
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 411 (2010) 1045–1053

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Iterative compression and exact algorithms
Fedor V. Fomin a, Serge Gaspers b, Dieter Kratsch c, Mathieu Liedloff d,∗, Saket Saurabh e
a Department of Informatics, University of Bergen, N-5020 Bergen, Norway
b Centro de Modelamiento Matemático, Universidad de Chile, 8370459 Santiago de Chile, Chile
c Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France
d Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, 45067 Orléans Cedex 2, France
e Institute of Mathematical Sciences, CIT Campus, Taramani, 600 113 Chennai, India

a r t i c l e i n f o

Article history:
Received 20 December 2008
Received in revised form 29 October 2009
Accepted 16 November 2009
Communicated by O. Watanabe

Keywords:
Exponential time algorithms
Graph algorithms
Independent set
Hitting set
Induced cluster
Fixed parameter algorithms
Iterative compression

a b s t r a c t

Iterative compression has recently led to a number of breakthroughs in parameterized
complexity. Here, we show that the technique can also be useful in the design of exact
exponential time algorithms to solve NP-hard problems. We exemplify our findings with
algorithms for the Maximum Independent Set problem, a parameterized and a counting
version of d-Hitting Set and theMaximum Induced Cluster Subgraph problem.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Iterative Compression is a tool that has recently been used successfully in solving a number of problems in the area of
parameterized complexity. This technique was first introduced by Reed et al. to solve the Odd Cycle Transversal problem,
where one is interested in finding a set of at most k vertices whose deletion makes the graph bipartite [23]. Iterative
compression was used in obtaining faster FPT algorithms for Feedback Vertex Set, Edge Bipartization and Cluster Vertex
Deletion on undirected graphs [4,8,15,17]. Recently this technique has led to an FPT algorithm for the Directed Feedback
Vertex Set problem [6], one of the longest open problems in the area of parameterized complexity.
Typically iterative compression algorithms are designed for parameterizedminimization problemswith a parameter, say

k. Such algorithms proceed by iterating the so-called compression step: given a solution of size k+ 1, either compress it to a
solution of size k or prove that there is no solution of size k. To obtain a fixed parameter tractable (FPT) algorithm, one has
to solve the compression step in time f (k)nO(1), where f is an arbitrary computable function, k is a parameter and n is the
length of the input. Technically speaking, almost all the iterative compression based FPT algorithms with parameter k have
f (k) ≥ 2k+1, as they all branch on all partitions (A,D) of a k + 1 sized solution S and look for a solution of size k with the
restriction that it should contain all elements of A and none of D.
Given the success of iterative compression in designing fixed parameter tractable algorithms, it is natural and tempting

to study its applicability in designing exact exponential time algorithms solving computationally hard problems. The goal

∗ Corresponding author. Tel.: +33 2 38 49 25 82.
E-mail addresses: fomin@ii.uib.no (F.V. Fomin), sgaspers@dim.uchile.cl (S. Gaspers), kratsch@univ-metz.fr (D. Kratsch), liedloff@univ-orleans.fr

(M. Liedloff), saket@imsc.res.in (S. Saurabh).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.11.012

Author's personal copy

1046 F.V. Fomin et al. / Theoretical Computer Science 411 (2010) 1045–1053

of the design of such algorithms is to establish algorithms of best possible worst-case running time; at least provably faster
than the one of enumerating all prospective solutions, or loosely speaking, algorithms better than trivial enumeration. For
example, for many NP-hard or #P-hard problems on graphs on n vertices and m edges the prospective solutions are either
subsets of vertices (or edges). Thus a trivial algorithm to solve such an NP-hard problem basically enumerates all subsets
of vertices (or edges) and finds an optimal solution or all optimal solutions, counts the number of optimal solutions, or
enumerates all optimal solutions. This mostly leads to algorithms of time complexity 2n (or 2m), modulo some polynomial
factors. Our aim is to demonstrate that iterative compression can become a useful tool in the design of exact exponential
time algorithms as well; we concentrate on optimization and counting problems.
One simple way to obtain an exact exponential time algorithm from an FPT algorithm is to use the latter for all possible

values of the parameter k. In many cases this does not lead to faster exact algorithms. Assuming that the largest (reasonable)
value of the parameter k is at least n, using a typical iterative compression based FPT algorithm does not seem to be of much
use for constructing an exact exponential time algorithm because we would end up with an algorithm for the compression
step having a factor of 2n (or 2m) in its worst-case running time; and hence the established algorithm would not be better
than trivial enumeration.
There are various well-known techniques to design exact exponential time algorithms for decision, optimization,

counting or enumeration problems such as branching algorithms, dynamic programming (over subsets) and inclusion–
exclusion algorithms. (We refer the interested reader to [27].) Iterative compression provides combinatorial algorithms
based on certain structural properties of the problem (in the compression step). While the improvement in the running
time compared to (complicated) branching algorithms is not so impressive, the simplicity and elegance of the arguments
allow them to be used in a basic algorithms course.We find thisworth emphasising since, despite several exceptions (like the
works of Björklund et al. [1,2,19]), the area of exact algorithms is heavily dominated by branching algorithms, in particular,
for subset problems. It is very often the case that an (incremental) improvement in the running time of a branching algorithm
requires an extensive case analysis, which becomes very technical and tedious. The analysis of such algorithms can also be
very complicated and even computer based.
To our knowledge, this paper is the first attempt to use iterative compression outside the domain of FPT algorithms. We

exemplify this approach by the following results:

1. We show how to solveMaximum Independent Set for a graph on n vertices in timeO(1.3196n). While the running time
of our iterative compression algorithm is higher than the running times of modern branching algorithms [12,13,24], this
simple algorithm serves as an introductory example to more complicated applications of the method.

