
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Journal of Computer and System Sciences 76 (2010) 650–662

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Algorithm for finding k-vertex out-trees and its application to k-internal
out-branching problem ✩

Nathann Cohen a, Fedor V. Fomin b, Gregory Gutin c,∗, Eun Jung Kim c, Saket Saurabh b,
Anders Yeo c

a INRIA – Projet MASCOTTE, 2004 route des Lucioles, BP 93 F-06902, Sophia Antipolis Cedex, France
b Department of Informatics, University of Bergen, POB 7803, 5020 Bergen, Norway
c Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 May 2009
Received in revised form 20 December 2009
Available online 25 January 2010

Keywords:
Out-tree
Out-branching
Internal vertices
Divide-and-conquer

An out-tree T is an oriented tree with only one vertex of in-degree zero. A vertex x
of T is internal if its out-degree is positive. We design randomized and deterministic
algorithms for deciding whether an input digraph contains a given out-tree with k vertices.
The algorithms are of running time O ∗(5.704k) and O ∗(6.14k), respectively. We apply the
deterministic algorithm to obtain a deterministic algorithm of runtime O ∗(ck), where c is
a constant, for deciding whether an input digraph contains a spanning out-tree with at
least k internal vertices. This answers in affirmative a question of Gutin, Razgon and Kim
(Proc. AAIM’08) [9].

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

An out-tree is an oriented tree with only one vertex of in-degree zero called the root. The k-Out-Tree problem is the
problem of deciding for a given parameter k, whether an input digraph contains a given out-tree with k � 2 vertices.
In their seminal work on Color Coding Alon, Yuster, and Zwick [1] provided fixed-parameter tractable (FPT) randomized
and deterministic algorithms for k-Out-Tree. While Alon, Yuster, and Zwick [1] only stated that their algorithms are of
runtime O (2O (k)n), however, it is easy to see (see Subsection 2.1), that their randomized and deterministic algorithms are
of complexity1 O ∗((4e)k) and O ∗(ck), where c � 4e.

The main results of [1], however, were a new algorithmic approach called Color Coding and a randomized O ∗((2e)k)

algorithm for deciding whether a digraph contains a path with k vertices (the k-Path problem). Chen et al. [4] proposed
another approach, a randomized divide-and-conquer technique; the new approach allowed them to design a randomized
O ∗(4k)-time algorithm for k-Path. To divide the technique of Chen et al. [4] uses two colors. The colors are ‘symmetric’,
i.e., both colors play similar role and the probability of coloring each vertex in one of the colors is 0.5. In this paper, we
further develop the technique of [4] by making it asymmetric, i.e., the two colors play different roles and the probability of
coloring each vertex in one of the colors depends on the color. As a result, we refine the result of Alon, Yuster, and Zwick
by obtaining randomized and deterministic algorithms for k-Out-Tree, of runtime O ∗(5.704k) and O ∗(6.14k), respectively.

It is worth to mention here two recent related results on k-Path due to Koutis [10] and Williams [16] based on an
algebraic approach. Koutis [10] obtained a randomized O ∗(23k/2)-time algorithm for k-Path and Williams [16] extended his

✩ An extended abstract of this paper has appeared in the proceedings of COCOON’09 Cohen et al. (2009) [6].

* Corresponding author.
E-mail addresses: nathann.cohen@sophia.inria.fr (N. Cohen), fedor.fomin@ii.uib.no (F.V. Fomin), gutin@cs.rhul.ac.uk (G. Gutin), eunjung@cs.rhul.ac.uk

(E.J. Kim), saket.saurabh@ii.uib.no (S. Saurabh), anders@cs.rhul.ac.uk (A. Yeo).
1 In this paper we often use the notation O ∗(f (k)) instead of f (k)(kn)O (1) , i.e., O ∗ hides not only constants, but also polynomial coefficients.

0022-0000/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2010.01.001

Author's personal copy

N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662 651

Algorithm 1 L(T , r).
Require: A digraph D with a given coloring c : V (D) → {1, . . . ,k}, an out-tree T on k vertices, a specified vertex r of D .
Ensure: CT (u) for each vertex u of D , which is a family of all color sets that appear on colorful copies of T in D , where u plays the role of r.

1: if |V (T)| = 1 then
2: for all u ∈ V (D) do
3: Insert {c(u)} into CT (u).
4: end for
5: Return CT (u) for each vertex u of D .
6: else
7: Choose an arc (r′, r′′) ∈ A(T).
8: Let T ′ and T ′′ be the subtrees of T obtained by deleting (r′, r′′), where T ′ and T ′′ contains r′ and r′′ , respectively.
9: Call L(T ′, r′).

10: Call L(T ′′, r′′).
11: for all u ∈ V (D) do
12: Compose the family of color sets CT (u) as follows:
13: for all (u, v) ∈ A(D) do
14: for all C ′ ∈ CT ′ (u) and C ′′ ∈ CT ′′ (v) do
15: C := C ′ ∪ C ′′ if C ′ ∩ C ′′ = ∅
16: Insert C into CT (u).
17: end for
18: end for
19: end for
20: Return CT (u) for each vertex u of D .
21: end if

ideas resulting in a randomized O ∗(2k)-time algorithm for k-Path. While the randomized algorithms based on Color Coding
and Divide-and-Color are not difficult to derandomize, it is not the case for the algorithms of Koutis [10] and Williams [16].
Thus, it is unknown whether there are deterministic algorithms for k-Path of runtime O ∗(23k/2). Moreover, it is not clear
whether the randomized algorithms of Koutis [10] and Williams [16] can be extended to solve k-Out-Tree.

While we believe that the study of fast algorithms for k-Out-Tree is a problem interesting on its own, we provide an
application of our deterministic algorithm. The vertices of an out-tree T of out-degree zero (nonzero) are leaves (internal
vertices) of T . An out-branching of a digraph D is a spanning subgraph of D which is an out-tree. The Minimum Leaf

problem is to find an out-branching with the minimum number of leaves in a given digraph D. This problem is of interest
in database systems [7] and the Hamilton path problem is its special case. Thus, in particular, Minimum Leaf is NP-hard.
In this paper we will study the following parameterized version of Minimum Leaf: given a digraph D and a parameter k,
decide whether D has an out-branching with at least k internal vertices. This problem denoted k-Int-Out-Branching was
studied for symmetric digraphs (i.e., undirected graphs) by Prieto and Sloper [14,15] and for all digraphs by Gutin et al. [9].
Gutin et al. [9] obtained an algorithm of runtime O ∗(2O (k logk)) for k-Int-Out-Branching and asked whether the problem
admits an algorithm of runtime O ∗(2O (k)). Note that no such algorithm has been known even for the case of symmetric
digraphs [14,15]. In this paper, we obtain an O ∗(2O (k))-time algorithm for k-Int-Out-Branching using our deterministic
algorithm for k-Out-Tree and an out-tree generation algorithm.

For a set X of vertices of a subgraph H of a digraph D , N+
H (X) and N−

H (X) denote the sets of out-neighbors and in-
neighbors of vertices of X in H , respectively. Sometimes, when a set has a single element, we will not distinguish between
the set and its element. In particular, when H is an out-tree and x is a vertex of H which is not its root, the unique in-
neighbor of x is denoted by N−

H (x). For an out-tree T , Leaf(T) denotes the set of leaves in T and Int(T) = V (T) − Leaf(T)

stands for the set of internal vertices of T .

2. Algorithms for k-OUT-TREE

In Subsection 2.1, we introduce and analyze the randomized algorithm for k-Out-Tree by Alon, Yuster and Zwick [1]. In
Subsection 2.2, we introduce and analyze a new randomized algorithm for k-Out-Tree. We derandomize our algorithm in
Subsection 2.3.

2.1. Algorithm of Alon, Yuster and Zwick

Let c : V (D) → {1, . . . ,k} be a vertex k-coloring of a digraph D and let T be a k-vertex out-tree contained in D (as a
subgraph). Then V (T) and T are colorful if no pair of vertices of T are of the same color.

