
Theoretical Computer Science 411 (2010) 1167–1181

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Pursuing a fast robber on a graphI

Fedor V. Fomin a, Petr A. Golovach a,∗,1, Jan Kratochvíl b, Nicolas Nisse c, Karol Suchan d,e
a Department of Informatics, University of Bergen, N-5020 Bergen, Norway
b Institute for Theoretical Computer Science, Department of Applied Mathematics, Charles University, Praha, Czech Republic
cMASCOTTE, INRIA, I3S, CNRS, UNS, Sophia Antipolis, France
d Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
e Faculty of Applied Mathematics, AGH - University of Science and Technology, Cracow, Poland

a r t i c l e i n f o

Article history:
Received 17 October 2008
Received in revised form 28 September
2009
Accepted 13 December 2009
Communicated by G. Italiano

Keywords:
Pursuit-evasion game on graphs
Cops and Robbers
Complexity
Parameterized complexity
Cliquewidth
Planar graph

a b s t r a c t

The Cops and Robbers game as originally defined independently by Quilliot and by
Nowakowski andWinkler in the 1980s has beenmuch studied, but very few results pertain
to the algorithmic and complexity aspects of it. In this paper we prove that computing the
minimumnumber of cops that are guaranteed to catch a robber on a given graph is NP-hard
and that the parameterized version of the problem is W[2]-hard; the proof extends to the
case where the robber moves s time faster than the cops. We show that on split graphs, the
problem is polynomially solvable if s = 1 but is NP-hard if s = 2. We further prove that
on graphs of bounded cliquewidth the problem is polynomially solvable for s ≤ 2. Finally,
we show that for planar graphs the minimum number of cops is unbounded if the robber
is faster than the cops.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Cops and Robbers is a pursuit-evasion game with two players: C (Cops) andR (Robber) who play alternately on a finite,
connected, undirected graph G. Player C has a team of cops who attempt to capture the robber. At the beginning of the
game, C selects vertices and puts cops on these vertices. Then R puts the robber on a vertex. The players then take turns
starting with C. At every move each of the cops can either move to an adjacent vertex or not move at all (several cops can
occupy the same vertex at some move);R responds by moving the robber to some vertex along a path of length at most s
not containing vertices occupied by cops. In other words, the cops are moving with a unit speed and the speed of the robber
is s, and the robber cannot run through a vertex occupied by a cop. When s is unbounded (s = ∞), it means that at his turn
the robber can move anywhere in the connected component of G \ X containing his current position, where X is the subset
of vertices occupied by the cops. We say that a cop catches the robber at somemove if after that move they occupy the same
vertex. Player C wins if in a finite number of moves one of his cops catches the robber. PlayerR wins if he can avoid such
a situation. For an integer s and a graph G, we denote by cs(G) the minimum number of cops sufficient for C to win on the
graph G against the robber moving at the speed of s.
The variant of the gamewith s = 1, i.e. when the cops and the robber have the same speed, has been studied intensively.

The game was defined (for one cop) by Winkler and Nowakowski [33] and Quilliot [36] who also characterized graphs with
cop number one. Aigner and Fromme [2] initiated the combinatorial study of the problem with several cops and obtained a
number of important results. In particular, they observed that if the girth of G (the minimum length of a cycle) is at least 5,
then c1(G) is at least the minimum vertex degree of G. Another interesting result proved in [2] is that on planar graphs, 3
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cops can always catch the robber. This result can be generalized to graphs of bounded genus [35,39]. Andreae [5] extended
the result of Aigner and Fromme to graphs containing no fixed graph H as a minor. Different combinatorial (lower and
upper) bounds on the cop number for different graph classes are discussed in [4,9,11,16,20,21,26,29,30] (see also the surveys
[3,19,24]).
There is a resemblance of the Cops and Robbers game, at least for large values of s→∞, to the helicopter search game

defined by Seymour and Thomas [40], which is the game-theoretic interpretation of the well-known treewidth parameter.
In the Seymour–Thomas game the robber can move arbitrarily fast and players make their moves simultaneously. See the
survey of Bodlaender for an overview of pursuit-evasion games related to treewidth [7].
Despite such an intensive study of the combinatorial properties of the game, almost no algorithmic results on this game

are known. Perhaps the only algorithmic result known about Cops and Robbers game (for s = 1) is the observation (implicit
in [33]) that determining whether the cop number of a graph on n vertices is at most k can be done by a backtracking
algorithm which runs in time nO(k) (thus polynomial for fixed k) [6,25] (see also [22]).
Similar result holds for every s ≥ 1. Given an integer k and a graph G on n vertices, the question if cs(G) ≤ k can be

answered (and the correspondingwinning strategy of k cops can be computed) by constructing the game graph on 2
(n+k−1

k

)
n

nodes (every node of the game graph corresponds to a possible position in G of k cops and one robber, taking into account
two possibilities for the turn), and then by making use of backtracking to find if some cop-winning position can be obtained
from an initial position. While the proof of the following proposition is standard and easy (and we omit it here), it serves as
the main tool for obtaining all polynomial time algorithms in this work.
Proposition 1. For a given integer k ≥ 1 and a graph G on n vertices, the question if cs(G) ≤ k can be answered in time(n+k−1

k

)2
· nO(1) = nO(k).

Thus for every fixed k, one can decide in polynomial time if k cops can catch the robber on a given graph G. There are
several natural questions around Proposition 1. The first is, what is the complexity of the problem when k is part of the
input? Another is the problem fixed parameter tractable? There are many search and pursuit-evasion problems which are
fixed parameter tractable, i.e. for which deciding if k searchers (cops) can catch the evader (robber) on an n-vertex graph
can be done in time f (k) · nO(1) (we refer to Bodlaender’s survey [7] for examples of such problems).
There is a feature of the problem we find interesting and which distinguishes the problem from many known ‘‘hard’’

problems. Meyniel conjectured that c1(G) ∈ O(
√
n) for graphs on n vertices. It was proved by Bollobás et al. [9] that

this conjecture essentially holds for sparse random graphs. Currently best upper bound for general graphs was given by
Chiniforooshan [11], who has shown that there is a constant c > 0 such that for any graph G on n vertices, c1(G) ≤ c · n

log n .
By trying all possible values of k, 1 ≤ k ≤ c · n

log n , and using Proposition 1, we can compute the number c1(G) in time∑
1≤k≤c· nlog n

(
n+ k− 1
k

)2
· nO(1). (1)

Assuming for simplicity that c · nlog n is an integer, it can be easily seen that the sumabove is bounded by c ·
n
log n ·

( 2n
c·n/log n

)2
·nO(1).

By making use of Stirling formula and trivial calculations, it is possible to prove that(
2n

c · n/log n

)
≤

e
1
24n · c log n

√
π · n(2c log n− 1)

[
4

(c/ log n)c/ log n · (2− c/ log n)2−c/ log n

]n
= 2o(n).

Hence the sum (1) is bounded by 2o(n) · nO(1) and thus there is a subexponential time algorithm computing c1(G).
While the hardness result proved in this paper does not collapse any of the widely believed complexity hierarchies, we

still find it quite interesting, becausemost of the natural NP-hard problems are believed not to be solvable in subexponential
time [27].
There are several variants of similar games, for example the k-pebbles game, or the cat and k-mouse game, whose

solutions require nΩ(k) steps (see e.g. Adachi et al. [1]). However, all these games are played on directed graphs or the games
should either start, or end in specified positions (holes or cheese formice), and the proofs are strongly based on these specific
properties. Following this line of research, Goldstein and Reingold [22] proved that the version of the Cops and Robbers game
on directed graphs is EXPTIME-complete. Also, they have shown that the version of the game on undirected graphs when the
cops and the robber are given their initial positions is also EXPTIME-complete. They conjectured that the game on undirected
graphs (for s = 1) is also EXPTIME-complete. Again, their proofs strongly rely on the specific settings (adding directions or
fixing initial positions) and cannot be transferred to the standard Cops and Robbers game on undirected graphs, and their
conjecture is still open.

