Strengthening Erdős–Pósa Property for Minor-Closed Graph Classes

- Fedor V. Fomin,¹ Saket Saurabh,² and Dimitrios M. Thilikos³

¹DEPARTMENT OF INFORMATICS, UNIVERSITY OF BERGEN PO BOX 7800, 5020, BERGEN, NORWAY E-mail: fomin@ii.uib.no

> ²THE INSTITUTE OF MATHEMATICAL SCIENCES CIT CAMPUS, CHENNAI, INDIA E-mail: saket.saurabh@ii.uib.no

³DEPARTMENT OF MATHEMATICS NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS PANEPISTIMIOUPOLIS, GR15784 ATHENS, GREECE E-mail: sedthilk@math.uoa.gr

Received May 27, 2009; Revised January 25, 2010

Published online 26 October 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jgt.20503

Abstract: Let \mathcal{H} and \mathcal{G} be graph classes. We say that \mathcal{H} has the Erdős–Pósa property for \mathcal{G} if for any graph $G \in \mathcal{G}$, the minimum vertex covering of all \mathcal{H} -subgraphs of G is bounded by a function f of the maximum packing of \mathcal{H} -subgraphs in G (by \mathcal{H} -subgraph of G we mean any subgraph of G that belongs to \mathcal{H}). Robertson and Seymour [J Combin Theory Ser B 41 (1986), 92–114] proved that if \mathcal{H} is the class of all graphs that can be contracted to a fixed planar graph H, then \mathcal{H} has the Erdős–Pósa

Contract grant sponsors: Research Council of Norway (to F. V. F. and S. S.); Kapodistrias; Contract grant numbers: A Π 736/24.3.2006; 02839/28.07.2008 (to D. M. T.).

property for the class of all graphs with an exponential bounding function. In this note, we prove that this function becomes linear when \mathcal{G} is any non-trivial minor-closed graph class. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 235–240, 2011

Keywords: Erdős-pósa property; graph minors

1. INTRODUCTION

Given a graph G we denote by V(G) and E(G) its vertex and edge set, respectively. A graph class \mathcal{G} is called *non-trivial* if it does not contain all graphs. We use the notation $H \subseteq G$ to denote that H is a subgraph of G. We say that a graph G is a \mathcal{G} -subgraph of a graph G' if $G \subseteq G'$ and $G \in \mathcal{G}$.

Let \mathcal{H} be a class of graphs. Given a graph G, we define the covering number of G with respect to the class \mathcal{H} as

$$\mathbf{cover}_{\mathcal{H}}(G) = \min\{k \mid \exists S \subseteq V(G) \mid S \mid \le k \quad \text{and} \quad \forall_{H \in \mathcal{H}} H \not\subseteq G \setminus S\}.$$

In other words, $\mathbf{cover}_{\mathcal{H}}(G) \leq k$ if there is a set of at most k vertices meeting every \mathcal{H} -subgraph of G. The packing number of G with respect to the class \mathcal{H} is defined as

 $pack_{\mathcal{H}}(G) = max \{k \mid \exists a \text{ partition } V_1, \dots, V_k \text{ of } V(G) \}$

such that $\forall_{i \in \{1, \dots, k\}} \exists_{H \in \mathcal{H}} H \subseteq G[V_i]\}.$

Less formally, $\mathbf{pack}_{\mathcal{H}}(G) \ge k$ if G contains k vertex-disjoint \mathcal{H} -subgraphs.

A graph class \mathcal{H} satisfies the Erdős–Pósa property for some graph class \mathcal{G} if there is a function f (depending only on \mathcal{H} and \mathcal{G}) such that, for any graph $G \in \mathcal{G}$,

$$\mathbf{pack}_{\mathcal{H}}(G) \le \mathbf{cover}_{\mathcal{H}}(G) \le f(\mathbf{pack}_{\mathcal{H}}(G)) \tag{1}$$

In [6], Erdős and Pósa proved that (1) holds for all graphs when \mathcal{H} is the class of all cycles. The problem of identifying more general graph classes where the Erdős–Pósa property is satisfied, has attracted a lot of attention, see [13, 3, 10, 9, 14, 1]. For further extensions and results of the same problem on matroids, see [8, 7].