Algorithm 1 of [1] verifies whether D contains a colorful out-tree H such that H is isomorphic to T , when a coloring
c : V (D) → {1, . . . ,k} is given. Note that a k-vertex subgraph H will be colorful with a probability of at least k!/kk > e−k .
Thus, we can find a copy of T in D in ek expected iterations of Algorithm 1.

Theorem 2.1. Let T be an out-tree on k vertices and let D = (V , A) be a digraph. A subgraph of D isomorphic to T , if one exists, can
be found in O (k(4e)k · |A|) expected time by running the algorithm L(T , r) for a random coloring c iteratively.

Author's personal copy

652 N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662

Proof. Let c : V (D) → {1, . . . ,k} be a given coloring of D and suppose T ′ and T ′′ are the subtrees of T obtained in line 8.
Let |V (T ′)| = k′ and |V (T ′′)| = k′′ , where k′ +k′′ = k. Then |CT ′(u)| = (k−1

k′−1

)
and |CT ′(u)| = (k−1

k′′−1

)
. Checking C ′ ∩ C ′′ = ∅ takes

O (k) time. Hence, lines 11–19 require at most
(k

k/2

)2 · k|A| � k22k|A| operations.
Let T (k) be the number of operations for L(T , r). We have the following recursion

T (k) � T
(
k′) + T

(
k′′) + k22k−2|A|. (1)

By induction, it is not difficult to check that T (k) � k4k|A|. Since the expected number of iterations of the algorithm
L(T , r) is at most ek , we achieve the claimed running time. �

Let C be a family of vertex k-colorings of a digraph D . We call C an (n,k)-family of perfect hashing functions if for each X ⊆
V (D), |X | = k, there is a coloring c ∈ C such that X is colorful with respect to c. One can derandomize Algorithm 1 of Alon
et al. by using any (n,k)-family of perfect hashing functions in the obvious way. The time complexity of the derandomized
algorithm depends of the size of the (n,k)-family of perfect hashing functions. Let τ (n,k) denote the minimum size of an
(n,k)-family of perfect hashing functions. Nilli [12] proved that τ (n,k) � Ω(ek log n/

√
k). It is unclear whether there is an

(n,k)-family of perfect hashing functions of size O ∗(ek) [4], but even if it does exist, the running time of the derandomized
algorithm would be O ∗((4e)k).

2.2. New algorithm for k-Out-Tree

Before we introduce our new randomized algorithm for k-Out-Tree, we will give a brief account of the basic idea behind
it. Let T be an out-tree on k vertices and let D be a digraph in which we want to find a copy of T . As in the randomized
algorithm by Alon, Yuster and Zwick in [1], we break T into two subtrees T w and Tb . However, unlike the former which
deletes an arc of T , we break it by choosing a ‘splitting vertex’ denoted as v∗ and furthermore the resulting two subtrees
overlap exactly on this splitting vertex v∗ . Next we randomly partition the digraph D into two vertex-disjoint parts D w

and Db , and then find a copy of T w in D w and a copy of Tb in Db , if one exists. If we try sufficiently many partitions of D ,
it is possible to find a copy of T whenever D contains one as a subgraph (with some good probability in a randomized
version of the algorithm, which can be derandomized consequently).

The trouble is that the fact that D w and Db contain copies of T w and Tb , respectively does not necessarily means that D
contains a copy of T as a whole. We need to ensure that there exist copies of T w and Tb that actually overlap (and overlap
only) on a vertex of D corresponding to the splitting vertex v∗ . To this end, we allow some vertices of D w , say S , to be
shared by Db by considering Db + S instead of Db . Here S is the set of vertices in D w that could correspond to the splitting
vertex v∗ of T w . When we search for a copy of Tb in Db + S , only those trees isomorphic to Tb in Db + S are considered
legitimate where the vertex corresponding to v∗ lies in S . In other words, we convey the information S obtained in the
phase for T w -D w to the next phase for Tb-Db so that we do not only ensure the global connectivity of T w + Tb = T in D
but also reduce the search space for finding a copy of Tb in Db .

Moreover, by conveying the information for v∗ we can save the extra effort for ‘merging’ the solutions (i.e. copies of T w

and Tb). Rather, once we obtain a copy of Tb in Db + S , it follows immediately that we have a copy of T in D . Since the
number of partitions of D we need to try is a function of k, the time complexity of finding a copy of T in D can be written
as T (k,n) = f (k)(T (k′,n) + T (k − k′,n) + p1(n)) + p2(n), T (1,n) = p3(n), where pi(n) is polynomial in n for i = 1,2,3. This
is why the running time of our algorithm remains polynomial in n. Making this approach efficient depends crucially on two
aspects:

1. to obtain k′ in the above formula as close to half of k as possible; and
2. to replace f (k) with as small growing function as possible.

For the latter, we use a simple unbalanced-partition-strategy which will be explained later. We achieve the former goal by
choosing an appropriate splitting vertex v∗ and then using it to obtain a T w -Tb split. The splitting procedure is one of the
key part of our algorithm and next we describe this procedure in details.

The following lemma is well known and will be used as a basic scheme of choosing v∗ .

Lemma 2.2. (See [5].) Let T be an undirected tree and let w : V → R+ ∪ {0} be a weight function on its vertices. There exists a vertex
v ∈ V (T) such that the weight of every subtree T ′ of T − v is at most w(T)/2, where w(T) = ∑

v∈V (T) w(v).

Consider a partition n = n1 + · · · + nq, where n and all ni are nonnegative integers and a bipartition (A, B) of the set
{1, . . . ,q}. Let d(A, B) := |∑i∈A ni − ∑

i∈B ni |. Given a set Q = {1, . . . ,q} with a nonnegative integer weight ni for each
element i ∈ Q , we say that a bipartition (A, B) of Q is greedily optimal if d(A, B) does not decrease by moving an element
of one partite set into another. Algorithm 2 describes how to obtain a greedily optimal bipartition in time O (q log q). For
simplicity we write

∑
i∈A ni as n(A).

Author's personal copy

N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662 653

Algorithm 2 Bipartition(Q , {ni: i ∈ Q }).
Require: A set Q = {1, . . . ,q} with a nonnegative integer weight ni , ∀i ∈ Q .
Ensure: A greedily optimal bipartition (A, B) of Q .

1: Let A := ∅, B := Q .
2: while n(A) < n(B) and there is an element i ∈ B with 0 < ni < d(A, B) do
3: Choose such an element i ∈ B with a largest ni .
4: A := A ∪ {i} and B := B − {i}.
5: end while
6: Return (A, B).

Lemma 2.3. Let Q be a set of size q with a nonnegative integer weight ni for each i ∈ Q . The algorithm Bipartition(Q , {ni: i ∈ Q })
finds a greedily optimal bipartition A ∪ B = Q in time O (q log q).

Proof. First we want to show that the values ni chosen in line 3 of the algorithm do not increase during the performance
of the algorithm. The values of ni do not increase because the values of the difference d(A, B) do not increase during the
performance of the algorithm. In fact, d(A, B) strictly decreases. To see this, suppose that the element i is selected in the
present step. If n(A ∪ {i}) < n(B − {i}), then obviously the difference d(A, B) strictly decreases. Else if n(A ∪ {i}) > n(B − {i}),
we have d(A ∪ {i}, B − {i}) < ni < d(A, B).

To see that the algorithm returns a greedily optimal bipartition (A, B), it is enough to observe that for the final bipartition
(A, B), moving any element of A or B does not decrease d(A, B). Suppose that the last movement of the element i0 makes
n(A) > n(B). Then a simple computation implies that d(A, B) < ni0 . Since the values of ni in line 3 of the algorithm do
not increase during the performance of the algorithm, n j � ni0 > d(A, B) for every j ∈ A, the movement of any element in
A would not decrease d(A, B). On the other hand suppose that n(A) < n(B). By the definition of the algorithm, for every
j ∈ B with a positive weight we have n j � d(A, B) and thus the movement of any element in B would not decrease d(A, B).
Hence the current bipartition (A, B) is greedily optimal.

