blocksΩ s.t. S⊂Ω⊆S∪C

max
{
bbw(Ω), bw+ (Si, R(Si, Ci))

}
where Ci are the components of G−Ω contained in C and Si = N(Ci).

Proof. Let Ω be a block of G such that S ⊂ Ω ⊆ S ∪ C . Consider an optimal block-branch decomposition (TΩ , τΩ) of Ω
and for each minimal separator Si, let fi be branch of TΩ whose middle set contains Si. Let (Ti, τi) an optimal relaxed branch
decomposition of R(Si, Ci) respecting Si. Denote by ei the branch of Ti whosemiddle set contains Si. We glue (TΩ , τΩ) to each
(Ti, τi) on the branches fi and ei. Hence we obtain a relaxed branch decomposition of R(S, C) respecting S, of width at most
max(bbw(Ω), bw(R(Si, Ci))), over all components Ci.
Conversely, we prove first that there is an optimal relaxed branch decomposition (T , τ ) of R(S, C), respecting S, such that

H(T , τ ) is an efficient triangulation of R(S, C). Let k = bw+ (S, R(S, C)) (in particular k ≥ |S|). Consider a complete graph
Kd = (Vd, Ed) with b3k/2c vertices such that S ⊆ Vd and Vd ∩ C = ∅. Let G′ be the union of Kd and R(S, C). We have that
bw(G′) = k. Clearly bw(G′) ≥ bw(Kd) ≥ k. To prove that bw(G′) = k, it is sufficient to find a relaxed branch decomposition
of Kd respecting S, because then this decomposition can be glued with an optimal relaxed branch decomposition of R(S, C)
respecting S. So let A, B, C be three subsets of Vd of size at most k, such that S ⊆ A and every vertex of Vd is in exactly two
of the subsets (hence each edge of Kd has both endpoints in one of the sets). These sets exist by the fact that |Vd| = b3k/2c.
Consider three branch decompositions corresponding to the complete graphs Kd[A], Kd[B] and Kd[C]. Add a new node u and,
for each of the three decompositions, make u adjacent to the middle of some branch. Note that every middle set of the new
decomposition is contained in A, B or C . Also the branch linking u to the decomposition ofG′[A] hasmiddle set A∩(B∪C) = A,
so this relaxed branch decomposition respects S and bw(G′) = k as claimed.
Let now (T ′, τ ′) be an optimal branch decomposition of G′, such that H(T ′, τ ′) is an efficient triangulation of G′ (see

Proposition 5). We claim that S is a minimal separator of H(T ′, τ ′) and therefore of G′. Note that Vd is a maximal clique in
H(T ′, τ ′). (OtherwiseH(T ′, τ ′) has a clique of size strictly larger than b3k/2c, contradicting the fact that its branchwidth is k.)
Let C ′ be the component ofH(T ′, τ ′)−Vd containing C and let S ′ be the neighborhood of C ′ inH(T ′, τ ′). Since S ′ is a minimal
separator of the efficient triangulation H(T ′, τ ′), S ′ is also a minimal separator of G′. By construction, the only minimal
separator of G′ contained in Vd is exactly S. Then the subgraph HR induced by S ∪ C in H(T ′, τ ′) is an efficient triangulation
of R(S, C). Moreover, by Proposition 5, (T ′, τ ′) respects S. By Lemma 12, we can construct from (T ′, τ ′) a relaxed branch
decomposition (T , τ ) respecting S and such that H(T , τ ) = HR. Hence H(T , τ ) is an efficient triangulation of R(S, C).
By Lemma 17, there is a maximal clique Ω of H(T , τ ) such that S ⊂ Ω ⊆ S ∪ C . By Lemma 8, Ω is a block of G.

By restricting, like in Lemma 12, the relaxed branch decomposition (T , τ ) to each of the graphs R(Si, Ci) we deduce that
bw+ (S, R(S, C)) ≤ width(T , τ ). Similarly we restrict (T , τ ) to a block-branch decomposition of Ω and conclude that
bbw(Ω) ≤ width(T , τ ). �

The algorithm for computing the branchwidth of G is shown in Fig. 2. It can be seen as the translation of the algorithm
from [13], to efficient triangulations and blocks by making use of Lemmas 15–18.

Theorem 19. Given a graph G and the list BG of all its blocks together with their block-branchwidth, the branchwidth of G can
be computed in O(nm|BG|) time.