Our results and organization of the paper

In Section 2we prove that, for every s ≥ 1, deciding if cs(G) ≤ k is NP-hard.We also show that the parameterized version
of the problem isW [2]-hard. Loosely speaking, this means that the existence of a O(f (k) · nO(1))-time algorithm, i.e. a Fixed
Parameter Tractable (FPT), algorithm deciding if cs(G) ≤ k, where f is a function only of the parameter k and G is a graph on
n vertices, would imply that FPT = W [2], which is considered to be very unlikely in parameterized complexity. We refer to
the books [15,17,31] for information on parameterized complexity.
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For s ≥ 2, the hardness results can be refined for very restricted classes of graphs. In Section 3, we show that the prob-
lem remains NP-hard and W [2]-hard even when input is restricted to split graphs. We find it a bit surprising, especially
for s = ∞, i.e. when the speed of the robber is not bounded, because all known search and pursuit-evasion problems on
undirected graphs which look quite similar to this case, are polynomially solvable or at least fixed parameter tractable for
chordal graphs. For example, for helicopter search game [40], the minimum number of cops equals treewidth plus one and
can be easily calculated for chordal graphs. For node searching (see [23]), the corresponding problem can be solved in poly-
nomial time for split graphs, but remains NP-complete on chordal graphs. See also [34] for related results. Note also that,
for s = 1, one cop can always capture the robber on a chordal graph [36]. By continuing to investigate the complexity of
the problem on classes of chordal graphs, we show that, for every fixed s, the computation of cs(G) on interval graphs can
be done in polynomial time. In Section 4, we investigate the complexity of the problem on graphs of bounded cliquewidth.
We prove that on graphs of bounded cliquewidth the computation of numbers cs(G) can be done in polynomial time for
s = 1, 2. While most of polynomial time algorithms on graphs of bounded cliquewidth (and treewidth) are based on dy-
namic programming [13], this is not the case for the Cops and Robbers problem. Our proof is based on combinatorial bounds
and Proposition 1. Finally, in Sections 5 and 6, we consider the game on planar graphs. The behavior of the game for s ≥ 2
is very different from the game for s = 1. In particular, while c1(G) ≤ 3 for planar graphs [2] (and the cop number of the
n × n-grid is 2 for n ≥ 2), the value of c2(G) can be arbitrarily large. We prove that for s = 2, c2(G) ∈ Ω(

√
log n) cops are

necessary to capture a robber in the n× n square-grid. In Section 6, we extend this result by showing that for s = 2, every
planar graphH that contains the n×n-grid with n ∈ Ω(2k

2
) as an induced subgraph has cop number at least k. We conclude

with open problems in Section 7. Preliminary version of these result appeared in [18,32].

2. Cops and robbers is NP-hard

This section is devoted to the proof of the following result
Theorem 1. For every s ≥ 1, the following problem is NP-hard
INSTANCE: A graph G and a positive integer k.
QUESTION: Is cs(G) ≤ k?
Moreover, the parameterized version
INSTANCE: A graph G.
PARAMETER: A positive integer k.
QUESTION: Is cs(G) ≤ k?
of the Cops and Robbers problem is W [2]-hard for every s ≥ 1.

2.1. Bipartite graphs with large girth and degrees of vertices

Let us start with auxiliary results. We want to construct a bipartite graph with girth (recall that the girth of a graph is the
length of its shortest cycle) at least six and largeminimum vertex degree with some additional properties. The study of such
graphs has a long history (see e.g. [8]). There are different approaches for obtaining such graphs. Most of them are geometric
or algebraic. For our reduction we use an algorithmic construction based on the construction of Krishnan et al. [28].
For positive integers n, m, and r , we construct a bipartite graph H(n,m, r) with rmn2 edges and a bipartition (X, Y ),

|X | = |Y | = nm. The set X is partitioned into sets U1,U2, . . . ,Un, and set Y is partitioned into sets W1,W2, . . . ,Wn,
|Ui| = |Wi| = m for i = 1, 2, . . . , n. We denote by Hi,j the subgraph of H(n,m, r) induced by Ui ∪ Wj, and by degi,j(z)
the degree of vertex z in Hi,j. We denote by E the set of edges in H(n,m, r) and by dist(x, y) the distance between vertices x
and y in H(n,m, r).
The graph H(n,m, r) is constructed by the following procedure which starts from an empty graph on vertices X ∪ Y and

adds edges according the following rules:

for k := 1 to rm do
let t := d kme;
if k is odd then
for i := 1 to n do
for j := 1 to n do
choose a vertex x ∈ Ui of minimum degree in Hi,j;
let S := {z ∈ Wj : dist(x, z) > 1 and degi,j(z) < t + 1};
select a vertex y ∈ S such that dist(x, y) = maxz∈S dist(x, z); add (x, y) to E;

else
for j := 1 to n do
for i := 1 to n do
choose a vertex y ∈ Wj of minimum degree in Hi,j;
let S := {z ∈ Ui : dist(y, z) > 1 and degi,j(z) < t + 1};
select a vertex x ∈ S such that dist(x, y) = maxz∈S dist(x, z); add (x, y) to E;
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Value of t is called the phase number of the algorithm. Clearly, the algorithm has to complete r phases. If k is odd, then
we say that the n2 edges added by the algorithm for this value of k are added during the odd phase t . Correspondingly, if k
is even then we say that the n2 edges added by the algorithm for this value of k are added during the even phase t .
The following lemma, which is the direct analog of Lemma 1 from [28], establishes the key invariants maintained by the

algorithm. We omit the proof of this lemma here.

Lemma 1. For every 1 ≤ t ≤ r, the following holds:
1. When the algorithm completes an odd phase t, the average degree of vertices of Ui in Hi,j is r and t − 1 ≤ degi,j(x) ≤ t + 1,
for x ∈ Ui and i, j ∈ {1, 2, . . . , n};

2. When the algorithm completes an even phase t, the average degree of vertices of Wj in Hi,j is r and t − 1 ≤ degi,j(y) ≤ t + 1,
for y ∈ Wj and i, j ∈ {1, 2, . . . , n}.

It can be easily seen that, if set S is empty, then the algorithm cannot add an edge. The next lemma gives a sufficient
condition, which makes such a situation impossible.

Lemma 2. If r < m+3
6 , then the algorithm completes all r phases.

Lemma 2 is a simplified version of the lemma 2 of [28] and we omit its proof here.
Now we can summarize properties of the algorithm and of the graph H(n,m, r)which will be used in our reduction.

Lemma 3. Let m ≥ 2n(r + 1) (n(r+1)−1)
6
−1

(n(r+1)−1)2−1
. Then

1. the algorithm constructs the graph H(n,m, r) in time O(r ·m · n2);
2. for every vertex z ∈ V (Hi,j) and every i, j ∈ {1, 2, . . . , n}, we have r − 1 ≤ degi,j(z) ≤ r + 1;
3. for every vertex z, deg(z) ≤ n(r + 1);
4. the girth of H(n,m, r) is at least six.

Proof. The first three items are immediate corollaries of Lemmas 1 and 2.
In order to prove 4, let us assume that a cycle of length g = 2p, p ≥ 1, where g is the girth of H(n,m, r), was created

during the phase t of the algorithm. Without loss of generality, we can assume that the last edge (x, y) of this cycle was
added during an odd phase t , and x ∈ Ui, y ∈ Wj. Let D = {z ∈ Wj : dist(x, z) ≥ g}. Since vertex x has no neighbors in D,
we have that, for every z ∈ D, degi,j(z) = t + 1 during the even phase t . By Lemma 1, |D| ≤

m
2 . Thus, |Wj \ D| ≥

m
2 . Clearly

dist(x, z) ≤ g − 1 = 2p − 1, for every z ∈ Wj \ D. Let us estimate the number of vertices at distance at most 2p − 1 from
x in H(n,m, r). Since the maximum vertex degree in H(n,m, r) is at most n(r + 1), we have that the number of vertices at
distance at most 2p− 1 from x is at most

n(r + 1)+ n(r + 1)(n(r + 1)− 1)2 + · · · + n(r + 1)(n(r + 1)− 1)2(p−1)

= n(r + 1)
(n(r + 1)− 1)2p − 1
(n(r + 1)− 1)2 − 1

.

Thus

n(r + 1)
(n(r + 1)− 1)6 − 1
(n(r + 1)− 1)2 − 1

≤
m
2
≤ n(r + 1)

(n(r + 1)− 1)2p − 1
(n(r + 1)− 1)2 − 1

,

which yields g = 2p ≥ 6. �

2.2. Proof of Theorem 1

Now we are ready to proceed with the proof of the main result of this section. Recall that a dominating set for a graph
Gis a subset D ⊆ V (G) such that every vertex of G is either in D, or is adjacent to a vertex of D. We use a reduction from the
well-known NP-complete Minimum Dominating set problem.

