
Mixed Search Number and Linear-Width of Interval
and Split Graphs

Fedor V. Fomin, Pinar Heggernes, and Rodica Mihai
Department of Informatics, University of Bergen, N-5020 Bergen, Norway

We show that the mixed search number and the linear-
width of interval graphs and of split graphs can be
computed in linear time and in polynomial time, respec-
tively. © 2009 Wiley Periodicals, Inc. NETWORKS, Vol. 56(3),
207–214 2010

Keywords: graph searching; mixed search number; linear-width

1. INTRODUCTION

In the graph searching problem, a team of searchers (pur-
suers) is trying to catch a fugitive moving along the edges
of a graph. The problem is to find the minimum number
of searchers that can guarantee the capture of the fugitive
in the worst case scenario for the searchers (assuming that
fugitive is very fast, invisible, and knows the strategy of
the searchers). The study of this problem started in 1970s
when it was independently introduced by Parsons [19] and
Petrov [23], and since that time it has been studied extensively
[2, 3, 13, 17, 18, 22]. It fits into the broader class of pursuit-
evasion/search/rendezvous problems on which hundreds of
papers have been written (see e.g., the book [1]).

The classical Parson-Petrov formulation of the problem is
referred to as edge searching, and there are two modifications
of it giving two other models. The first model, node searching,
was introduced by Kirousis and Papadimitriou [13], and the
second model, mixed searching, by Bienstock and Seymour
[3]. The difference between the models is in the way the
searchers are allowed to catch the fugitive or clear the edges
of the graph. (We give formal definitions of the problems
in the next section.) The minimum number of the searchers
sufficient to perform searching and ensure capture for each
of the models are respectively the edge, node, and mixed
search numbers, and computations of these are all NP hard
[3, 13, 18].

Received August 2007; accepted September 2009
Correspondence to: R. Mihai; e-mail: rodica.mihai@ii.uib.no
Contract grant sponsor: The Norwegian Research Council
DOI 10.1002/net.20373
Published online 3 December 2009 in Wiley Online Library
(wileyonlinelibrary.com).
© 2009 Wiley Periodicals, Inc.

The node search number of a graph is known to be equal
to its pathwidth plus one. Similarly, the mixed search num-
ber of a graph is equal to its proper pathwidth [24]. Also for
every graph G of minimum vertex degree at least 2, the proper
pathwidth of G is equal to the linear-width of G. Although
pathwidth can be seen as a “linear” variant of treewidth,
linear-width is a “linear” variant of branchwidth. Although
the computation of treewidth and pathwidth of interval and
split graphs is almost straightforward, the polynomial time
algorithms [15,20] computing the branchwidth of an interval
graph are not trivial and computing the branchwidth of a split
graph is NP-hard [15]. Such a difference between computa-
tional complexities of computing treewidth and branchwidth
of split graphs was one of the motivations for our study.

Graph searching problems can be seen as vertex and edge
ordering problems and computational complexity of differ-
ent ordering problems on interval and split graphs is a well
studied area (see e.g., the survey [6]). For example, the band-
width minimization problem is solved in polynomial time on
interval graphs [14] and is NP hard on split graphs [16]. Pro-
file (or SumCut) problem is trivially solvable in polynomial
time on interval graphs and is NP hard on split graphs [21],
while Optimal Linear Arrangement is NP hard on interval
graphs [5].

It is easy to show that the node search number of an interval
or split graph can be computed in linear time. Independently,
Peng et al. [22] and Golovach et al. [10] show that similar
result holds for edge search number. In this article, we show
that the mixed search number (the proper pathwidth and the
linear-width) of interval and split graphs can be computed
in polynomial time. In fact, for interval graphs we obtain
a linear time algorithm. For interval graphs, our algorithm
resembles the algorithm for the edge search number [10,22],
but for split graphs there is a substantial difference between
edge search and mixed search numbers, and the situation with
mixed search is much more involved.

This article is structured as following. In Section 2, we give
the formal definition of the problem we study and we describe
the graph classes we consider. In Section 3, we show how to
compute in linear time the mixed search number of interval
graphs. In Section 4, we give a formal characterization of
interval graphs having the linear-width equal to mixed search

NETWORKS—2010—DOI 10.1002/net

number. In Section 5, we show how to compute in polynomial
time the mixed search number of split graphs. In Section 6, we
show how to compute in polynomial time the linear-width of
split graphs. We conclude in Section 7 by posing some open
questions.

2. BACKGROUND, DEFINITIONS, AND NOTATIONS

We work with simple and undirected graphs G = (V , E),
with vertex set V(G) = V and edge set E(G) = E, and we
let n = |V |, m = |E|. The set of neighbors of a vertex x is
denoted by N(x) = {y | xy ∈ E}. A vertex set C is a clique if
every two vertices in C are adjacent, and a maximal clique if
no superset of C is a clique. The maximum size of a clique
in G is denoted by ω(G). A vertex set I is an independent set
if no two vertices of I are adjacent. The degree of a vertex v
is d(v) = |N(v)|. A vertex is isolated if it has degree 0.