Now let us consider the running time of the algorithm. Sorting the elements in nondecreasing order of their weights will
take O (q log q) time. Moreover, once an element is moved from one partite set to another, it will not be moved again and
we move at most q elements without duplication during the algorithm. This gives us the running time of O (q log q). �

Now we describe a new randomized algorithm for k-Out-Tree. Let D be a digraph and let T be an out-tree on k vertices.
Let us specify a vertex t ∈ V (T) and a vertex w ∈ V (D). We call a copy of T in D a T -isomorphic tree. We say that a
T -isomorphic tree T D in D is a (t, w)-tree if w ∈ V (T D) plays the role of t .

We first give an intuitive explanation of our algorithm before giving a formal description. To find the desired tree in
the given input digraph, we first split the tree in two parts with one common vertex such that the both parts are ‘almost
balanced’ Then we randomly partition the vertices of the D in two parts with probability of a vertex lying in one part or the
other depends on the sizes of the trees we obtained in the first step by splitting it on a vertex. This allows us to more or
less independently look for the different parts of the tree in different parts of the partition. We finally merge them cleverly
to obtain our solution.

In Algorithm 3 find-tree, we have several arguments other than the natural arguments T and D . Our next argument is
a vertex t of T . The argument t indicates that we want to return, at the end of the current procedure, the set of vertices
Xt such that there is a (t, w)-tree for every w ∈ Xt . The fact that Xt �= ∅ means two points: we have a T -isomorphic tree
in D , and the information Xt we have can be used to construct a larger tree which uses the current T -isomorphic tree as a
building block. Here, Xt is a kind of ‘joint’.

The basic strategy is as follows. We choose a pair T A and T B of subtrees of T such that V (T A) ∪ V (T B) = V (T) and T A

and T B share only one vertex, namely v∗ , the splitting vertex. We call recursively two ‘find-tree’ procedures on subsets of
V (D) to ensure that the subtrees playing the role of T A and T B do not overlap. The first call (line 15) tries to find Xv∗ and
the second one (line 18), using the information Xv∗ delivered by the first call, tries to find Xt .

We also need another argument to our algorithm find-tree which is useful while merging and that is:

• a pair consisting of L ⊆ V (T) and {Xu: u ∈ L}, where Xu ⊂ V (D) and Xu ’s are pairwise disjoint.

The arguments L ⊆ V (T) and {Xu: u ∈ L} form a set of information needed to argue the correctness of the algorithm.
Essentially L is a set of vertices of the tree T which has been used as a splitting vertex at some point during the execution
of our recursive procedure. Let T D be a T -isomorphic tree; if for every u ∈ L, T D is a (u, w)-tree for some w ∈ Xu and
V (T D) ∩ Xu = {w}, we say that T D meets the restrictions on L. The algorithm find-tree intends to find the set Xt of vertices
such that for every w ∈ Xt , there is a (t, w)-tree which meets the restrictions on L.

Deleting a splitting vertex v∗ may produce several subtrees, and there might be many ways to divide them into two
groups, namely (T A, T B). To make the algorithm more efficient, we try to obtain as ‘balanced’ a partition (T A, T B) as possible.
The algorithm tree-Bipartition is used to produce a pretty ‘balanced’ bipartition of the subtrees. Moreover we introduce
another argument to have a better complexity behavior. The argument v is a vertex which indicates whether there is a

Author's personal copy

654 N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662

Algorithm 3 find-tree(T , D, v, t, L, {Xu: u ∈ L}).
Require: An out-tree T on k vertices, a digraph D , v ∈ {∅} ∪ V (T), a specified vertex t ∈ V (T), a subset of vertices L ⊆ V (T), a family of pairwise disjoint

subsets Xu ⊆ V (D) for each u ∈ L.
Ensure: A set of vertices Xt ⊆ V (D) such that there is a (t, w)-tree for every w ∈ Xt .

1: if |V (T) \ L| � 2 then
2: for all u ∈ V (T): Set w(u) := 0 if u ∈ L, w(u) := 1 otherwise.
3: if v = ∅ then Find v∗ ∈ V (T) such that the weight of every subtree T ′ of T − v∗ is at most w(T)/2 (see Lemma 2.2) else v∗ := v
4: (W H, BL):=tree-Bipartition(T , t, v∗, L).
5: U w := ⋃

i∈W H V (Ti) ∪ {v∗}, Ub := ⋃
i∈BL V (Ti).

6: for all u ∈ L ∩ U w : color all vertices of Xu in white.
7: for all u ∈ L ∩ (Ub \ {v∗}): color all vertices of Xu in black.
8: α := min{w(U w)/w(T), w(Ub)/w(T)}.
9: if α2 − 3α + 1 � 0 (i.e., α � (3 − √

5)/2, see (2) and the definition of α∗ afterwards) then v w := vb := ∅
10: else if w(U w) < w(Ub) then v w := ∅, vb := v∗ else v w := v∗ , vb := ∅.
11: Xt := ∅.
12: for i = 1 to � 2.51

ααk(1−α)(1−α)k � do

13: Color the vertices of V (D) − ⋃
u∈L Xu in white or black such that for each vertex the probability to be colored in white is α if w(U w) � w(Ub),

and 1 − α otherwise.
14: Let V w (Vb) be the set of vertices of D colored in white (black).
15: S :=find-tree(T [U w], D[V w], v w , v∗, L ∩ U w , {Xu : u ∈ L ∩ U w })
16: if S �= ∅ then
17: Xv∗ := S , L := L ∪ {v∗}.
18: S ′ :=find-tree(T [Ub ∪ {v∗}], D[Vb ∪ S], vb, t, (L ∩ Ub), {Xu : u ∈ (L ∩ Ub)}).
19: Xt := Xt ∪ S ′ .
20: end if
21: end for
22: Return Xt .
23: else {|V (T) \ L| � 1}
24: if {z} = V (T) \ L then Xz := V (D) − ⋃

u∈L Xu , L := L ∪ {z}.
25: Lo := {all leaf vertices of T }.
26: while Lo �= L do
27: Choose a vertex z ∈ L \ Lo s.t. N+

T (z) ⊆ Lo .
28: Xz := Xz ∩ ⋂

u∈N+
T (z) N−(Xu); Lo := Lo ∪ {z}.

29: end while
30: Return Xt .
31: end if

Algorithm 4 tree-Bipartition(T , t, v∗, L).
1: T1, . . . , Tq are the subtrees of T − v∗ . Q := {1, . . . ,q}. w(Ti) := |V (Ti) \ L|, ∀i ∈ Q .
2: if v∗ = t then
3: (A, B):=Bipartition(Q , {ni := w(Ti): i ∈ Q })
4: if w(A) � w(B) then W H := A, BL := B . else W H := B , BL := A.
5: else
6: Let l be such that t ∈ V (Tl)

7: if w(Tl) − w(v∗) � 0 then
8: (A, B):=Bipartition(Q , {ni := w(Ti): i ∈ Q \ {l}} ∪ {nl := w(Tl) − w(v∗)})
9: if l ∈ B then W H := A, BL := B . else W H := B , BL := A

10: else {w(Tl) − w(v∗) < 0}
11: (A, B):=Bipartition((Q \ {l}) ∪ {v∗}, {ni := w(Ti): i ∈ Q \ {l}} ∪ {nv∗ := w(v∗)})
12: if v∗ ∈ A then W H := A − {v∗}, BL := B ∪ {l}. else W H := B − {v∗}, BL := A ∪ {l}
13: end if
14: end if
15: Return (W H, BL).

predetermined splitting vertex. If v = ∅, we do not have a predetermined splitting vertex so we find one in the current
procedure. Otherwise, we use the vertex v as a splitting vertex.

Let r be the root of T . To decide whether D contains a copy of T , it suffices to run find-tree(T , D,∅, r,∅,∅).