INSTANCE: A graph G and a nonnegative integer k.
QUESTION: Does G contain a dominating set of cardinality at most k?

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. Let r = k+ 2 and

m =
⌈
2n(r + 1)

(n(r + 1)− 1)6 − 1
(n(r + 1)− 1)2 − 1

⌉
.

For every vertex vi ∈ V (G)we add 2m new vertices andmake each new vertex adjacent to vertices from N[vi] (in G). We use
m of the new vertices to compose the set Ui, and the other m vertices to compose the setWi. Then we apply the algorithm
from the previous section to construct the bipartite graph H(n,m, r) on the vertex set

(U1 ∪ U2 ∪ · · · ∪ Un) ∪ (W1 ∪W2 ∪ · · · ∪Wn).

Denote the resulting graph by G′. By Lemma 3, G′ is constructed in time polynomial in n and k.
Now we prove that graph G has a dominating set of size at most k if and only if cs(G′) ≤ k.
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We say that a vertex is dominated by a cop if this vertex is occupied by the cop or some adjacent vertex is occupied by
the cop.
Let S ⊆ V (G) be a dominating set in G of size ≤ k. Since cops placed on the vertices of S dominate all vertices of G′, for

every vertex choice of the robber, he will be caught after the first move of the cops.
In opposite direction, let us assume that G has no dominating set of size k and describe the strategy of the robber avoiding

cops. Let S be the set of vertices chosen by cops for their initial position. Since this set is not a dominating set in G, we have
that there is a vertex vi ∈ V (G)which is not dominated by cops. The degree of every vertex of H(n,m, r) is at most n(r + 1)
and thus k cops dominate at most kn(r + 1) vertices in Ui. The set Ui containsm vertices, therefore,

m =
⌈
2n(r + 1)

(n(r + 1)− 1)6 − 1
(n(r + 1)− 1)2 − 1

⌉
> kn(r + 1).

So there is a vertex u ∈ Ui which is not dominated by cops. The robber chooses this vertex as his initial position. Suppose
now that after some robber’s move the robber occupies a vertex u ∈ Ui which is not dominated by cops. If after the next
move of cops this vertex is still not dominated then the robber stays there. If it becomes dominated, then the robber does
the following. Let S be the set of vertices of G occupied by cops. Since this set is not a dominating set in G, there is a vertex
vj ∈ V (G)which is not dominated by the cops standing at S. The vertex u has at least r − 1 = k+ 1 neighbors inWj. Since
graph H(n,m, r) has the girth at least six, we have that at least one of these neighbors is not dominated by cops. Then the
robber moves into this vertex (note that he moves along a path of length 1). Clearly, this strategy of the robber gives him
possibility to avoid cops. This completes the NP-hardness part of the proof.
To prove W [2]-hardness, it is sufficient to observe that our reduction from dominating set (which is W [2]-hard) is an

FPT reduction.

3. Complexity on split and interval graphs

A graph G is a split graph if the vertex set of G can be partitioned into sets C and I , such that C is a clique, and I is an
independent set. It is well known that c1(G) = 1 on a superclass of chordal graphs [33]. Also, the treewidth of a chordal
graph can be computed in polynomial time, and thus the search game of Seymour–Thomas [40] is tractable on chordal
graphs. However, for s ≥ 2, the problem of computing cs(G) becomes difficult even for split graphs.

Theorem 2. For every s ≥ 2 the following problem is NP-hard.
INSTANCE: A split graph G, and a nonnegative integer k.
QUESTION: Is cs(G) ≤ k?
Moreover, for every s ≥ 2 the parameterized version of the problem is W [2]-hard on split graphs.

Proof. The proof of this theorem uses the constructions from the proof of Theorem 1. It is known that the Minimum
Dominating set problem is NP-complete (and its parameterized version is W[2]-hard) even when the input is restricted
to split graphs [37].
Let G be a split graph with clique C and independent set I = {v1, v2, . . . , vp}. Let also r = k+2 andm =

⌈
2(r+1) r

6
−1

r2−1

⌉
.

Each vertex vi ∈ I is replaced by m new vertices, which form set a Vi. Let N(vi) be the set of neighbors of vi in the original
graph G. We make every new vertex from Vi adjacent to all vertices in N(vi). Then we add m vertices forming a set W to
the clique (i.e. these vertices are joined by edges with each other and with all vertices of C). Now we construct p copies of
the graph H(1,m, r) with vertex sets V1 ∪W , V2 ∪W , . . . , Vp ∪W (Vi = X andW = Y for each copy of H(1,m, r)). The
resulting graph is denoted by G′. Clearly, this graph is a split graph, and can be constructed in polynomial time.
Now we prove that for any s ≥ 2, graph G has a dominating set of size at most k if and only if cs(G′) ≤ k.
Suppose that S ⊆ V (G) is a dominating set in G and |S| ≤ k. Clearly we can assume that S ⊆ C . It can be easily seen

that S is a dominating set in G′. We place cops in vertices of S, and for every possible choice of an initial position, the robber
would be captured after the first move of cops.
Assume now that for every S ⊆ V (G), |S| ≤ k, S is not a dominating set of G, and describe the strategy of the robber.

Suppose that cops have chosen initial positions, and S is the set of vertices of G occupied by cops. Since this set is not a
dominating set in G, there is i ∈ {1, 2, . . . , p} such that vertices of Vi are not dominated by cops standing on vertices of S.
Since each vertex u ∈ W is adjacent to no more than k+ 3 vertices of Vi and k(k+ 3)+ 1 ≤ m, we have that there is vertex
x ∈ Vi which is not dominated by cops standing on vertices of W . The robber chooses this vertex as his initial position.
Suppose now that after some moves the robber occupies vertex x ∈ Vi which is not dominated by cops. If after next move
of cops this vertex is still not dominated, then the robber stays there. Suppose that it became dominated. Let S be the set
of vertices of G occupied by cops. Since this set is not a dominating set in G, there is j ∈ {1, 2, . . . , p} such that vertices of
Vj are not dominated by cops standing on vertices of S. The vertex x has at least k + 1 adjacent vertices inW . So there is a
vertex y ∈ W which is adjacent to x and is not occupied by cops. Now vertex y has at least k + 1 neighbors in Vj. Since the
graph H(1,m, r) has girth at least six, at least one vertex z ∈ Vj in the neighborhood of y is not dominated by cops. Then the
robber can move from x to y and then to z. Such a strategy provides the robber with an opportunity to avoid capture.
To establish the parameterized complexity on split graphs, we observe that the parameterized version of the dominating

set problem remains W [2]-hard on split graphs and that the reduction from DOMINATING SET described above is an FPT
reduction. �



1172 F.V. Fomin et al. / Theoretical Computer Science 411 (2010) 1167–1181

Another well-known class of chordal graphs are interval graphs. An interval graph is the intersection graph of a set
of intervals on the real line, i.e. every vertex corresponds to an interval and two vertices are adjacent if and only if the
corresponding intervals intersect. We show that for every interval graph G and an integer s, cs(G) can be computed in
polynomial time. Actually, the only property of interval graphs we need is the existence of dominating pairs. A dominating
pair in a connected graph G is a pair of (not necessarily different) vertices u and v, such that the vertex set of every u, v-path
in G is a dominating set. A caterpillar is a tree which consists of a path, called backbone, and leaves adjacent to vertices of the
backbone. For a graph G and an integer p, the pth power of G, Gp is the graph on vertex set V (G); vertices u, v are adjacent
in Gp if and only if the distance between them is at most p in G.

Lemma 4. Let G be a graph with a spanning caterpillar T , and let p be an integer such that G is a subgraph of T p. Then
cs(G) ≤ max{1, ps− 1}.

Proof. We describe a winning strategy for k = max{1, ps − 1} cops. Suppose that P = (v1, v2, . . . , vr) is a backbone of
T . Cops occupy first k vertices of the backbone. Then they move along P simultaneously. If after some robber’s move he is
standing on the vertex adjacent to the vertex occupied by a cop, then this cop makes the capturing move.
For a vertex v, we useN[v] to denote the closed neighborhood of v, i.e. the set of all vertices adjacent or equal to v. We use

induction to prove that if at some step cops occupy vertices vi, vi+1, . . . , vi+k−1 then the robber cannot move to any vertex
of set

⋃i+k−1
j=1 N[vj]without being captured after the next move of cops. Clearly, this holds after the first move of cops. Let us

consider the ith move. By the induction assumption, before this move of cops the robber is at some vertex x /∈
⋃i+k−2
j=1 N[vj].