A path is a sequence v1, v2, . . . , vp of distinct vertices of
G, where vivi+1 ∈ E for 1 ≤ i < p, in which case we say
that this is a path between v1 and vp. A path v1, v2, . . . , vp is
called a cycle if v1vp ∈ E. A chord of a cycle (path) is an edge
connecting two nonconsecutive vertices of the cycle (path).

A graph is chordal if every cycle of length at least 4 has
a chord. A graph is an interval graph if intervals of the real
line can be associated to its vertices such that two vertices are
adjacent if and only if their corresponding intervals overlap.
Interval graphs are chordal. A caterpillar is a graph that con-
tains a chordless path such that if the vertices on this path are
deleted only isolated vertices remain. Caterpillars are interval
graphs. A graph is a split graph if its vertices can be parti-
tioned into a clique C and an independent set I , in which case
(C, I) is called a split partition of G. A split partition of a
split graph is not unique, but it is always possible to choose
a partition such that C is a clique of maximum size. In this
article, we will always assume that C is a clique of maximum
size. For a vertex u ∈ C, we denote by NI(u) the neighbors of
u in I . Split graphs are also chordal. Let us remark that split
and interval graphs can be recognized in linear time. A clique
of maximum size in these graphs can be found in linear time
as well. (See e.g., [11]).

The parameters that we study in this paper, mixed search
number and linear-width, are both closely related to a param-
eter called pathwidth, defined through path decompositions.

A path decomposition of a graph G = (V , E) is a linearly
ordered sequence of subsets of V , called bags, such that the
following three conditions are satisfied.

• Every vertex x ∈ V appears in some bag.
• For every edge xy ∈ E there is a bag containing both x

and y.
• For every vertex x ∈ V , the bags containing x appear

consecutively.

The width of a decomposition is the size of the largest
bag minus one, and the pathwidth of a graph G, pw(G), is
the minimum width over all possible path decompositions. A
path decomposition of width pw(G) is called an optimal path
decomposition of G.

By a classical result of Gillmore and Hoffman [9], a
graph G is an interval graph if and only if it has an opti-
mal path decomposition where every bag is a maximal clique
of G. Such an optimal path decomposition is often called a
clique-path. It is well known that the pathwidth of an interval
graph is one less than the size of its largest clique. Clique-
paths of interval graphs can be computed in linear time [4].
Consequently, the pathwidth of interval graphs can also be
computed in linear time.

The mixed search game can be formally defined as follows.
Let G = (V , E) be a graph to be searched. A search pro-
gram consists of a sequence of discrete steps which involves
searchers. Initially there is no searcher on the graph. Every
step is one of the following three types

• Some searchers are placed on some vertices of G (there
can be several searchers located in one vertex);

• Some searchers are removed from G;
• A searcher slides from a vertex u to a vertex v along edge

uv.

At every step of the search program the edge set of G is
partitioned into two sets: cleared and contaminated edges.
Intuitively, the agile and omniscient fugitive with unbounded
speed who is invisible for the searchers, is located somewhere
on a contaminated territory, and cannot be on cleared edges.
Initially, all edges of G are contaminated, that is, the fugitive
can be anywhere. A contaminated edge uv becomes cleared at
some step of the search program either if both its endpoints
contain searchers, or if at this step a searcher located in u
slides to v along uv.

A cleared edge e is (re)contaminated at some step if at
this step there exists a path P containing e and a contami-
nated edge and no internal vertex of P contains a searcher.
For example, if a vertex u is incident to a contaminated
edge e, there is only one searcher at u and this searcher
slides from u to v along edge uv �= e, then after this step
the edge uv, which is cleared by sliding, is immediately
recontaminated.

A search program is winning if after its termination all
edges are cleared. The mixed search number of a graph G,
denoted by ms(G), is the minimum number of searchers
required for a winning program of mixed searching on G.

The differences between mixed, edge, and node searching
are in the way the edges can be cleared. In node searching
an edge is cleared only if both its endpoints are occupied (no
clearing by sliding). In edge searching an edge can be cleared
only by sliding. So mixed searching can be seen as a variant
of searching having features of both node and edge searching.
The edge and node search numbers of a graph G are defined
similarly to the mixed search number, and are denoted by
es(G) and ns(G), respectively.

A search program is called monotone if at any step of this
program no recontamination occurs. For all three versions
of graph searching, recontamination does not help to search
the graph with fewer searchers [3, 17], that is, on any graph
with {edge, mixed, node} search number k there exists a win-
ning monotone {edge, mixed, node} search program using k

208 NETWORKS—2010—DOI 10.1002/net

searchers. Thus in this article, we consider only monotone
search programs.

The linear-width was introduced by Thomas [26]. The
linear-width of an arbitrary graph G, lw(G), is defined to
be the smallest integer k ≥ 0 such that the edges of G can
be ordered as e1, . . . , em in such a way that for every i =
1, 2, . . . , m − 1, there are at most k vertices incident both to
an edge in {e1, . . . , ei} and to an edge in {ei+1, . . . , em}.

Takahashi et al. [24] proved that the mixed search num-
ber of any graph is equal to its proper pathwidth. Fomin [7]
showed that proper pathwidth is also equivalent to another
graph parameter, namely split bandwidth. Thus our algo-
rithms for computing mixed search numbers of interval and
split graphs can be applied to these parameters as well.

