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INTRACTABILITY OF CLIQUE-WIDTH PARAMETERIZATIONS∗
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Abstract. We show that Edge Dominating Set, Hamiltonian Cycle, and Graph Coloring

are W [1]-hard parameterized by clique-width. It was an open problem, explicitly mentioned in
several papers, whether any of these problems is fixed parameter tractable when parameterized by
the clique-width, that is, solvable in time g(k) · nO(1) on n-vertex graphs of clique-width k, where g
is some function of k only. Our results imply that the running time O(nf(k)) of many clique-width-
based algorithms is essentially the best we can hope for (up to a widely believed assumption from
parameterized complexity, namely FPT �= W [1]).
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1. Introduction. One of the most frequent approaches for solving graph prob-
lems is based on decomposition methods. Tree decomposition, and the corresponding
parameter, the tree-width of a graph, are among the most commonly used concepts.
We refer to the surveys of Bodlaender [3] and Hliněný et al. [22] for further references
on tree-width and related parameters. In the quest for alternative graph decompo-
sitions that can be applied to broader classes than to those of bounded tree-width
and still enjoy good algorithmic properties, Courcelle and Olariu [10] introduced the
clique-width of a graph. Clique-width can be seen as a generalization of tree-width, in
a sense that every graph class of bounded tree-width also has bounded clique-width [5].

In recent years, clique-width has received much attention. Corneil et al. [4] show
that graphs of clique-width at most 3 can be recognized in polynomial time. Fellows
et al. [16] settled a long standing open problem by showing that computing clique-
width is NP-hard. Oum and Seymour [27] describe an algorithm that, for any fixed
k, runs in time O(|V (G)|9 log |V (G)|) and computes (23k+2 − 1) expressions for a
graph G of clique-width at most k. Oum [26] improved this result by providing an
algorithm computing (8k − 1) expressions in time O(|V (G)|3). Recently, Hliněný and
Oum [21] obtained an algorithm running in time O(|V (G)|3) and computing (2k+1−1)
expressions for a graph G of clique-width at most k. It is also worthwhile to mention
here the related graph parameters NLC-width introduced by Wanke [30] and rank-
width introduced by Oum and Seymour [27], which are equivalent to clique-width in
the sense that the same classes of graph have bounded clique-width, NLC-width, and
rank-width.
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By the seminal result of Courcelle [6, 9] (see also [1]), every decision problem
on graphs expressible in monadic second order logic is fixed parameter tractable
when parameterized by the tree-width of the input graph. For problems express-
ible in monadic second order logic with logical formulas that do not use edge set
quantifications (so-called MS1 logic), it is possible to extend the meta theorem of
Courcelle to graphs of bounded clique-width. As was shown by Courcelle, Makowsky,
and Rotics [7], all problems expressible in MS1 logic are fixed parameter tractable
when parameterized by the clique-width of a graph.

There are many problems (various problems mentioned here will be defined later)
expressible in monadic second order logic that cannot be expressed in MS1 logic.
The most natural are, perhaps, Hamiltonian Cycle and Edge Dominating Set.
Edge Dominating Set andHamiltonian Cycle are expressible in monadic second
order logic with edge set quantification and thus can be solved in linear time on classes
of graphs of bounded tree-width. Graph Coloring or Chromatic Number is
not expressible in monadic second order logic. However, for every fixed r, checking
whether the vertices of a graph G can be colored with at most r colors such that
no two adjacent vertices are of the same color can be expressed in monadic second
order logic even without edge set quantification. Since graphs of tree-width at most t
are t+ 1 colorable, this implies that Graph Coloring can be solved in linear time
on graph classes of bounded tree-width. It is also known that these problems can be
solved in polynomial time on each class of graph of bounded clique-width (with known
upper bound) and a significant amount of the literature is devoted to algorithms for
these problems and their generalizations. Polynomial time algorithms for Graph

Coloring and its different generalizations including computations of chromatic and
Tutte polynomials of graphs for graph classes of bounded clique-width are given in
[19, 18, 20, 23, 24, 25, 28, 29]. Polynomial time algorithms for Hamiltonian Cycle

can be found in [30, 13] (in terms of NLC-width). Algorithms for Edge Dominating

Set are given in [23, 24]. The running time of all these algorithms on an n-vertex
graph of clique-width at most k is O(nf(k)), where f is some function of k. Since
all these problems are solvable in time O(g(k) · nc), or even O(g(k) · n), when the
tree-width of the graph is at most k, the most natural question to ask is whether a
similar behavior can be expected on graphs of bounded clique-width. The question
on the existence of fixed parameter tractable algorithms (with clique-width being the
parameter) for all these problems (or their generalizations) was asked by Gerber and
Kobler [18], Kobler and Rotics [23, 24], and Makowsky et al. [25, 20].

1.1. Our results and organization of the paper. In this paper we prove
that Edge Dominating Set, Hamiltonian Cycle, and Graph Coloring are
W [1]-hard parameterized by clique-width, thus resolving open questions raised in
[18, 20, 23, 24, 25]. Our results show that the running time O(nf(k)) of many clique-
width-based algorithms [13, 19, 18, 20, 23, 24, 25, 28, 29, 30] is essentially the best we
can hope for (unless the hierarchy of parameterized complexity classes collapses)—the
price we pay for generality.

The remaining part of the paper is organized as follows. We provide definitions
and preliminaries in section 2. In section 3 we prove the hardness of Graph Col-

oring. Sections 4 and 5 are devoted to the results on Edge Dominating Set and
Hamiltonian cycle correspondingly.

2. Definitions and preliminary results.
Parameterized Complexity. Parameterized complexity is a two-dimensional frame-

work for studying the computational complexity of a problem. One dimension is the
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input size n and another one is a parameter k. Formally, a parameterized problem
Q ⊆ Σ∗ × N, where Σ is a finite alphabet. A parameterized problem is called fixed
parameter tractable (FPT) if it can be solved in time f(k) · nc, where f is a function
only depending on k and c is some constant. Next we define the notion of parameter-
ized reduction.

Definition 1. Let Q and Q′ be parameterized problems over the alphabets Σ and
Σ′, respectively. We say that Q is (uniformly many:one) FPT reducible to Q′ if there
exist functions f, g : N → N, a constant α ∈ N, and a mapping Φ : Σ∗×N → Σ′∗×N

such that
1. Φ(x, k) is computable in time f(k)|x|α,
2. if (x′, k′) = Φ(x, k), then k′ ≤ g(k), and
3. (x, k) ∈ Q if and only if Φ(x, k) ∈ Q′.

