
Information Processing Letters 110 (2010) 702–706
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Parameterized algorithm for eternal vertex cover

Fedor V. Fomin a,1, Serge Gaspers b, Petr A. Golovach c, Dieter Kratsch d, Saket Saurabh e,∗
a Department of Informatics, University of Bergen, N-5020 Bergen, Norway
b CMM – Universidad de Chile, Av. Blanco Encalada 2120, Santiago, Chile
c School of Engineering and Computing Sciences, Durham University, South Road, DH1 3LE Durham, UK
d Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine – Metz, 57045 Metz Cedex 01, France
e The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 September 2009
Received in revised form 23 March 2010
Accepted 26 May 2010
Available online 1 June 2010
Communicated by M. Yamashita

Keywords:
Graph algorithms
Parameterized complexity
Fixed parameter tractability
Vertex cover
Eternal vertex cover

In this paper we initiate the study of a “dynamic” variant of the classical Vertex Cover

problem, the Eternal Vertex Cover problem introduced by Klostermeyer and Mynhardt,
from the perspective of parameterized algorithms. This problem consists in placing a
minimum number of guards on the vertices of a graph such that these guards can protect
the graph from any sequence of attacks on its edges. In response to an attack, each guard
is allowed either to stay in his vertex, or to move to a neighboring vertex. However, at
least one guard has to fix the attacked edge by moving along it. The other guards may
move to reconfigure and prepare for the next attack. Thus at every step the vertices
occupied by guards form a vertex cover. We show that the problem admits a kernel of
size 4k(k + 1) + 2k, which shows that the problem is fixed parameter tractable when
parameterized by the number of available guards k. Finally, we also provide an algorithm
with running time O(2O (k2) + nm) for Eternal Vertex Cover, where n is the number of
vertices and m the number of edges of the input graph. In passing we also observe that
Eternal Vertex Cover is NP-hard, yet it has a polynomial time 2-approximation algorithm.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the classical Vertex Cover problem we are given a
graph G = (V , E) and a positive integer r as input and the
objective is to decide whether there exists a subset C of
the vertex set V of size at most r such that it contains at
least one vertex from each edge in the graph. Klostermeyer
and Mynhardt [7] introduced a dynamic variant of the Ver-

tex Cover problem, the Eternal Vertex Cover problem. In
the Eternal Vertex Cover problem, the input is a graph
G = (V , E) on n vertices and m edges. Guards are placed
on the vertices of the graph in order to protect it from an
infinite sequence (which is not known to the guards in ad-
vance) of attacks on the edges of the graph. In each round,
one edge uv ∈ E is attacked, and each guard either stays

* Corresponding author.
E-mail address: saket@imsc.res.in (S. Saurabh).

1 Supported by the Norwegian Research Council.
0020-0190/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.05.029
on the vertex it is occupying or moves to a neighboring
vertex. Moreover, the guards are bound to move in such a
way that at least one guard moves from u to v or from v
to u. The minimum number of guards which can protect
all the edges of G is called the eternal vertex cover number
of G and is denoted by evcn(G). The Eternal Vertex Cover

problem is to compute evcn(G) for a graph G , and the pa-
rameterized version of the problem is to decide whether
evcn(G) � k for a graph G and a parameter k.

In parameterized complexity, one asks if for an instance
of size n and a parameter k, a problem can be solved in
time f (k)nO(1) where f is an arbitrary computable func-
tion independent of n. Problems that can be solved in that
time are said to be fixed parameter tractable, and the cor-
responding complexity class is called FPT. We refer to the
books of Downey and Fellows [5] and Niedermeier [11] for
an introduction to the area.

A lot of research has been done on the Vertex Cover

problem. As observed by many, Vertex Cover could be

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:saket@imsc.res.in
http://dx.doi.org/10.1016/j.ipl.2010.05.029

F.V. Fomin et al. / Information Processing Letters 110 (2010) 702–706 703
considered the “Drosophila” of fixed-parameter algorithms
[5,6,11]. The current fastest algorithm for Vertex Cover

runs in time O(1.2738k + kn) [2]. The literature on pa-
rameterized complexity is full of variants of Vertex Cover

like Connected Vertex Cover [6,10], Capacitated Vertex

Cover [4,6], and Partial Vertex Cover [6,8,12]. In this pa-
per we show that its dynamic variant, namely Eternal