The next proposition follows directly from the results of
Bienstock and Seymour [3], Fomin and Thilikos [8], and
Takahashi, Ueno, and Kajitani [24].

Proposition 1. For any graph G, pw(G) ≤ lw(G) ≤
ms(G) ≤ pw(G) + 1.

Furthermore, if G has no vertices of degree 1 then lw(G) =
ms(G) [3]. In fact, Thilikos showed the following stronger
result [25].

Proposition 2 ([25]). Let G be any graph, and let G′ be the
graph obtained by removing all vertices of degree 1 from G.
Then lw(G) = ms(G′).

3. THE MIXED SEARCH NUMBER
OF INTERVAL GRAPHS

By the characterization of interval graphs through clique
paths, pw(G) = ω(G)−1 for every interval graph G. Hence,
by Proposition 1 we know that the mixed search number of
an interval graph G is either ω(G)−1 or ω(G). In this section
we characterize interval graphs G that have ms(G) = ω(G).
Consequently all other interval graphs have mixed search
number equal to one less than the maximum clique size.

Proposition 3. If G is a complete graph then ms(G) = n−1.

Proof. Since G is complete, pw(G) = n − 1. Thus by
Proposition 1 we need at least n − 1 searchers. To see that
n − 1 searchers are enough, place searchers on n − 1 vertices
of G. All edges between pairs of vertices among these n − 1
vertices are now cleared. Slide a searcher from any cleared
vertex to the remaining contaminated vertex. This clears the
slided edge because all neighbors of the vacated vertex are
guarded. After this, all edges and vertices of G are cleared. ■

Lemma 4. Let G be a graph consisting of three cliques of
size n − 2 that intersect at the same n − 3 vertices. Then
ms(G) = ω(G) = n − 2.

Proof. Clearly G is an interval graph and ω(G) = n−2.
By Proposition 1, n − 2 searchers are enough to clear G. Let

us show that n − 3 searchers are not enough. Let C be the set
of n − 3 vertices in the intersection of the three cliques, and
let x, y, z be the remaining vertices. We need n − 3 searchers
to clear C ∪ {x} by Observation 3. If we start by placing
all n − 3 searchers on vertices of C, then we will need to
slide one of them to x, and this will allow recontamination
of a vertex of C from y or z. Because we know that there is
always an optimal program without recontamination, we can
discard this approach. Let us place all n − 3 searchers on x
and n − 4 vertices of C. Then slide the searcher on x to the
single unguarded vertex of C. Now all edges between pairs
of vertices in C ∪ {x} are cleared. To clear y or x, we need to
slide a searcher from a vertex of C to one of these vertices,
say y. But then this vertex of C will become recontaminated
from x. Thus it is not possible to continue the search with-
out recontamination with only n − 3 searchers, and hence
ms(G) = n − 2. ■

For the following results, we need to give more details
about clique-paths. Every interval graph has a clique-path
which is simply an ordering of all maximal cliques of G [9].
An interval graph has at most n maximal cliques. We will
denote a clique-path of G by (B1, S1, B2, S2, . . . , Sc−1, Bc),
where Bi is a bag of the clique-path and a maximal clique of
G for each 1 ≤ i ≤ c, and Si = Bi ∩ Bi+1 represents the edge
between Bi and Bi+1 for 1 ≤ i < c.

Lemma 5. Let G be an interval graph with ω(G) = k + 1.
Then G contains three maximal cliques of size k + 1 that
intersect at the same k vertices if and only if there are two
consecutive edges Si−1 and Si of cardinality k satisfying
Si−1 = Si in every clique-path of G.

Proof. Assume that G is an interval graph with ω(G) =
k + 1 and a clique-path of G contains two consecutive edges
Si and Si+1 of cardinality k satisfying Si = Si+1. This means
that the maximal cliques of G appearing as bags Bi−1, Bi, Bi+1

share the same k vertices. Because each such maximal clique
is distinct, each has a vertex that is not in this intersec-
tion, and since ω(G) = k + 1, each has exactly k + 1
vertices.

For the other direction, assume that G is an interval graph
with ω(G) = k + 1 and that G has three maximal cliques of
size k+1 that intersect at the same k vertices. Pick any clique-
path of G, and let bags Bi, Bj, B� be the representatives of these
three maximal cliques. Notice that they do not necessarily
appear consecutively in the chosen clique-path. Let Bi be
the one furthest to the left, and let Bj be the one furthest to
the right. By the definition of clique-paths, the intersection
Bi ∩ Bj must be a subset of every edge on the path between
Bi and Bj. Since ω(G) = k + 1 and |Bi ∩ Bj| = k, this means
that every edge on the path between Bi and Bj has cardinality
exactly k and thus must be equal to Bi ∩ Bj. Since B� also
appears on the path between Bi and Bj, there are at least two
such consecutive edges in the clique-path, and the proof is
complete. ■

NETWORKS—2010—DOI 10.1002/net 209

Theorem 6. Let G be an interval graph. Then ms(G) =
ω(G) if and only if G has three maximal cliques of size
ω(G) that intersect at the same ω(G)−1 vertices. Otherwise,
ms(G) = ω(G) − 1.