Lemma 2.4. During the performance of find-tree(T , D,∅, r,∅,∅), the sets Xu , u ∈ L are pairwise disjoint.

Proof. We prove the claim inductively. For the initial call, trivially the sets Xu , u ∈ L are pairwise disjoint since L = ∅.
Suppose that for a call find-tree(T , D, v, t, L, {Xu: u ∈ L}) the sets Xv , v ∈ L are pairwise disjoint. For the first subsequent
call in line 15, the sets are obviously pairwise disjoint. Consider the second subsequent call in line 18. If v∗ ∈ L before
line 17, the claim is true since we convey the argument t := v∗ to the first subsequent call in line 15 and thus S is
contained in Xv∗ . Otherwise, observe that Xu ⊆ Vb for all u ∈ L ∩ Ub and they are pairwise disjoint. Since Xv∗ ∩ Vb = ∅, the
sets Xu for all u ∈ L ∩ Ub together with Xv∗ are pairwise disjoint. �

Author's personal copy

N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662 655

The algorithm tree-Bipartition is a subroutine used during the execution of find-tree. Let T1, . . . , Tq be the subtrees of
T − v∗ , where v∗ is a splitting vertex of the current call to find-tree. At the end of tree-Bipartition, we obtain a partition
of the subtrees, or more precisely, a partition (W H, BL) of the indices {1, . . . ,q} of the subtrees. The attained partition
(W H, BL) is ‘a greedily optimal bipartition’ in certain sense while a nonnegative integer weight on an element of {1, . . . ,q}
is set to be w(Ti) with some fine-tuning.

Lemma 2.5. Consider the algorithm tree-Bipartition and let (W H, BL) be a bipartition of {1, . . . ,q} obtained at the end of the
algorithm. Then the partition U w := ⋃

i∈W H V (Ti) ∪ {v∗} and Ub := ⋃
i∈BL V (Ti) of V (T) has the following property.

(1) If v∗ = t, moving a component Ti from one partite set to the other does not decrease the difference d(w(U w), w(Ub)).
(2) If v∗ �= t, either exchanging v∗ and the component Tl or moving a component Ti , i �= v∗, l from one partite set to the other does

not decrease the difference d(w(U w), w(Ub)).

Proof. Let us consider the property (1). The bipartition (W H, BL) is determined in the first ‘if’ statement in line 2 of
tree-Bipartition. Then by Lemma 2.3 the bipartition (W H, BL) is greedily optimal, which is equivalent to the statement
of (1).

Let us consider the property (2). First suppose that the bipartition (W H, BL) is determined in the ‘if’ statement in
line 7 of tree-Bipartition. The exchange of v∗ and the component Tl amounts to moving the element l in the algorithm
Bipartition. Since (W H, BL) is returned by Bipartition and thus is a greedily optimal bipartition of Q , any move of an
element in one partite set would not decrease the difference d(W H, BL) and the statement of (2) holds in this case.

Secondly suppose that the bipartition (W H, BL) is determined in the ‘if’ statement in line 10 of tree-Bipartition. In
this case we have w(Tl) = 0 and thus exchanging Tl and v∗ and amounts to moving the element v∗ in the algorithm
Bipartition. By the same argument as above, any move of an element in one partite set would not decrease the difference
d(W H, BL) and again the statement of (2) holds. �

Consider the following equation:

α2 − 3α + 1 = 0. (2)

Let α∗ := (3 − √
5)/2 be one of its roots. In line 10 of the algorithm find-tree, if α < α∗ we decide to pass the present

splitting vertex v∗ as a splitting vertex to the next recursive call which gets, as an argument, a subtree with greater weight
among the two subtrees T [U w] and T [Ub ∪ {v∗}]. Lemma 2.6 justifies this execution. It claims that if α < α∗ , then in the
next recursive call with a subtree of weight (1 −α)w(T), we have a more balanced bipartition with v∗ as a splitting vertex.
Actually, the bipartition in the next step is good enough so as to compensate for the increase in the running time incurred
by the biased (‘α < α∗ ’) bipartition in the present step. We will show this later.

Lemma 2.6. Suppose that v∗ has been chosen to split T for the present call to find-tree such that the weight of every subtree of T − v∗
is at most w(T)/2 and that w(T) � 5. Let α be defined as in line 8 and assume that α < α∗ . Let {U1, U2} = {U w , Ub} such that
w(U2) � w(U1) and let {T1, T2} = {T [U w], T [Ub ∪ {v∗}]} such that U1 ⊆ V (T1) and U2 ⊆ V (T2). Let α′ play the role of α in the
recursive call using the tree T2 . In this case the following holds: α′ � (1 − 2α)/(1 − α) > α∗.

Proof. Let T1, T2, U1, U2,α,α′ be defined as in the statement. Note that α = w(U1)/w(T). Let d = w(U2) − w(U1) and
note that w(U1) = (w(T) − d)/2 and that the following holds

1 − 2α

1 − α
= w(T) − 2w(U1)

w(T) − w(U1)
= 2d

w(T) + d
.

We now consider the following cases.
Case 1. d = 0: In this case α = 1/2 > α∗ , a contradiction.
Case 2. d = 1: In this case α∗ > α = w(U1)/(2w(U1) + 1), which implies that w(U1) � 1. Therefore w(U2) � 2 and

w(T) � 3, a contradiction.
Case 3. d � 2: Let C1, C2, . . . , Cq denote the components in T − v∗ and without loss of generality assume that V (C1) ∪

V (C2) ∪ · · · ∪ V (Ca) = U2 and V (Ca+1) ∪ V (Ca+2) ∪ · · · ∪ V (Cq) = U1. Note that by Lemma 2.5 we must have w(Ci) � d or
w(Ci) = 0 for all i = 1,2, . . . ,q except possibly for one set Cl (containing t), which may have w(Cl) = 1 (if w(v∗) = 1).

Let Cr be chosen such that w(Cr) � d, 1 � r � a and w(Cr) is minimum possible with these constraints. We first consider
the case when w(Cr) > w(U2) − w(Cr). By the above (and the minimality of V (Cr)) we note that w(U2) � w(Cr) + 1 (as
either C j , which is defined above, or v∗ may belong to V (T2), but not both). As w(U2) = (w(T) + d)/2 � w(T)/2 + 1
we note that w(Cr) � w(T)/2 + d/2 − 1. As w(Cr) � w(T)/2 (By the statement in our theorem) this implies that d = 2
and w(Cr) = w(T)/2 and w(U2) = w(Cr) + 1. If U1 contains at least two distinct components with weight at least d
then w(U1) > w(U2), a contradiction. If U1 contains no component of weight at least d then w(U1) � 1 and w(T) � 4,
a contradiction. So U1 contains exactly one component of weight at least d. By the minimality of w(Cr) we note that
w(U1) � w(Cr) = w(U2) − 1, a contradiction to d � 2.

Author's personal copy

656 N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662

Therefore we can assume that w(Cr) � w(U2) − w(Cr), which implies the following (the last equality is proved above)

α′ � w(Cr)

w(U2)
� d

(w(T) + d)/2
= 1 − 2α

1 − α
.

As α < α∗ , we note that α′ � (1 − 2α)/(1 − α) > (1 − 2α∗)/(1 − α∗) = α∗ . �
For the selection of the splitting vertex v∗ we have two criteria in the algorithm find-tree: (i) ‘found’ criterion: the

vertex is found so that the weight of every subtree T ′ of T − v∗ is at most w(T)/2. (ii) ‘taken-over’ criterion: the vertex is
passed on to the present step as the argument v by the previous step of the algorithm. The following statement is an easy
consequence of Lemma 2.6.

Corollary 2.7. Suppose that w(T) � 5. If v∗ is selected with ‘taken-over’ criterion, then α > α∗ .