Vertex Cover, is also fixed parameter tractable.
The paper is organized as follows. In Section 2 we give

some basic definitions and observe that the parameterized
complexity of Eternal Vertex Cover is the same when pa-
rameterized by the number of available guards and when
parameterized by the size of a minimum vertex cover of
the input graph. Section 3 deals with exact and param-
eterized algorithms for Eternal Vertex Cover. We start
with an 2O(n) time algorithm computing the eternal ver-
tex cover number of an n-vertex graph. Then we prove
FPT membership by providing a k′ = 4k(k + 1) + 2k kernel,
which combined with the exact algorithm, leads to a time
2O(k′) ·nO(1) algorithm. We then improve on this algorithm
and give an algorithm with running time O(2O (k2) + nm).
We conclude with some remarks in Section 4.

2. Preliminaries

All graphs in this paper are finite, undirected and with-
out multiple edges and loops. For notation and terminol-
ogy not defined in this paper we refer to [3]. Let G =
(V , E) be a graph. A set S ⊆ V is a vertex cover of G , if
for every edge of E at least one endpoint is in S .

Studying the Eternal Vertex Cover problem from the
parameterized complexity point of view in Section 3, we
use the following easy lemma from [7], which shows that
the parameterized complexity of the problem remains the
same when it is parameterized by the number of guards
available to protect the graph or the size of a minimum
vertex cover of the input graph. Let vc(G) denote the size
of a minimum vertex cover of G .

Lemma 1. (See [7].) For any graph G, vc(G) � evcn(G) �
2vc(G).

Let us remark that the three inequalities of Lemma 1
are tight: vc(P2) = evcn(P2) = 1 and evcn(P3) = 2vc(P3)

= 2, where Pn denotes a path on n vertices.

3. FPT algorithm for ETERNAL VERTEX COVER

We start by observing that Eternal Vertex Cover is in-
deed NP-hard by giving a simple reduction from Vertex

Cover. Then we obtain an exact algorithm running in time
2O(n) to find the eternal vertex cover number of a graph G
on n vertices. A “trimmed variant” of this algorithm is cru-
cially used in obtaining the faster fixed parameter tractable
algorithm for Eternal Vertex Cover. Finally, we give our
kernel and the parameterized algorithm for Eternal Ver-

tex Cover.

Proposition 1. It is NP-hard to decide whether k guards can
protect all the edges of a graph.
Proof. We reduce from the Vertex Cover problem. Recall
that it asks about the existence of a vertex cover of the
size at most r in a graph G . Assume that r < |V (G)| − 1,
since Vertex Cover obviously remains NP-complete with
this additional condition. We add a new universal vertex u
and make it adjacent to each vertex of G . Then we add a
new vertex v and the edge uv . Denote the resulting graph
by H . We claim that G has a vertex cover of size at most
r if and only if k = r + 2 guards can protect all the edges
of H .

Assume that S is a vertex cover of G of size at most r.
Then r + 2 guards can use a strategy which maintains the
following configuration: the guards occupy the vertices of
S (one vertex is occupied by one guard), vertex u and
some vertex z ∈ V (G)∪{v} \ S . Clearly, the guards can take
this position in the beginning of the game. Suppose that an
edge xy is attacked. If both vertices x and y are occupied
by a guard then these two guards simply exchange places
by moving across xy. Otherwise, if xy ∈ E(G), then at least
one endpoint of xy, say x, is in S . One guard moves from x
to y, another guard moves from u to x, and finally a guard
from z moves to u. Assume now that xy is incident with u.
Let x = u. Then one guard moves from u to y and another
guard moves from z to u.

Suppose now that r + 2 guards can protect all edges
of H . Since r < |V (G)| − 1, at least one guard always occu-
pies vertex u. If no guard occupies v , then after an attack
on the edge uv at least one guard has to move to v , and
at least two guards occupy u and v . This means that at
most r guards occupy vertices of G . Clearly, the set of ver-
tices occupied by these guards is a vertex cover of G of
size at most r as neither u nor v are incident to an edge
of G . �

The following lemma provides a simple result on the
approximability of the problem.

Lemma 2. There is a 2-approximation algorithm for the Eter-

nal Vertex Cover problem with running time O(
√

n · m),
where n is the number of vertices and m is the number of edges
of the input graph.