Proof. The first for loop of the algorithm simply applies Lemmas 16 and 18, in order to compute bw+ (S, R(S, C)) for each
minimal separator S of G and each component C of G− S. We only need to notice that, in each of these lemmata, in order to
compute bw+ (S, R(S, C))we need to know the similar quantity for couples (S ′, C ′) of strictly smaller size.
Let us discuss an implementation of the algorithm running in O∗(|BG|) time.
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Fig. 2. Algorithm computing the branchwidth of a graph.

To store andmanipulate theminimal separators, blocks and couples (S, C), we use data structures that allow us to search
and to insert an element in O(n) time.
During a preprocessing step, we realize the following operations.

• Compute the list of all couples (S, C) such that S is a minimal separator and C is a component of G− S. For each minimal
separator S, we compute the components of G−S and store a pointer towards each couple of type (S, C). Given aminimal
separator S, there are at most n couples associated with it, so at most n pointers to be stored. Then, for each couple (S, C)
such that S ′ = N(C) is strictly contained into S, we store a pointer from (S, C) to (S ′, C ′). The last operation requiresO(n)
time, that is the time to search for (S ′, C) into the list of couples. Hence the whole step costs O(m|∆G|) time.
• For each blockΩ , compute the components Ci of G−Ω and then store a pointer fromΩ to the couple (N(Ci), Ci). There
are at most n such blocks. This computation can be done in O(n2) time for each block, so globally in O(n2|BG|) time.
• Compute all the good triples (S, C,Ω), where (S, C) is a couple with S = N(C) andΩ is a block such that S ⊂ Ω ⊆ S ∪C .
Moreover, for each good triple we store a pointer from (S, C) toΩ . Note that S ∈ S(Ω) and, by definition of a block, there
are at most nminimal separators S ⊂ Ω in its border. For each such S there is exactly one component G− S intersecting
Ω (in particular there are at most n|BG| good triples). For each component C ′ of G − Ω we take S = N(C ′), find the
component C of G − S intersecting Ω and store the pointer from (S, C) to Ω . Thus this computation takes O(nm) time
for each block, so O(nm|BG|) globally.

Hence this preprocessing step costsO(m|∆G|+nm|BG|). Sorting the couples (S, C) by their size can be done inO(n|∆G|)
time, using a bucket sort.
Observe that the cost of one iteration of the innerfor loop isO(m), for the componentsCi, and the setsNi canbe computed

by a graph search and by the fact that there are at most n couples (Si, Ci) associated to a block. With the data structures
obtained during the preprocessing step, each couple (S, C) keeps a pointer towards each blockΩ , such that (S, C,Ω) form
a good triple. Thus the number of iterations of the two nested loops is exactly the number of good triples, that is at most
n|BG|. It follows that the two loops cost O(nm|BG|) time.
Each minimal separator S keeps the list of couples of type (S, C), obtained during the preprocessing step. Computing the

maximum required by the two last instructions costs O(n) time for a given S. This last step costs O(n|∆G|) time.
Altogether, the algorithm runs in time O(m|∆G| + nm|BG|). Each minimal separator is contained in at least one block.

According to their definition, each block contains at most nminimal separators. Each minimal separator is contained in at
least one block, therefore |BG| ≥ |∆G|/n. We conclude that the algorithm runs in O(nm|BG|) time.
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The algorithm can be transformed in order to output not only the branchwidth of the graph, but also an optimal branch
decomposition. �

5. Computing the block-branchwidth

The main result of this section is that the block-branchwidth of a block B of G can be computed in O∗(
√
3
n
) time.

Computing the block-branchwidth is NP-hard, as can be deduced from [21].
Let n(B) denote the number of vertices of the block B of G and let s(B) be the number of minimal separators bordering B.

Note that s(B) is at most the number of components of G− B, in particular n(B)+ s(B) ≤ n.
Let us mention that a result very similar to our Lemma 20 has been independently given in [26]. The authors call their

decomposition a troika.

Lemma 20. For any block B of a graph G, bbw(B) ≤ p if and only if there is a partition of B into four parts A1, A2, A3,D such that

(1) for each i ∈ {1, 2, 3}, |B \ Ai| ≤ p;
(2) Every minimal separator S ∈ S(B) is contained in B \ Ai for some i ∈ {1, 2, 3}.