Proof. For the initial call find-tree(T , D,∅, r,∅,∅) we have v = ∅ and thus, the splitting vertex v∗ is selected with the
‘found’ criterion. We will prove the claim by induction. Consider the first vertex v∗ selected with then ‘taken-over’ criterion
during the performance of the algorithm. Then in the previous step, the splitting vertex was selected with ‘found’ criterion
and thus in the present step we have α > α∗ by Lemma 2.6.

Now consider a vertex v∗ selected with the ‘taken-over’ criterion. Then in the previous step, the splitting vertex was
selected with the ‘found’ criterion since otherwise, by the induction hypothesis we have α > α∗ in the previous step, and ∅
has been passed on as the argument v for the present step. This is a contradiction. �

Due to Corollary 2.7 the vertex v∗ selected in line 3 of the algorithm find-tree functions properly as a splitting vertex.
In other words, we have more than one subtree of T − v∗ in line 4 with positive weights.

Lemma 2.8. If w(T) � 2, then for each of U w and Ub found in line 5 of by find-tree we have w(U w) > 0 and w(Ub) > 0.

Proof. For the sake of contradiction suppose that one of w(U w) and w(Ub) is zero. Let us assume w(U w) = 0 and w(Ub) =
w(T). If v∗ is selected with ‘found’ criteria, each component in T [Ub] has a weight at most w(T)/2 and T [Ub] contains at
least two components of positive weights. Then we can move one component with a positive weight from Ub to U w which
will reduce the difference d(U w , Ub), a contradiction. The same argument applies when w(U w) = w(T) and w(Ub) = 0.

Consider the case when v∗ is selected with ‘taken-over’ criteria. There are three possibilities.
Case 1. w(T) � 5: In this case we obtain a contradiction with Corollary 2.7.
Case 2. w(T) = 4: In the previous step using T ′ , where T ⊆ T ′ , the splitting vertex v∗ was selected with ‘found’ criteria.

Then by the argument in the first paragraph, we have w(T ′) � 5. A contradiction follows from Lemma 2.6.
Case 3. 2 � w(T) � 3: First suppose that w(v∗) = 0. Note that T [U w]− v∗ or T [Ub] contains a component of weight w(T)

since otherwise we can move a component with a positive weight from one partite set to the other and reduce d(U w , Ub).
Considering the previous step using T ′ , where T ⊆ T ′ , the out-tree T is the larger of T ′

w and T ′
b . We pass the splitting

vertex v∗ to the larger of the two only when α > α∗ . So when w(T) = 3, we have 3 > (1 − α∗)w(T ′) and thus w(T ′) � 4,
and when w(T) = 2 we have 2 > (1 −α∗)w(T ′) and thus w(T ′) � 3. In either case, however, T ′ − v∗ contains a component
with a weight greater than w(T ′)/2, contradicting to the choice of v∗ in the previous step (recall that v∗ is selected with
‘found’ criteria in the previous step using T ′).

Secondly suppose that w(v∗) = 1. Then w(U w) = w(T) and w(Ub) = 0. We can reduce the difference d(U w , Ub) by
moving the component with a positive weight from U w to Ub , a contradiction.

Therefore for each of U w and Ub found in line 5 of by find-tree we have w(U w) > 0 and w(Ub) > 0. �
Lemma 2.9. Given a digraph D, an out-tree T and a specified vertex t ∈ V (T), consider the set Xt (in line 22) returned by the algorithm
find-tree(T , D, v, t, L, {Xu: u ∈ L}). We assume that the sets Xu , u ∈ L are pairwise disjoint. If w ∈ Xt then D contains a (t, w)-tree
that meets the restrictions on L. Conversely, if D contains a (t, w)-tree for a vertex w ∈ V (D) that meets the restrictions on L, then Xt

contains w with probability larger than 1 − 1/e > 0.6321.

Proof. Lemma 2.8 guarantees that the splitting vertex v∗ selected at any recursive call of find-tree really ‘splits’ the input
out-tree T into two nontrivial parts, unless w(T) � 1.

First we show that if w ∈ Xt then D contains a (t, w)-tree for a vertex w ∈ V (D) that meets the restrictions on L. When
|V (T) \ L| � 1, using Lemma 2.4 it is straightforward to check from the algorithm that the claim holds. Assume that the
claim is true for all subsequent calls to find-tree. Since w ∈ S ′ for some S ′ returned by a call in line 18, the subgraph
D[Vb ∪ Xv∗] contains a T [Ub ∪ {v∗}]-isomorphic (t, w)-tree T b

D meeting the restrictions on (L ∩ Ub) ∪ {v∗} by induction
hypothesis. Moreover, Xv∗ �= ∅ when S ′ � w is returned and this implies that there is a vertex u ∈ Xv∗ such that T b

D is a
(v∗, u)-tree. Since u ∈ Xv∗ , induction hypothesis implies that the subgraph D[V w] contains a T [U w]-isomorphic (v∗, u)-tree,
say T w

D .

Author's personal copy

N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662 657

Consider the subgraph T D := T w
D ∪ T b

D . To show that T D is a T -isomorphic (t, w)-tree in D , it suffices to show that
V (T w

D) ∩ V (T b
D) = {u}. Indeed, V (T w

D) ⊆ V w , V (T b
D) ⊆ Vb ∪ Xv∗ and V w ∩ Vb = ∅. Thus if two trees T w

D and T b
D share

vertices other than u, these common vertices should belong to Xv∗ . Since T b
D meets the restrictions on (L ∩ Ub) ∪ {v∗}, we

have Xv∗ ∩ V (T b
D) = {u}. Hence u is the only vertex that two trees T w

D and T b
D have in common. We know that u plays the

role of v∗ in both trees. Therefore we conclude that T D is T -isomorphic, and since w plays the role of t , it is a (t, w)-tree.
Obviously T D meets the restrictions on L.

Secondly, we shall show that if D contains a (t, w)-tree for a vertex w ∈ V (D) that meets the restrictions on L, then
Xt contains w with probability larger than 1 − 1/e > 0.6321. When |V (T) \ L| � 1, the algorithm find-tree is deterministic
and returns Xt which is exactly the set of all vertices w for which there exists a (t, w)-tree meeting the restrictions on L.
Hence the claim holds for the base case, and we may assume that the claim is true for all subsequent calls to find-tree.

Suppose that there is a (t, w)-tree T D meeting the restrictions on L and that this is a (v∗, w ′)-tree, that is, the vertex w ′
plays the role of v∗ . Then the vertices of T D corresponding to U w , say T w

D , are colored white and those of T D corresponding
to Ub , say T b

D , are colored black as intended with probability � (αα(1 − α)1−α)k . When we hit the right coloring for T , the
digraph D[V w] contains the subtree T w

D of T D which is T [U w]-isomorphic and which is a (v∗, w ′)-tree. By induction hy-
pothesis, the set S obtained in line 15 contains w ′ with probability larger than 1 − 1/e. Note that T w

D meets the restrictions
on L ∩ U w .

If w ′ ∈ S , the restrictions delivered onto the subsequent call for find-tree in line 17 contains w ′ . Since T D meets the
restrictions on L confined to Ub − v∗ and it is a (v∗, w ′)-tree with w ′ ∈ S = Xv∗ , the subtree T b

D of T D which is T [Ub ∪{v∗}]-
isomorphic meets all the restrictions on L. Hence by induction hypothesis, the set S ′ returned in line 18 contains w with
probability larger than 1 − 1/e.

The probability ρ that S ′ , returned by find-tree in line 18 at an iteration of the loop, contains w is, thus,

ρ >
(
αα(1 − α)1−α

)k × (1 − 1/e)2 > 0.3995
(
αα(1 − α)1−α

)k
.

After looping �(0.3995(αα(1 − α)1−α)k)−1� times in line 12, the probability that Xt contains w is at least

1 − (1 − ρ)1/(0.3995(αα(1−α)1−α)k) > 1 − (
1 − 0.3995

(
αα(1 − α)1−α

)k)1/(0.3995(αα(1−α)1−α)k)
> 1 − 1

e
.