If he is going to move to a vertex y ∈
⋃i+k−1
j=1 N[vj], he has to go along some path of length at most swhich does not contain

cops. Since G ⊆ T p, the distance between x and y in T is at most ps. Then y ∈
⋃i+k−1
j=i N[vj], i.e. y is adjacent to a vertex

occupied by some cop and thus the robber is caught at the next move of cops. �

Lemma 5. Let G be a connected graph with a dominating pair. Then cs(G) ≤ 5s− 1.

Proof. Let u and v be a dominating pair, and P be a shortest u, v-path in G. Then P is the backbone of a spanning caterpillar
T in G. Since P is a shortest path, G ⊆ T 5. Now we apply Lemma 4. �

Combining Proposition 1 with Lemma 5, we obtain the following result.

Corollary 1. For every positive integer s, cs(G) can be computed in time nO(s) on graphs with a dominating pair.

Corollary 1 yields polynomial time algorithms for many graph classes containing a dominating pair. These include not only
interval graphs and cocomparability graphs, but also themore general class of AT-free graphs (Asteroidal Triple free graphs).
See [10,12] for definition and properties of AT-free graphs.

4. Graphs of bounded cliquewidth

Cliquewidth is a graph parameter that measures in a certain sense the complexity of a graph. This parameter was
introduced by Courcelle, Engelfriet, and Rozenberg [13].
LetG be a graph, and k be a positive integer. A k-graph is a graphwhose vertices are labeled by integers from {1, 2, . . . , k}.

We call the k-graph consisting of exactly one vertex labeled by some integer from {1, 2, . . . , k} an initial k-graph. The
cliquewidth of a graph is the smallest integer k such that G can be constructed from initial k-graphs by means of repeated
application of the following three operations:

• Disjoint union (denoted by⊕).
• Relabeling: changing all labels i to j (denoted by ρi→j).
• Join: connecting all vertices labeled by iwith all vertices labeled by j (denoted by ηi,j).

If a graph G has cliquewidth k, then there is an expression tree for Gwhich corresponds to the procedure of constructing
of k-graph isomorphic to G by the described operations. The expression tree is a rooted tree T of the following form:

• The nodes of T are of four types i,⊕, η and ρ.
• Introduce nodes i(v) are leaves of T , corresponding to initial k-graphs with vertices v, which are labeled i.
• A union node⊕ stands for a disjoint union of graphs associated with children.
• A join node ηi,j with one child is associated with the k-graph which is the result of join operation for the graph
corresponding to the child.
• A relabel node ρi→j also with one child is associated with the k-graph, which is the result of relabeling operation for the
graph corresponding to the child.
• The graph G is isomorphic to the graph associated with the root of T (with all labels removed).

Notice that a node refers to the vertices of T , by opposition to the vertices of G. For a node v of T , we denote by Tv the subtree
of T rooted at v, and by Gv the k-graph associated with this node. Clearly, Tv is an expression tree for the subgraph Gv of G.

Theorem 3. Let G be a connected graph of cliquewidth k. Then c1(G) ≤ k and c2(G) ≤ 2k.
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Proof. If our graph has one vertex then the statement is trivial. So assume that G contains at least two vertices.
We start with the first bound. Let T be an expression tree for G. We describe a cops’ strategy, which is constructed by

tracing of T starting from the root. The key idea of the strategy is to force the robber to stay in the vertices of the graph Gv ,
where v is a child of the node of T under consideration.
It is assumed that at the beginning the cops occupy some vertices of G. We say that a cop moves to a vertex z if he is

moved to this vertex by a sequence of moves. In the process of pursuit, some cops are assigned to sets of vertices of the
graph. Correspondingly, these cops (sets) are called assigned, and the other cops are called free.
Let u be a node of T . It is assumed inductively that the robber occupies some vertex of Gu, and that all vertices of V (Gu),

which are adjacent to vertices of V (G) \ V (Gu), are dominated by assigned cops. Suppose that S1, S2, . . . , Sr are disjoint sets
of vertices of Gu, to which cops are assigned. The cop assigned to the set Si occupies some vertex, which is adjacent to all
vertices of this set, and every set has exactly one assigned cop. If u is the root of T , then r = 0. Now we consider different
cases.
Case 1. u is an introduce node. Since the unique vertex of Gu is dominated by some cop, this case is trivial.
Case 2. u is a union node. Let v1, v2, . . . , vt be the children of u in T . Since Gu is a disjoint union of Gv1 ,Gv2 , . . . ,Gvr , we have
that the robber can stay only in vertices of the graph Gvi for some 1 ≤ i ≤ r . If for some j ∈ {1, 2, . . . , r} Sj ∩ V (Gvi) = ∅,
then the cop assigned to this set is declared free. For other sets we put Sj = Sj ∩ V (Gvi). Finally, we put u = vi and the cops
proceed with the new list of assigned sets.
Case 3. u is a join node ηi,j with child v. Let X ⊆ V (Gu) be the set of vertices labeled by i, and Y ⊂ V (Gu) be the set of vertices
labeled by j. If X is not included in the list of assigned sets, then a vertex z ∈ Y is chosen, some free cop is moved to this
vertex, and this cop is assigned to X . Similarly, if Y is not included in the list of assigned sets, then vertex z ∈ X is chosen,
some free cop is moved to this vertex and is assigned to Y . The game proceeds with the new list of assigned sets for u = v.
Case 4. u is a relabel node ρi→j with child v. Let X ⊂ V (Gu) be the set of relabeled vertices. If for some t ∈ {1, 2, . . . , r},
X ⊂ St , then set St is partitioned into X and St \ X , and one additional free cop is moved to a vertex dominating X . This cop
is assigned to X and the one that was assigned to St is assigned to St \ X . Then cops proceed further with the new list of
assigned sets for u = v.
By following this strategy, Cop player is guaranteed that at some moment he reaches a position in the game when it is

his turn to make a move and that the robber occupies a vertex of some assigned set. Since each of the assigned vertices is
dominated by a cop, it follows that at some moment Cop player can win the game by catching the robber.
Let us prove that k cops are sufficient to perform this strategy. We use here the following property: For every node

u ∈ V (T ) with assigned sets S1, S2, . . . , Sr , no label is used on vertices from two different sets. This property can be shown
by inductive arguments. By definition, it holds when u is the root of T . Suppose that after some step of the pursuit two
different sets Si and Sj have vertices with same label. But this means that in the process of construction of G from Gu these
sets have to be subjected to relabeling and join operations simultaneously. Then all vertices of these sets should be included
into one assigned set after some join operation. Thus r ≤ k, which yields that c1(G) ≤ k.
The second bound is proved similarly. The main difference is that we assign not one but two cops to a set. Let u be a node

of T . For the case s = 1 cops were able to succeed by dominating all vertices of V (Gu), which are adjacent to vertices of
V (G) \ V (Gu). In the case s = 2, this is not sufficient and cops also have to control all vertices of V (G) \ V (Gu), which are
adjacent to vertices of V (Gu). Except for this, the proof of this bound is almost identical to the case of s = 1 and we omit it
here. �

In combination with Proposition 1, Theorem 3 implies that

Corollary 2. For every graph G of bounded cliquewidth, the numbers c1(G) and c2(G) can be computed in polynomial time.

Let us remark that the results of this section cannot be extended for s ≥ 3 because cs(G) is not bounded by the
cliquewidth of a graph. Consider, for example, a complete n-partite graph with partition sets V1, V2, . . . , Vn, |Vi| = n for
every i ∈ {1, 2, . . . , n}. Then we add n vertices v1, v2, . . . , vn and for every i ∈ {1, 2, . . . , n}make vi adjacent to all vertices
from Vi. Let Gn be the resulting graph. It is easy to see that this graph has cliquewidth at most 3 and that cs(Gn) = n for s ≥ 3.

5. Fast robber in grids

This section is devoted to the proof of the following theorem. This result must be put in contrast with the fact that
c1(G) ≤ 2 for any square-grid G.

Theorem 4. For any n× n square-grid G, c2(G) ∈ Ω(
√
log(n)).