The basic complexity class for fixed parameter intractability is W [1]. Indepen-

dent Set and Clique parameterized by solution size are two fundamental problems
which are known to be W [1]-complete. The principal way of showing that a parame-
terized problem is unlikely to be fixed parameter tractable is to prove W [1]-hardness.
To show that a problem is W [1]-hard, it is enough to give a parameterized reduction
from a known W [1]-hard problem. Throughout this paper we follow this recipe to
show a problem W [1]-hard. We refer to the books of Downey and Fellows [12] and
Flum and Grohe [17] for a detailed treatment to parameterized complexity.

Graphs. We consider only finite undirected graphs without loops or multiple
edges. The vertex set of a graph G is denoted by V (G) and its edge set by E(G). A
set S ⊆ V (G) of pairwise adjacent vertices is called a clique. For v ∈ V (G), we denote
by E(v) the set of edges incident with v.

Tree-width. A tree decomposition of a graph G is a pair (X,T ) where T is a tree
whose vertices we will call nodes and X = ({Xi | i ∈ V (T )}) is a collection of subsets
of V (G) such that

1.
⋃

i∈V (T )Xi = V (G),

2. for each edge (v, w) ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Xi, and
3. for each v ∈ V (G), the set of nodes {i | v ∈ Xi} forms a subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) equals maxi∈V (T ){|Xi| − 1}.
The tree-width of a graph G is the minimum width over all tree decompositions of G.
We use notation tw(G) to denote the tree-width of a graph G.

Clique-width. Let G be a graph and k be a positive integer. A k-graph is a
graph whose vertices are labeled by integers from {1, 2, . . . , k}. We call the k-graph
consisting of exactly one vertex labeled by some integer from {1, 2, . . . , k} an initial
k-graph. The clique-width cwd(G) is the smallest integer k such that G can be
constructed by means of repeated application of the following four operations on k-
graphs: (1) introduce: construction of an initial k-graph labeled by i and denoted by
i(v) (that is, i(v) is a k-graph with v as a single vertex and label i), (2) disjoint union
(denoted by ⊕), (3) relabel: changing all labels i to j (denoted by ρi→j), and (4) join:
connecting all vertices labeled by i with all vertices labeled by j by edges (denoted by
ηi,j). Using the symbols of these operations, we can construct well-formed expressions.
An expression is called k-expression for G if the graph produced by performing these
operations, in the order defined by the expression, is isomorphic to G when labels are
removed, and cwd(G) is the minimum k such that there is a k-expression for G.

It is convenient for us to associatewith a k-expression, the k-expression tree. This al-
lows us to easily describemodifications to k-expressions in our hardness reductionswhile
showing upper bounds on the clique-width of the graphs in question. A k-expression tree
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(or simply expression tree if the parameter is clear) of a graphG is the syntactic tree of
a k-expression. It is a rooted labeled tree T of the following form:

• The nodes of T are of four types i, ⊕, η, and ρ.
• Introduce nodes i(v) are leaves of T , corresponding to initial k-graphs with
vertices v, which are labeled i.

• A union node ⊕ stands for a disjoint union of k-graphs associated with its
children (since disjoint union is commutative, we need not distinguish a left
child from a right child).

• A relabel node ρi→j has one child and is associated with the k-graph, which is
the result of relabeling operation for the k-graph corresponding to the child.

• A join node ηi,j has one child and is associated with the k-graph, which is
the result of join operation for the k-graph corresponding to the child.

• The graph G is isomorphic to the graph associated with the root of T (with
all labels removed).

A graph G has cwd(G) ≤ k if and only if it is possible to construct a k-expression
tree T of G.

Hliněný and Oum [21] obtained an algorithm running in time O(|V (G)|3) and
computing (2k+1−1) expressions for a graph G of clique-width at most k. Hence, the
algorithm of Hliněný and Oum [21] only approximates the clique-width but does not
provide an algorithm to construct an optimal k-expression tree for a graph G of clique-
width at most k. But this approximation is usually sufficient for algorithmic purposes.

It is well known that the clique-width of a graph is bounded in terms of its tree-
width by means of a fixed function, as recalled in Theorem 1 below.

Theorem 1 (see [5]). If graph G has tree-width at most t, then cwd(G) is at
most k = 3 · 2t−1. Moreover, a k-expression tree for G of width at most k can be
constructed in time f(t) · |V (G)|O(1) from the tree decomposition of G.

The second claim in Theorem 1 is not given explicitly in [5]. However, it can be
shown since the upper bound proof in [5] is constructive (see also [8, 14]). Note that
if a graph has bounded tree-width, then the corresponding tree decomposition can be
constructed in linear time [2].

3. Graph coloring—chromatic number. In this section, we prove thatGraph

Coloring isW [1]-hard when parameterized by clique-width. Recall that a coloring of
a graph G is an assignment c : V (G) → N of a positive integer (color) to each vertex of
G. The coloring c is proper if adjacent vertices receive distinct colors. The chromatic
number χ(G) of a graph G is the smallest number of colors of a proper coloring of G.

Graph coloring (or Chromatic Number): Given a graph G and
a positive integer r, decide whether χ(G) ≤ r.

For a fixed r, checking whether the vertices of a graph G can be properly colored with
at most r colors is definable in MS1.

Our reduction is from the Equitable Coloring problem parameterized by the
number r of colors used and the tree-width of the input graph. In the Equitable

Coloring problem one is given a graph G on n vertices and integer r and asked
whether G can be properly r-colored in such a way that the number of vertices in any
two color classes differs by at most 1 (such coloring is called an equitable r-coloring).
Notice that if n is divisible by r this implies that all color classes must contain the
same number of vertices. In our reduction we will assume that in the instance we
reduce from, n is divisible by r. For a justification of this assumption, if r does not
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divide n we can add a clique of size r − (n− �n
r �r) to G. We reduce from the exact

version of Equitable Coloring, that is, the version where we are looking for an
equitable coloring of G with exactly r colors.

Theorem 2 (see [15]). Equitable Coloring is W [1]-hard when parameterized
by the tree-width t of the input graph and the number r of colors.