We say that a graph *G* can be contracted to *H* if *H* can be obtained from *G* by a series of edge contractions (the contraction of an edge e = (u, v) in *G* results in a graph *G'*, in which *u* and *v* are replaced by a new vertex v_e and in which for every neighbor *w* of *u* or *v* in *G*, there is an edge (w, v_e) in *G'*). We say that *H* is a minor of *G* if some subgraph of *G* can be contracted to *H*. A graph class *G* is minor-closed if any minor of a graph in *G* is again a member of *G*. We denote by $\mathcal{M}(H)$ the class of graphs that can be contracted to *H*. In [11, Proposition 8.2] Robertson and Seymour proved the following.

Proposition 1. Let H be a connected graph. Then $\mathcal{M}(H)$ satisfies the Erdős–Pósa property for all graphs if and only if H is planar.

Another proof of Proposition 1 can also be found in the monograph "Graph Theory" [5], by R. Diestel (Corollary 12.4.10 and Exercise 39). According to the proof of

Journal of Graph Theory DOI 10.1002/jgt

Proposition 1, the bounding function f(k) in (1) is exponential in k. However, by the original result of Erdős–Pósa [6], when H is isomorphic to K_3 , $f(k) \le 4k \log k$. In this note, we prove that the bound becomes linear for any planar H, when graphs are restricted to some non-trivial minor-closed class. Formally, we prove the following result.

Theorem 1. For a connected planar graph H, let \mathcal{H} be the class of graphs that are contractible to H. Let also \mathcal{G} be a non-trivial minor-closed graph class. Then there is a constant $\sigma_{\mathcal{G},H}$ depending only on \mathcal{G} and H such that for every graph $G \in \mathcal{G}$, it holds that

 $\operatorname{pack}_{\mathcal{H}}(G) \leq \operatorname{cover}_{\mathcal{H}}(G) \leq \sigma_{\mathcal{G},H} \cdot \operatorname{pack}_{\mathcal{H}}(G).$

2. THE PROOF

We start with auxiliary definitions and statements. If *G* is a graph and $x \in V(G)$ we use the notation G-x for the graph $G[V(G)-\{x\}]$.

A tree decomposition of a graph G is a pair $(T, \mathcal{X} = \{X_t\}_{t \in V(T)})$ such that

- $\bigcup_{u \in V(T)} = V(G),$
- for every edge $\{x, y\} \in E(G)$ there is a $t \in V(T)$ such that $\{x, y\} \subseteq X_t$, and
- for every vertex $v \in V(G)$ the subgraph of T induced by the set $\{t | v \in X_t\}$ is connected.

The width of a tree decomposition is $\max_{t \in V(T)} |X_t| - 1$ and the treewidth of G, $\mathbf{tw}(G)$, is the minimum width over all tree decompositions of G.

Our first observation is the following.

Lemma 1. For a planar graph H, let \mathcal{H} be the class of graphs that are contractible to H. Let also \mathcal{G} be a non-trivial minor-closed graph class. Then, there is a constant $c_{\mathcal{G},H}$, depending only on \mathcal{G} and H such that for any graph $G \in \mathcal{G}$, $\mathbf{tw}(G) \leq c_{\mathcal{G},H} \cdot (\mathbf{pack}_{\mathcal{H}}(G))^{1/2}$.