Proof. If G has three maximal cliques of size ω(G)

that intersect at the same ω(G) − 1 vertices, then the sub-
graph of G induced by the vertices of these three maximal
cliques has mixed search number ω(G) by Lemma 4. Conse-
quently, ms(G) cannot be smaller than ω(G). By Proposition
1, ms(G) ≤ pw(G)+1 = ω(G). Hence we can conclude that
ms(G) = ω(G) in this case.

Assume now that there are no three maximal cliques of size
ω(G) in G that intersect at the sameω(G)−1 vertices. We give
a program to search the graph using ω(G)−1 searchers. Since
ω(G) − 1 searchers are the fewest possible by Proposition 1,
the result will follow. Let P = (B1, S1, B2, S2, . . . , Bc) be
any clique-path of G. By Lemma 5, we know that there is
no index i with 2 ≤ i ≤ c − 1 satisfying Si−1 = Si and
|Si−1| = |Si| = ω(G) − 1. We start searching the graph with
bag B1. Since B1 �⊆ B2, there is a vertex x ∈ B1\B2, and
since B1 ∩ B2 = S1 �= ∅, there is a vertex y ∈ S1 with y �= x.
Furthermore |B1| ≤ ω(G). If |B1| ≤ ω(G) − 1, then simply
place searchers on all vertices of B1. If |B1| = ω(G), then
place searchers on all vertices of B1\{y}, and then slide the
searcher on x to y. In both cases, all vertices of B1 and all edges
between them are cleared, because x has no neighbors in any
other bag by the definition of a clique-path. Actually, by the
same argument, no vertex of B1\B2 has any neighbors in any
other bag than in B1, hence searchers placed on these vertices
can now be safely removed as long as we keep searchers on
all vertices of S1.

Observe that vertices of (B1 ∪ · · · ∪ Bi)\Si have no neigh-
bors belonging to (Bi+1 ∪· · ·∪Bc)\Si. Hence, we can assume
by induction that we have already cleared the subgraph
induced by the vertices of B1, . . . , Bi that do not belong to Si,
and we have searchers placed on all vertices of Si = Bi∩Bi+1.
We will now show how to proceed so that the subgraph
induced by the vertices of B1, . . . , Bi, Bi+1 is cleared and
searchers are kept on all vertices of Si+1. If |Bi+1| ≤ ω(G)−1
then |Si| ≤ ω(G) − 2 and there are available searchers not
guarding the vertices of Si such that we can place them on
vertices of Bi+1 and all vertices of Bi+1 will be occupied by
searchers. Consequently, all vertices of Si+1 are also occu-
pied by searchers and the proof for this case is complete.
Assume for the remaining part that |Bi+1| = ω(G). Thus
we have enough available searchers to occupy all vertices of
Bi+1 except one, without removing any searcher from Si. We
distinguish between two cases: Si = Si+1 and Si �= Si+1. If
Si = Si+1, then we know by our assumption and Proposi-
tion 1 that |Si| = |Si+1| ≤ ω(G) − 2. Hence, there are at
least two vertices x, y ∈ Bi+1\Si+1. We place the available
searchers on all unguarded vertices of Bi+1 except y. Then
we can safely slide the searcher on x to y, which clears entire
Bi+1 while guarding all vertices of Si+1 by keeping searchers
on them.

Consider the case Si �= Si+1. Assume first that there is
a vertex x ∈ Si\Si+1. We place searchers on all unguarded
vertices of Bi+1 except one in an arbitrary way. Then we can
safely slide the searcher on x to the single vertex of Bi that is
not occupied by a searcher, because x has no neighbors in the
bags appearing on the other side of Si+1. This will again clear
entire Bi+1 while keeping searchers on all vertices of Si+1. If
there is no vertex x ∈ Si\Si+1 then Si ⊂ Si+1, which means
that |Si| ≤ ω(G)−2, and there is at least one vertex x in Bi+1

that does not belong to any other bag since Si+1 ⊂ Bi+1.
Hence, we have at least one available searcher that we can
place on x without removing any searchers from Si. We place
the available searchers on all vertices of Bi+1 except one
vertex different from x. Now, we can safely slide the searcher
on x to the single unguarded vertex of Bi+1, which clears
entire Bi+1, and we have searchers on all vertices of Si+1,
since x �∈ Si+1. ■

We have thus arrived at the main result of this section.

Theorem 7. The mixed search number of an interval graph
can be computed in linear time.

Proof. Let G be an interval graph. A clique-path of G
can be computed in linear time, and it has at most n maximal
cliques [4]. This means that the sum of the sizes of all bags and
all edges of the clique-path is O(n + m). Given the clique-
path, to find ms(G), by Theorem 6 we need to check for every
triple of consecutive maximal cliques Bi−1, Bi, Bi+1 having
each ω(G) vertices whether Bi−1 ∩ Bi = Bi ∩ Bi+1.