Reduction. On input (G, r) to Equitable Coloring, we construct an instance
(G′, r′) of Graph Coloring as follows. Let n denote the number of vertices of G.
We start with a copy of G and let r′ = r + nr. We now add a clique P of size r′

to G′. The clique P will function as a palette in our reduction, as we have to use all
r′ available colors to properly color it. We partition P into r + 1 parts as follows:
P = PM ∪P1 ∪P2 · · · ∪Pr , where P

M has size r and Pi has size n for every i. We call
PM the main palette and denote the vertices in PM by pi for 1 ≤ i ≤ r. We add edges
between every vertex of P \ PM and every vertex of the copy of G. For each vertex
u ∈ V (G), we assign a vertex uPi ∈ Pi for every i. Now, for every 1 ≤ i ≤ r, we add a
set Si of n vertices which contains copies of all vertices ofG. For each vertex u ∈ V (G),
we denote the copy of u in Si by uSi for every 1 ≤ i ≤ r, and make uSi adjacent to
u and the entire palette P except for uPi and pi. We conclude the construction by
adding a clique Ci of n

r−1
r vertices and making every vertex of Ci adjacent to all of the

vertices of Si and the entire palette except for Pi. See Figure 3.1 for an illustration.
Lemma 1. If G has an equitable r-coloring ψ, then G′ has a proper r′-coloring φ.
Proof. We construct a coloring φ of G′ as follows. The coloring φ colors the copy

of G in G′ in the same way that ψ colors G. We color the palette, assigning a unique
color to each vertex and making sure that the main palette PM is colored using the
same colors that are used to color the vertices of G. For every vertex uSi we color uSi

with φ(pi) if φ(u) 
= φ(pi) and with φ(uPi) if φ(u) = φ(pi). We color every vertex of
Ci with some color from Pi (a color used to color a vertex of Pi). To do this we need
n r−1

r different colors from Pi. Since exactly n/r vertices of G are colored with φ(pi),
exactly n r−1

r of Si are colored with φ(pi) and thus n/r vertices of Si are colored with
colors of Pi. Hence there are n r−1

r colors of Pi available to color Ci. Thus, φ is a
proper r′-coloring of G concluding the proof.

Lemma 2. If G′ has a proper r′-coloring φ, then G has an equitable r-coloring ψ.
Proof. We prove that the restriction of φ to the copy of G in G′ in fact is an

equitable r-coloring of G. Since φ can use only the colors of PM , φ is a proper r-
coloring of G. It remains to prove that for any i between 1 and r, at most n/r vertices
of G are colored with φ(pi). Suppose for contradiction that there is an i such that
more than n/r vertices of G are colored with φ(pi). Then there are more than n/r
vertices of Si that are colored with colors of Pi. Since each such vertex must take
a different color from Pi, there are less than n r−1

r different colors of Pi available to
color the vertices of Ci. However, since Ci is a clique on n r−1

r vertices that must be
colored with colors of Pi, this is a contradiction.

Lemma 3. If the tree-width of G is t, then the clique-width of G′ is at most
k = 3 · 2t−1 + 7r + 2.

Proof. By Theorem 1, we can compute an expression tree for G of width at most
3 · 2t−1. Our strategy is as follows. We first show how to modify the expression tree
to give a width k expression tree for G′ \ (PM

⋃r
i=1 Ci). Then we change this tree

into an expression tree for G′. In order to give an expression tree for G′ we introduce
the following extra labels:

• For every 1 ≤ i ≤ r the labels αi, α
L
i , and α

R
i for vertices in Pi.

• For every 1 ≤ i ≤ r the labels βi, β
L
i , and β

R
i for vertices in Si.
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Fig. 3.1. The figure shows the construction of G′ for r = 3. The edges between vertices of Si

and P and between Ci and P are not shown. The dotted lines indicate nonedges.

• For every 1 ≤ i ≤ r the label ζi for vertices in Ci.
• A “work” label – γW and a label γM for each vertex that belongs to PM .

In the expression tree for G, we replace every introduce node i(v) with a small ex-
pression tree Ti(v). In Ti(v), the vertex v is introduced with label γW and the vertices
vP1 , . . . , vPr and vS1 , . . . , vSr are introduced with labels α1, . . . , αr and β1, . . . , βr, re-
spectively. Also, the vertices labeled γW are joined with the vertices labeled β1, . . . , βr,
and for every p, the vertices with the label βp are joined with the vertices labeled by
αq for every q 
= p. Also, for every p 
= q, the vertices with the label αp are joined
with the vertices labeled αq. Finally, the vertices labeled γW are relabeled by i (i.e.,
v receives the color used for it in the expression tree for G).

Now, for every union node in the expression tree (not the union nodes inside the
Ti’s), we add extra nodes on the edges incident to this node. On the edge from the
node to its left child, we add nodes that relabel the vertices labeled αp by αL

p and

the vertices labeled βp by βL
p for every p. Similarly, on the edge from the union node

to its right child, we add nodes that relabel the vertices labeled αp by αR
p and the

vertices labeled βp by βR
p for every p. Finally, on the edge from the union node to its

parent we add nodes that first join every vertex labeled αL
p with every vertex labeled

βR
q or αR

q , join every vertex labeled αR
p with every vertex with the label βL

q , and then

relabel every vertex labeled αL
p or αR

p to αp and every vertex labeled βL
p or βR

p by βp.

To conclude the construction of G′ \ (PM
⋃r

i=1 Ci), we need to add some extra
nodes above the root of the expression tree. We add the edges between P \ PM and
G by joining every vertex labeled αp with all vertices labeled by the labels used for
constructing G.

We now need to add the construction of PM and
⋃r

i=1 Ci to our expression tree.
We start by making Cp for every p between 1 and r. For every p, we add a clique
on n r−1

r vertices labeled ζp. Every vertex with the label ζp is joined with the vertex
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labeled βp and for every pair p 
= q, the vertices labeled ζp are joined with the vertices
labeled αq.

Finally, we add the construction of PM . For every i, we introduce the vertex
pi with label γW , join the vertices labeled γW with the vertices labeled αj and ζj
for every j, the vertices labeled γW with the vertices labeled βj for every j 
= i,
and finally join the vertices labeled γW with the vertices labeled γM and relabel the
vertices with the label γW by γM . This concludes the construction of G′. Notice that
this expression tree for G′ uses k = 3 · 2t−1 + 7r + 2 labels.

By Lemmas 1, 2, and 3, we have the following result.
Theorem 3. The Graph Coloring problem is W [1]-hard when parameterized

by clique-width.
Proof. Lemmas 1, 2, and 3 together give a parameterized reduction from Eq-

uitable Coloring parameterized by the tree-width t of the input graph and the
number of colors r to Graph Coloring parameterized by the clique-width. Lem-
mas 1 and 2 ensure the correctness of the reduction while Lemma 3 shows that if an
input (G, r) of Equitable Coloring has tree-width at most t, then the input (G′, r′)
constructed for the Graph Coloring has clique-width at most f(t) = 3·2t−1+7r+2.
By Theorem 2, Equitable Coloring parameterized by the tree-width t of the in-
put graph and the number of colors r is W[1]-hard, and hence Graph Coloring

parameterized by the clique-width is W[1]-hard.