Proof. Let $k = \operatorname{pack}_{\mathcal{H}}(G)$. In this proof, for any positive integer t, we denote the $(t \times t)$ -grid by Γ_t . Let

$$c_H = \min\{r \mid H \text{ is a minor of } \Gamma_r\}$$

(for a short proof that constant c_H exists, see e.g. [12, Proposition (1.5)]). Notice that if $m = \lceil k^{1/2} \rceil + 1$, then $\mathbf{pack}_{\mathcal{H}}(\Gamma_{m \cdot c_H}) > k$. We conclude that *G* does not contain $\Gamma_{m \cdot c_H}$ as a minor. From [4, Theorem 1], there is a constant $c_{\mathcal{G}}$ depending only on \mathcal{G} such that $\mathbf{tw}(G) \le c_{\mathcal{G}} \cdot m \cdot c_H$ and the Lemma follows.

For the proof of the next Lemma, we enhance the definition of a tree decomposition (T, \mathcal{X}) as follows: *T* is a tree rooted on some node *r* where $X_r = \emptyset$, each of its nodes have at most two children and could be one of the following

- 1. *Introduce node*: a node *t* that has only one child t' where $X_t \supset X_{t'}$ and $|X_t| = |X_{t'}| + 1$.
- 2. Forget node: a node t that has only one child t' where $X_t \subset X_{t'}$ and $|X_t| = |X_{t'}| 1$.
- 3. Join node: a node t with two children t_1 and t_2 such that $X_t = X_{t_1} = X_{t_2}$.
- 4. Base node: a node t that is a leaf of t is different than the root, and $X_t = \emptyset$.

Journal of Graph Theory DOI 10.1002/jgt

Notice that, according to the above definitions, the root r of T is either a forget or a join node. It is easy to see that any tree decomposition can be transformed to one with the above requirements while maintaining the same width (see e.g. [2]). From now on, when we refer to a tree decomposition (T, \mathcal{X}) we presume the above requirements.

Given a tree decomposition (T, \mathcal{X}) and some node *t* of *T*, we define as T_t the subtree of *T* rooted at *t*. Clearly, if *r* is the root of *T*, it holds that $T_r = T$. We also define $G_t = G[\bigcup_{s \in V(T_t)} X_s]$ and $G_t^- = G_t - X_t$.

Given a graph G, we call a triple (V_1, S, V_2) d-separation triple of G if $|S| \le d$ and $\{V_1, S, V_2\}$ is a partition of V(G) such that there is no edge in G between a vertex in V_1 and a vertex in V_2 .

Lemma 2. For a connected planar graph H, let \mathcal{H} be the class of graphs that are contractible to H. Let also \mathcal{G} be a non-trivial minor-closed graph class and let $G \in \mathcal{G}$ such that $1 \leq \operatorname{pack}_{\mathcal{H}}(G) = k$. Then there is an $c_{\mathcal{G},H} \cdot \sqrt{k}$ -separation triple (V_1, X, V_2) of G, where $k/3 \leq \operatorname{pack}_{\mathcal{H}}(G[V_1]) \leq 2k/3$ and $\operatorname{pack}_{\mathcal{H}}(G[V_1]) + \operatorname{pack}_{\mathcal{H}}(G[V_2]) \leq k$ ($c_{\mathcal{G},H}$ is a constant depending on \mathcal{G} and H).

Proof. Let (\mathcal{X}, T) be a tree decomposition of G of width at most $c_{\mathcal{G},H} \cdot \sqrt{k}$, as in Lemma 1. We set up a labeling $p: V(T) \to \mathbb{N} \cup \{0\}$ such that

$$p(t) = \operatorname{pack}_{\mathcal{H}}(G_t^-).$$

The following observations are direct consequences of the definitions.

Observation 1. If $t \in V(T)$ is an introduce node with t' as a child, then p(t')=p(t). This holds because then $G_{t'}^- = G_t^-$.

Observation 2. If $t \in V(T)$ is a forget node with t' as child, then $p(t)-p(t') \in \{0,1\}$. This holds because $G_{t'}^- = G_t^- - x$ for some vertex $x \in V(G_{t'}^-)$.