To prove Theorem 4, we propose an evasion strategy for a robber with speed 2 against k ≥ 1 cops in any n × n square-
grid, where n ∈ Ω(2k

2
). In the following, k ≥ 1 is fixed and we fix an ordering of the k cops: cop1, . . . , copk. Intuitively,

the strategy we design for the robber is defined recursively. There are k + 1 levels in our strategy. For any 0 < i ≤ k, the
level-i strategy uses the level-(i−1) strategy as a subroutine. The key point is that the level-i strategy only deals with i cops:
cop1, . . . , copi, and maintains as an invariant the fact that copi remains ‘‘far enough’’ from the robber.
Let us start with some definitions.
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5.1. Recursive partition of a grid

Let a > 0 and b > 2 be two constants whose values will be specified later. We define two sequences of integers
(zoom1, . . . , zoomk+1) and (size0, . . . , sizek) and size0 = 2. For every 1 ≤ i ≤ k, we set

zoomi = abi,
and

sizei = size0 ·
i∏
j=1

zoomj.

Finally, let zoomk+1 = 2 and n = sizek · zoomk+1 = 4 · ak · bk(k+1)/2 ∈ Ω(2k
2
). In the following, G denotes the n × n

square-grid, and n is the size of the grid.
The main idea behind our analysis is to fix a recursive partition of G into gradually smaller subgrids of levels k down to

0. That is, we give a fractal-like structure to G which consists of 4 = (zoomk+1)2 vertex-disjoint square-grids of size sizek.
These four sizek× sizek square-grids are called the k-subgrids of G. Then, recursively, for i = k down to 1, a i-subgrid consists
of (zoomi)2 vertex-disjoint square-grids of size sizei−1. These subgrids are the (i− 1)-subgrids of G. Therefore, for any i ≤ k,
G consists of (

∏k+1
j=i+1 zoomj)

2 vertex-disjoint i-subgrids.
Let us introduce a coordinate system for subgrids at each level i, 0 ≤ i ≤ k. The coordinates of an i-subgrid H are

(abs(H), ord(H)), which correspond to the row (bottom-up) and column (left-right) occupied by H in the partition of G
into i-subgrids. In other words, a vertex v is in H if and only if the abscissa (column) of v is between (abs(H)− 1) · sizei + 1
and abs(H) · sizei, and the ordinate (row) of v is between (ord(H)− 1) · sizei + 1 and ord(H) · sizei. Let ` ≥ 1 and let H i be
an i-subgrid of G. We note by around`(H i) the subgrid induced by the i-subgrids H , such that |ord(H i) − ord(H)| ≤ ` and
|abs(H i)− abs(H)| ≤ `.
Notation. In the following, around1(H i) will be denoted by around(H i). Moreover, we define a new sequence of integers
(margin1, . . . ,margink), which is a sequence of safety distances. And for any i, 0 ≤ i < k, and any i-subgrid H i, margin(H i)
will denote aroundmargini(H

i).
Definition 1. For any i ≤ k, copi is far enough from a (i− 1)-subgrid R if this cop does not occupy a vertex in around(R).
Definition 2. For any i ≤ k, copi is not too close to a (i− 1)-subgrid R if this cop does not occupy a vertex inmargin(R).
For any i, j ≤ k, an i-subgrid of G is adjacent to a j-subgrid if they are vertex-disjoint and there is an edge of G that is

incident to a vertex of each of them. A path of i-subgrids is a sequence (G1, . . . ,Gr) of i-subgrids of G such that Gj is adjacent
to Gj+1, 1 ≤ j < r . The length of such a path is simply the number of i-subgrids. In the following, we will recursively design
a strategy of the robber in terms of paths of i-subgrids. More precisely, a level-i strategy for the robber will be a path of
(i− 1)-subgrids (i ≥ 1). That is, when the robber is occupying a vertex of some i-subgrid R and need to reach a vertex of an
i-subgrid R′ adjacent to R, the robber will follow a path P of (i− 1)-subgrids. Recursively, to go from one (i− 1)-subgrid of
P to an adjacent one, the robber will follow the level-(i− 1) strategy, i.e., a path of (i− 2)-subgrids, and so on.

Notation. At any step t of the game, the i-subgrid occupied by the robber at this step, i.e., the i-subgrid that contains the
vertex occupied by the robber, is denoted by Rit (or R

i if no confusion can occur).
The next definition is crucial in our proof. Somehow, it describes a position of the robber that is safe with respect to a

subset of the cops.
Definition 3. Let i ≤ k. The robber occupies an i-nice position if, for all 1 ≤ j ≤ i, copj is not too close to Rj−1 andmargin(Rj−1)
is contained in Rj. Any position is a 0-nice position.
As we said, a level-i strategy for the robber is a path of (i − 1)-subgrids that the robber must follow to go from an i-

subgrid to an adjacent one. More precisely, the goal of a strategy of level-i consists of the following. Given that the robber
is occupying an i-nice position in some i-subgrid H of G, and given any i-subgrid D adjacent to H , a level-i strategy will be
defined as a path of (i − 1)-subgrids that allows the robber to reach an i-nice position in D, in such a way that copi always
remains far enough from the robber, i.e., copi never enters around(Ri−1t ). The key (and maybe counterintuitive) point when
defining a level-i strategy is that it is defined considering only the position and themoves of copi. Actually, for any j < i, copj
is taken into account by the level-j strategy used inductively in the definition of the level-i strategy. However, for any j ≤ k,
a level-j strategy does not care about copj+1, . . . , copk, and it is defined as if they did not exist.
The last constraint we need to impose on a level-i strategy concerns its duration. For our purpose, we need the robber

to go from a i-nice position in some i-subgrid into an i-nice position in any adjacent i-subgrid ‘‘quickly’’. Hence, we define
a new sequence of integers (time0, . . . , timek) which is a sequence of numbers of rounds. For any i ≤ k, timei is an upper
bound on the numbers of rounds required by the robber following a level-i strategy, in order to go from an i-nice position
on an i-subgrid to a i-nice position on a neighboring i-subgrid. Because the robber has speed 2 and size0 = 2, time0 = 1.
Note that timei ≥ zoomi · timei−1, indeed, if the robber goes straight ahead, it may cross at least zoomi (i − 1)-subgrids to
go from an i-subgrid to an adjacent one. Actually, following our level-i strategy, the robber may cross more (i− 1)-subgrids
in order to evade copi. We define a new sequence of integers (detour1, . . . , detourk)which is a sequence of extra distances.
For any i ≤ k, detouri is an upper bound on the number of additional (i− 1)-subgrids that the robber (following the level-i
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strategy) needs to travel in order to cross a i-subgrid. More precisely, starting from an i-nice position, the length of the path
of (i−1)-subgrids (i.e., the number of (i−1)-subgrids of such a path) that the robber will follow to go into an i-nice position
in a neighboring i-subgrid is upper bounded by zoomi + detouri. In other words, timei = (zoomi + detour) · timei−1. The
robber is fast if he goes from an i-subgrid to an adjacent one in less rounds than a cop, i.e., if timei < sizei.

5.2. Some equalities and technical lemmas

In this section, we specify the relationships between the sequences of integers we introduced in the previous section.We
also prove two technical lemmas that will be useful in the proof of the correctness of the strategy we design for the robber.
We first set the relationships between (sizei)i≤k, (margini)i≤k, (timei)i≤k and (detouri)i≤k. Recall that size0 = 2 and

time0 = 1. For any i, 1 ≤ i ≤ k:

margini =
⌈
4+ sizei−1/timei−1
sizei−1/timei−1 − 1

⌉
, detouri = 2 ·

⌈
(2 ·margini + 2)sizei−1/timei−1

sizei−1/timei−1 − 1

⌉
. (2)

timei = (zoomi + detouri)timei−1 (3)

From Eqs. (2) and (3), and the fact that sizei = zoomi · sizei−1, we get that sizei/timei =
zoomi

zoomi+detouri
· sizei−1/timei−1 ≥

βi · sizei−1/timei−1, where βi is defined by:

βi =
zoomi

zoomi +
2+4·sizei−1/timei−1+14·(sizei−1/timei−1)2

(sizei−1/timei−1−1)2

Now, we will specify the values of the constants a and b used to define the sequence (zoomi)i≤k. Let us set 2 > α > 1,
and let a = d 20

(α−1)2
e · d

2
ln(2/α)e and let b be an integer such that b > max{2,

ln(2/α)
2 }. From now on, we assume that a and b

satisfy these (in)equalities. For these values of a and b, we can prove the following lemmas.
Lemma 6. For any 0 ≤ i ≤ k, timei < sizei.
Proof. We prove by induction on i, 0 ≤ i ≤ k, that 2 ≥ sizei/timei > α > 1.
It is straightforward for i = 0. Let i > 0, and let us assume that the result is valid for any j < i. sizei/timei ≥ 2 ·

