
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 412 (2011) 3530–3536

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

An exact algorithm for minimum distortion embedding✩

Fedor V. Fomin a,∗, Daniel Lokshtanov b, Saket Saurabh c

a Department of Informatics, University of Bergen, Norway
b Department of Computer Science and Engineering, University of California, San Diego, USA
c The Institute of Mathematical Sciences, Chennai, India

a r t i c l e i n f o

Article history:
Received 18 March 2010
Received in revised form 10 February 2011
Accepted 22 February 2011
Communicated by J. Kratochvil

Keywords:
Exact algorithm
Metric embedding
Distortion

a b s t r a c t

Let G be an unweighted connected graph on n vertices. We show that an embedding of
the shortest path metric of G into the line with minimum distortion can be found in time
5n+o(n). This is the first algorithm breaking the trivial n!-barrier.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given an undirected connected graph G with the vertex set V (G) and the edge set E(G), the graph metric of G is
M(G) = (V (G),DG), where the distance function DG is the shortest path distance between u and v for every pair of vertices
u, v ∈ V (G). Given a graph metricM and another metric spaceM ′ with distance functions D and D′, a mapping f : M → M ′

is called an embedding ofM intoM ′. The mapping f has contraction cf and expansion ef if for every pair of points p, q inM ,
D(p, q) ≤ D′(f (p), f (q)) · cf ,

and
D(p, q) · ef ≥ D′(f (p), f (q))

respectively. We say that f is non-contracting if cf is at most 1. A non-contractingmapping f has distortion d if ef is at most d.
In this paper we provide an exact algorithm for the following fundamental problem: for a given graph G, find aminimum

distortion embedding of the graph metric of G into the line. In this case the metric space M ′ is R1 and D′ is the Euclidean
distance. A simple algorithm is to try all possible permutations of the vertex set. Each permutation corresponds to an
embedding where the distance between two consecutive vertices on the line is equal to the shortest path distance between
them. The running time of this algorithm is O(n!n) and to the best of our knowledge, no faster exact algorithm for any kind
of embedding problem was known prior to our work.

The problemof finding an embeddingwith lowdistortion betweenmetric spaces is a fundamentalmathematical problem
[12,14] that has been studied intensively. Embedding a graphmetric into a simple low-dimensionalmetric space like the real
line has proved to be a useful algorithmic tool in various fields. A long list of applications given in [11] includes approximation
algorithms for graph and network problems, such as sparsest cut, minimum bandwidth, low-diameter decomposition and
optimal group Steiner trees, and on-line algorithms for metrical task systems and file migration problems. The algorithmic
issues of metric embeddings have recently begun to develop [1–3,13]. For example, Bădoiu et al. [1] describe approximation
algorithms and hardness results for embedding general metrics into the line. In particular, they show that the minimum

✩ Preliminary version of this paper was presented at WG’09 [10].
∗ Corresponding author. Tel.: +47 555818181.

E-mail addresses: fedor.fomin@ii.uib.no (F.V. Fomin), dlokshtanov@cs.ucsd.edu (D. Lokshtanov), saket@imsc.res.in (S. Saurabh).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.02.043

Author's personal copy

F.V. Fomin et al. / Theoretical Computer Science 412 (2011) 3530–3536 3531

distortion for a line embedding is hard to approximate up to a factor polynomial in n, even for weighted trees where the
ratio of maximum/minimum weights is bounded by a polynomial in n. For the case of unweighted graphs, it was shown
by Bădoiu et al. [2] that there is a constant a > 1, such that a-approximation of the minimum distortion of an embedding
into the line is NP-hard. Bădoiu et al. also provided an exact algorithm for computing an embedding with distortion at most
d in time nO(d). For d = Ω(n) the running time of such an algorithm is nO(n). Fellows et al. [8] studied the parameterized
complexity of metric embeddings and proved that embedding into the line and more generally, into trees with bounded
vertex degrees, is fixed parameter tractable when parameterized by the distortion. For embedding a graph metric into the
line the running time of the algorithm described in [8] is O(nd4(2d+1)2d), which also does not break the barrier of n!when
d = Ω(n).

It is worth to mention the resemblance between the problem of embedding into the line and the Bandwidth
Minimization problem. In the Bandwidth Minimization problem the objective is for a given graph G to find a bijective
mapping f : V (G) → {1, . . . , n}, for which the bandwidth, that is b = max(u,v)∈E(G) |f (u)− f (v)|, is minimized. Observe that
the only difference between the two problems is that in the BandwidthMinimization problemwedemand 1 ≤ |f (p)−f (q)|
for every pair of vertices while the non-contraction constraint in our embedding problem is D(p, q) ≤ |f (p) − f (q)|.