We argue that this can be done in overall linear time.
First sort all vertices in all bags according to the same order.
Because the sum of the sizes of all bags is O(n + m) and the
largest value is n, this can be done in O(n + m) time. Then
comparing three bags can be done in O(ω(G)) time. We do
this only when all three bags have ω(G) vertices. There are
ω(G)−1 edges in Bi−1 that do not appear in Bi or Bi+1 since
Bi−1 has one vertex not appearing in Bi or Bi+1. Hence, we
can let these edges of Bi−1 “pay for” the comparison between
Bi−1, Bi, Bi+1. Thus each edge of G will pay for at most three
of comparisons, and therefore we can bound the total time of
all comparisons by O(m). ■

We would like to mention that, interestingly, the cases
that distinguish the different values of mixed search number
of interval graphs are exactly the same cases that distinguish
the different values of their edge search number [22]. How-
ever, as we will see in Section 5, this is not true for split
graphs. Difference between mixed search and edge search
seems more substantial for split graphs.

4. THE LINEAR-WIDTH OF INTERVAL GRAPHS

Because any induced subgraph of an interval graph is also
interval, by Proposition 2 and Theorem 7, we have readily
the following result.

210 NETWORKS—2010—DOI 10.1002/net

Corollary 8. The linear-width of an interval graph can be
computed in linear time.

In this section, as a structural result, we use the results of
the previous section to characterize interval graphs G with
lw(G) = ms(G) − 1. Observe first that by the definition of
linear-width, if G is a caterpillar with at least two edges then
pw(G) = lw(G) = 1.

Theorem 9. Let G be an interval graph with at least
two edges. Then lw(G) = ms(G) − 1 if and only if G is
a caterpillar with maximum degree at least 3. Otherwise
lw(G) = ms(G).

Proof. By Proposition 1, lw(G) is either equal to ms(G)

or to ms(G) − 1.
Let G be a caterpillar with maximum degree at least 3.

Then it has three maximal cliques of size 2 that intersect at
the same 1 vertex. By Theorem 6, ms(G) = ω(G) = 2.
Since G is a caterpillar, lw(G) = pw(G) = 1. Therefore
lw(G) = ms(G) − 1.

For the other direction, let G be an interval graph with
lw(G) �= ms(G). By Proposition 1, ms(G) = pw(G) + 1 =
ω(G) and lw(G) = pw(G) = ω(G) − 1. Since ms(G) =
ω(G) by Theorem 6, G has three cliques of size ω(G) that
intersect at the same ω(G) − 1 vertices. If ω(G) = 2 then G
is a caterpillar with maximum degree at least three, and the
proof is complete. For the sake of contradiction, assume that
ω(G) > 2. Then the three cliques mentioned above are of
size at least 3. The subgraph of G induced by the union of
the vertices of these three cliques has mixed search number
ω(G) by Lemma 4. Because this subgraph has no vertices of
degree 1, its linear-width is also ω(G). Consequently, lw(G)

and ms(G) cannot be less than ω(G), and we conclude that
they are equal, which gives a contradiction. Hence, ω(G)

cannot be more than 2 if lw(G) ≤ ms(G). ■

Because a caterpillar has at most n − 1 edges, we can
decide in O(n) time whether a given input graph is caterpillar
and compute the degrees of all vertices.

5. THE MIXED SEARCH NUMBER
OF SPLIT GRAPHS

It is easy to show that the pathwidth of a split graph G
is either ω(G) − 1 or ω(G) [12]. Hence, it follows from this
and Proposition 1 that ms(G) is equal to one of the following:
ω(G)−1, ω(G), or ω(G)+1. In this section, we characterize
each of these three cases, and show that mixed search number
of split graphs can be computed in polynomial time.

Theorem 10. Let G = (V , E) be a split graph with a split
partition (C, I) of its vertices where C is a clique of maximum
size. Then ms(G) = ω(G) − 1 = |C| − 1 if and only if one
of the following three conditions holds.

1. There are 2 vertices u, v ∈ C such that NI (u)∩NI (v) = ∅
and |NI (v)| ≤ 1 and one of the following is true:

(a) |NI (u)| ≤ 1, or
(b) there is an additional vertex x ∈ C such that

|NI (u) ∩ NI (x)| ≤ 1.
2. There are 3 vertices x, u, v ∈ C such that NI (u)∩NI (x) =

∅ and |NI (v) ∩ NI (x)| ≤ 1 and one of the following is
true:
(a) |NI (u)| ≤ 1, or
(b) |NI (v)| ≤ 2 and |NI (u) ∩ NI (v)| ≤ 1.

3. There are 4 vertices x, y, u, v ∈ C such that (NI (x) ∪
NI (y)) ∩ (NI (u) ∪ NI (v)) contains at most 2 vertices
u1, v1, and u1x /∈ E and v1u /∈ E.