∏i
j=1 βj,

thus we need to prove that
∏i
j=1 βj > α/2. Actually, we prove that 1/

∏i
j=1 βj < 2/α. By the induction hypothesis, we get

that, for any 0 ≤ j ≤ i − 1, 2 ≥ sizej/timej > α. Thus, 2+4·sizei−1/timei−1+14·(sizei−1/timei−1)
2

(sizei−1/timei−1−1)2
< d 20

(α−1)2
e. Hence, we obtain that

1/βi < (zoomi + d 20
(α−1)2

e)/zoomi < 1+ 1/( 2
ln(2/α) · b

i).
For any i, 0 ≤ i ≤ k:

2 > 1− (1/b)k

ln(2/α) >
ln(2/α)
2
·
1/b− (1/b)k+1

1− 1/b
(because b > 2)

>
∑
1≤j≤i

1/
(

2
ln(2/α)

· bj
)

≥

∑
1≤j≤i

ln
(
1+ 1

/(
2

ln(2/α)
· bj
))

(because x ≥ ln(1+ x))

= ln

(∏
1≤j≤i

(
1+ 1

/(
2

ln(2/α)
· bj
)))

2/α >
∏
1≤j≤i

(
1+ 1/

(
2

ln(2/α)
· bj
))

2/α > 1/
∏
1≤j≤i

βj. �

Lemma 7. For any 1 ≤ i ≤ k, detouri + 4 ·margini + 2 < zoomi
Proof. For any 1 ≤ i ≤ k, detouri + 4 ·margini + 2

<
24·(sizei−1/timei−1)2+4·sizei−1/timei−1−8

(sizei−1/timei−1−1)2

< 20
(α−1)2

(because of Lemma 6)

< zoomi = 20
(α−1)2

·
2

ln(2/α) · b
i

(
because b > max

{
2,
ln(2/α)
2

})
. �
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5.3. Evasion strategy for the robber

In this section,we describe an evasion strategy for the robber against k cops in the n×n square-gridG (n = 4·ak ·bk(k+1)/2).
More precisely, for any i, 1 ≤ i ≤ k, we describe a level-i strategy Si, using Si−1 as a subroutine, allowing the robber to evade
i cops in some i-subgrid of G. For any i, 0 ≤ i ≤ k, Strategy Si consists of a path of (i − 1)-subgrids that allows the robber
to go from one i-subgrid to an adjacent one. The key point is that Strategy Si only deals with copi. Let 0 ≤ i ≤ k. In the
following, di = detouri/2, for any i ≤ k. We now describe Strategy Si.
Let Ri be the i-subgrid that is initially occupied by the robber. LetDi be any i-subgrid adjacent to Ri. For ease of description,

we assume that Di is below Ri, i.e., Di has smaller ordinate (row) than Ri. At each step t ≥ 0 of the game, let Ri−1t and C i−1t be
the (i− 1)-subgrids occupied by the robber and copi respectively.
Roughly speaking, the robber keeps going down toward the next (i−1)-subgrid below it, i.e., in the direction ofDi. Let f be

the first step, when C i−1t becomes adjacent tomargin(Ri−1t ), if it happens. In this situation, there are two cases. Either copi is
not below the robber, inwhich case the robber keeps on going downbut it goes a bit further in the same direction. Otherwise,
the robber chooses to avoid copi by following a path of di (i− 1)-subgrids to the right or to the left before continuing to go
down.
For i = 0, S0 is any shortest strategy that allows the robber to go from a 0-subgrid to an adjacent one. Note that, because

size0 = 2 and the robber has speed 2, S0 takes at most 1 step. Let 0 < i ≤ k. Let O be the greatest ordinate (row) of a
(i − 1)-subgrid H such that margin(H) is contained in Di, and let A be the greatest abscissa (column) of a (i − 1)-subgrid
H in Di. For our purpose, we only consider the case when the initial position of the robber is a i-nice position. In particular,
margin(Ri−1initial) is contained in R

i.
The strategy proceeds as follows and it is depicted in Fig. 1. In Fig. 1(a)–(c), the hatched zone corresponds to the path of

(i− 1)-subgrids covered by the robber during the game. There are three cases to be considered.

• First, we consider the case when f is not defined or when C i−1f is above Rif , i.e., ordC i−1f
= ordRi−1f

+ margini + 1. In this

case, let Ri−1final be the (i−1)-subgrid with abs(R
i−1
final) = abs(R

i−1
initial) and ord(R

i−1
final) = O. Let P be the shortest path of (i−1)-

subgrids between Ri−1initial and R
i−1
final. The robber follows P using the level-(i−1) strategy Si−1 to go from one (i−1)-subgrid

of P to the next one. This case is depicted in Fig. 1(a). Note that, the length of the path of (i − 1)-subgrids followed by
such a strategy is at most zoomi.
• Second,we consider the casewhen C i−1f is to the left or to the right ofmargin(Ri−1f ), i.e., ord(Ri−1f )+margini ≥ ord(C i−1f ) ≥

ord(Ri−1f )− margini − 1 and abs(C i−1f ) = abs(Ri−1f )+ margini + 1 or abs(C i−1f ) = abs(Ri−1f )− margini − 1. In this case,
let Ri−1final be the (i− 1)-subgrid with abs(R

i−1
final) = abs(R

i−1
initial) and ord(R

i−1
final) = O− di. Let P be the shortest path of (i− 1)-

subgrids between Ri−1initial and R
i−1
final. The robber follows P using the level-(i−1) strategy Si−1 to go from one (i−1)-subgrid

of P to the next one. This case is depicted in Fig. 1(b). Note that, the length of the path of (i − 1)-subgrids followed by
such a strategy is at most zoomi + di.
• Finally, let us consider the case when C i−1f is below margin(Ri−1f ), i.e., ord(C i−1f ) = ord(Ri−1f ) − margini − 1 and
abs(Ri−1f ) − margini ≤ abs(C i−1f ) ≤ abs(Ri−1f ) + margini. In this case, let us first assume that Ri−1f is closer to the left
side of Ri (and Di), i.e., A − abs(Ri−1f ) ≥ zoomi/2. Let Ri−1r be the (i − 1)-subgrid with abs(Ri−1r ) = abs(Ri−1f ) + di and
ord(Ri−1r ) = ord(Ri−1f ), and let Ri−1final be the (i−1)-subgridwith abs(R

i−1
final) = abs(R

i−1
r ) and ord(Ri−1final) = O−di. Let P1 be the

shortest path of (i−1)-subgrids between Ri−1initial and R
i−1
f , let P2 be the shortest path of (i−1)-subgrids between R

i−1
f and

Ri−1r , and let P3 be the shortest path of (i− 1)-subgrids between R
i−1
r and Ri−1final. The robber follows P = P1 ∪ P2 ∪ P3 using

the level-(i−1) strategy Si−1 to go fromone (i−1)-subgrid of P to the next one. This case is depicted in Fig. 1(c). Note that,
the length of the path of (i−1)-subgrids followed by such a strategy is at most zoomi+2 · di = zoomi+ detouri. The case
when Ri−1f is closer to the right side of Ri is symmetric, i.e., the single difference comes from abs(Ri−1r ) = abs(Ri−1f )− di.

Lemma 8. Let 0 ≤ i ≤ k. Let us assume that at some step the robber occupies an i-nice position in some i-subgrid Ri. Assuming
that, at any step t of Si, the cops copj, j > i, remain outside around(Rit), the strategy Si allows the robber to reach an i-nice position
in any i-subgrid adjacent to Ri, in at most timei steps, and such that, at any step t of Si, copi remains outside around(Ri−1t ).

Proof. This lemma gives the main characteristics of Si that allow us to prove Theorem 4. The proof is by induction on i ≤ k.
First, let us prove the lemma for i = 0. Since any 0-subgrid has size size0 = 2 and the robber has speed 2, at most

time0 = 1 < size0 step is sufficient for the robber to go from any position in a 0-subgrid to any position in an adjacent
0-subgrid.
Let i > 0 and assume that the lemma is valid for i− 1. Note that, while copi does not occupy a vertex in around(Ri−1t ), the

induction hypothesis may be applied. First, the path of (i − 1)-subgrids followed by Si has length at most zoomi + detouri,
therefore, if copi always remains outside around(Rit), by the induction hypothesis, Strategy Si takes at most timei =
(zoomi+ detouri)timei−1 steps. It remains to prove that copi never enters around(Rit) and at the last step of Si, copi is outside
ofmargin(Rit).
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Fig. 1. Three possible paths of (i− 1)-subgrids followed by Si to go from Ri to Di .