2. We obtain algorithms counting the number ofminimumhitting sets of a family of sets of an n-element ground set in time
O(1.7198n), when the size of each set is at most 3 (#Minimum 3-Hitting Set). For #Minimum 4-Hitting Set we obtain
an algorithm of running timeO(1.8997n). ForMinimum 4-Hitting Set similar ideas lead to an algorithm of running time
O(1.8704n). These algorithms are faster than the best algorithms known for these problems so far [11,22].

3. We provide an algorithm to solve the Maximum Induced Cluster Subgraph problem in time O∗(φn) where φ =
(1 +

√
5)/2 < 1.6181 is the golden ratio. The only previous algorithm for this problem we are aware of is a very

complicated branching algorithm of Wahlström [26] for solving 3-Hitting Set (let us note that Maximum Induced
Cluster Subgraph is a special case of 3-Hitting Set, where every subset is a set of vertices inducing a path of length
three), which results in a running time of O(1.6278n).

As a byproduct, we provide FPT algorithms for the (k, d)-Hitting Set problem, where the input is a family of sets of size
at most d, the parameter is k, and the task is to find a hitting set of size at most k if one exists. For d = 4 and d = 5 we
achieve the respective running times O(3.0755k · nO(1)) and O(4.0755k · nO(1)), improving the best known algorithms for
these cases [11].

2. Maximum independent set

Maximum Independent Set (MIS) is one of the well-studied problems in the area of exact exponential time algorithms
andmany papers have beenwritten on this problem [12,13,24,25]. It is customary that if we develop a newmethod thenwe
first apply it to well-known problems in the area. Here, as an introductory example, we consider the NP-complete problem
MIS.

Maximum Independent Set (MIS): Given a graph G = (V , E) on n vertices, find amaximum independent set of G. An
independent set of G is a set of vertices I ⊆ V such that no two vertices of I are adjacent in G. Amaximum independent
set is an independent set of maximum size.

It is well known that I is an independent set of a graph G iff V \ I is a vertex cover of G, i.e. every edge of G has at least one
end point in V \ I . Therefore Minimum Vertex Cover (MVC) is the complement of MIS in the sense that I is a maximum
independent set of G iff V \ I is a minimum vertex cover of G. This fact implies that when designing exponential time
algorithms we may equivalently considerMVC. We proceed by defining a compression version of theMVC problem.

Comp-MVC: Given a graph G = (V , E)with a vertex cover S ⊆ V , find a vertex cover of G of size at most |S| − 1 if one
exists.

Author's personal copy

F.V. Fomin et al. / Theoretical Computer Science 411 (2010) 1045–1053 1047

Note that if we can solve Comp-MVC efficiently then we can solveMVC efficiently by repeatedly applying an algorithm for
Comp-MVC as follows. Given a graph G = (V , E) on n vertices with V = {v1, v2, . . . , vn}, let Gi = G[{v1, v2, . . . , vi}] and let
Ci be a minimum vertex cover of Gi. By Vi we denote the set {v1, v2, . . . , vi}. We start with G1 and put C1 = ∅. Suppose that
we already have computed Ci for the graph Gi for some i ≥ 1. We form an instance of Comp-MVCwith input graph Gi+1 and
S = Ci ∪ {vi+1}. In this stage we either compress the solution S which means that we find a vertex cover S ′ of Gi+1 of size
|S| − 1 and put Ci+1 = S ′, or (if there is no such S ′) we put Ci+1 = S.
Our algorithm is based on the following lemma.

Lemma 1. Let Gi+1 and S be given as above. If there exists a vertex cover Ci+1 of Gi+1 of size |S| − 1, then it can be partitioned
into two sets A and B such that
(a) A ⊂ S, |A| ≤ |S| − 1 and A is a minimal vertex cover of Gi+1[S].
(b) B ⊆ (Vi+1 \ A) is a minimum vertex cover of the bipartite graph Gi+1[Vi+1 \ A].

Proof. LetCi+1 be a vertex cover ofGi+1 of size |S|−1. Its complementVi+1\Ci+1 is an independent set.WedefineA′ = Ci+1∩S
and B′ = Ci+1 \ A′. Then A′ is a vertex cover of Gi+1[S] and |A′| ≤ |S| − 1. Let A ⊆ A′ be a minimal vertex cover of Gi+1[S].
We define B = B′ ∪ (A′ \ A). Since A is a minimal vertex cover of Gi+1[S], we have that S \ A is an independent set. This in
turn implies that Gi+1[Vi+1 \ A] is a bipartite graph (with a bipartition S \ A and Vi+1 \ S). Finally, since Ci+1 is a minimum
vertex cover of Gi+1, we conclude that B is a minimum vertex cover of Gi+1[Vi+1 \ A]. �

Lemma 1 implies that the following algorithm solves Comp-MVC correctly.

Step 1: Enumerate all minimal vertex covers of size at most |S| − 1 of Gi+1[S] as a possible candidate for A.
Step 2: For each minimal vertex cover A find a minimum vertex cover B of the bipartite graph Gi+1[Vi+1 \ A] (via the

computation of a maximummatching in this bipartite graph [16]).
Step 3: If the algorithm finds a vertex cover A ∪ B of size |S| − 1 in this way, set Ci+1 = A ∪ B, else set Ci+1 = S.