Proof. Let M be a maximum matching of size k in a
graph G . Then the size of a minimum vertex cover of G
is at least k, and thus evcn(G) � k. By placing guards on
the endpoints of the edges in M , we use 2k guards. We
claim that the guards occupying the endpoints of the edges
of a maximum matching in G can always protect G . In-
deed, the guards’ strategy is as follows. Consider an attack
on an edge xy. If both x and y are occupied by a guard,
then these two guards swap their positions and the other
guards do not move. Thus we are exactly in the same
position as before the attack. If exactly one endpoint of
xy, say x, is occupied by a guard, then there is an edge
xz ∈ M , and y is not incident to an edge in M . There-
fore, M ′ = M \ {xz} ∪ {xy} is also a matching of size k. We
move a guard from x to y, and a guard from z to x. Thus
the guards occupy the endpoints of the maximum match-
ing M ′ .

704 F.V. Fomin et al. / Information Processing Letters 110 (2010) 702–706
Finally, a maximum matching in a graph can be found
in time O(

√
n · m) [9]. �

3.1. Exact algorithm for Eternal Vertex Cover

In this section we give an exact algorithm running in
time 2O(n) to find the eternal vertex cover number of a
graph G on n vertices.

For every k, 1 � k � n, we want to decide if k guards
can protect the graph. To solve the problem we con-
struct a configuration multi-graph G = (V , E) from G as
follows. Let V (G) = {v1, . . . , vn}. A vertex I ∈ V is a
vector ((v1,k1), . . . , (vn,kn)) of pairs (vi,ki) where ki ∈
{0, . . . ,k} such that

∑n
i=1 ki = k. It represents the con-

figuration where ki guards occupy vertex vi , for every
i ∈ {1, . . . ,n}.

Now for every edge e of G , we add an edge from vertex
I to vertex J (we call it an e-edge) if by the attack on e,
the guards can move from configuration I to configuration
J in a way that at least one of the guards moves along e.
Notice that I = J is possible, i.e. G can have loops. Note
also that if by the attack on e, the guards can move from
configuration I to configuration J , then the guards can
move from configuration J to configuration I to counter
the attack on e.

Lemma 3. Deciding whether (I, J) is an e-edge can be done
in time nO(1) .

Proof. To decide whether there is an e-edge from I to J ,
we solve a flow problem on an auxiliary directed graph H
whose edges have capacities and costs. For the construc-
tion of H , make two copies V 1 and V 2 of the vertex set
of G and construct a bipartite graph by connecting every
vertex v ∈ V 1 to the vertices of V 2 from its closed neigh-
borhood. We give cost 1 to all the edges constructed so far,
except the two copies of e, which obtain cost 0. The capac-
ities of the edges that have been constructed by now are
set equal to k (or unrestricted capacity). We also add two
vertices s and t , and connect s to all vertices of V 1, and
all vertices of V 2 to t . Then, for every edge svi , vi ∈ V 1 we
put its capacity equal to the number of guards ki located
on vi in configuration I and its cost equal to 0. Corre-
spondingly, the capacity of edge ut , u ∈ V 2, is the number
of guards on u in J and its cost is 0. Now the question
whether there is an e-edge from I to J can be answered
by finding a minimum cost flow from s to t in the aux-
iliary graph, which is solvable in polynomial (in n) time.
Namely, (I, J) is an e-edge if and only if there is a s − t
flow in H of value k with cost at most k − 1 (i.e. at least
one of the copies of e has non-zero flow). �

We call a vertex I of G safe if for every edge e ∈ E(G)

there is an e-edge incident with I in G . Vertex I is un-
safe if there is an edge e ∈ E(G) such that there is no
e-edge incident with I in G . We also say that the graph

G is safe if all vertices of G are safe. We recursively check
whether a vertex of G is safe or not and if it is unsafe then
we remove it. We do this until the obtained graph is safe
or has no vertices. Observe that we can check whether a
vertex is safe or unsafe in time proportional to its degree,
and check whether every vertex of G is safe or unsafe in
time O(|E |). Furthermore, the number of times we have to
check whether the graph is safe or not is at most |V |, as
every time we delete at least one vertex from the graph G .
We arrive at the following lemma.

Lemma 4. For a graph G, evcn(G) � k if and only if the con-
figuration graph G for G and k is non-empty after recursively
removing all the unsafe vertices of G , and this property can be
checked in time O(|E | · |V |).