Observe that the probability ρ does not depend on α and the probability of coloring a vertex white/black. �
The complexity of algorithm find-tree is analyzed in the following theorem.

Theorem 2.10. Algorithm find-tree has running time O (n2kρCk), where w(T) = k and |V (D)| = n, and C and ρ are defined and
bounded as follows:

C =
(

1

α∗α∗
(1 − α∗)1−α∗

)1/α∗

, ρ = ln(1/6)

ln(1 − α∗)
, ρ � 3.724, and C � 5.7039.

Proof. Let L(T , D) denote the number of times the ‘if’-statement in line 1 of algorithm find-tree is false (in all recursive
calls to find-tree). We will prove that L(T , D) � R(k) = BkρCk + 1, B � 1 is a constant whose value will determined later
in the proof. This would imply that the number of calls to find-tree where the ‘if’-statement in line 1 is true is also
bounded by R(k) as if line 1 is true then we will have at least two calls to find-tree (in fact it will have at least three
as � 2.51

ααk(1−α)(1−α)k � � 3 and we always have a call in line 15). We can therefore think of the search tree of Algorithm 3 as

an out-tree where all internal nodes have out-degree at least two and therefore the number of leaves is greater than the
number of internal nodes.

Observe that each iteration of the for-loop in line 12 of algorithm find-tree makes at most two recursive calls to find-tree
and the time spent in each iteration of the for-loop is at most O (n2). As the time spent in each call of find-tree outside the
for-loop is also bounded by O (n2) we obtain the desired complexity bound O (n2kρCk).

Thus, it remains to show that L(T , D) � R(k) = BkρCk + 1. First note that if k = 0 or k = 1 then line 1 is false exactly
once (as there are no recursive calls) and min{R(1), R(0)} � 1 = L(T , D). If k ∈ {3,4}, then line 1 is false a constant number
of times by Lemma 2.8 and let B be the minimal integer such that L(T , D) � R(k) = BkρCk + 1 for both k = 3 and 4. Thus,
we may now assume that k � 5 and proceed by induction on k.

Let R ′(α,k) = (6((1 − α)k)ρC (1−α)k)/(ααk(1 − α)(1−α)k). Let α be defined as in line 8 of algorithm find-tree. We will
consider the following two cases separately.

Case 1. α � α∗: In this case we note that the following holds as k � 2 and (1 − α) � α,

L(T , D) �
⌈

2.51/
(
ααk(1 − α)(1−α)k)⌉ × (

R(αk) + R
(
(1 − α)k

))
� 3/

(
ααk(1 − α)(1−α)k) × (

2 · R
(
(1 − α)k

))
= R ′(α,k).

Author's personal copy

658 N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662

By the definition of ρ we observe that (1 − α∗)ρ = 1/6, which implies that the following holds by the definition of C :

R ′(α∗,k
) = 6

((
1 − α∗)k

)ρ
C (1−α∗)k × Cα∗k = kρCk = R(k).

Observe that

ln
(

R ′(α,k)
) = ln(6) + ρ

[
ln(k) + ln(1 − α)

] + k
[
(1 − α) ln(C) − α ln(α) − (1 − α) ln(1 − α)

]
.

We now differentiate ln(R ′(α,k)) which gives us the following:

∂(ln(R ′(α,k)))

∂(α)
= ρ

−1

1 − α
+ k

(− ln(C) − (
1 + ln(α)

) + (
1 + ln(1 − α)

))

= −ρ

1 − α
+ k

(
ln

(
1 − α

αC

))
.

Since k � 0 we note that the above equality implies that R ′(α,k) is a decreasing function in α in the interval α∗ � α �
1/2. Therefore L(T , D) � R ′(α,k) � R ′(α∗,k) = R(k), which proves Case 1.

Case 2. α < α∗: In this case we will specify the splitting vertex when we make recursive calls using the larger of U w and
Ub (defined in line 5 of algorithm find-tree). Let α′ denote the α-value in such a recursive call. By Lemma 2.6 we note that
the following holds:

1

2
� α′ � 1 − 2α

1 − α
> α∗.

Analogously to Case 1 (as R ′(α′, (1 − α)k) is a decreasing function in α′ when 1/2 � α′ � α∗) we note that the L-values
for these recursive calls are bounded by the following, where β = 1−2α

1−α (which implies that (1 − α)(1 − β) = α):

R ′(α′, (1 − α)k
)
� R ′(β, (1 − α)k

)
= 3/

((
ββ(1 − β)(1−β)

)(1−α)k) × 2 × R
(
(1 − β)(1 − α)k

)
= 6R(αk)/

((
ββ(1 − β)(1−β)

)(1−α)k)
.

Thus, in the worst case we may assume that α′ = β = (1 − 2α)/(1 − α) in all the recursive calls using the larger of U w

and Ub . The following now holds (as k � 2)

L(T , D) �
⌈

2.51/
(
ααk(1 − α)(1−α)k)⌉ × (

R(αk) + R ′(α′, (1 − α)k
))

� 3/
(
ααk(1 − α)(1−α)k) × R(αk) × (

1 + 6/
((

ββ(1 − β)(1−β)
)(1−α)k))

� 3R(αk)/
(
ααk(1 − α)(1−α)k) × 7/

((
ββ(1 − β)(1−β)

)(1−α)k)
.

Let R∗(α,k) denote the bottom right-hand side of the above equality (for any value of α). By the definition of ρ we
note that ρ = 2 ln(1/6)

2 ln(1−α∗)
= ln(1/36)

ln(α∗)
, which implies that (α∗)ρ = 1/36. By the definition of C and the fact that if α = α∗ then

β = (1 − 2α∗)/(1 − α∗) = α∗ , we obtain the following:

R∗(α∗,k
) = 3R

(
α∗k

)
/
(
α∗α∗k(1 − α∗)(1−α∗)k) × 7/

((
α∗α∗(

1 − α∗)(1−α∗))(1−α∗)k)
= 21 · R

(
α∗k

) · Cα∗k · Cα∗(1−α∗)k

= 21α∗ρkρCα∗k × C (2α∗−α∗2)k

= 21α∗ρ R(k)

< R(k).

We will now simplify R∗(α,k) further, before we differentiate ln(R∗(α,k)). Note that β = 1−2α
1−α implies that

(1 − α)(1 − β) = α and β(1 − α) = 1 − 2α,

R∗(α,k) = 21R(αk)/
(
ααk(1 − α)(1−α)k) × 1/

((
ββ(1 − β)(1−β)

)(1−α)k)

= 21(αk)ρCαk/
(
ααk(1 − α)(1−α)k) × 1/

((
1 − 2α

1 − α

)(1−2α)k(
α

1 − α

)αk)

= 21(αk)ρ
(
Cα/

(
α2α(1 − 2α)(1−2α)

))k
.

Thus, we have the following:

ln
(

R∗(α,k)
) = ln(21) + ρ

(
ln(k) + ln(α)

) + k
(
α ln(C) − 2α ln(α) − (1 − 2α) ln(1 − 2α)

)
.

Author's personal copy

N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662 659

We now differentiate ln(R∗(α,k)) which gives us the following:

∂(ln(R∗(α,k)))

∂(α)
= ρ

α
+ k

(
ln(C) − 2

(
1 + ln(α)

) + 2
(
1 + ln(1 − 2α)

))

= ρ

α
+ k

(
ln

(
C(1 − 2α)2

α2

))
.

Since k � 0 we note that the above equality implies that R∗(α,k) is an increasing function in α in the interval 1/3 �
α � α∗ . Therefore L(T , D) � R∗(α,k) � R∗(α∗,k) < R(k), which proves Case 2. �
Theorem 2.11. There is an O (n25.704k) time randomized algorithm that solves the k-Out-Tree problem.

2.3. Derandomization of our randomized algorithm for k-Out-Tree

In this subsection we discuss the derandomization of the algorithm find-tree using the general method presented by
Chen et al. [4] and based on the construction of (n,k)-universal sets studied in [11].