Steps 2 and 3 of the algorithm can be performed in polynomial time, and the running time of Step 1, which is exponential,
dominates the running time of the algorithm. To enumerate all maximal independent sets or equivalently all minimal vertex
covers of a graph in Step 1, one can use the polynomial delay algorithm of Johnson et al. [18].

Proposition 2 ([18]). All maximal independent sets of a graph can be enumerated with polynomial delay.

For the running time analysis of the algorithm we need the following bounds on the number of maximal independent sets
or minimal vertex covers due to Moon and Moser [20] and Byskov [3].

Proposition 3 ([20]). A graph on n vertices has at most 3n/3 maximal independent sets.

Proposition 4 ([3]). Themaximumnumber ofmaximal independent sets of size atmost k in any graph on n vertices for k ≤ n/3 is

N[n, k] = bn/kc(bn/kc+1)k−n(bn/kc + 1)n−bn/kck.

Moreover, all such sets can be enumerated in time O∗(N[n, k]).1

Since

max
{
max
0≤α≤3/4

(3αn/3), max
3/4<α≤1

(N[αn, (1− α)n])
}
= O∗(22n/5),

we have that by Propositions 2–4, all minimal vertex covers of Gi+1[S] of size at most |S| − 1 can be listed in timeO∗(22n/5)
= O(1.3196n).
Thus, the overall running time of the algorithm solving Comp-MVC is O(1.3196n). Since the rounding of the base of the

exponent dominates the polynomial factor of the other steps of the iterative compression, we obtain the following theorem.

Theorem 5. The given algorithm for the problems Maximum Independent Set and Minimum Vertex Cover, established by
iterative compression, has running time O(1.3196n) on graphs of n vertices.

1 Throughout this paper we use a modified big-Oh notation that suppresses all polynomially bounded factors. For functions f and g we write f (n) =
O∗(g(n)) if f (n) = O(g(n)poly(n)), where poly(n) is a polynomial. Furthermore, since cn ·poly(n) = O((c+ε)n) for any ε > 0, we omit polynomial factors
in the big-Oh notation every time we round the base of the exponent.

Author's personal copy

1048 F.V. Fomin et al. / Theoretical Computer Science 411 (2010) 1045–1053

3. #d-Hitting Set and parameterized d-Hitting Set

TheHitting Set problem is a generalization of Vertex Cover. Here, given a family of sets over a ground set of n elements,
the objective is to hit every set of the family with as few elements of the ground set as possible. We study a version of the
hitting set problem where every set in the family has at most d elements.

Minimum d-Hitting Set (MHSd): Given a universe V of n elements and a collection C of subsets of V of size at most
d, find a minimum hitting set of C. A hitting set of C is a subset V ′ ⊆ V such that every subset of C contains at least
one element of V ′.

A counting version of the problem is #Minimum d-Hitting Set (#MHSd) that asks for the number of different minimum
hitting sets. We denote an instance of #MHSd by (V ,C). Furthermore we assume that for every v ∈ V , there exists at least
one set in C containing it.
We show how to obtain an algorithm to solve #MHSd using iterative compression which uses an algorithm for #MHSd−1

as a subroutine. First we define the compression version of the #MHSd problem.

Comp-#d-Hitting Set: Given a universe V of n elements, a collection C of subsets of V of size at most d, and a (not
necessarily minimum) hitting set H ′ ⊆ V of C, find a minimum hitting set Ĥ of C and compute the number of all
minimum hitting sets of C.

Lemma 6. Let O∗(and−1) be the running time of an algorithm solving #MHSd−1, where ad−1 > 1 is some constant. Then Comp-
#d-Hitting Set can be solved in time

O∗
(
2|H
′
|a|V |−|H

′
|

d−1

)
.

Moreover, if |H ′| is greater than 2|V |/3 and the minimum size of a hitting set in C is at least |H ′|− 1, then Comp-#d-Hitting Set
can be solved in time

O∗
((

|H ′|
2|H ′| − |V |

)
a|V |−|H

′
|

d−1

)
.

Proof. To prove the lemma, we give an algorithm that, for each possible partition (N, N̄) ofH ′, computes aminimumhitting
set HN and the number hN of minimum hitting sets subject to the constraint that these hitting sets contain all the elements
of N and none of the elements of N̄ .
For every partition (N, N̄) of H ′, we either reject it as invalid or we reduce the instance (V ,C) to an instance (V ′,C ′) by

applying the following two rules in the given order.

(H) If there exists a set Ci ∈ C such that Ci ⊆ N̄ then we refer to such a partition as invalid and reject it.
(R) For all sets Ci with Ci ∩ N 6= ∅ put C = C \ Ci. In other words, all sets of C, which are already hit by N , are removed.