4. Edge dominating set. An edge dominating set of a graph G is a set X ⊆
E(G) such that every edge of G is either in X or adjacent to at least one edge of X .

Edge Dominating Set: Given a graph G and a positive integer r,
decide whether there exists an edge dominating set of G of size at
most r.

In this section, we show that Edge Dominating Set is W [1]-hard when parameter-
ized by clique-width.

Our reduction is from a variant of Capacitated Dominating Set problem.

4.1. Exact saturated capacitated dominating set. A capacitated graph is a
pair (G, c), where G is a graph and c : V (G) → N is a capacity function such that
1 ≤ c(v) ≤ deg(v) for every vertex v ∈ V (G) (sometimes we simply say that G is a
capacitated graph if the capacity function is clear from the context). A set S ⊆ V (G)
is called a capacitated dominating set if there is a domination mapping f : V (G)\S → S
which maps every vertex in V (G) \ S to one of its neighbors in such a way that the to-
tal number of vertices mapped by f to any vertex v ∈ S does not exceed its capacity
c(v). We say that for a vertex u ∈ S, vertices in the set f−1(u) are dominated by u. The
Capacitated Dominating Set problem is formulated as follows: Given a capacitated
graph (G, c) and a positive integer k, determine whether there exists a capacitated dom-
inating set S for G containing at most k vertices. It was proved by Dom et al. [11] that
this problem isW [1]-hard when parameterized by tree-width.

Theorem 4 ([11]). Capacitated Dominating Set is W [1]-hard when param-
eterized by the tree-width t of the input graph and the solution size k.

For the intractability proof of Edge Dominating Set, we need a special vari-
ant of Capacitated Dominating Set problem which we call Exact Saturated

Capacitated Dominating Set. Given a capacitated dominating set S and a dom-
ination mapping f , we say that f saturates a vertex v ∈ S if |f−1(v)| = c(v). A
capacitated dominating set S ⊆ V (G) is called saturated if there is a domination
mapping f which saturates all vertices of S. In Exact Saturated Capacitated

Dominating Set, a capacitated graph (G, c) and a positive integer k is given, and
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the objective is to check whether G has a saturated capacitated dominating set S
with exactly k vertices.

Lemma 4. The Exact Saturated Capacitated Dominating Set problem
is W [1]-hard when parameterized by clique-width.

Proof. We reduce from Exact Capacitated Dominating Set, an exact version
of the Capacitated Dominating Set problem parameterized by the tree-width of
the input graph. In the exact capacitated dominating set problem, the question is to
determine whether there exists a capacitated dominating set of size exactly k.

Claim 1. Exact Capacitated Dominating Set is W [1]-hard when parame-
terized by the tree-width t of the input graph and the solution size k.

Proof. We give an easy reduction from the Capacitated Dominating Set prob-
lem. By Theorem 4, we know that the Capacitated Dominating Set problem is
W [1]-hard when parameterized by tree-width. Given a capacitated graph (G, c) and a
positive integer k, an instance of Capacitated Dominating Set, we get an instance
of Exact Capacitated Dominating Set by taking (G, c) and a positive integer k
itself. If G has a capacitated dominating set S of size at most k, then we can make it
exactly equal to k by adding k−|S| vertices from V (G)\S arbitrarily. In the other direc-
tion, ifG has a capacitated dominating set of size exactly k, then it is also a capacitated
dominating set of size at most k. This concludes the proof of the claim.

Let r be a positive integer and Hr(u) denote a capacitated graph rooted at
vertex u. The graph Hr(u) is constructed as follows. Its vertex set is given by
{u, v, x1, . . . , xr, y1, . . . , yr} and the edges are given by making u adjacent to all ver-
tices xi, making v adjacent to all vertices yi, and finally adding edges xiyj , 1 ≤ i, j ≤ r.
We define the capacity function as follows: c(v) = r − 1, c(xi) = r + 1, and c(yi) = i
for all i ∈ {1, 2, . . . , r} (note that the capacity function is not defined for the root u).

Let (G, c) be a capacitated graph, u ∈ V (G), and r ≥ max{3, c(u)+1}. We add a
copy of Hr(u) to G with u being its root. Let G′ be the resulting capacitated graph.
We need two auxiliary claims about the graph G′.

Claim 2. Any capacitated dominating set S, with the domination mapping f ,
of G can be extended to a capacitated dominating set S′ of G′ in such a way that all
vertices of Hr(u) are saturated.

Proof. Let S be a capacitated dominating set in G with the domination mapping
f . We define s to be |f−1(u)| if u ∈ S and c(u) otherwise. Let S′ = S ∪{v, yj} where
j = r−c(u)+s. The mapping f is extended as follows: f(xi) = u for 1 ≤ i ≤ c(u)−s,
f(xi) = yj for i > c(u)− s, and f(yi) = v for all i 
= j.

Claim 3. Every saturated capacitated dominating set in G′ contains exactly two
vertices from V (Hr(u)) \ {u}.

Proof. Let S′ be a saturated capacitated dominating set in G′ and f be its corre-
sponding domination mapping. We first show that S′ does not contain any xi’s. Sup-
pose that some vertex xi is included in S′. Then because of capacity constraint that
c(xi) = r + 1, it implies that y1, y2, . . . , yr /∈ S′ and f(yj) = xi for all these vertices.
Therefore v ∈ S′ but clearly this vertex cannot be saturated. Hence, x1, x2, . . . , xr /∈ S′.
Now we show that v must be in S′. Assume to the contrary that v /∈ S′. Then
y1, y2, . . . , yr ∈ S′, as they need to be dominated. But these vertices cannot be sat-

urated since
∑r

i=1 c(yi) = 1 + · · ·+ r = r(r+1)
2 > r + 1. This means that v ∈ S′. The

capacity of v is r − 1; hence at most one vertex yi can be included in S′. On the other
hand, since c(u) < r, there exists at least one vertex xj such that f(xj) 
= u. Hence to
dominate this vertex we need a vertex yi ∈ S′. This concludes the proof.
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Now we are ready to complete the proof of Lemma 4. Let (G, c) be a capacitated
graph with the vertex set {u1, u2, . . . , un}, r = max{c(v) : v ∈ V (G)} + 2. For every
vertex ui, we add a copy of Hr(ui) to G with ui being its root. Let H be the resulting
capacitated graph. By applying Claims 2 and 3 we conclude that G has a capacitated
dominating set of the size k if and only if H has an exact saturated dominating set
of the size k + 2n.