Proof. Suppose that bbw(B) ≤ p, and let (T , τ ) be an optimal block-branch decomposition of B. Recall that this relaxed
branch decomposition corresponds to the complete graph K(B)with vertex set B. For each x ∈ B let Tx be the minimal sub-
tree of T spanning all the leaves of T labeled with an edge incident to x. For every x, y ∈ B, the sub-trees Tx and Ty share a
vertex. By the Helly property, there is a node u of T contained in all the sub-trees of the form Tx. Clearly u is a ternary node,
except for the trivial case when n(B) ≤ 2. Let e1, e2, e3 be the branches of T incident to u. Let T (i) be the sub-tree of T rooted
in u, containing the branch ei, for i ∈ {1, 2, 3}. We set

Bi = {z ∈ B | z is incident to some edge of K(B)mapped on a leaf of T (i)}

and for each triple (i, j, k)with i, j, k ∈ {1, 2, 3} and i 6= j 6= k, we put

D = B1 ∩ B2 ∩ B3, and Ai = Bj ∩ Bk \ D.

Observe that D, A1, A2, A3 form a partition of B. In fact, the three sets are pairwise disjoint by construction. Since for all
x ∈ B, u ∈ Tx, we have that x ∈ Bi ∩ Bj for distinct i, j ∈ {1, 2, 3}, so x is in one of the four sets A1, A2, A3 or D.
It remains to show that the partition satisfies the conditions of the theorem. We claim that for every i ∈ {1, 2, 3},

mid(ei) = Bi = B \ Ai. (3)

In fact,

mid(ei) = (Bi ∩ Bj) ∪ (Bi ∩ Bk) = Aj ∪ Ak ∪ D = B \ Ai.

By (3), |B \ Ai| = mid(ei) ≤ p, and the first condition of the lemma holds. To prove the second condition, let us consider
a separator S ∈ S(B). By the definition of block-branch decomposition, S is contained in Bi for some i ∈ {1, 2, 3}. By (3),
S ⊆ B \ Ai.
To prove the ‘‘only if’’ part, let us assume that there is a partition satisfying the two conditions of the lemma.We construct

a block-branch decomposition of the block B, of width at most p. Let Bi = B \ Ai, for each i ∈ {1, 2, 3}. For each i, construct
an arbitrary branch decomposition (Ti, τi) of the complete graph with vertex set Bi. Let T be the tree obtained as follows: for
each Ti, add a new node vi of degree two on some branch of Ti, then glue the three trees by adding a new node u adjacent
to v1, v2, v3. The tree T is a ternary tree and each edge of K(B) is mapped on at least one leaf of T , so we obtained a relaxed
tree decomposition (T , τ ) of K(B). Let ei be the branch {u, vi}. Note that mid(ei) = Bi ∩ (Bj ∪ Bk), where {i, j, k} = {1, 2, 3}.
Since

Bi = B \ Ai ⊆ (B \ Aj) ∪ (B \ Ak) = Bj ∪ Bk,

we have that mid(ei) = Bi. Consequently, the relaxed branch decomposition respects the minimal separators on the border
of B. Clearly for each branch e of T , mid(e) is contained in some Bi, so |mid(e)| ≤ p and Lemma follows. �

Lemma 21. The block-branchwidth of a block B can be computed in O∗(3s(B)) time.

Proof. Let B be a block of G. Suppose that bbw(B) ≤ p. By Lemma 20, there exists a partition A1, A2, A3 and D of B such that
|B \ Ai| ≤ p and every S ∈ S(B) is a subset of B \ Ai. Denote by a1, a2, a3 and d the sizes of A1, A2, A3 and D. We can partition
S(B) in three subsets Si such that every S ∈ Si is included in B \ Ai. Let Si be the union of all the minimal separators of Si.
The numbers a1, a2, a3 and d satisfy the following inequalities:

(1) ai ≥ 0, d ≥ 0, a1 + a2 + a3 + d = n(B);
(2) |S1 ∩ S2 ∩ S3| ≤ d, |(S1 ∩ S2) \ S3| ≤ a3,
|(S2 ∩ S3) \ S1| ≤ a1, |(S3 ∩ S1) \ S2| ≤ a2;

(3) a1 + a2 + d ≤ p, a2 + a3 + d ≤ p, a3 + a1 + d ≤ p.
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The first inequalities express the fact that A1, A2, A3 and D is a partition of B, the second express the fact that Si is a subset of
B \ Ai and the last ones express the fact that bbw(B) ≤ p.
Conversely, suppose there is a partition of S(B) in S1, S2 and S3 and four integers a1, a2, a3, d satisfying the system above.