Rule (H) is sound because if a set Ci ⊆ C is included in N̄ then no Ĥ ⊆ V \ N̄ contains an element of Ci and thus there is no
hitting set Ĥ ⊆ V \ N̄ . If a partition (N, N̄) of H ′ is not invalid based on rule (R) then the instance (V ,C) can be reduced to
the instance I ′ = (V ′,C ′), where V ′ = V \ H ′ and C ′ = {X ∩ V ′ | X ∈ C and X ∩ N = ∅}.
Summarizing, the instance I ′ is obtained by removing all the elements of V for which it has already been decided if they

are part of HN or not and all the sets that are hit by the elements in N . To complete HN , it is sufficient to find a minimum
hitting set of I ′ and to count the number of minimum hitting sets of I ′. The crucial observation here is that I ′ is an instance of
#MHSd−1. Indeed, H ′ is a hitting set of (V ,C) and by removing it we decrease the size of every set at least by one. Therefore,
we can use an algorithm for #MHSd−1 to complete this step. When checking all partitions (N, N̄) of H ′ it is straightforward
to keep the accounting information necessary to compute a minimum hitting set Ĥ and to count all minimum hitting sets.
Thus for every partition (N, N̄) of H ′ the algorithm solving #MHSd−1 is called for the instance I ′. There are 2|H

′
| partitions

(N, N̄) of the vertex set H ′. For each such partition, the number of elements of the instance I ′ is |V ′| = |V \H ′| = |V | − |H ′|.
Thus, the running time of the algorithm is O∗

(
2|H
′
|a|V |−|H

′
|

d−1

)
.

If |H ′| > 2|V |/3 and the minimum size of a hitting set in C is at least |H ′| − 1, then it is not necessary to check all
partitions (N, N̄) of H ′ as the number of relevant partitions of H ′ becomes significantly smaller than 2|H

′
|, and in this case

we can speed up the algorithm. Indeed, since

• |H ′| ≥ |Ĥ| ≥ |H ′| − 1, and
• |Ĥ ∩ (V \ H ′)| ≤ |V | − |H ′|,

it is sufficient to consider only those partitions (N, N̄) of H ′ such that

|N| ≥ |H ′| − 1− (|V | − |H ′|) = 2|H ′| − |V | − 1.

In this case, the running time of the algorithm is O∗
((

|H ′|
2|H ′|−|V |

)
a|V |−|H

′
|

d−1

)
. �

The following lemma will be useful for the forthcoming running time analysis.

Author's personal copy

F.V. Fomin et al. / Theoretical Computer Science 411 (2010) 1045–1053 1049

Lemma 7. Let n be a natural number and a be a non-negative constant. The sum of the terms
(j
2j−n

)
an−j for j = 0, 1, . . . , n is

upper bounded by O∗
((

1+
√
1+4ad−1
2

)n)
.

Proof. Let j = n − m. Then
(j
2j−n

)
an−j can be rewritten as g(n,m) =

(n−m
n−2m

)
am =

(n−m
m

)
am. By convention, we set g(n,m)

= 0 whenever n < m. Denote by G(n) the sum
∑n
m=0 g(n,m). By a well-known decomposition of binomial coefficients,

g(n,m) =
((n−m−1

m−1

)
+
(n−m−1

m

))
am = a · g(n − 2,m − 1) + g(n − 1,m). Thus G(n) ≤ G(n − 1) + a · G(n − 2). Standard

calculus yields that this recurrence is asymptotically upper bounded by O∗(αn) where α is the largest positive root of the
polynomial x2 − x− a = 0, i.e. α = 1+

√
1+4a
2 . �

Now we are ready to use iterative compression to prove the following theorem.

Theorem 8. Suppose there exists an algorithm to solve #MHSd−1 in time O∗(and−1), 1 ≤ ad−1 ≤ 2. Then #MHSd can be solved
in time

O∗

((
1+
√
1+ 4ad−1
2

)n)
.

Proof. Let (V ,C) be an instance of #MHSd, where V = {v1, v2, . . . , vn}. For i = 1, 2, . . . , n, let Vi = {v1, v2, . . . , vi} and
Ci = {X ∈ C | X ⊆ Vi}. Then Ii = (Vi,Ci) constitutes an instance for the ith stage of the iteration. We denote by Hi and hi, a
minimum hitting set of an instance Ii and the number of different minimum hitting sets of Ii respectively.
If {v1} ∈ C, then H1 = {v1} and h1 = 1; otherwise H1 = ∅ and h1 = 0.
Consider the ith stage of the iteration. We have that |Hi−1| ≤ |Hi| ≤ |Hi−1| + 1 because at least |Hi−1| elements are

needed to hit all the sets of Ii except those containing element vi and Hi−1 ∪ {vi} is a hitting set of Ii. Now, use Lemma 6 with
H ′ = Hi−1 ∪ {vi} to compute a minimum hitting set of Ii. If |H ′| ≤ 2i/3, its running time is O∗

(
max0≤j≤2i/3

{
2jai−jd−1

})
=

O∗
(
22i/3ai/3d−1

)
(for ad−1 ≤ 2). If |H ′| > 2i/3, the running time is O∗

(
max2i/3<j≤i

{(j
2j−i

)
ai−jd−1

})
. Since for every fixed

j > 2i/3, and 1 ≤ i ≤ n,(
j

2j− i

)
ai−jd−1 ≤

(
j

2j− n

)
an−jd−1,

the worst-case running time of the algorithm is

O∗
(
max

{
max
1≤i≤n

22i/3ai/3d−1, max2n/3≤j≤n

{(
j

2j− n

)
an−jd−1

}})
.

Finally,
(2n/3
n/3

)
= 22n/3 up to a polynomial factor, and thus the running time is O∗

(
max2n/3≤j≤n

{(j
2j−n

)
an−jd−1

})
. By Lemma 7,

this latest expression is bounded by O∗
((

1+
√
1+4ad−1
2

)n)
. �

Based on the O(1.2377n) algorithm for #MHS2 [26], we establish the following corollary :

Corollary 9. #MHS3 can be solved in time O(1.7198n).