It remains to prove that if the tree-width of G is bounded, then the clique-width
of H is bounded. Let tw(G) ≤ t. By Theorem 1 cwd(G) ≤ 3 · 2t−1. We prove that
cwd(H) ≤ cwd(G) + 4. Assume that the construction of the labeled graph G uses
labels from the set {α1, . . . , αw} where w = cwd(G). To construct H from G we use
additional labels {β1, β2, β3, β4}.

When a vertex u having a label αj is introduced, we do the following sequence of
operations: first the vertex introductions denoted by αj(u), β1(xi), and β2(yi) for all
i ∈ {1, . . . , r}, and β3(v). After this we apply the following operations: ηαj ,β1 , ηβ1,β2 ,
ηβ2,β3 , and ρβi→β4 for i = 1, 2, 3. We omit the union operations in this description:
It is assumed that if some vertex is introduced, then this operation is automatically
performed. Join, union, and relabel operations with labels {α1, . . . , αw} are done as it
is done for the expression tree of G. This concludes the construction of the expression
tree for H .

4.2. Intractability of edge dominating set problem. In this section we
show that Edge Dominating Set is W [1]-hard when parameterized by clique-width
by giving a reduction from Exact Saturated Dominating Set. We start with
descriptions of auxiliary gadgets.

Auxiliary gadgets. Let s ≤ t be positive integers. We construct a graph Fs,t with
the vertex set {x1, . . . , xs, y1, . . . , ys, z1, . . . , zt} and edges xiyi, 1 ≤ i ≤ s, and yizj ,
1 ≤ i ≤ s, and 1 ≤ j ≤ t. Basically we have a complete bipartite graph between the
yi’s and the zj ’s with pendent vertices attached to yi’s. The vertices z1, z2, . . . , zt are
called the roots of Fs,t.

Graph Fs,t has the following property.
Lemma 5. Any set of s edges incident with vertices y1, . . . , ys forms an edge

dominating set in Fs,t. Furthermore, let G be a graph obtained by the union of Fs,t

with some other graph H such that V (Fs,t) ∩ V (H) = {z1, . . . , zt}. Then every edge
dominating set of G contains at least s edges from Fs,t.

The proof of Lemma 5 follows from the fact that every edge dominating set
includes at least one edge from E(yi) for i ∈ {1, . . . , s}.

Reduction. Let (G, c) be a capacitated graph with the vertex set {u1, . . . , un},
and k be a positive integer. For every vertex ui, the set Ui with c(ui) vertices is
introduced, and then vertex sets {v1, . . . , vn} and {w1, . . . , wn} are added. For every
edge uiuj ∈ E(G), all vertices of Ui are joined with vj and all vertices of Uj are joined
with vi by edges. Then every vertex vi is joined to its counterpart wi and to every
vertex vi we add one additional leaf (a pendent vertex). Now vertex sets {a1, . . . , an}
and {b1, . . . , bn} are constructed, and vertices ai are made adjacent to all vertices of
Ui, wi, and bi. For every vertex bi, a set Ri of c(ui)+1 vertices is added and bi is made
adjacent to all the vertices in Ri. Then we add to every vertex of R1 ∪R2 ∪ · · · ∪Rn

a path of length two. Let X be the set of middle vertices of these paths. We denote
the obtained graph by G′ (see Figure 4.1). Finally, we introduce three copies of Fs,t:

• a copy of Fn−k,n with roots {a1, . . . , an},
• a copy of Fk,n with roots {b1, . . . , bn}, and a
• a copy of Fn,r where r =

∑n
i=1 c(ui) with roots in X .
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Fig. 4.1. Graph G′.

Let H be this final resulting graph.
Lemma 6. A capacitated graph (G, c) on n vertices has an exact saturated domi-

nating set of size k if and only if H has an edge dominating set of cardinality at most
2n+ r. Here, r =

∑
v∈V (G) c(v).

Proof. Let S be an exact saturated dominating set of the size k in G and f be its
corresponding domination mapping. For convenience (without loss of a generality) we
assume that S = {u1, . . . , uk}. We construct the edge dominating set of H as follows.
First we select a specific edge emanating from every vertex in the set {v1, . . . , vn}. For
every vertex vi, 1 ≤ i ≤ k, the edge viwi is selected. Now let us assume that k < i ≤ n
and f(ui) = uj. We choose a vertex u in Uj which is not incident with already chosen
edges and add the edge uvi to our set. Notice that we always have such a choice of
u ∈ Uj as c(uj) = |Uj |. We observe that these edges already dominate all the edges in
the sets E(vi), 1 ≤ i ≤ n, and in sets E(u) for u ∈ U1 ∪ · · · ∪Uk ∪ {w1, . . . , wk}. Now
we add n − k edges from Fn−k,n which are incident with vertices in {ak+1, . . . , an}
and k edges from Fk,n which are incident with {b1, . . . , bk}. Then r − n matching
edges joining vertices of Rk+1, . . . , Rn to the vertices of X are included in the set.
Finally, we add n edges from Fn,r which are incident with vertices of X which are
adjacent to vertices of R1, . . . , Rk. Since S is an exact capacitated dominating set,∑k

i=1(c(ui) + 1) = n, and from our description it is clear that the resulting set is an
edge dominating set of size 2n+ r for H .

We proceed by proving the other direction of the equivalence. Let L be an
edge dominating set of H of cardinality at most 2n + r. The set L is forced to
contain at least one edge from every E(vi), at least n − k edges from Fn−k,n, at
least k edges from Fk,n, and at least one edge from E(x) for all x ∈ X because of
pendent edges. This implies that |L| = 2n + r, and L contains exactly one edge
from every E(vi), exactly n − k edges from Fn−k,n, exactly k edges from Fk,n, and
exactly one edge from E(x) for all x ∈ X . Every edge aibi needs to be domi-
nated by some edge of L; in particular it must be dominated from an edge of ei-
ther Fn−k,n or Fk,n. Let I = {i : ai is incident to an edge from L ∩ E(Fn−k,n)} and
J = {j : bj is incident to an edge from L ∩ E(Fk,n)}. The above constraints on the
set L implies that |I| = n− k, |J | = k, and these sets form a partition of {1, . . . , n}.
The edges which join vertices bi and Ri for i ∈ I are not dominated by edges from
L ∩ E(Fk,n). Hence to dominate these edges we need at least

∑
i∈I |Ri| edges which

connect sets Ri and X . Since at least n edges of Fn,r are included in L, we have
that

∑
i∈I |Ri| ≤ r − n and

∑
j∈J |Rj | = r − ∑

i∈I |Ri| ≥ r − (r − n) ≥ n. Let
S = {uj : j ∈ J}. Clearly, |S| = k. Now we show that S is a saturated capacitated
dominating set. For j ∈ J , edges which join a vertex aj to Uj and wj are not
dominated by edges from L ∩ E(Fn−k,k), and hence they have to be dominated by
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edges from sets E(vi). Since n ≤ ∑
j∈J |Rj | =

∑
j∈J (|Uj | + 1), there are exactly n

such edges, and every such edge must be dominated by exactly one edge from L. An
edge ajwj can be dominated only by edge vjwj . We also know that L ∩ E(vi) 
= ∅
for all i ∈ {1, . . . , n}, and hence for every vi, i /∈ J , there is exactly one edge which
joins it with some vertex u ∈ Uj for some j ∈ J . Furthermore, all these edges are
not adjacent; that is, they form a matching. We define f(ui) = uj for i /∈ J . From
our construction it follows that f is a domination mapping for S and S is an exact
saturated dominating set in G.