Proof. Assume that ms(G) = |C| − 1. Hence there is a
monotone mixed search program that is able to clear G with
|C| − 1 searchers. At some point of this search, all |C| − 1
searchers must occupy |C| − 1 vertices of C, because only
from such a situation, we can clear any clique C and the edges
with both endpoints in C, by sliding one of the searchers to
the single vertex of C without a searcher. Let us consider
the first time when |C| − 1 vertices of C are occupied by
searchers during this search program. Let v be the vertex that
got occupied by a searcher at this point, and let u be the
vertex of C without a searcher. Without loss of generality,
we can assume that all vertices of I that are not adjacent to
u or v are cleared, as well as all edges between such vertices
and C, because we can always do this before placing the last
searcher on v. Furthermore, no neighbors of u in I are cleared
(otherwise recontamination would be allowed), and at most
one neighbor of v in I is cleared (if we placed the last searcher
on a neighbor and slided to v). Let v1 this possible neighbor
of v; consequently v1 is not adjacent to u. The next step must
be to slide a searcher from one of the cleared vertices of C
to u, because all vertices of C are pairwise adjacent and u is
not cleared, so we would get recontamination otherwise. Let
step i be this next step. Hence step i is either to slide from
v to u, or to slide from another vertex x �= v of C to u. We
will show that in either case, the possible ways of completing
this search successfully without any more searchers all lead
to the conditions of the theorem, proving the only if direction.
For each condition, we will also explain how to complete the
search with |C| − 1 searchers, hence the if direction will be
proved at the same time.

Assume that step i of the search is to slide from v to u. This
can only be done if v1 is cleared (or does not exist), hence a
searcher must have slid from v1 to v before this step. Then
we know that |NI(v)| ≤ 1 and that u and v have no common
neighbors. After step i, v is the only vertex of C without a
searcher.

If step i+1 is to slide from u to a neighbor u1 of u in I , then
u cannot have more neighbors (otherwise recontamination),
and we have Condition 1 (a). The search is complete.

If step i+1 is to slide (or move) from another vertex x �= u
to a neighbor u1 of u in I , then x and u can have at most this
single neighbor u1 in common in I . Also x and v can have
at most v1 as a common neighbor in I , but this is already
covered since |NI(v)| ≤ 1. Hence, we have Condition 1 (b).
Now any other neighbor that u might have in I can be cleared
with the searcher on u1, to complete the search.

NETWORKS—2010—DOI 10.1002/net 211

Assume that step i of the search is to slide from a vertex
x �= v of C to u. Then we know that NI(v) ∩ NI(x) ⊆ {v1}
and NI(u)∩NI(x) = ∅. Hence, if x is adjacent to v1, we must
have slid a searcher from v1 to v to place this searcher on
v, and v1 is cleared along with all edges between v1 and C.
After step i, x is the only vertex of C without a searcher.

If step i + 1 is to slide from u to a neighbor u1 ∈ I of u,
then |NI(u)| ≤ 1. Hence, we have Condition 2 (a). Now we
can use the searcher on u1 to clear all neighbors of v and all
edges between these and C, one by one.

If step i + 1 is to move from u to a neighbor of v in I
which is not adjacent to u, then NI(u) = ∅ and we can use
the searcher on u to clear all neighbors of v in I one by one.
This case is covered by the previous case, since u could have
a neighbor in I which we could have cleared before moving
on to the neighbors of v. Hence, we have again Condition
2 (a).

If step i + 1 is to slide from v to a neighbor of v in I then
|NI(v)| ≤ 2. Furthermore, if v has two neighbors in I , then at
most one of these can be adjacent to u, because to clear both
neighbors of v we must have slid to v from v1, and v1 is not
adjacent to u as argued above. Hence we have Condition 2
(b). Now we can use the searcher on the second neighbor of
v to search all remaining neighbors of u in I one by one.

If step i + 1 is to move from v to a neighbor u1 ∈ I
of u with u1 /∈ NI(v), then NI(v) does not contain any other
vertices than v1. Now we can use the searcher on u1 to clear all
neighbors of u. Note that this situation is just a special case
of the previous situation, hence it is covered by Condition
2 (b).

If step i + 1 is to move from a vertex y �= u, x of C to
a neighbor u1 ∈ I of u, then NI(y) ∩ NI(u) ⊆ {u1} and
NI(y) ∩ NI(v) ⊆ {v1, u1}. In this case, we must have slid
from v1 to v before placement on v, and after the slide (or
move) from y to u1, u1 will be cleared and it can be adjacent
to both u and v. After step i+1, the searcher on u1 can be used
to clear all remaining uncleared vertices of NI(u)∪NI(v). We
should also remember that NI(v)∩NI(x) ⊆ {v1} and v1u /∈ E.
Hence we have Condition 3.

If step i + 1 is to move from a vertex y �= u, x of C
to a neighbor of v in I then have the exact same situation
as the previous situation (because u1 can be adjacent to v
and hence serve as the assumed neighbor of v), and hence
again Condition 3. The search can be completed in the same
way. ■

Lemma 11. Let G be a split graph with a split partition
(C, I) of its vertices. If there are two vertices u, v ∈ C such
that |NI(u) ∩ NI(v)| ≤ 2 then ms(G) ≤ ω(G) = |C|.

Proof. Let us describe a search program to clear G with
|C| searchers. Place searchers on all vertices of C\{u}. Use
the last available searcher to clear all vertices of I\N(u) and
edges between these vertices and C\{u}. Let x and y be the
at most two vertices of I that are both adjacent to u and v.
Place the last searcher on x. Now, x and all edges between x
and C\{u} are cleared. Slide this searcher from x to u. Now

all edges between the vertices of C and between x and C
are cleared. Slide the searcher on v to the second common
neighbor y. Now, all edges between y and C are cleared and
no uncleared vertex of NI(u) is adjacent to v. We can use the
searcher on y to search the remaining vertices of NI(u) one
by one. ■

Theorem 12. Let G be a split graph with a split partition
(C, I) of its vertices. Then ms(G) = ω(G) + 1 = |C| + 1
if and only if |NI(u) ∩ NI(v)| ≥ 3 for every pair of vertices
u, v ∈ C.