Theorem 1. Given a graph G on n vertices, it is possible to com-
pute evcn(G) in time 64n · nO(1) .

Proof. To compute evcn(G), for every k from 1 to n, we
compute the auxiliary graph G = (V , E). The number of
vertices in G is |V | �

(n+k−1
k

)
� 22n and the number of

edges |E | � |E(G)| |V |(|V |+1)
2 . By Lemma 3, such a graph can

be constructed in |E | · nO(1) steps. By Lemma 4, given a
graph G , checking whether G is safe and thus evcn(G) � k,
can be performed in time O(|E | · |V |) = 64n · nO(1) . �
3.2. An FPT algorithm for Eternal Vertex Cover

Let us start by defining the notion of kernelization. A pa-
rameterized problem Q is formally a subset of Σ∗ × N for
some finite alphabet Σ , and an instance of a parameter-
ized problem is the pair (x,k) ∈ Σ∗ × N, where k is called
the parameter [5]. A kernelization algorithm for a param-
eterized problem Q ⊆ Σ∗ × N is an algorithm that, given
(x,k) ∈ Σ∗ × N, outputs in time polynomial in |x| + k a
pair (x′,k′) ∈ Σ∗ × N such that i) (x,k) ∈ Q if and only if
(x′,k′) ∈ Q , ii) there is a computable function g with the
property that |x′| + k′ � g(k) for any instance (x,k). If such
a kernelization algorithm exists for a parameterized prob-
lem Q , we say that Q has a kernel of size g(k). It is well
known (see, e.g. [5]) that a decidable parameterized prob-
lem is in FPT if and only if it admits a kernel, that is a
reduction of the problem and its parameter to an instance
of size bounded by a function of k. There are several tech-
niques which allow to obtain kernels of polynomial size
for Vertex Cover [11]. Similar to the “crown reduction”
approach, our kernelization algorithm for Eternal Vertex

Cover explores the relations to maximum matchings in a
graph.

Our kernelization algorithm relies on the fact that at
any step the positions occupied by the guards must form a
vertex cover of size at most k of the graph G . It works as
follows:

Step 1: Find a maximum matching M in G , and define S
as the set of vertices incident with edges of M .

Step 2: If |M| > k, then return that evcn(G) > k.
Step 3: Else, for every subset T ⊆ S we define S(T) as

the set of vertices of I = V (G) \ S (I is an in-
dependent set) such that for every u ∈ S(T),
N(u) = T . If any such set S(T) contains more
than k + 1 vertices then we remove all the ver-
tices except some k + 1 of them. Let G(S) be the

F.V. Fomin et al. / Information Processing Letters 110 (2010) 702–706 705
graph obtained after having considered all sub-
sets T ⊆ S with non-empty S(T).

This concludes the description of the kernelization al-
gorithm. Next we show the correctness of the algorithm.
By Lemma 2, |M| � evcn(G), and therefore, if |M| > k then
evcn(G) > k. Notice also that S is a vertex cover of G . It
remains to prove that the reduction described in Step 3 is
correct.

Lemma 5. Let G be a graph on n vertices and m edges. Then
evcn(G) � k if and only if evcn(G(S)) � k, and G(S) can be
constructed in time O(nm).

Proof. The idea of the proof is that for a given subset T ⊆
S , any pair of vertices in S(T) is indistinguishable. Also we
use the fact that if |S(T)| � k + 1 then at least one vertex
of S(T) is not occupied by guards.

Denote by T1, . . . , Tr all subsets of S such that |S(T j)| >
k+1 in G . Let U j = S(T j) in G , and let W j = U j ∩ V (G(S))

for j ∈ {1, . . . , r}.
Suppose that evcn(G) � k. Denote by H the graph ob-

tained from the configuration graph G of G for k guards
after removing all unsafe vertices. We choose a vertex w j
in each set W j . For each vertex I ∈ V (H), we construct
the vertex J (I) in the configuration graph for G(S) in
the following way. Recall that the vertex I is a vector
((v1,k1), . . . , (vn,kn)) where {v1, . . . , vn} = V (G) and ki is
the number of guards on vi . To define J (I), we have to
define the number of guards li in each vi ∈ V (G(S)). For
any vi ∈ V (G(S))\ {w1, . . . , wr}, let li = ki . For vi = w j , let
li be equal to the sum of the number of guards on the ver-
tices of {vi} ∪ (U j \ W j) in configuration I . Denote by H′
the subgraph of the configuration graph for G(S) induced
by the set of different vertices J (I) for all I ∈ V (H). Let
e ∈ E(G(S)) and let J be a vertex of H′ . Suppose that