Lemma 7 shows that if the graph G we started with has clique-width at most k,
then H has clique-width bounded by some function of k.

Lemma 7. If cwd(G) ≤ t, then cwd(H) ≤ 2t+ 16.
Proof. The graph G is of clique-width at most t. Suppose that the expression

tree for G uses t labels {α1, . . . , αt}. To construct the expression tree for H we need
the following additional labels:

• Labels β1, . . . , βt for the vertices in U1, . . . , Un.
• Labels ξ1, ξ2, and ξ3 for attaching Fn−k,n, Fk,n, and Fn,r, respectively.
• Labels ζ1, . . . , ζ4 for marking some vertices like w1, . . . , wn.
• Auxiliary labels γ1, . . . , γ9.

When a vertex ui ∈ V (G) labeled αj is introduced, we perform the following set of
operations. First we introduce the following vertices with some working labels: vi
with label γ1, c(ui) vertices of Ui with label γ2, the vertex wi with label γ3, and
the additional vertex (the leaf attached to vi) with label γ4. Now we join the vertex
labeled with γ1 to vertices labeled with γ3 and γ4 (basically joining vi with wi and its
pendent leaf). Finally, we relabel γ4 to ζ1 and γ1 to βj . Now we introduce vertices
ai and bi with labels γ5 and γ6, respectively. Then we join the vertex labeled γ4 (ai)
with all the vertices labeled with γ2, γ3, and γ6 (Ui, wi, bi). The join operation is
followed by relabeling γ3 to ζ2, γ2, to αj , and γ5 with ξ1.

Now we want to make the vertices of Ri and the paths attached to it. To do so
we perform the following operations c(ui)+1 times: (a) introduce three nodes labeled
with γ7, γ8, and γ9; (b) join γ6 with γ7, γ7 with γ8, and γ8 with γ9; and (c) finally we
relabel γ6 to ξ2, γ7 to ζ3, γ8 to ξ3, and γ9 to ζ4. We omit the union operations from
the description and assume that if some vertex is introduced, then this operation is
performed.

If in the expression tree of G, we have join operation between two labels, say αi

and αj , then we simulate this by applying join operations between αi and βj and αj

and βi. The relabel operation in the expression tree of G, that is, relabel αi to αj , is
replaced by relabel αi to αj and relabel βi to βj . Union operations in the expression
tree are done as before.

Finally to complete the expression tree for H , we need to add Fn−k,n, Fk,n, and
Fn,r. Notice that all the vertices in {a1, . . . , an}, {b1, . . . , bn}, and X are labeled ξ1,
ξ2, and ξ3, respectively. From here we can easily add Fn−k,n, Fk,n, and Fn,r with root
vertices {a1, . . . , an}, {b1, . . . , bn}, and X , respectively, by using working labels. This
concludes the description for the expression tree for H .

Lemmas 6 and 7 imply the following result.
Theorem 5. The Edge Dominating Set problem is W [1]-hard when parame-

terized by clique-width.
Proof. Lemmas 6 and 7 together give a parameterized reduction fromExact Sat-

urated Capacitated Dominating Set parameterized by the clique-width t of the
input graph to Edge Dominating Set parameterized by the clique-width. Lemma 6
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ensures the correctness of the reduction while Lemma 7 shows that if an input (G, c)
of Exact Saturated Capacitated Dominating Set has clique-width at most t,
then the input H constructed for the Edge Dominating Set has clique-width at
most f(t) = 2t+ 16. By Lemma 4, Exact Saturated Capacitated Dominating

Set parameterized by the clique-width t of the input graph is W[1]-hard and hence
Edge Dominating Set parameterized by the clique-width is W[1]-hard.

5. Hamiltonian cycle problem. In this section we show that the Hamilto-

nian Cycle, which is defined as
Hamiltonian Cycle: Given a graph G, decide whether there exists
a cycle passing through every vertex of G,

is W [1]-hard when parameterized by clique-width.
Our reduction is from the Capacitated Dominating Set problem described in

section 4.1 and shown to be W [1]-hard in Theorem 4. We need auxiliary gadgets.
Auxiliary gadgets. We denote by L1 the graph with the vertex set {x, y, z, a, b, c, d}

and the edge set {xa, ab, bc, cd, dy, bz, cz}. Let P1 be the path xabzcdy and P2 =
xabcdy. (See Figure 5.1.)

We abstract a property of this graph in the following lemma.
Lemma 8. Let G be a Hamiltonian graph such that G[V ′] is isomorphic to L1.

If all edges in E(G) \ E(G[V ′]) incident with V ′ are incident with the copies of the
vertices x, y, and z in V ′, then every Hamiltonian cycle in G includes either the path
P1 or the path P2 as a segment.

Our second auxiliary gadget is the graph L2. This graph has {x, y, z, s, t, a, b, c, d,
e, f, g, h} as its vertex set. We first include the following {xa, ab, bz, cz, cd, dy, se,
ef, fb, ch, hg, gt} in its edge set. Then x, y path xw1 · · ·w9y of length 10 is added,
and edges fw3, w1w6, w4w9, w7h are included in the set of edges. Let P = xabzcdy,
R1 = sefbaxw1w2 . . . w9ydchgt, and R2 = sefw3w2w1w6w5w4w9w8w7hgt. (See Fig-
ure 5.1.) This graph has the following property.
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Fig. 5.1. Graphs L1 and L2. Paths P1, P2, R1, R2, and P are shown by thick lines.

Lemma 9. Let G be a Hamiltonian graph such that G[V ′] is isomorphic to L2.
If all edges in E(G) \ E(G[V ′]) incident with V ′ are incident with the copies of the
vertices x, y, z, s, t in V ′, then every Hamiltonian cycle in G includes either the path
R1 or two paths P and R2 as segments.