Definition 2.12. An (n,k)-universal set F is a set of functions from [n] to {0,1}, such that for every subset S ⊆ [n], |S| = k
the set F |S = { f |S : f ∈ F} is equal to the set 2S of all the functions from S to {0,1}.

Such an universal set can play in find-tree the role of the random colorings. In the same article [4], Chen et al. also give
an algorithm to generate one:

Proposition 2.13. (See [4].) There is an O (n2k+12 log2 k) time deterministic algorithm that constructs an (n,k)-universal set of size

bounded by n2k+12 log2 k+2.

Using this universal set alone, however, would not enable us to obtain a deterministic fixed-parameter algorithm for
find-tree, as the size of the family (and, thus, the number of iterations in the main loop of the algorithm) would now also
depend on n, besides k. Hence, Chen et al. make use (see [4]) of a family of pre-coloring functions (gn,k,z)z�2n to obtain a
fixed-parameter algorithm. To explain it, let us first give a result from Fredman et al. [8].

Proposition 2.14. Let n and k be integers, n � k, and let q0 be the smallest prime number such that n � q0 < 2n. For any k-subset S in
Zn = 0, . . . ,n − 1, there is an integer z, 0 � z � q0 , such that the function gn,k,z over Zn, defined as gn,k,z(a) = (az mod q0) mod k2 ,
is injective from S.

By the above proposition, computing a (k2,k)-universal set Fk2,k instead of an (n,k)-universal set is enough for our
purposes. Indeed, if we are looking for a k-subgraph S in our graph, there exists 1 � z � 2n such that gn,k,z is injec-
tive on S , thus ensuring that the family F ′

k,n,z = Fk2,k ◦ gn,k,z = { f ◦ gn,k,z, f ∈ Fk2,k} is such that F ′
k,n,z|S is equal to the

set 2S .
This way, derandomizing find-tree amounts to running it at most 2n times (once for each possible value of z), each time

using as a set of coloring functions the family F ′
k,n,z . Two lines of the algorithm will then need to be modified:

13 for each function f ∈ F ′
k,n,z do

14 ∀i such that xi ∈ V (D) − ⋃
u∈L Xu , let vi be colored in white if f (i) = 0 and in black if f (i) = 1.

Besides, we also need to pre-compute a (k2,k′)-universal set for any k′ � k, as this will be needed in the recursions steps
of the algorithm. By Proposition 2.13, this can be done in time O (k32k+12 log2 k). Note that these modifications make the
algorithm find-tree deterministic.

Then, from Proposition 2.14 we deduce that if a digraph D contains an out-tree T meeting the requirements, then there
exists a z such that gn,k,z is injective on V (T). During the iteration of the algorithm corresponding to z there will be an
f ∈ F ′

k,n,z such that the vertices corresponding to U w in D with be colored in white while the vertices corresponding to Ub
will be colored in black. Using induction on k, we can prove that this deterministic algorithm correctly returns the required
out-tree provided that such an out-tree exists in the digraph.

Let us briefly sketch how the running time is derived. We consider the following type of recurrence relations:

T (k,n) � X02k × (
T
(
(1 − α)k,n

) + T (αk,n)
)
.

Author's personal copy

660 N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662

Here X0 is a constant determined by the size of the initial out-tree we are considering, and it adds to the exponent of
T (k,n) with o(k) factor. On the other hand, the value of α asymptotically evolves around α∗ as we see in the randomized
version of algorithm. As a result, T (k,n) is a function of the form (21/α∗

)k+o(k) . Overall the computation is similar to that
described in the proof of Theorem 2.10. Thus, we obtain the following:

Theorem 2.15. There is an O (n26.139k+o(k)) = O (n26.14k) time deterministic algorithm that solves the k-Out-Tree problem.

3. Algorithm for k-INT-OUT-BRANCHING

A k-internal out-tree is an out-tree with at least k internal vertices. We call a k-internal out-tree minimal if none of its
proper subtrees is a k-internal out-tree, or minimal k-tree in short. The Rooted Minimal k-Tree problem is as follows: given
a digraph D , a vertex u of D and a minimal k-tree T , where k is a parameter, decide whether D contains an out-tree rooted
at u and isomorphic to T . Recall that k-Int-Out-Branching is the following problem: given a digraph D and a parameter k,
decide whether D contains an out-branching with at least k internal vertices. Finally, the k-Int-Out-Tree problem is stated
as follows: given a digraph D and a parameter k, decide whether D contains an out-tree with at least k internal vertices.

Lemma 3.1. Let T be a k-internal out-tree. Then T is minimal if and only if |Int(T)| = k and every leaf u ∈ Leaf(T) is the only child of
its parent N−(u).

Proof. Assume that T is minimal. It cannot have more than k internal vertices, because otherwise by removing any of its
leaves, we obtain a subtree of T with at least k internal vertices. Thus |Int(T)| = k. If there are sibling leaves u and w , then
removing one of them provides a subtree of T with |Int(T)| internal vertices.

Now, assume that |Int(T)| = k and every leaf u ∈ Leaf(T) is the only child of its parent N−(u). Observe that every subtree
of T can be obtained from T by deleting a leaf of T , a leaf in the resulting out-tree, etc. However, removing any leaf v from
T decreases the number of internal vertices, and thus creates subtrees with at most k − 1 internal vertices. Thus, T is
minimal. �

In fact, Lemma 3.1 can be used to generate all non-isomorphic minimal k-trees. First, build an (arbitrary) out-tree T 0

with k vertices. Then extend T 0 by adding a vertex x′ for each leaf x ∈ Leaf(T 0) with an arc (x, x′). The resulting out-tree T ′
satisfies the properties of Lemma 3.1. Conversely, by Lemma 3.1, any minimal k-tree can be constructed in this way.

Generating Minimal k-Tree (GMT) Procedure

a. Generate a k-vertex out-tree T 0 and a set T ′ := T 0.

b. For each leaf x ∈ Leaf(T ′), add a new vertex x′ and an arc (x, x′) to T ′ .

Due to the following simple observation, to solve k-Int-Out-Tree for a digraph D it suffices to solve Rooted Minimal

k-Tree for each vertex u ∈ V (D) and each minimal k-tree T rooted at u.

Lemma 3.2. Any k-internal out-tree rooted at r contains a minimal k-tree rooted at r as a subdigraph.

Similarly, the next two lemmas show that to solve k-Out-Branching for a digraph D it suffices to solve Rooted Minimal

k-Tree for each vertex u ∈ S and each minimal k-tree T rooted at u, where S is the unique strong connectivity component
of D without incoming arcs.

Lemma 3.3. (See [2].) A digraph D has an out-branching rooted at vertex r ∈ V (D) if and only if D has a unique strong connectivity
component S of D without incoming arcs and r ∈ S. One can check whether D has a unique strong connectivity component and find
one, if it exists, in time O (m + n), where n and m are the number of vertices and arcs in D, respectively.

The next lemma is a folklore.

Lemma 3.4. Suppose a given digraph D with n vertices and m arcs has an out-branching rooted at vertex r. Then any minimal k-tree
rooted at r can be extended to a k-internal out-branching rooted at r in time O (m + n).

Since k-Int-Out-Tree and k-Int-Out-Branching can be solved similarly, we will only deal with the k-Int-Out-Branching

problem. We will assume that our input digraph contains a unique strong connectivity component S . Our algorithm called
IOBA for solving k-Int-Out-Branching for a digraph D runs in two stages. In the first stage, we generate all minimal k-trees.
We use the GMT procedure described above to achieve this. At the second stage, for each u ∈ S and each minimal k-tree T ,
we check whether D contains an out-tree rooted at u and isomorphic to T using our algorithm from the previous section.

Author's personal copy

N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662 661

We return TRUE if and only if we succeed in finding an out-tree H of D rooted at u ∈ S which is isomorphic to a minimal
k-tree.

In the literature, mainly rooted (undirected) trees and not out-trees are studied. However, every rooted tree can be made
an out-tree by orienting every edge away from the root and every out-tree can be made a rooted tree by disregarding all
orientations. Thus, rooted trees and out-trees are equivalent and we can use results obtained for rooted trees for out-trees.