J = J (I) for I ∈ H. Since I is a safe vertex, there is a
vertex I ′ ∈ V (H) such that (I, I ′) is an e-edge. Observe
that (J (I), J (I ′)) is an e-edge in the configuration graph
for G(S). Hence all vertices of H′ are safe, and therefore
evcn(G(S)) � k.

Assume now that evcn(G(S)) � k. Denote by H′ the
graph obtained from the configuration graph of G(S) for
k guards after removing all unsafe vertices. For each ver-
tex J ∈ H′ , we construct a subset of the vertices of the
configuration graph G of G by considering the set F of
all possible collections (f1, . . . , fr) of mappings f j : W j →
U j for j ∈ {1, . . . , r}. Let li be the number of guards in
vi ∈ V (G(S)) in the configuration corresponding to J .
We define the vertex I = ((v1,k1), . . . , (vn,kn)) ∈ I for
mappings (f1, . . . , fr) in the following way. For each vi ∈
V (G) \ (U1 ∪ · · · ∪ Ur), we set ki = li . For any vi ∈ W j , the
number of guards in f j(vi) is li . For the remaining ver-
tices of U j , the number of guards is equal to 0. Denote by
H the subgraph of the configuration graph for G induced
by all constructed vertices I for all possible collections of
mappings from F . We claim that all vertices H are safe,
and hence evcn(G) � k.

To prove the claim, we consider an edge e = uv ∈ E(G)

and I ∈ V (H). It is necessary to prove that there is I ′ ∈
V (H) such that (I, I ′) is an e-edge in H. Assume that
I is constructed from J ∈ H′ by the use of mappings
(f1, . . . , fr). We consider two cases:

Case 1. u, v ∈ V (G) but u, v /∈ (U1 \ f1(W1)) ∪ · · · ∪ (Ur \
fr(Wr)). Since J is a safe vertex, there is another vertex

J ′ in H′ such that (J , J ′) is an e-edge in H′ . Let I ′ be
the vertex of H constructed by the use of same mappings
(f1, . . . , fr). Then (I, I ′) is an e-edge in H.

Case 2. u ∈ S and v ∈ U j \ f j(W j) for some j ∈ {1, . . . , r}.
Since |W j | = k + 1, there is a vertex w ∈ W j such that
w is not occupied by guards in the position correspond-
ing to J . Replace the mappings (f1, . . . , fr) by mappings
(f ′

1, . . . , f ′
r) such that f ′

i = f i if i
= j, and

f ′
j(x) =

{
f j(x), if x
= w,

v, if x = w.

It remains to observe that we can construct I from J by
using mappings (f ′

1, . . . , f ′
r) instead (f1, . . . , fr). Because

v ∈ f ′
j(W j), this reduces to Case 1.

To prove the second claim of Lemma 5, it is sufficient
to note that |I| � n and hence there are at most n dif-
ferent non-empty sets S(T). Notice also that for two ver-
tices u, v ∈ I , it is possible to check whether they have
same neighborhood in the time proportional to their de-
grees. �

Notice that this immediately implies the following the-
orem.

Theorem 2. Given a graph G on n vertices and m edges and
an integer k, we can obtain a kernel for Eternal Vertex Cover

with at most k′ = 4k(k + 1) + 2k vertices in time O(nm).

We can easily obtain an FPT algorithm by combining
Theorems 1 and 2. This will give an FPT algorithm of run-
ning time 64k′

nO(1) . In what follows, we improve upon
this running time.

Step 1: Using the parameterized algorithm of Chen et
al. [2], find a vertex cover S of size at most k
of G in time O(1.2738k + k · n) or output No if
no such vertex cover exists.

Step 2: For every subset T ⊆ S , we define S(T) as the
set of vertices of I = V (G) \ S (I is an indepen-
dent set) such that for every u ∈ S(T), N(u) = T .
Observe that this partitions the vertices of the in-
dependent set I . If any set S(T) contains more
than k + 1 vertices then we remove all the ver-
tices except some k + 1 of them. Let G(S) be the
graph obtained by this procedure.