Then there exist a partition of B into four sets A1, A2, A3,D, of cardinalities a1, a2, a3, d and such that D intersects S1∪ S2∪ S3
exactly in S1 ∩ S2 ∩ S3, and each Ai intersects S1 ∪ S2 ∪ S3 exactly in (Sj ∩ Sk) \ Si, where {i, j, k} = {1, 2, 3}. Moreover
|B \ Ai| ≤ p by the third series of inequalities, so by Lemma 20 we have bbw(B) ≤ p.
Hence, there is a block-branch decomposition of B of branchwidth at most p if and only if there is a partition S1, S2, S3

of S(B) and four numbers a1, a2, a3 and d satisfying the system. To decide whether bbw(B) ≤ p or not, we only have to
try all the partitions of S(B) in S1, S2 and S3 and check all the n4 possible values for the ai’s and d. This can be done in
O∗(3|S(B)|) = O∗(3s(B)) time as claimed. �

Lemma 22. The block-branchwidth of a block B can be computed in O∗(3n(B)) time.

Proof. We show that for any number p, the existence of a partition like in Lemma 20 can be tested in O∗(3n(B)).
For this purpose, instead of partitioning B into four parts, we try all the partitions of B into three parts A1, X,D, where X

corresponds to A2 ∪ A3. If |B \ A1| ≤ p, we check in polynomial time if X can be partitioned into A2 and A3 as required. Since
there are at most 3n(B) three-partitions of B, it would bring us to time O∗(3n(B)) algorithm.
We say that two vertices x, y ∈ X are equivalent if there exist z ∈ A1 and a minimal separator S bordering B such that

x, y, z ∈ S. In particular, x ∼ y implies that x and y must be both in A2 or both in A3. Let X1, . . . , Xq be the equivalence
classes of X . Then X can be partitioned into A2 and A3 as required if and only if {|X1|, . . . , |Xq|} can be partitioned into two
parts of sum at most p − |A1| − |D| vertices. Consider now the EXACT SUBSET-SUM problem, whose instance is a set of
positive integers I = {i1, . . . , iq} and a number t , and the problem consists in finding a subset of I whose sum is exactly t .
Though NP-hard in general, it becomes polynomial when t and the numbers ij are polynomially bounded in n (see e.g. the
chapter on approximation algorithms, the subset-sum problem in the book of Cormen, Leiserson, Rivest [8]). By taking
I = {|X1|, . . . , |Xq|} and trying all possible values of t between 1 and n2, we can check in polynomial time if X can be
partitioned as required. �

Since at least one of s(B) or n(B) is at most half of the vertices of the graph, Lemmas 21 and 22 imply the following
theorem.

Theorem 23. For any block B of a graph G on n vertices, the block-branchwidth of B can be computed in O∗(
√
3
n
) time.

Theorems 19 and 23 imply our main result.

Theorem 24. The branchwidth of graph on n vertices can be computed in O∗((2
√
3)n) time and O∗(2n) space.

Proof. The algorithm tries all vertex subsets B of a graph G and checks if B is a block of G. Clearly, we can verify if B is a
block in polynomial time. If B is a block, we compute the block branchwidth of Bmaking use of Theorem 23. The number of
blocks is at most 2n and for each block we need O∗(

√
3
n
) for computing its block branchwidth. Hence the running time of

this phase is O∗((2
√
3)n), and the space is O∗(2n).

We use Theorem 19 for computing the branchwidth of G. The second phase takes O∗(2n) time and space. �

6. Open problems

Our algorithm is based on the enumeration of the blocks of a graph (in O∗(2n) time), and on the computation of the
block-branchwidth of a block (in O∗(

√
3
n
) time). It is natural to ask whether one of these steps can be improved.

Computing the block-branchwidth is the same problem as computing the branchwidth of a complete hypergraph with
n′ vertices and s′ hyper-edges of cardinality at least three. Can we obtain an algorithm faster than our O(min(3n

′

, 3s
′

))-time
algorithm?
Note that there exist graphs with n vertices having 2n/nO(1) blocks. Indeed, consider the disjoint union of a clique K and

an independent set I , both having n/2 vertices, and add a perfect matching between K and I . We obtain a graph Gn such that
for any I ′ ⊆ I , Gn − I ′ is a block. Thus Gn has at least

(
n
n/2

)
≥ 2n/n blocks. The interesting question here is if we can define

a new class of triangulations, smaller than the efficient triangulations but also containing H(T , τ ) for some optimal branch
decompositions of the graph.
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