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A k-spanner of a graph G is a spanning subgraph of G in which the distance between any
pair of vertices is at most k times the distance in G . We prove that for fixed k, w , the
problem of deciding if a given graph has a k-spanner of treewidth w is fixed-parameter
tractable on graphs of bounded degree. In particular, this implies that finding a k-spanner
that is a tree (a tree k-spanner) is fixed-parameter tractable on graphs of bounded degree.
In contrast, we observe that if the graph has only one vertex of unbounded degree, then
Tree k-Spanner is NP-complete for k � 4.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Spanning subnetworks or spanners are very useful tools
in streamlining communications in networks by way of a
backbone. In designing a network spanner, one often has a
trade-off between the complexity of the spanner and how
well the spanner approximates the network. If we insist
that the spanner is a tree, we therefore focus on ensuring
that the length of a path between two endpoints increases
minimally when using the spanner to route communica-
tions.

Peleg et al. [19,20] were the first to suggest this way
of looking at spanners. Given a graph G and a spanning
subgraph H of G , the stretch factor of an edge of G is the
distance between its two endpoints in H . A k-spanner is
a spanning subgraph of G in which none of the edges of
G have stretch factor more than k. If the spanner must
be a tree, then this is a tree k-spanner. In [20], close re-
lationships were established between the quality of span-
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ners (in terms of stretch factor and the number of spanner
edges), and the time and communication complexities of
any synchronizer for the network based on this spanner.
Another example is the usage of tree k-spanners in the
analysis of arrow distributed queuing protocols [12].

Substantial work has been done on the Tree k-Spanner

problem, also known as the minimum stretch spanning
tree problem. Cai and Corneil [3] have shown that, for a
given graph G , the problem to decide whether G has a tree
k-spanner is NP-complete for any fixed k � 4 and is linear
time solvable for k = 1,2 (the status of the case k = 3 is
open for general graphs). An O (log n)-approximation algo-
rithm for the minimum value of k for the Tree k-Spanner

problem is due to Emek and Peleg [8]. See the survey of
Peleg [18] and some recent papers [1,7,9] for more details
on this problem and its variants.

The Tree k-Spanner problem on sparse graphs was
studied intensively. Fekete and Kremer proved that the
Tree k-Spanner problem on planar graphs is NP-complete
(when k is part of the input) (see [10] for the journal
version). They also showed that it can be decided in poly-
nomial time whether a given planar graph has a tree 3-
spanner and left open the question for k > 3.

Dragan et al. [6] introduced spanners of bounded
treewidth, motivated by the fact that many algorithmic
problems are tractable on graphs of bounded treewidth,
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and a spanner of small treewidth can be used to obtain an
approximate solution to a problem on G . They proved that
the problem of finding a k-spanner of treewidth at most
w in a given planar graph G is fixed-parameter tractable
parameterized by k and w , and for every fixed k and w ,
this problem can be solved in linear time. Moreover, they
proved that this result extends from planar graphs to the
more general class of apex-minor-free graphs. Also they
showed that the tractability border of the k-Spanner prob-
lem cannot be extended beyond the class of apex-minor-
free graphs, as for every k � 4, the Tree k-Spanner prob-
lem is NP-complete on K6-minor-free graphs. It should be
noted that the techniques used by Dragan et al. do not ex-
tend directly to other classes of sparse graphs, like graphs
of bounded degree, and thus their results do not carry
over.

In this note, we consider the problems of deciding
whether a given graph has a tree k-spanner or a k-spanner
of treewidth at most w . We show that on graphs of
bounded degree, these problems can be solved in linear
time for any fixed k, w . We complement this result by the
observation that for any fixed k � 4, it is NP-complete to
decide whether a graph G with at most one vertex of de-
gree greater than 8 has a tree k-spanner.

2. Preliminaries

Throughout the paper, we use only undirected simple
graphs. The degree of a vertex v of graph G is denoted by
deg(v). The maximum degree of any vertex of G is denoted
by �(G), and is called the degree of G .

We now define the notion of fixed-parameter tractabil-
ity. We say that a problem is fixed-parameter tractable or
in class FPT, if there is a computable function f such that
the problem can be decided in f (k) · nO (1) time, for any
problem instance of size n and any parameter k. We refer
to recent monographs of Flum and Grohe [11] and Nieder-
meier [15] for overviews of parameterized complexity.

Our results rely on tree decompositions of graphs.
A tree decomposition (T , X) of a graph G is a tree T and
a collection of bags Xt ⊆ V (G), one for each vertex t ∈
V (T ), satisfying three conditions: (i)

⋃
t∈V (T ) Xt = V (G),

(ii) ∀(u, v) ∈ E(G), there is a vertex t ∈ V (T ) such that
u, v ∈ Xt , and (iii) Xt ∩ Xt′′ ⊆ Xt′ for any t, t′′ ∈ V (T ) and
for any t′ ∈ V (T ) on the t–t′′-path in T . The width of a tree
decomposition is maxt∈V (T ){|Xt |} − 1. The treewidth tw(G)

of a graph G is the minimum width of any tree decompo-
sition of G.

3. Result

We first prove that deciding the existence of a tree k-
spanner is fixed-parameter tractable on graphs of bounded
degree.