The same approach can be used to design an algorithm for the optimization versionMHSd, assuming that an algorithm for
MHSd−1 is available. Based on theO(1.6278n) algorithm forMHS3 [26] this leads to anO(1.8704n) time algorithm for solving
MHS4.

Corollary 10. MHS4 can be solved in time O(1.8704n).

In the following theorem we provide an alternative approach to solve #MHSd. This is a combination of brute force
enumeration (for sufficiently large hitting sets) with one application of the compression algorithm of Lemma 6. For large
values of ad−1, more precisely for ad−1 ≥ 1.6553, this new approach gives faster algorithms than the one obtained by
Theorem 8.

Theorem 11. Suppose there exists an algorithm with running time O∗(and−1), 1 < ad−1 ≤ 2, solving #MHSd−1. Then #MHSd
can be solved in time

min
0.5≤α≤1

max
{
O∗
((
n
αn

))
,O∗

(
2αnan−αnd−1

)}
.

Author's personal copy

1050 F.V. Fomin et al. / Theoretical Computer Science 411 (2010) 1045–1053

Table 1
Running times of the algorithms for #MHSd andMHSd .

d #MHSd MHSd

2 O(1.2377n) [26] O(1.2108n) [24]
3 O(1.7198n) O(1.6278n) [26]
4 O(1.8997n) O(1.8704n)
5 O(1.9594n) O(1.9489n)
6 O(1.9824n) O(1.9781n)
7 O(1.9920n) O(1.9902n)

Table 2
Running times of the best known algorithms solving k-HSd for various values of d. The algorithms for 4 ≤ d ≤ 5 are based on Corollary 13.

d k-HSd

2 O(1.2738k · nO(1)) [5]
3 O(2.0755k · nO(1)) [26]
4 O(3.0755k · nO(1))

5 O(4.0755k · nO(1))

6 O(5.0640k · nO(1)) [11]
7 O(6.0439k · nO(1)) [11]

Proof. First the algorithm tries all subsets of V of size bαnc and identifies those that are a hitting set of I .
Now there are two cases. In the first case, there is no hitting set of this size. Then the algorithm verifies all sets of

larger size whether they are hitting sets of I . It is straightforward to keep some accounting information to determine
the number of hitting sets of the smallest size found during this enumeration phase. The running time of this phase is
O∗
(∑n

i=bαnc

(n
i

))
= O∗

((n
αn

))
.

In the second case, there exists a hitting set of size bαnc. Then count all minimum hitting sets using the compression
algorithm of Lemma 6 with H ′ being a hitting set of size bαnc found by the enumeration phase. By Lemma 6, this phase of
the algorithm has running time O∗

(
2αnan−αnd−1

)
. �

The best running times of algorithms solving #MHSd andMHSd are summarized in Table 1. For #MHS≥4 andMHS≥5, we use
the algorithm of Theorem 11. Note that theMHS2 problem is equivalent toMVC andMIS.
Finally, it is worth to note that the technique can also be used to solve the parameterized version of d-Hitting Set. Namely,

we consider the following problem:

(k, d)-Hitting Set (k-HSd): Given a universe V of n elements, a collection C of subsets of V of size at most d and an
integer k, find a hitting set of size at most k of C, if one exists.

Theorem 12. Suppose there exists an algorithm to solve k-HSd−1 in time O(akd−1 · n
O(1)), where ad−1 ≥ 1. Then k-HSd can be

solved in time O((1+ ad−1)k · nO(1)).

Proof. The proof is very similar to the one of Theorem 8 except that the size of a solution is now bounded by the parameter
k instead of n. Given a universe V = {v1, v2, . . . , vn} and a collection C, for i = 1, 2, . . . , n, let Vi = {v1, v2, . . . , vi} and
Ci = {X ∈ C | X ⊆ Vi}. Then Ii = (Vi,Ci) constitutes an instance of k-HSd for the ith stage of the iteration. We denote by Hi
a hitting set of size at most k, if one exists, of the instance Ii.
Clearly, if {v1} ∈ C, then H1 = {v1} (assuming that k ≥ 1); otherwise H1 = ∅ and h1 = 0.
Consider now the ith stage of the iteration. The relation |Hi−1| ≤ |Hi| ≤ |Hi−1| + 1 ≤ k + 1 holds since at least |Hi−1|

elements are needed to hit all the sets of Ii except those containing element vi and Hi−1 ∪ {vi} is a hitting set of Ii.
As we did in Lemma 6, for every partition (N, N̄) of Hi−1 ∪{vi}we apply the rules (H) and (R) (see the proof of Lemma 6).

Each not rejected partition (N, N̄) leads to an instance I ′i = (V ′i ,C
′

i) of k-HSd−1, where V
′

i = Vi \ (Hi−1 ∪ {vi}) and
C ′i = {X ∩ V

′

i | X ∈ Ci and X ∩ N = ∅}. Thus, by using an algorithm for k-HSd−1, a solution for of size at most k I ′i can
be found, if one exists. The overall running time is given by the formula

∑k
i=0

(k+1
i

)
ak−id−1 ≤ 2 · (1+ ad−1)

k. �

In particular, an immediate consequence of the previous theorem is the following :

Corollary 13. Suppose there exists an algorithm to solve k-HS3 in time O(ak3 · n
O(1)). Then, for any fixed d ≥ 4, k-HSd can be

solved in time O((a3 + d− 3)k · nO(1)).

By using an O(2.0755k · nO(1)) algorithm by Wahlström [26] for solving k-HS3, we obtain the running times depicted in
Table 2 for d = 4 and d = 5, which are, to the best of our knowledge, the best known algorithms.