If f is not defined, that is, if copi never approaches the robber to occupy a subgrid C i−1f adjacent to margin(Ri−1f ), then
always remains outside ofmargin(Rit).
Therefore, let us consider the case when f is defined. There are three cases to be considered.

• First, we consider the casewhen C i−1f is above Rif , i.e., ord(C
i−1
f ) = ord(Ri−1f )+margini+1. To prove that copi never enters

around(Ri−1t ), let us apply the induction hypothesis. copi needs at least sizei−1 steps to go from one (i− 1)-subgrid to the
one below. By the induction hypothesis, while copi does not enter around(Ri−1t ), at most timei−1 steps are sufficient for
the robber to go from a (i− 1)-nice position in a (i− 1)-subgrid to a (i− 1)-nice position in the next (i− 1)-subgrid in
P . By Lemma 6, sizei−1 > timei−1. Therefore, copi never enters around(Ri−1t ). Moreover, each time the robber reaches a
(i−1)-nice position in a new (i−1)-subgrid Ri−1t , copi is outside ofmargin(R

i−1
t ). In particular, this is the case at the step
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(a) (margini − 1)sizei−1 ≥ (4+margini)timei−1 . (b) (di − 2 ·margini − 2)sizei−1 ≥ di · timei−1 .

Fig. 2. Illustration of Eq. (2): (a) copi must never enter around(Ris), and (b) the robber must reach a nice position, i.e., copi must not entermargin(R
i
h).

when margin(Ri−1t ) is contained in Di for the first time. Hence, when the robber reaches a (i − 1)-nice position in Ri−1final,
he actually occupies an i-nice position.
• Second,we consider the casewhen C i−1f is to the left or to the right ofmargin(Ri−1f ), i.e., ord(Ri−1f )+margini ≥ ord(C i−1f ) ≥

ord(Ri−1f )−margini − 1 and abs(C i−1f ) = abs(Ri−1f )+margini + 1 or abs(C i−1f ) = abs(Ri−1f )−margini − 1.
Let s be some step of the game, and let us prove that copi cannot enter around(Ri−1s ) while the robber is occupying

Ri−1s . Indeed, by applying the induction hypothesis, the robber will leave R
i−1
s in at most (ordRi−1f

− ordRi−1s + 1)timei−1
steps after f . Two cases must be considered.
– If ord(Ri−1s ) ≥ ord(Ri−1f ) − margini − 3, the length of the path of (i − 1)-subgrids between C i−1f and Ri−1s , is at least
(|abs(Ri−1s ) − abs(C i−1f )| − 2) (this distance is minimum for ord(C i−1f ) = ord(Ri−1s )). Therefore, copi requires at least
(|abs(Ri−1s ) − abs(C i−1f )| − 2) · sizei−1 = (margini − 1) · sizei−1 steps to enter around(Ri−1s ). In this case, the robber
leaves Ri−1s in strictly less than (margini+4) · timei−1 steps. By Eq. (2), copi cannot enter around(Ri−1s )while the robber
is occupying it (cf. Fig. 2(a)).

– Otherwise, the distance that copi must cover in order to enter around(Ri−1s ) is minimumwhen ord(C i−1f ) is minimum,
that is, ord(C i−1f ) = ord(Ri−1f )−margini−1. In this case, copi requires at least (|abs(C i−1f )−abs(Ri−1s )|−2+ord(C i−1f )−

ord(Ri−1s )− 2) · sizei−1 = (margini− 1+ ord(Ri−1f )−margini− 1− ord(Ri−1s )− 2) · sizei−1 = (ord(Ri−1f )− ord(Ri−1s )−

4) · sizei−1 steps to enter around(Ri−1s ). By Eq. (2) and Lemma 6, we get (ord(Ri−1f ) − ord(Ri−1s ) − 4) · sizei−1 =
(ord(Ri−1f ) − ord(Ri−1s ) − margin − 3) · sizei−1 + (margin − 1) · sizei−1 > (ord(Ri−1f ) − ord(Ri−1s ) − margin − 3) ·
timei−1 + (margini + 4) · timei−1 = (ord(Ri−1f )− ord(Ri−1s )+ 1) · timei−1. Again, copi cannot enter around(Ri−1s )while
the robber is occupying it.
It remains to prove that the robber reaches an i-nice position in Di. That is, we prove that copi is above margin(Ri−1final)

at the last step final of the game, and margin(Ri−1final) is a subgraph of D
i. Let top (resp., right) be the greatest ordinate

(row), respectively abscissa (column), of a (i − 1)-subgrid in Di. Note that, ord(Ri−1final) = top − margini − di and
abs(Ri−1final) = abs(R

i−1
f ).

By Lemma 7, di+2margini < zoomi. Thus, top−margini > ord(Ri−1final) > top−zoomi+margini. Moreover,margin(R
i−1
f )

is a subgraph of Ri, thus right − zoomi + margini < abs(Ri−1final) < right − margini. Therefore, margin(R
i−1
final) is a subgraph

of Di.
The distance that copi must cover in order to enter margin(Ri−1final) is minimum when ord(C

i−1
f ) is minimum, that is,

ord(C i−1f ) = ord(Ri−1f )−margini−1. In this case, copi requires at least (|abs(C i−1f )−abs(Ri−1final)|−2+ord(C
i−1
f )−ord(Ri−1final)−

2) · sizei−1 = (margini − 1+ ord(Ri−1f )−margini − 1− ord(Ri−1final)− 2) · sizei−1 = (ord(R
i−1
f )− ord(Ri−1final)− 4) · sizei−1

steps to enter margin(Ri−1final). By Eq. (2) and Lemma 6, we get that (ord(R
i−1
f ) − ord(Ri−1final) − 4) · sizei−1 = (ord(R

i−1
f ) −

ord(Ri−1final)− di + 2 ·margini + 2) · sizei−1 + (di − 2 ·margini − 2) · sizei−1 > (ord(Ri−1f )− ord(Ri−1final)− di + 2 ·margini +
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2) · timei−1 + di · timei−1 = (ord(Ri−1f ) − ord(Ri−1final) + 2 · margini + 2) · timei−1. Moreover, by applying the induction
hypothesis, at most (ord(Ri−1f ) − ord(Ri−1final))timei−1 steps are sufficient for the robber to reach an (i − 1)-nice position
in Ri−1final. Therefore, copi does not occupy margin(R

i−1
final) at the end of the strategy. Therefore, the robber reaches an i-nice

position in Di.
• Finally, let us consider the case when C i−1f is below margin(Ri−1f ), i.e., ord(C i−1f ) = ord(Ri−1f ) − margini − 1 and
abs(Ri−1f )−margini ≤ abs(C i−1f ) ≤ abs(Ri−1f )+margini.
Let right be the greatest abscissa (column) of a (i − 1)-subgrid in Di, and let final be the last step of the game. Note

that, by Lemma 7, abs(Ri−1r ) < right − margini. Therefore, by the same analysis as in the last item of the previous case,
margin(Ri−1final) is a subgraph of D

i.
Then, we prove that, at any step s, copi remains outside around(Ri−1s ) for any (i−1)-subgrid Ri−1s on the path between

Ri−1f and Ri−1r . For this purpose, it is sufficient to observe that the configuration is similar to the previous strategy, by
rotating the grid. Moreover, this observation proves that when the robber arrives in Ri−1r , copi neither can stand inside
margin(Ri−1r ), nor block the bottom side ofmargin(Ri−1r ).
Let us show that copi cannot block the bottom side of margin(Ri−1s ) for any remaining step s of the game. Indeed,

the distance that copi must cover in order to block the bottom side of margin(Ri−1s ) is minimum when ord(C i−1f ) =

ord(Ri−1f )−margini−1 and abs(C i−1f ) = abs(Ri−1f )+margini. In this case, copi requires at least S = (abs(Ri−1s )−abs(C i−1f )−

margini − 1+ ord(C i−1f )− ord(Ri−1s )+margini) · sizei−1 steps to block the bottom side ofmargin(Ri−1s ). By Inequality (2)
and Lemma 6, S = (abs(Ri−1s )−abs(Ri−1f )−2·margini−2+ord(Ri−1f )−ord(Ri−1s ))·sizei−1 = (di−2·margini−2)·sizei−1+
(ord(Ri−1f )− ord(Ri−1s )) · sizei−1 > di · timei−1+ (ord(Ri−1f )− ord(Ri−1s )) · timei−1 > (di+ ord(Ri−1f )− ord(Ri−1s )) · timei−1
which is the upper bound on the number of steps after f required to leave Ri−1s (by applying the induction hypothesis).
Hence, copi cannot block the bottom side ofmargin(Ri−1s ) for any (i− 1)-subgrid Ri−1s on the path between Ri−1r and Ri−1final.
Therefore, the configuration is the same as in the previous cases and the lemma holds. �

5.4. Proof of Theorem 4

In this section, we prove that, for any k ≥ 1, one robber with speed 2 can infinitely evade k cops with speed one
in any grid of size more than 4akbk(k+1)/2, where a and b are defined as previously. Recall that G is the grid of size
2 · sizek = 2 · size0 ·

∏
1≤i≤k zoomi = 4 · a

k
· bk(k+1)/2. Note that, if one robber can infinitely evade k cops in G, it can

perform the same strategy and evade k cops as well in any bigger grid. It remains to prove that the strategy described in the
previous section enables the robber to infinitely evade k cops in G.
Now, let us assume that k cops are placed on vertices of G. G is divided into 4 vertex-disjoint subgrids of size sizek (i.e., k-

subgrids). Let us fix an ordering of the cops (cop1, . . . , copk). Choose one of the k-subgrids not occupied by copk, and denote
it by Rk. Notice that, Rk contains at least four (k− 1)-subgrids Rk−11 , . . . , Rk−11 such thatmargin(Rk−1i ), 1 ≤ i ≤ 4, are disjoint
and entirely contained in Rk. Any position inside these subgrids is nice at level k. Recursively, choose one not occupied by
copk−1 to be Rk−1, and proceed until finding R0. Any position inside R0 is k-nice and we may pick it as the initial position for
the robber. The top level strategy consists in traversing the four k-subgrids of G along the cycle given by their adjacencies.
Lemma 8 (by taking i = k) proves that, starting from a k-nice position in some k-subgrid Rk, the robber can reach a k-nice
position in any k-subgrid adjacent to Rk, without being caught by the cops. By repeating this process, the robber can infinitely
evade k cops in G, which proves Theorem 4.

6. Fast robber in planar graphs

We have proved that the number of cops needed to capture a fast robber in a grid G may be arbitrarily large. Note that
the classical transformations of edge removal, vertex removal, and edge contraction do not preserve bounded cop number.
Moreover, there are graphs of arbitrarily large treewidth [7] (that is, somehow containing a large grid) and cop number two.

Proposition 2. For any k ≥ 1, there is a planar graph H with c2(H) ≤ 2, such that a graph G with c2(G) ≥ k can be obtained
from H by contracting edges (resp., by removing edges, resp., by removing vertices).

Sketch of the Proof. We sketch the proof for G obtained from H by contracting edges. Let G be a n× n square-grid. Let P be
the central column (defined in the intuitive way) of G, and let H be the graph obtained by replacing each vertical edge but
those of P by a path of length 3n + 7. The strategy for two cops consists in moving along P from one row to another, until
they occupy two consecutive rows Li and Li+1 while the robber is occupying a vertex in a path P ′ of length 3n+ 7 between
those two rows. Then, both cops go toward P ′ following Li and Li+1 respectively. In at most dn/2e steps, both cops eventually
occupy the same column P ′′ as the robber. If the robber occupies the path between the cops, he will eventually be caught.
Otherwise, the robber is occupying a vertex v of P ′′ between Li and Li−1 (or, symmetrically, between Li+1 and Li+2). Note that,
the distance between v and Li is at most n+1. Finally, the cop that is occupying P ′′ ∩ Li+1 goes to P ′′ ∩ Li−1. By following Li+1
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then P and then Li−1, this cops reaches P ′′ ∩ Li−1 in at most n + 3 steps. Because the subpath of P ′′ between Li and Li−1 has
length 3n+7, the robber still occupies a vertex of this path when one cop is occupying P ′′∩Li and the other cop is occupying
P ′′ ∩ Li−1. Therefore, he will eventually be caught. �

Nevertheless, we can define a larger family of planar graphs of unbounded cop number than the grids themselves. Let
sizek be defined as in the previous section.

Theorem 5. Let H be a planar graph containing an n×n square-grid Gwith n = 4·sizek as an induced subgraph, then c2(H) ≥ k.

Proof. Notice that if for each of the vertices of degree 2 in G (the ‘‘corners’’) we contract one incident edge, then we obtain
a 3-connected planar graph. By a theorem of Whitney (see Theorem 4.3.2 of [14]), a 3-connected planar graph has only one
embedding into the sphere, modulo topological equivalence. So the embedding of G is also unique, and any embedding of
the wholeH has to respect it. That means that for any two vertices u, v of G, and for any path P between u and v such that all
internal vertices of P belong to H \G, whatever be the embedding of H into the sphere, only two cases may occur, otherwise
there would be a crossing between an edge of P and an edge of G. Either P belongs to the external face of the embedding of
G, or P belongs to the face limited by an induced 4-vertices cycle C of G, such that u, v ∈ V (C). In the latter case, since G is
an induced subgraph, P contains at least one vertex in H \ G.
Notice that G can be partitioned into sixteen subgrids of size sizek. Consider the four of them that are in the center of this

partition, and together form a subgrid of size 2 · sizek. Denote it by G′. Because H has to respect the embedding of G, there
cannot be a path P in H \ G′ between two vertices of G′ strictly shorter than the paths in G′, i.e., G′ is an isometric induced
subgraph of H .
The escape strategy used in the proof of Theorem 4 can be easily adopted toH , with the robber restricted to stay in G′. The

reasoning used in the proof can be easily extended to see that the robber can find a k-nice initial position, and keep moving
in order to keep his position k-nice forever. The arguments used to show that the cops cannot get too close to the robber
applying our strategy remain valid, since G′ preserves the distances. In other words, there are no ‘‘short-cuts’’ available in
H . Notice that it is a particular property of our escape strategy, that the absence of short-cuts in H \ G′ ensures that the
robber can still escape in H . Indeed, the strategy of the robber is mainly based on the distance between the robber and the
cops. �

7. Open problems

Many interesting algorithmic questions about the Cops and Robbers game remain open and we conclude with asking
some of them.

• Wedo not know if the decision version cs(G) ≤ k of the problem is in NP andwe put it as the first open question.We guess
that for small values of s the problem is not in NP—we would find existence of a verifier for the problem that executes in
polynomial time quite surprising. The related challenging question is due to Goldstein and Reingold in [22]: Is deciding
of c1(G) ≤ k EXPTIME-complete? If the answer is "yes", is the problem EXPTIME-complete for every fixed s? However,
for large s, say for s ≥

√
n, we do not exclude a possibility that there can be a characterization of cs(G) in terms of some

combinatorial graph parameters which can bring the problem in NP. This type of result would be very interesting.
• We have shown that for every graph G of bounded cliquewidth and s ≤ 2, the number cs(G) can be computed in
polynomial time. What is the computational complexity of the problem on graphs of bounded cliquewidth for s = 3
or for s = ∞?
• For a graph G of treewidth k, for every s ≥ 1, it is possible to prove that cs(G) ≤ k + 1, which implies that cs(G) can be
computed in time nO(k). What is the parameterized complexity of computing cs with the treewidth (or the cliquewidth)
of the graph as a parameter?
• In the proof of Theorem 1, for a given graph G on n vertices, we construct a graph G′ on O(n10) vertices such that
γ (G) = cs(G′), where γ (G) is the domination number of G. Combined with the non-approximability for dominating
set problem [38], this implies the following.

Corollary 3. There is a constant c > 0 such that there is no polynomial time algorithm to approximate cs(G) within a
multiplicative factor c log n, unless P = NP.

An interesting question here is if there is an n1−ε-approximation algorithm for the Cops and Robbers game.

• We have shown that for every fixed s, the solution of the Cops and Robbers game can be found in polynomial time on
interval graphs. Can c∞(G) be computed in polynomial time on interval graphs?
• Weproved that if s ≥ 2 then cs is unbounded for planar graphs. Can cs be computed in polynomial time for planar graphs?
This question is open even for grids.
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