Proof. We know that |C| + 1 searchers are always
enough to clear any split graph, hence if ms(G) > |C| then
ms(G) = |C| + 1. Consequently, Lemma 11 readily states
that if ms(G) = |C| + 1 then every pair of vertices in C must
have at least three common neighbors in I . For the opposite
direction, we need to show that |C| searchers cannot clear
the graph under this condition. Assume on the contrary that
every two vertices in C have at least three common neigh-
bors in I , and that there is a monotone mixed search program
that is able to clear the entire graph with |C| searchers. As
argued previously, at some point of the search searchers must
be placed on |C| − 1 vertices of C. Consider the first point
in time when this happens, and let u be the vertex of C with-
out a searcher. Without loss of generality, we can use the
last searcher to clear all vertices of I that are not neighbors
of u, and assume that all edges between pairs of vertices in
(C\{u}) ∪ (I\N(u)) are cleared. We need to clear the edges
between u and its neighbors, and the edges between NI(u)

and C\{u}. We know that there can be at most one vertex in
NI(u) that can have a searcher on it, and no other vertices
in NI(u) are cleared, because otherwise they would be sub-
ject to recontamination from u. We know that every vertex
in C\{u} has at least three neighbors in NI(u). If we slide a
searcher from a vertex of C to another vertex, recontamina-
tion will occur. Assuming without loss of generality that the
last searcher is placed on a vertex u1 of NI(u), the next step
must be to slide the last searcher from u1 to u. This will clear
all edges between u1 and C, and all edges with both endpoints
in C. After this, u has still uncleared neighbors, and for each
v ∈ C\{u}, u and v have at least two common uncleared
neighbors v1 and v2. If we slide a searcher from v to v1, v will
get recontaminated from v2, and if we slide a searcher from
u to v1, u will become recontaminated from v2. Hence, we
cannot complete the search with only |C| searchers, which
gives the desired contradiction. ■

Consequently, we are also able to characterize split graphs
G for which ms(G) = ω(G).

Corollary 13. For a split graph G, ms(G) = ω(G) if and
only if neither of the three conditions of Theorem 10 nor the
condition of Theorem 12 are satisfied.

We are ready to state the main result of this section, which
follows almost immediately from the above results.

212 NETWORKS—2010—DOI 10.1002/net

Theorem 14. The mixed search number of a split graph
can be computed in polynomial time.

Proof. By the above results we have the following algo-
rithm to compute the mixed search number of a split graph G
with split partition (C, I) where C is a maximum clique: For
every pair of vertices u, v ∈ V , check if |NI(u) ∩ NI(v)| ≤ 2.
If no such pair is found, then output ms(G) = ω(G) + 1.
This takes O(n3) time. Whenever such a pair is found, the
loop over all pairs can be terminated. If such a pair exists,
then the algorithm must also check if any of the conditions
of Theorem 10 is fulfilled. If so, output ms(G) = ω(G) − 1;
if not, output ms(G) = ω(G). The time required to check
each condition of Theorem 10 is clearly polynomial. The
first and second conditions require examining every triple of
vertices and comparing their neighborhoods, which can be
done in total O(n4) time. The most time consuming condi-
tion to check is the last condition, which is checked only if
all other conditions above fail. In a straight forward way, by
examining every quadruple of vertices and comparing their
neighborhoods, this condition can be checked in O(n5) time,
which dominates the total running time of the algorithm. ■

6. THE LINEAR-WIDTH OF SPLIT GRAPHS

Since any induced subgraph of a split graph is also split, by
Proposition 2 and Theorem 14, we have the following result.

Corollary 15. The linear-width of a split graph can be
computed in polynomial time.

Finally, like Theorem 9 on interval graphs, we conclude
with a structural result on the linear-width of split graphs.

Lemma 16. Let G be a split graph.

1. If lw(G) �= ms(G) then lw(G) = ω(G)−1 and ms(G) =
ω(G).

2. If G′ is the graph obtained by removing all vertices of
degree 1 from G, and ω(G) ≥ 3, then lw(G) = lw(G′).

Proof. 1. Split graphs G having ms(G) = ω(G) + 1 are
characterized by Theorem 12. Definitely, if G satisfies the
condition of Theorem 12 then G has an induced subgraph G′
with no vertices of degree 1 such that ms(G′) = ms(G) =
ω(G)+1 by the proof of Theorem 12. Since G′ has no vertices
of degree 1, lw(G′) = lw(G). And since G′ is a subgraph
of G, lw(G) = lw(G′) = ms(G′) = ms(G) = ω(G) + 1.
Hence, Case 2 mentioned above can never occur, and the
only possibility is Case 1.