Author's personal copy

F.V. Fomin et al. / Theoretical Computer Science 411 (2010) 1045–1053 1051

4. Maximum induced cluster subgraph

Clustering objects according to given similarity or distance values is an important problem in computational biology
with diverse applications, e.g., in defining families of orthologous genes, or in the analysis of microarray experiments
[7,10,14,17,21]. A graph theoretic formulation of the clustering problem is called Cluster Editing. To define this problem
we need to introduce the notion of a cluster graph. A graph is called a cluster graph if it is a disjoint union of cliques. In the
most common parameterized version of Cluster Editing the problem is stated as follows. The input is a graph G = (V , E)
and a positive integer k, the parameter. The task is to find out whether the input graph G can be transformed into a cluster
graph by adding or deleting atmost k edges. This parameterized problem is fixed parameter tractable if there is an algorithm
solving it in time f (k) ·nO(1), where f is an arbitrary computable function. The Cluster Editing problem has been extensively
studied in the realm of parameterized complexity [7,10,14,21]. In this section, we study a vertex version of Cluster Editing.
We study the following optimization version of the problem.

Maximum Induced Cluster Subgraph (MICS): Given a graph G = (V , E) on n vertices, find a maximum size subset
C ⊆ V such that G[C], the subgraph of G induced by C , is a cluster graph.

Due to the following well-known observation, theMICS problem is also known asMaximum Induced P3-free Subgraph.
Observation 14. A graph is a disjoint union of cliques if and only if it contains no induced subgraph isomorphic to the graph P3,
the path on three vertices.
Clearly, C ⊆ V induces a cluster graph in G = (V , E) (that is G[C] is a disjoint union of cliques of G) iff S = V \ C hits all
induced paths on three vertices of G. Thus solving theMICS problem is equivalent to finding a minimum size set of vertices
whose removal produces a maximum induced cluster subgraph of G. By Observation 14, this reduces to finding a minimum
hitting set S of the collection of vertex sets of (induced) P3’s of G. Such a hitting set S is called a P3-HS.
As customary when using iterative compression, we first define a compression version of theMICS problem.

Comp-MICS: Given a graph G = (V , E) on n vertices and a P3-HS S ⊆ V , find a P3-HS of G of size at most |S| − 1 if
one exists.

Lemma 15. Comp-MICS can be solved in time O∗(φn) where φ = (1+
√
5)/2 is the golden ratio.

Proof. For the proof we distinguish two cases based on the size of S.
Case 1: If |S| ≤ 2n/3 then the following algorithm which uses matching techniques is applied.

Step 1: Enumerate all partitions of (N, N̄) of S.
Step 2: For each partition, compute a maximum set C ⊆ V such that G[C] is a cluster graph, subject to the constraints that

N ⊆ C and N̄ ∩ C = ∅, if such a set C exists.
In Step 2, we reduce the problem of finding amaximum sized C to the problem of finding amaximumweightmatching in

an auxiliary bipartite graph. Independent of our work, Hüffner et al. [17] also use this natural idea of reduction to weighted
bipartite matching to obtain an FPT algorithm for the vertex weighted version of Cluster Vertex Deletion using iterative
compression. For completeness, we present the details of Step 2.
If G[N] contains an induced P3 then there is obviously no C ⊆ V inducing a cluster graph that respects the partition

(N, N̄). We call such a partition invalid.
Otherwise, G[N] is a cluster graph, and thus the goal is to find a maximum size subset C ′ of S = V \ S such that G[C ′ ∪N]

is a cluster graph. Fortunately, such a set C ′ can be computed in polynomial time by reducing the problem to finding a
maximum weight matching in an auxiliary bipartite graph.
First we describe the construction of the bipartite graph. Consider the graph G[N ∪ S] and note that G[N] and G[S] are

cluster graphs. Now the following reduction rule is applied to the graph G[N ∪ S].
(R) Remove every vertex b ∈ S for which G[N ∪ {b}] contains an induced P3.

Clearly all vertices removed by (R) cannot belong to any C ′ inducing a cluster subgraph of G. Let Ŝ be the subset of vertices
of S which are not removed by (R). Hence the current graph is G[N ∪ Ŝ]. Clearly G[Ŝ] is a cluster graph since G[S] is one.
Further, note that no vertex of Ŝ has neighbors in two different maximal cliques of G[N] and if a vertex of Ŝ has a neighbor
in one maximal clique of G[N] then it is adjacent to each vertex of this maximal clique. Thus, every vertex in Ŝ has either no
neighbor in N or it is adjacent to all the vertices of exactly one maximal clique of G[N].
Now we are ready to define the auxiliary bipartite graph G′ = (A, B, E ′). Let {C1,C2, . . . ,Cr} be the maximal cliques

of the cluster graph G[N]. Let {C ′1,C
′

2, . . . ,C
′
s} be the maximal cliques of the cluster graph G[Ŝ]. Let A = {a1, a2, . . . , ar ,

a′1, a
′

2, . . . , a
′
s} and B = {b1, b2, . . . , bs}. Here, for all i ∈ {1, . . . , r}, each maximal clique Ci of G[N] is represented by ai ∈ A;

and for all j ∈ {1, 2, . . . , s}, each maximal clique C ′j of G[Ŝ] is represented by a
′

j ∈ A and by bj ∈ B.
Now there are two types of edges in G′: ajbk ∈ E ′ if there is a vertex u ∈ C ′k such that u has a neighbor in Cj, and a′jbj ∈ E

′

if there is a vertex u ∈ C ′j such that u has no neighbor in N . Finally we define the weights for both types of edges in the
bipartite graph G′. For an edge ajbk ∈ E ′, its weight w(ajbk) is the number of vertices in C ′k being adjacent to all vertices of
the maximal clique Cj. For an edge a′jbj, its weightw(a

′

jbj) is the number of vertices in C ′j without any neighbor in N .
This transformation is of interest due to the following claim that uses the above notation.