Observation 3. If $t \in V(T)$ is a join node with t_1 and t_2 as children, then $p(t_1) + p(t_2) = p(t)$. This holds because $G_{t_1}^-$ and $G_{t_2}^-$ are disjoint graphs, $G_t^- = G_{t_1}^- \cup G_{t_2}^-$ and any graph in \mathcal{H} is connected (because of the connectivity of H).

Observation 4. If $t \in V(T)$ is a base node, then p(t)=0. This holds because then G_t is the empty graph.

Observation 5. $p(r) = \operatorname{pack}_{\mathcal{H}}(G)$. This holds because, $X_r = \emptyset$ and thus $G_r^- = G_r = G$.

Let $t \in V(T)$ be the node where p(t) > 2k/3 and for each child t' of t, $p(t') \le 2k/3$. From the above observations, this node exists and is unique provided that k > 0. Moreover, t may be either a forget node or a join node (by Observation 1 and the definition of t).

We distinguish two cases:

Case 1. If t is a forget node, we set $V_1 = V(G_{t'})$ and $V_2 = V(G) - (V_1 \cup X_{t'})$ and observe that $\mathbf{pack}_{\mathcal{H}}(G_i) \le \lfloor 2k/3 \rfloor, i = 1, 2$ (by Observation 2 and the definition of t). Also we set $X = X_{t'}$.

Case 2. If *t* is a join node with children t_1 and t_2 , we have that $p(t_i) \le 2k/3, i = 1, 2$ (by Observation 3 and definition of *t*). However, as $p(t_1)+p(t_2) > 2k/3$, we also have

Journal of Graph Theory DOI 10.1002/jgt

that either $p(t_1) \ge k/3$ or $p(t_2) \ge k/3$. W.l.o.g. we assume that $p(t_1) \ge k/3$ and we set $V_1 = V(G_{t_1}^-), V_2 = V(G) - (V_1 \cup X_{t_1})$ and $X = X_{t_1}$.

We set $k_i = \operatorname{pack}_{\mathcal{H}}(G[V_i]), i = 1, 2$. We conclude that in both cases, $k/3 \le k_1 \le 2k/3$ and $k_1 + k_2 \le k$. Therefore (V_1, X, V_2) is the required $c_{\mathcal{G}, H} \cdot \sqrt{k}$ -separation triple.

Proof of Theorem 1. We only prove the right hand inequality as the left hand one is trivial. In fact, we prove that

$$\mathbf{cover}_{\mathcal{H}}(G) \le \alpha \cdot c_{\mathcal{G},H} \cdot \mathbf{pack}_{\mathcal{H}}(G) - \beta \cdot c_{\mathcal{G},H} \sqrt{\mathbf{pack}_{\mathcal{H}}(G)}$$
(2)

for some constants α , β (where $\alpha - 1 \ge \beta > 2$) that will be determined later.

Clearly, (2) holds trivially when $\mathbf{pack}_{\mathcal{H}}(G) = 0$ and assume that it holds when $\mathbf{pack}_{\mathcal{H}}(G) < k$ for some $k \ge 1$. Let G be a graph such that $\mathbf{pack}_{\mathcal{H}}(G) = k \ge 1$. According to Lemma 2, G contains a $c_{\mathcal{G},\mathcal{H}} \cdot \sqrt{k}$ -separation triple (V_1, X, V_2) , where $k/3 \le \mathbf{pack}_{\mathcal{H}}(G[V_1]) \le 2k/3$ and $\mathbf{pack}_{\mathcal{H}}(G[V_1]) + \mathbf{pack}_{\mathcal{H}}(G[V_2]) \le k$. Notice that $\mathbf{cover}_{\mathcal{H}}(G) \le \mathbf{cover}_{\mathcal{H}}(G[V_1]) + \mathbf{cover}_{\mathcal{H}}(G[V_2]) + |X|$. Using the induction hypothesis, we obtain that, for some $\delta \in [1/3, 2/3]$,