We need a few auxiliary notions [16]. Let G be a
graph and T a spanning tree of G . The detour for an edge
(u, v) ∈ E(G) is the u–v-path in T . The congestion of an
edge e ∈ E(T ), denoted by cngG,T (e), is the number of de-
tours that contain e. The congestion of G w.r.t. T , denoted
by cngG(T ), is the maximum congestion over all edges
in T . The spanning tree congestion stc(G) is the minimum
congestion over all spanning trees T of G .

Lemma 3.1. Let T be a tree k-spanner of a graph G of degree
� = �(G). Then stc(G) � cngG(T ) � 2 · (� − 1)k−1 .

Proof. Consider an arbitrary edge e ∈ E(T ). Since T is a k-
spanner, all detours passing through e must be from edges
within distance k − 1 of e. As G has degree �, the number
of such edges is at most 2 · (� − 1)k−1. �
Corollary 3.2. If G has a tree k-spanner, then tw(G) � (�(G))k.

Proof. This is immediate from Lemma 3.1 and the fact that
tw(G) � max{stc(G),�(G) · (stc(G) − 1)/2} (as proved by
Otachi, Bodlaender, and van Leeuwen [17]). �
Theorem 3.3. For fixed k, the Tree k-Spanner problem can be
decided in linear time on graphs of bounded degree.

Proof. Let G be a graph of degree � = �(G). We use Bod-
laender’s algorithm [2] to decide in linear time whether
tw(G) � �k . If not, then G does not have a tree k-spanner
by Corollary 3.2. Otherwise, we use that tree k-spanner is
expressible in monadic second-order logic (MSOL) [6]. By
applying Courcelle’s theorem [4,5], which states that any
MSOL problem can be decided in linear time on graphs of
bounded treewidth, we can then decide the existence of a
tree k-spanner in linear time. �

We now extend these results to spanners of bounded
treewidth.

Lemma 3.4. If G has a k-spanner H of treewidth w, then it
holds that tw(G) � (w +1)·(1+(�(G)−1)k−1)·max{�(G)+
4, w + 4}.

Proof. Let � = �(G) and let (T , X) be a tree decomposi-
tion of H of width w . It is known that one can assume
that �(T ) � 3 [13]. Associate the graph Gt = G[Xt] with
each vertex t ∈ V (T ). Construct a new graph G ′ from the
union of T and these Gt as follows. If v ∈ Xt ∩ Xt′ for
(t, t′) ∈ E(T ), add an edge between the copy of v in Gt
and the copy of v in Gt′ . For any (u, v) ∈ E(G − H), add an
edge in G ′ between some copy of u and some copy of v .
Finally, add an edge between each t ∈ V (T ) and each ver-
tex of Gt . Denote the latter set of edges by F .

Clearly, the graph induced by F and T is a spanning
tree T ′ of G ′ . The congestion of any edge in F is bounded
by � + 4. So consider any edge e′ = (t, t′) ∈ E(T ) and let
X = Xt ∩ Xt′ . Obviously, e′ is only in detours for edges
e ∈ E(G − H) and edges between the copies of vertices of X
in Gt and Gt′ . The latter amounts to at most |X | � w + 1
edges. To count the former, note that the detour in H of
an edge e ∈ E(G − H) is some path P = p1 . . . p� of length
at most k. This path corresponds to a walk in T , visiting
the bag containing pi, pi+1 for each i = 1, . . . , � − 1. Such
a walk goes through e′ only if a vertex of P is in X . As P
has at most k edges, e must be within distance k of a ver-
tex of X . Using the same arguments as in Lemma 3.1, it
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follows that the number of these detours going through
e′ is at most (w + 1) · 2(� − 1)k−1. Hence stcG ′(T ′) �
2(w + 1) · (1 + (� − 1)k−1).

Observe that the degree of G ′ is at most max{� +
4, w + 4}. But then tw(G ′) � (w + 1) · (1 + (� − 1)k−1) ·
max{� + 4, w + 4}. Since G is a minor of G ′ , this implies
that tw(G) � (w + 1) · (1 + (� − 1)k−1) · max{� + 4, w +
4}. �

Using the same arguments as in Theorem 3.3, we can
prove the following.

Theorem 3.5. For fixed k, w, the k-Spanner of Treewidth w
problem can be decided in linear time on graphs of bounded de-
gree.

It can be observed that our algorithmic result is tight:
the Tree k-Spanner problem becomes NP-complete for k �
4 on graphs with at most one vertex of unbounded de-
gree. Recall that Cai and Corneil [3] proved that, for a given
graph G , the problem to decide whether G has a tree k-
spanner is NP-complete for any fixed k � 4. The reduction
of Cai and Corneil is from the well-known NP-complete
3-Satisfiability problem. Kratochvíl [14] showed the NP-
completeness of 3-Satisfiability with the additional re-
striction that each clause has two or three literals, and
each variable occurs exactly once in positive and exactly
two times in negation. It is sufficient to use this variant
of 3-Satisfiability in the construction proposed by Cai and
Corneil to prove the following.

Proposition 3.6. For any fixed k � 4, it is NP-complete to decide
whether a graph G with at most one vertex of degree greater
than 8 has a tree k-spanner.

4. Conclusions

We showed that the Tree k-Spanner problem and the
k-Spanner of Treewidth w problem are fixed-parameter
tractable on graphs of bounded degree. It would be inter-
esting to show that one could use tools that do not rely on
Courcelle’s theorem or Bodlaender’s algorithm to speed up
practical implementations.
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