Author's personal copy

1052 F.V. Fomin et al. / Theoretical Computer Science 411 (2010) 1045–1053

Claim. The maximum size of a subset C ′ of Ŝ such that G[N ∪ C ′] is a cluster subgraph of the graph G∗ = G[N ∪ Ŝ] is equal to the
maximum total weight of a matching in the bipartite graph G′ = (A, B, E ′).

Proof. We first show that any matching in G′ corresponds to a set Y ⊆ Ŝ that together with N induces a cluster subgraph
of G∗, that is, G[N ∪ Y] is a P3-free graph. To see this, let M = {e1, e2, . . . , et} be a matching in G′. Now if el = ajbk then Yl
is the set of vertices in C ′k which are adjacent to all vertices of the maximal clique Cj. Otherwise, if el = a′jbj then Yl is the
set of vertices in C ′j which have no neighbor in N . Now let us put Y =

⋃t
l=1 Yl. Clearly, |Y | =

∑t
l=1w(el). Now we claim

that G[N ∪ Y] is a disjoint union of cliques. To the contrary, suppose there exists an induced P3 in G[N ∪ Y], say P = xyz is
an induced P3 in G[N ∪ Y]. Then two of the vertices of P are in Y and one in N because of rule (R) and the fact that G[Ŝ] is a
cluster graph. First let x, z ∈ Y and y ∈ N and x ∈ C ′t1 , y ∈ Ct2 and z ∈ C ′t3 . This means selecting edges at2bt1 and at2bt3 inM .
Secondly, let x, y ∈ Y and z ∈ N , and thus x and y belong to the same clique C ′t1 , and z ∈ Ct2 . This means having edges at2bt1
and a′t1bt1 inM . In both cases this contradictsM being a matching. Consequently if there is a matchingM

′ in G∗ of weight k
then there is a set Y ⊆ Ŝ of size k such that G[N ∪ Y] is a cluster graph.
To prove the other direction, let {F1,F2, . . . ,Fq} be the maximal cliques of the cluster graph G[C ′], and let

{F ′1 ,F
′

2 , . . . ,F
′
p } be the maximal cliques of the cluster graph G[N ∪ C

′
]. Clearly, each F ′j , 1 ≤ j ≤ p, contains at most

one of {F l : 1 ≤ l ≤ q}. Let π(l) be the integer such that Fl ⊆ F ′π(l). If Fl = F ′π(l) then put el = a
′

lbl. Otherwise, if Fl ⊂ F ′π(l)
then put el = aπ(l)bl. Since π is injective, M = {e1, e2, . . . , eq} is a matching in G′ and the definition of the weights of the
edges in G′ implies that the total weight ofM is

∑q
l=1w(el) = |C

′
|. Thus there is a matching of G′ of total weight |C ′|. �

Note that the construction of the bipartite graph G′, including the application of (R) and the computation of a maximum
weighted matching of G′ can be performed in time O(n3) [9]. Thus, the running time of the algorithm in Case 1 is the time
needed to enumerate all subsets of S (whose size is bounded by 2n/3) and this time is O∗(22n/3) = O(1.5875n).
Case 2: If |S| > 2n/3 then the algorithm needs to find a P3-HS of G of size |S| − 1, or show that none exists.
The algorithm proceeds as in the first case. Note that at most n − |S| vertices of V \ S can be added to N . Therefore, the

algorithm verifies only those partitions (N, N̄) of S satisfying |N| ≥ |S| − 1− (n− |S|) = 2|S| − n− 1. In this second case,
the worst-case running time is

O∗
(
max
2/3<α≤1

{(
αn

(2α − 1)n

)})
and by Lemma 7 being no more than O∗(φn)where φ = (1+

√
5)/2. �

Now we are ready to prove the following theorem using iterative compression.

Theorem 16. Given a graph on n vertices,MICS can be solved in time O∗(φn) where φ = (1+
√
5)/2 < 1.6181 is the golden

ratio.

Proof. Given a graph G = (V , E) with vertex set V = {v1, v2, . . . , vn}, let Vi = {v1, v2, . . . , vi} and let Ci be a maximum
induced cluster subgraph of Gi = G[Vi]. Let Si = Vi \ Ci.
The algorithm starts with G1, C1 = {v1} and S1 = ∅. At the ith iteration of the algorithm, 1 ≤ i ≤ n, we maintain the

invariant that we have at our disposal Ci−1 a maximum set inducing a cluster subgraph of Gi−1 and Si−1 a minimum P3-HS
of Gi−1. Note that Si−1 ∪ {vi} is a P3-HS of Gi and that no P3-HS of Gi has size smaller than |Si−1|. Now use the algorithm of
Lemma 15 to solve Comp-MICS on Gi with S = Si−1 ∪ {vi}. Then the worst-case running time is attained at the nth stage of
the iteration and the run time is O∗(φn)where φ = (1+

√
5)/2. �

5. Conclusion

Iterative compression is a technique which is successfully used in the design of FPT algorithms. In this paper we show
that this technique can also be used to design exact exponential time algorithms. This suggests that it might be used in
other areas of algorithms as well. For example, how useful can iterative compression be in the design of approximation
algorithms?
Carrying over techniques from the design of FPT algorithms to the design of exact exponential time algorithms and vice

versa is a natural and tempting idea. A challenging question in this regard is whether Measure and Conquer, a method that
has been successfully used to improve the time analysis of simple exponential time branching algorithms, can be adapted
for the analysis of FPT branching algorithms.