Step 3: Check whether evcn(G(S)) � k using the algo-
rithm described in the previous subsection. If
evcn(G(S)) � k then return Yes else return No.

The correctness of the above described algorithm is not
hard to see. For the time complexity observe that the size
of S is at most k and that the size of G(S) is bounded by

706 F.V. Fomin et al. / Information Processing Letters 110 (2010) 702–706
k′ = 2k(k +1)+k. Using the fact that the number of guards
k is considerably smaller than k′ , we can improve the run-
ning time bound for our exact algorithm. The configuration
graph G S for G(S) and k guards has at most

(
2k(k + 1) + 2k − 1

k

)
� 2O(k2)

vertices. Hence Step 3 is executed in time 2O(k2) . Since
Step 2 can be done in the time O(nm), we have the fol-
lowing theorem.

Theorem 3. Let G be a graph on n vertices and m edges and k
be a positive integer. It is possible to check whether evcn(G) � k
in time O(2O (k2) + nm).

4. Concluding remarks and open problems

In this paper we initiated study of the parameter-
ized complexity of the Eternal Vertex Cover problem.
We showed that the problem is fixed parameter tractable
by giving a kernel of size 4k(k + 1) + 2k. There are still
many interesting questions regarding the problem which
remain unanswered. Does there exist a polynomial size
kernel for the problem? Or can we prove that no poly-
nomial kernel exists for the problem, using the recently
developed methodology to show non-existence of polyno-
mial kernels [1]. Can we find a 2O(k)nO(1) algorithm for
the problem? From the classical complexity perspective the
challenging question is whether the Eternal Vertex Cover

problem is in NP?
Acknowledgements

We are grateful to the anonymous referees for their
constructive suggestions and remarks.

References

[1] H.L. Bodlaender, R.G. Downey, M.R. Fellows, D. Hermelin, On prob-
lems without polynomial kernels, J. Comput. Syst. Sci. 75 (8) (2009)
423–434.

[2] J. Chen, I.A. Kanj, G. Xia, Improved parameterized upper bounds for
vertex cover, in: Proceedings of MFCS 2006, in: LNCS, vol. 4162,
Springer, 2006, pp. 238–249.

[3] R. Diestel, Graph Theory, second edition, Graduate Texts in Mathe-
matics, vol. 173, Springer, 2000.

[4] M. Dom, D. Lokshtanov, S. Saurabh, Y. Villanger, Capacitated domi-
nation and covering: A parameterized perspective, in: Proceedings of
IWPEC 2008, in: LNCS, vol. 5018, Springer, 2008, pp. 78–90.

[5] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer-
Verlag, 1999.

[6] J. Guo, R. Niedermeier, S. Wernicke, Parameterized complexity of ver-
tex cover variants, Theory Comput. Syst. 41 (3) (2007) 501–520.

[7] W.F. Klostermeyer, C.M. Mynhardt, Edge protection in graphs, Aus-
tralasian Journal of Combinatorics 45 (2009) 235–250.

[8] J. Kneis, A. Langer, P. Rossmanith, Improved upper bounds for par-
tial vertex cover, in: Proceedings of WG 2008, in: LNCS, vol. 5344,
Springer, 2008, pp. 240–251.

[9] S. Micali, V.V. Vazirani, An O (
√|V | · |E|) algorithm for finding maxi-

mum matching in general graphs, in: FOCS 1980, pp. 17–27.
[10] D. Mölle, S. Richter, P. Rossmanith, Enumerate and expand: Improved

algorithms for connected vertex cover and tree cover, Theory Com-
put. Syst. 43 (2) (2008) 234–253.

[11] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Lec-
ture Series in Mathematics and Its Applications, vol. 31, Oxford Uni-
versity Press, USA, 2002.

[12] V. Raman, S. Saurabh, Short cycles make W-hard problems hard: FPT
algorithms for W-hard problems in graphs with no short cycles, Al-
gorithmica 52 (2) (2008) 203–225.

	Parameterized algorithm for eternal vertex cover
	Introduction
	Preliminaries
	FPT algorithm for Eternal Vertex Cover
	Exact algorithm for Eternal Vertex Cover
	An FPT algorithm for Eternal Vertex Cover

	Concluding remarks and open problems
	Acknowledgements
	References