Otter [13] showed that the number of non-isomorphic out-trees on k vertices is tk = O ∗(2.95k). We can generate all
non-isomorphic rooted trees on k vertices using the algorithm of Beyer and Hedetniemi [3] of runtime O (tk). Using the
GMT procedure we generate all minimal k-trees. We see that the first stage of IOBA can be completed in time O ∗(2.95k).

In the second stage of IOBA, we try to find a copy of a minimal k-tree T in D using our algorithm from the previous
section. The running time of our algorithm is O ∗(6.14k). Since the number of vertices of T is bounded from above by 2k −1,
the overall running time for the second stage of the algorithm is O ∗(2.95k · 6.142k−1). Thus, the overall time complexity of
the algorithm is O ∗(2.95k · 6.142k−1) = O ∗(112k).

We can reduce the complexity with a more refined analysis of the algorithm. The major contribution to the large constant
112 in the above simple analysis comes from the running time of our algorithm from the previous section. There we use
the upper bound on the number of vertices in a minimal k-tree. Most of the minimal k-trees have less than k − 1 leaves,
which implies that the upper bound 2k − 1 on the order of a minimal k-tree is too big for the majority of the minimal
k-trees. Let T (k) be the running time of IOBA. Then we have

T (k) = O ∗
(∑

k+1�k′�2k−1

(
of minimal k-trees on k′ vertices

) × (
6.14k′))

. (3)

A minimal k-tree T ′ on k′ vertices has k′ −k leaves, and thus the out-tree T 0 from which T ′ is constructed has k vertices
of which k′ −k are leaves. Hence the number of minimal k-trees on k′ vertices is the same as the number of non-isomorphic
out-trees on k vertices with k′ − k leaves. Here an interesting counting problem arises. Let g(k, l) be the number of non-
isomorphic out-trees on k vertices with l leaves. Enumerate g(k, l). To our knowledge, such a function has not been studied
yet. Leaving it as a challenging open question, here we give an upper bound on g(k, l) and use it for a better analysis
of T (k). In particular we are interested in the case when l � k/2.

Consider an out-tree T 0 on k � 3 vertices which has αk internal vertices and (1 − α)k leaves. We want to obtain an
upper bound on the number of such non-isomorphic out-trees T 0. Let T c be the subtree of T 0 obtained after deleting all
its leaves and suppose that T c has βk leaves. Assume that α � 1/2 and notice that αk and βk are integers. Clearly β < α.

Each out-tree T 0 with (1 −α)k leaves can be obtained by appending (1 −α)k leaves to T c so that each of the vertices in
Leaf(T c) has at least one leaf appended to it. Imagine that we have βk = |Leaf(T c)| and αk − βk = |Int(T c)| distinct boxes.
Then what we are looking for is the number of ways to put (1 − α)k balls into the boxes so that each of the first βk boxes
is nonempty. Again this is equivalent to putting (1 − α − β)k balls into αk distinct boxes. It is an easy exercise to see that
this number equals

(k−βk−1
αk−1

)
.

Note that the above number does not give the exact value for the non-isomorphic out-trees on k vertices with (1 − α)k
leaves. This is because we treat an out-tree T c as a labeled one, which may lead us to distinguishing two assignments of
balls even though the two corresponding out-trees T 0’s are isomorphic to each other.

A minimal k-tree obtained from T 0 has (1 − α)k leaves and thus (2 − α)k vertices. With the upper bound O ∗(2.95αk)

on the number of T c ’s by [13], by (3) we have the following:

T (k) = O ∗
(∑

α�1/2

∑
β<α

2.95αk
(

k − βk − 1

αk − 1

)
(6.14)(2−α)k

)
+ O ∗

(∑
α>1/2

2.95αk(6.14)(2−α)k
)

= O ∗
(∑

α�1/2

∑
β<α

2.95αk
(

k

αk

)
(6.14)(2−α)k

)
+ O ∗(2.95k(6.14)3k/2)

= O ∗
(∑

α�1/2

(
2.95α 1

αα(1 − α)1−α
(6.14)(2−α)

)k)
+ O ∗(44.9k).

The term in the sum over α � 1/2 above is maximized when α = 2.95
2.95+6.14 , which yields T (k) = O ∗(55.8k). Thus, we

conclude with the following theorem.

Theorem 3.5. k-Int-Out-Branching is solvable in time O ∗(55.8k).

4. Conclusion

In this paper we refine the approach of Chen et al. [4] based on randomized Divide-and-Conquer technique. Our tech-
nique is based on a more complicated coloring and within this technique we refined the result of Alon et al. [1] for the

Author's personal copy

662 N. Cohen et al. / Journal of Computer and System Sciences 76 (2010) 650–662

k-Out-Tree problem. It is interesting to see if this technique can be used to obtain faster algorithms for other parameterized
problems.

As a byproduct of our work, we obtained the first O ∗(2O (k))-time algorithm for k-Int-Out-Branching. We used the clas-
sical result of Otter [13] that the number of non-isomorphic trees on k vertices is O ∗(2.95k). An interesting combinatorial
problem is to refine this bound for trees having �αk� leaves for some α < 1.

References

[1] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (1995) 844–856.
[2] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd ed., Springer-Verlag, London, 2008.
[3] T. Beyer, S.M. Hedetniemi, Constant time generation of rooted trees, SIAM J. Comput. 9 (1980) 706–712.
[4] J. Chen, J. Kneis, S. Lu, D. Mölle, S. Richter, P. Rossmanith, S.-H. Sze, F. Zhang, Randomized divide-and-conquer: Improved path, matching, and packing

algorithms, SIAM J. Comput. 38 (2009) 2526–2547.
[5] F.R.K. Chung, Separator theorems and their applications, in: Paths, Flows, and VLSI-Layout, Bonn, 1988, Springer-Verlag, Berlin, 1990, pp. 17–34.
[6] N. Cohen, F. Fomin, G. Gutin, E.J. Kim, S. Saurabh, A. Yeo, Algorithm for finding k-vertex out-trees and its application to k-internal out-branching

problem, in: Proc. COCOON’09, in: Lecture Notes in Comput. Sci., vol. 5609, 2009, pp. 37–46.
[7] A. Demers, A. Downing, Minimum leaf spanning tree, US Patent no. 6,105,018, August 2000.
[8] M.L. Fredman, J. Komlos, E. Szemeredi, Storing a sparse table with O (1) worst case access time, J. ACM 31 (1984) 538–544.
[9] G. Gutin, I. Razgon, E.J. Kim, Minimum leaf out-branching problems, in: Proc. AAIM’08, in: Lecture Notes in Comput. Sci., vol. 5034, 2008, pp. 235–246.

[10] I. Koutis, Faster algebraic algorithms for path and packing problems, in: Proc. ICALP’08, in: Lecture Notes in Comput. Sci., vol. 5125, 2008, pp. 575–586.
[11] M. Naor, L.J. Schulman, A. Srinivasan, Splitters and near-optimal derandomization, in: Proc. 17th Ann. Symp. Found. Comput. Sci., 1995, pp. 182–193.
[12] A. Nilli, Perfect hashing and probability, Combin. Probab. Comput. 3 (1994) 407–409.
[13] R. Otter, The number of trees, Ann. of Math. 49 (1948) 583–599.
[14] E. Prieto, C. Sloper, Either/Or: Using vertex cover structure in designing FPT-algorithms – The case of k-internal spanning tree, in: Proc. WADS’2003,

in: Lecture Notes in Comput. Sci., vol. 2748, 2003, pp. 465–483.
[15] E. Prieto, C. Sloper, Reducing to independent set structure – The case of k-internal spanning tree, Nordic J. Comput. 15 (2005) 308–318.
[16] R. Williams, Finding a path of length k in O ∗(2k) time, Inform. Process. Lett. 109 (2009) 315–318.