Acknowledgements

The authors are grateful to an anonymous referee for many suggestions which led to improve the presentation of the
paper. The first author was partially supported by the Research Council of Norway.

Author's personal copy

F.V. Fomin et al. / Theoretical Computer Science 411 (2010) 1045–1053 1053

References

[1] A. Björklund, T. Husfeldt, Inclusion–exclusion algorithms for counting set partitions, in: The Proceedings of FOCS’06, 2006, pp. 575–582.
[2] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets Möbius: Fast subset convolution, in: The Proceedings of STOC’07, 2007, pp. 67–74.
[3] J.M. Byskov, Enumerating maximal independent sets with applications to graph colouring, Oper. Res. Lett. 32 (6) (2004) 547–556.
[4] J. Chen, F.V. Fomin, Y. Liu, S. Lu, Y. Villanger, Improved algorithms for feedback vertex set problems, J. Comput. System Sci. 74 (2008) 1188–1198.
[5] J. Chen, I.A. Kanj, G. Xia, Improved parameterized upper bounds for vertex cover, in: The Proceedings of MFCS’06, 2006, pp. 238–249.
[6] J. Chen, Y. Liu, S. Lu, I. Razgon, B. O’Sullivan, A fixed-parameter algorithm for the directed feedback vertex set problem, J. ACM 55 (5) (2008).
[7] F. Dehne, M.A. Langston, X. Luo, S. Pitre, P. Shaw, Y. Zhang, The cluster editing problem: Implementations and experiments, in: The Proceedings of
IWPEC’06, 2006, pp. 13–24.

[8] F. Dehne, M. Fellows, M. Langston, F. Rosamond, K. Stevens, An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem, Theory
Comput. Syst. 41 (3) (2007) 479–492.

[9] J. Edmonds, R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. ACM 19 (2) (1972) 248–264.
[10] M.R. Fellows, M.A. Langston, F.A. Rosamond, P. Shaw, Efficient parameterized preprocessing for cluster editing, in: The Proceedings of FCT’07, 2007,

pp. 312–321.
[11] H. Fernau, Parameterized algorithms for hitting set: The weighted case, in: The Proceedings of CIAC’06, 2006, pp. 332–343.
[12] F.V. Fomin, F. Grandoni, D. Kratsch, Measure and conquer: A simple O(20.288n) independent set algorithm, in: The Proceedings of SODA’06, 2006,

pp. 18–25.
[13] F.V. Fomin, F. Grandoni, D. Kratsch, A measure & conquer approach for the analysis of exact algorithms, J. ACM 56 (5) (2009).
[14] J. Guo, A more effective linear kernelization for cluster editing, Theoret. Comput. Sci. 410 (8–10) (2009) 718–726.
[15] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, S. Wernicke, Compression-based fixed-parameter algorithms for feedback vertex set and edge

bipartization, J. Comput. System Sci. 72 (8) (2006) 1386–1396.
[16] J.E. Hopcroft, R.M. Karp, An n5/2 algorithm for maximummatching in bipartite graphs, SIAM J. Comput. 2 (4) (1973) 225–231.
[17] F. Hüffner, C. Komusiewicz, H. Moser, R. Niedermeier, Fixed-parameter algorithms for cluster vertex deletion, in: The Proceedings of LATIN’08, 2008,

pp. 711–722.
[18] D.S. Johnson, C.H. Papadimitriou, M. Yannakakis, On generating all maximal independent sets, Inform. Process. Lett. 27 (3) (1988) 119–123.
[19] M. Koivisto, An O(2n) algorithm for graph colouring and other partitioning problems via inclusion–exclusion, in: The Proceedings of FOCS’06, 2006,

pp. 583–590.
[20] J.W. Moon, L. Moser, On cliques in graphs, Israel J. Math. 3 (1965) 23–28.
[21] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Trub, S. Böcker, Exact and heuristic algorithms for weighted cluster editing, in: The Proceedings

of Comput. Syst. Bioinformatics Conference’07, 6 (1), 2007, pp. 391–401.
[22] V. Raman, S. Saurabh, S. Sikdar, Efficient exact algorithms through enumerating maximal independent sets and other techniques, Theory Comput.

Syst. 41 (3) (2007) 1432–4350.
[23] B.A. Reed, K. Smith, A. Vetta, Finding odd cycle transversals, Oper. Res. Lett. 32 (4) (2004) 299–301.
[24] J.M. Robson, Algorithms for maximum independent sets, J. Algorithms 7 (1986) 425–440.
[25] R. Tarjan, A. Trojanowski, Finding a maximum independent set, SIAM J. Comput. 6 (3) (1977) 537–546.
[26] M. Wahlström, Algorithms, measures and upper bounds for satisfiability and related problems, Ph.D. thesis, Linköping University, Sweden, 2007.
[27] G.J. Woeginger, Exact algorithms for NP-hard problems: A survey, in: Combinatorial Optimization—Eureka, You Shrink!, 2003, pp. 185–207.