Lemma 9 easily follows from the presence of degree 2 vertices in the graph L2,
since for any such vertex, it and adjacent vertices have to belong to one segment of a
Hamiltonian path.

Reduction. Let (G, c) be a capacitated graph with the vertex set {v1, . . . , vn} and
m edges, and let k be a positive integer. For every vertex vi, four vertices ai, bi, ci,
and wi are introduced, and the vertices bi and ci are joined by c(vi)+1 paths of length
two. Let Ci denote the set of middle vertices of these paths, and Xi = Ci∪{ai, bi, ci}.
Then a copy Li

2 of the graph L2 with z = wi is added, and vertices x and y of this
gadget are joined by edges to ai and bi, respectively. By si and ti we denote the
vertices s and t of Li

2. For every ordered pair {vi, vj} such that vivj ∈ E(G), a copy
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Lij
2 of L2 is attached with z = wj and vertices x and y made adjacent to all the

vertices of Ci. The vertices corresponding to s and t are called sij and tij in Lij
2 .

Furthermore, let xij and yij denote the vertices corresponding to x and y in Lij
2 . The

paths corresponding to P in Li
2 is called P i. Similarly, the paths corresponding to

P , R1, and R2 are called P ij , Rij
1 , and R

ij
2 , respectively, in L

ij
2 . Denote the obtained

graph by G′(c). (See Figure 5.2 for an illustration.)
In the next step we add two vertices g and h which are joined by

∑n
i=1(c(vi) +

4) + n + 2m + 1 paths of length two. Let Y be the set of middle vertices of these
paths. All vertices si, ti, sij , and tij are joined by edges with all vertices of Y . For
every vertex r such that r ∈ Xi (recall Xi = Ci ∪ {ai, bi, ci}), i ∈ {1, . . . , n}, a copy
Lr
1 of L1 with z = r is attached and the vertices x and y of this gadget are joined to

all vertices of Y . We let xr and yr denote the vertices corresponding to x and y in Lr
1.

Similarly, P r
1 and P r

2 denote paths in Lr
1 corresponding to P1 and P2, respectively.

ai bi ci aj bj cj

wi wjw1 wn

a1 cn

z

x y

s t

L 2

Fig. 5.2. Graph G′(c).

Finally we add k+1 vertices, namely {p1, . . . , pk+1}, and make them adjacent to
all the vertices {ai, ci : 1 ≤ i ≤ n} and to g and h. Let H be this resulting graph.
The construction of H can easily be done in time polynomial in n and m.

Lemma 10. A graph (G, c) has a capacitated dominating set of size at most k if
and only if H has a Hamiltonian cycle.

Proof. Let S be a capacitated dominating set of size at most k in (G, c) with the
corresponding dominating mapping f . Without loss of a generality we assume that
|S| = k and S = {v1, . . . , vk}. The Hamiltonian cycle we are trying to construct is
naturally divided into k + 1 parts by the vertices {p1, . . . , pk+1}. We construct the
Hamiltonian cycle starting from the vertex p1. Assume that the part of the cycle up
to the vertex pi is already constructed. We show how to construct the part from pi to
pi+1. We include the edge piai in it. We add to the cycle the path P i and two edges,
which join the endpoints of Pi with ai and bi. Let J = {j : f(vj) = vi}. If J = ∅, then
a bi, ci path of length two which goes through one vertex of Ci is included in the cycle.
Otherwise all paths P ij for j ∈ J are included in the cycle as follows. We consider
the paths P ij in the increasing order of indices in J and add them to the cycle. We
take the first path, say P ij′ , and attach xij′ and yij′ to a pair of vertices {j1, j2} in
Ci. Suppose iteratively we have included first l ≥ 1 paths in J , and the lth path is
incident to some {jl, jl+1} in Ci; now we attach the (l + 1)th path by attaching xit
of this to jl+1 and yit of this to jl+2, where jl+2 is a new vertex not incident to any
previously included paths. We can always find such a vertex as |J | ≤ c(vi) = |Ci|− 1.
Now we include the edge bij1 and j|J|+1ci. Finally we include the edge cipi+1.

When the vertex pk+1 is reached, we move to the set Y . Note that at this stage
all vertices {w1, . . . , wn} are already included in the cycle. We start by including
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the edge pk+1g. We will add the following segments to the cycle and connect them
appropriately.

• For every Li
2 we add the path Ri

1 to the cycle if P i was not included with it,
and include the path Ri

2 otherwise. The number of such paths is n.
• Similarly, for every Lij

2 , the path Rij
1 is added to the cycle if P ij was not

included with it, else the path Rij
2 is added. Note that 2m such paths are

included with the cycle.
• For every vertex r such that r ∈ Xi for some i ∈ {1, . . . , n}, the path P r

2 is
included in the cycle if r is already included in the constructed part of the
cycle, else the path P r

1 is added. Clearly, we add
∑n

i=1(c(vi) + 4) paths.
Finally the total number of paths we will add is

∑n
i=1(c(vi) + 4) + n+2m = |Y | − 1.

We add the segments of the paths mentioned with the help of vertices in Y , in the
way we added the paths P ij with the help of vertices in Ci. Let q1 and q2 be the
endpoints of the resultant joined path. Notice that (a) q1, q2 ∈ Y and (b) this path
includes all the vertices of Y . Now we add edges gq1, q2h, and hp1. This completes
the construction of the Hamiltonian cycle.

For the reverse direction of the proof, we assume that we have been given C, a
Hamiltonian cycle in H . Let S = {vi | pjai ∈ E(C), aips /∈ E(C), j 
= s, for some
j ∈ {1, 2, . . . , k + 1}}. We prove that S is a capacitated dominating set in G of
cardinality at most k. We first argue about the size of S; clearly its size is at most
k + 1. To argue that it is at most k, it is enough to observe that by Lemmas 8 and 9
either pjg or pjh must be in E(C) for some j ∈ {1, . . . , k+1}. Now we show that S is
indeed a capacitated dominating set. Our proof is based on the following observations.

• Every vertex wj appears in either a vertex segment, that is P j , or an edge
segment, that is, P ij for some j ∈ {1, . . . , n} in C.

• If some P ij appear as a segment in C, then from the gadgets Lbi
1 and Lci

1 the
paths P bi

2 and P ci
2 are part of C. Hence the only way to include bi in C is by

using the edge incident to it from the gadget Li
2. This implies that from the

gadget Li
2 we use the path P i and two edges, which join the endpoints of Pi

with ai and bi.
• By Lemma 8 the cycle contains the edge which joins ai to some vertex in
{p1, . . . , pk+1}.