2. Let us assume that G is split and ω(G) ≥ 3. Then G′
has no vertices of degree 1. Consequently, by Proposition 2,
lw(G) = ms(G′) = lw(G′). ■

7. CONCLUDING REMARKS

We have shown that mixed search number of interval
graphs and split graphs can be computed in linear and poly-
nomial time, respectively. Regarding the algorithm described

in the proof of Theorem 14, probably a better running time is
possible to achieve by carefully organizing the computation.
An interesting open question is whether there exists a differ-
ent algorithm for the mixed search number of split graphs
with better running time.

REFERENCES

[1] S. Alpern and S. Gal, The theory of search games and
rendezvous, International Series in Operations Research &
Management Science, Vol. 55, Kluwer Academic Publishers,
Boston, MA, 2003.

[2] D. Bienstock, Graph searching, path-width, tree-width and
related problems (a survey), In Reliability of computer and
communication networks, Vol. 5 of DIMACS Ser. Discrete
Mathematics and Theoretical Computer Science, American
Mathematical Society, Providence, RI, 1991, pp. 33–49.

[3] D. Bienstock and P. Seymour, Monotonicity in graph search-
ing, J Algorithms 12 (1991), 239–245.

[4] K.S. Booth and G.S. Lueker, Testing for the consecutive ones
property, interval graphs, and graph planarity using pq-tree
algorithms, J Comput Syst Sci 13 (1976), 335–379.

[5] J. Cohen, F.V. Fomin, P. Heggernes, D. Kratsch, and G.
Kucherov, Optimal linear arrangement of interval graphs, In
Proceedings of MFCS 2006, Springer LNCS 4162, 2006,
pp. 267–279.

[6] J. Díaz, J. Petit, and M. Serna, A survey of graph layout
problems, ACM Comput Surveys 34 (2002), 313–356.

[7] F.V. Fomin, A generalization of the graph bandwidth, Vestnik
St. Petersburg Univ Math 34 (2001), 15–19 (2002).

[8] F.V. Fomin and D.M. Thilikos, A 3-approximation for the
pathwidth of halin graphs, J Discrete Algorithms 4 (2006),
499–510.

[9] P.C. Gilmore and A.J. Hoffman, A characterization of compa-
rability graphs and of interval graphs, Can J Math 16 (1964),
539–548.

[10] P.A. Golovach and N.N. Petrov, Some generalizations of the
problem on the search number of a graph, Vestn St Petersbg
Univ Math 28 (1995), 18–22, (translation from Vestn.
St-Peterbg. Univ., Ser. I, Mat Mekh Astron 1995, 3 (1995),
pp. 21–27).

[11] M.C. Golumbic, Algorithmic Graph Theory and Perfect
Graphs, 2nd edition, Vol. 57, Elsevier, Annals of Discrete
Mathematics, New York, 2004.

[12] J. Gustedt, On the pathwidth of chordal graphs, Disc Appl
Math 45 (1993), 233–248.

[13] L.M. Kirousis and C.H. Papadimitriou, Interval graphs and
searching, Discrete Math 55 (1985), 181–184.

[14] D.J. Kleitman and R.V. Vohra, Computing the bandwidth of
interval graphs, SIAM J Disc Math 3 (1990), 373–375.

[15] T. Kloks, J. Kratochvíl, and H. Müller, Computing the
branchwidth of interval graphs, Disc Appl Math 145 (2005),
266–275.

[16] T. Kloks, D. Kratsch, Y.L. Borgne, and H. Müller, Bandwidth
of split and circular permutation graphs, In Proceedings of
WG 2000, Springer LNCS 1928, Konstanz, Germany, 2000,
pp. 243–254.

[17] A.S. LaPaugh, Recontamination does not help to search a
graph, J Assoc Comput Mach 40 (1993), 224–245.

NETWORKS—2010—DOI 10.1002/net 213

[18] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and
C.H. Papadimitriou, The complexity of searching a graph,
J Assoc Comput Mach 35 (1988), 18–44.

[19] T.D. Parsons, Pursuit-evasion in a graph, In Theory and appli-
cations of graphs, Springer LNCM 642, 1978, pp. 426–441.

[20] C. Paul and J.A. Telle, New tools and simpler algorithms for
branchwidth, In Proceedings of ESA 2005, Springer LNCS
3669, 2005, pp. 379–390.

[21] S.-L. Peng and C.-K. Chen, On the interval completion of
chordal graphs, Discrete Appl Math 154 (2006), 1003–1010.

[22] S.-L. Peng, M.-T. Ko, C.-W. Ho, T.-s. Hsu, and C.Y. Tang,
Graph searching on some subclasses of chordal graphs,
Algorithmica 27 (2000), 395–426.

[23] N.N. Petrov, A problem of pursuit in the absence of informa-
tion on the pursued, Differentsial’ nye Uravneniya 18 (1982),
1345–1352, 1468.

[24] A. Takahashi, S. Ueno, and Y. Kajitani, Mixed searching
and proper-path-width, Theoret Comput Sci 137 (1995),
253–268.

[25] D.M. Thilikos, Algorithms and obstructions for linear-width
and related search parameters, Discrete Appl Math 105
(2000), 239–271.

[26] R. Thomas, Tree-decompositions of graphs (lecture notes),
School of Mathematics, Georgia Institute of Technology,
Atlanta, Georgia 30332, USA, 1996.

214 NETWORKS—2010—DOI 10.1002/net