$$\mathbf{cover}_{\mathcal{H}}(G[V_i]) \le \alpha \cdot c_{\mathcal{G},H} \cdot \delta \cdot k - \beta \cdot c_{\mathcal{G},H} \cdot \sqrt{\delta \cdot k} \\ + \alpha \cdot c_{\mathcal{G},H} \cdot (1-\delta) \cdot k - \beta \cdot c_{\mathcal{G},H} \cdot \sqrt{(1-\delta) \cdot k} + c_{\mathcal{G},H} \cdot \sqrt{k}$$

which is upper bounded by $\alpha \cdot c_{\mathcal{G},H} \cdot k - \beta \cdot c_{\mathcal{G},H} \cdot \sqrt{k}$, if we choose $\alpha = 3.54$ and $\beta = 2.54$. Therefore, Theorem holds for $\sigma_{\mathcal{G},H} = 3.54 \cdot c_{\mathcal{G},H}$.

ACKNOWLEDGMENTS

The first two authors were supported by the Research Council of Norway and the third author was supported by the Project "Kapodistrias" (AII 736/24.3.2006, 02839/28.07.2008) of the National and Kapodistrian University of Athens (project code: 70/4/8757). This research has been done while the first two authors were visiting the Department of Mathematics of the National and Kapodistrian University of Athens in October 2007.

REFERENCES

- E. Birmelé, J. Adrian Bondy, and B. A. Reed, The Erdős–Pósa property for long circuits, Combinatorica 27(2) (2007), 135–145.
- [2] H. L. Bodlaender and T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, J Algorithms 21 (1996), 358–402.
- [3] I. J. Dejter and V. Neumann Lara, Unboundedness for generalized odd cyclic transversality, Combinatorics (Eger, 1987), Colloquia Mathematica Societatis János Bolyai 52, North-Holland, Amsterdam, 1988, pp. 195–203.
- [4] E. D. Demaine and M. T. Hajiaghayi, Linearity of grid minors in treewidth with applications through bidimensionality, Combinatorica 28(1) (2008), 19–36.
- [5] R. Diestel, Graph theory, 3rd edn, Graduate Texts in Mathematics 173, Springer, Berlin, 2005.

- [6] P. Erdős and L. Pósa, On independent circuits contained in a graph, Canad J Math 17 (1965), 347–352.
- [7] J. F. Geelen, A. M. H. Gerards, and G. Whittle, Disjoint cocircuits in matroids with large rank, J Combin Theory Ser B 87(2) (2003), 270–279.
- [8] J. Geelen and K. Kabell, The Erdős–Pósa property for matroid circuits, J Combin Theory Ser B 99(2) (2009), 407–419.
- [9] K.-I. Kawarabayashi and A. Nakamoto, The Erdős–Pósa property for vertexand edge-disjoint odd cycles in graphs on orientable surfaces, Discrete Math 307(6) (2007), 764–768.
- [10] D. Rautenbach and B. Reed, The Erdős–Pósa property for odd cycles in highly connected graphs, Combinatorica 21(2) (2001), 267–278, Paul Erdős and his mathematics (Budapest, 1999).
- [11] N. Robertson and P. D. Seymour, Graph minors. V. Excluding a planar graph, J Comb Theory Ser B 41(1986), 92–114.
- [12] N. Robertson, P. Seymour, and R. Thomas, Quickly excluding a planar graph, J Combin Theory Ser B, 62(2) (1994), 323–348.
- [13] C. Thomassen, On the presence of disjoint subgraphs of a specified type, J Graph Theory 12(1) (1988), 101–111.
- [14] C. Thomassen, The Erdős–Pósa property for odd cycles in graphs of large connectivity, Combinatorica 21(2) (2001), 321–333, Paul Erdős and his mathematics (Budapest, 1999).