Now given vj ∈ V (G)\S, for the domination function f , we assign f(vj) = vi where P
ij

is a segment inC. Clearly vi ∈ S as by above observation there exists a j ∈ {1, 2, . . . , k+
1} such that pjai ∈ E(C), aips /∈ E(C), and j 
= s. For every vi ∈ S, the set f−1(vi)
contains at most c(vi) vertices as |Ci| = c(vi) + 1. This concludes the proof.

Lemma 11 provides an upper bound to the clique-width of the resulting graph H .
Lemma 11. If tw(G) ≤ t, then cwd(H) ≤ 9 · 2max{2t,24} + 12.
Proof. We define c′(vi) = 0 for all i ∈ {1, 2, . . . , n} and consider the graph G′(c′).

It is easy to see that tw(G′(c′)) ≤ max{2t + 1, |V (L2)| + 3} = max{2t + 1, 25}. By
Theorem 1 cwd(G′(c′)) ≤ 3 · 2max{2t,24}; i.e., we can construct the labeled graph
G′(c′) by using at most l = 3 · 2max{2t,24} labels α1, . . . , αl. Using l + 1 additional
labels β1, . . . , βl and γ1, we can ensure that all vertices si, ti, sij , and tij are labeled
by the label γ1, and only these vertices have label γ1 in the following way. At the
moment when such a vertex r labeled, e.g., j is introduced, we label it by the label βj ,
and then these labels are used in the operations in the same way as labels αj . Finally,
all vertices labeled by these labels are relabeled γ1. Similarly, by using l + 1 more
labels we assume that all vertices ai and ci are labeled by the label γ2, and this label
is used only for these vertices. Denote by di the only vertex in the set Ci in G

′(c′).
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The graph G′(c) can be obtained from G′(c′) by the substitution of di by c(vi) + 1
vertices with the same neighborhoods. This operation does not change clique-width,
and cwd(G′(c)) ≤ 3l + 2.

Recall that for every vertex r ∈ Xi we add a copy of L1 with z = r. We show how
to construct the obtained graph using no more than |V (L1)|+1 = 8 additional labels,
in such a way that vertices xr and yr are labeled by the label γ1. When a vertex r
is introduced, we construct a copy of L1 using |V (L1)| extra labels, making sure that
the z in this copy gets r’s label. Then we relabel x and y by γ1, and the remaining
|V (L1)| − 3 vertices are relabeled by an additional label ζ which acts as a “waste”
label. We use two labels to construct the vertices g and h with |Y | paths of length
two between them. Additionally, we ensure that at the end of this construction g and
h are labeled with γ2 and that the vertices of Y are labeled by γ3.

Now, the join operation is done for vertices labeled γ1 and γ3. Now, by using one
more label γ4, the vertices p1, p2, . . . , pk+1 are introduced, and the join operation is
performed on the labels γ2 and γ4. We used no more than 3l+12 labels to construct
H , and cwd(H) ≤ 3l + 12 ≤ 9 · 2max{2t,24} + 12.

Lemmas 10 and 11 together imply the following result.
Theorem 6. The Hamiltonian Cycle problem is W [1]-hard when parameter-

ized by clique-width.
Proof. Lemmas 10 and 11 together give a parameterized reduction from Ca-

pacitated Dominating Set parameterized by the tree-width t of the input graph
and the solution size k to Hamiltonian Cycle parameterized by the clique-width.
Lemma 10 ensures the correctness of the reduction while Lemma 7 shows that if
an input (G, c) of Capacitated Dominating Set has tree-width at most t then
the input H constructed for the Hamiltonian Cycle has clique-width at most
f(t) = 9 · 2max{2t,24} + 12. Now by Theorem 4, we know that Capacitated Domi-

nating Set parameterized by the clique-width t of the input graph is W[1]-hard, and
hence Hamiltonian Cycle parameterized by the clique-width is W[1]-hard.

6. Conclusions. In this article, we settled the computational complexity of sev-
eral important problems parameterized by the clique-width of the input graph. Our
results show that the existing algorithms for Edge Dominating Set, Hamiltonian

Cycle, and Graph Coloring on graphs of bounded clique-width essentially are the
best one can hope for, unless an unlikely collapse in parameterized complexity occurs.
It is an interesting open problem to investigate complexity of other graph problems
when parameterized by the clique-width of the input graph.
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[7] B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization problems
on graphs of bounded clique-width, Theory Comput. Syst., 33 (2000), pp. 125–150.

[8] B. Courcelle, J. A. Makowsky, and U. Rotics, On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic, Discrete Appl. Math., 108
(2001), pp. 23–52.

[9] B. Courcelle and M. Mosbah, Monadic second-order evaluations on tree-decomposable
graphs, Theoret. Comput. Sci., 109 (1993), pp. 49–82.

[10] B. Courcelle and S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl.
Math., 101 (2000), pp. 77–114.

[11] M. Dom, D. Lokshtanov, S. Saurabh, and Y. Villanger, Capacitated domination and
covering: A parameterized perspective, Lectures Notes in Comput. Sci. 5018, Springer,
Berlin, 2008, pp. 78–90.

[12] R. G. Downey and M. R. Fellows, Parameterized complexity, Monographs in Computer
Science, Springer-Verlag, New York, 1999.

[13] W. Espelage, F. Gurski, and E. Wanke, How to solve NP-hard graph problems on clique-
width bounded graphs in polynomial time, Lecture Notes in Comput. Sci. 2204, Springer,
Berlin, 2001, pp. 117–128.

[14] W. Espelage, F. Gurski, and E. Wanke, Deciding clique-width for graphs of bounded tree-
width, J. Graph Algorithms Appl., 7 (2003), pp. 141–180.

[15] M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. A. Rosamond, S. Saurabh, S. Szei-

der, and C. Thomassen, On the complexity of some colorful problems parameterized by
treewidth, Lecture Notes in Comput. Sci. 4616, Springer, Berlin, 2007, pp. 366–377.

[16] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider, Clique-width minimization
is NP-hard (extended abstract), in Proceedings of the ACM Symposium on Theory of
Computing, ACM, New York, 2006, pp. 354–362.

[17] J. Flum and M. Grohe, Parameterized complexity theory, Texts in Theoretical Computer
Science, An EATCS Series, Springer-Verlag, Berlin, 2006.

[18] M. U. Gerber and D. Kobler, Algorithms for vertex-partitioning problems on graphs with
fixed clique-width, Theoret. Comput. Sci., 299 (2003), pp. 719–734.
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