The Bandwidth Minimization problem is one of the test-bed problems in the area of moderately exponential time
algorithms and has been studied intensively. Trying all possible permutations of the vertex set yields a simple O(n!n) time
algorithm while the known algorithms for the problem with running time O(cn) are far from straightforward. The O(n!)-
barrier was broken by Feige and Kilian [7] who gave an algorithmwith running time 10nnO(1). This result was subsequently
improved by Cygan and Pilipczuk down to 5nnO(1) in [4] and then to 4.383nnO(1) in [5].

Despite the similarities between low distortion embedding into the line and bandwidth, the non-contraction constraint
makes the algorithmic complexity of the two problems significantly different. A striking example is that the parameterized
version of the Bandwidth Minimization problem is one of the hardest problems in Parameterized Complexity, while low
distortion embedding into the line is fixed parameter tractable [8]. Thus, it is not surprising that a direct transmission of the
ideas for the Bandwidth Minimization problem to low distortion embeddings does not work. Nevertheless, our approach
is still based on the approaches from [4,7], especially the initial and final parts of our algorithm. However, to handle non-
contraction we need a non-trivial additional link connecting these parts.

2. Preliminaries

Let G be an undirected graph with vertex set V (G) and edge set E(G). We denote the number of vertices by n. For u and
v ∈ V (G), DG(u, v) is the shortest path distance between u and v in G. For a subset V ′

⊆ V (G), by G[V ′
] we mean the

subgraph of G induced by V ′. An integer interval is a set {x, x + 1, . . . , y − 1, y} of integers appearing consecutively. An
embedding of a graph G into the line is a function f : V (G) → R. The distortion of an embedding f is maxu,v∈V (G)

|f (u)−f (v)|

DG(u,v)
.

An embedding is called non-contracting if |f (u) − f (v)| ≥ DG(u, v) for every pair u, v of vertices. If f is non-contracting we
say that a vertex u pushes vertex v if DG(u, v) = |f (u) − f (v)|. For an embedding f , let v1, v2, . . . , vn be an ordering of the
vertices such that f (v1) < f (v2) < · · · < f (vn). We say that f is pushing if vi pushes vi+1, for each 1 ≤ i ≤ n − 1.

A partial embedding of G into the line is a function f ′
: V ′

→ R for some subset V ′ of V . For a partial embedding f ′ with
domain V ′, let v′

1, v
′

2, . . . , v
′

n′ be an ordering of V ′ such that f ′(v′

1) < f ′(v′

2) < · · · < f (v′

n′). We say that f ′ is pushing if v′

i
pushes v′

i+1, for each 1 ≤ i ≤ n′
− 1. The distortion of a pushing partial embedding f ′ is maxuv∈E(G[V ′]) |f ′(u) − f ′(v)|.

3. Exact algorithm for distortion

In this section we give an exact algorithm for the following problem.
Given an input graph G with the vertex set V (G) and the edge set E(G), find a mapping f from V (G) → R+ such that
for all u, v ∈ V (G), |f (u) − f (v)| ≥ DG(u, v) and the function

dist(G) = max
u,v∈V (G)

|f (u) − f (v)|

DG(u, v)

is minimized.

In order to reduce the search space we apply a simple lemma proved in [8] on minimum distortion embedding of graphs
into the line.
Lemma 1 ([8]). • If G can be embedded into the line with distortion d, then there is a pushing embedding of G into the line with

distortion d. Furthermore, every pushing embedding of G into the line is non-contracting.
• Let f be a pushing embedding of a connected graph G into the line with distortion at most d. Then D(vi−1, vi) ≤ d for every

1 ≤ i ≤ n.

Lemma 1 implies that it is sufficient to look for an optimal pushing embedding. Notice that a pushing embedding with
f (v1) = 0maps every vertex to an integer coordinate. Thereforewe canwithout loss of generality restrict ourself to functions
f : V (G) → {0, . . . , dn}. We also assume that our input graph G is connected, because otherwise some pair of vertices have
infinite distance between them and hence there is no non-contracting embedding of G into the line.

Author's personal copy

3532 F.V. Fomin et al. / Theoretical Computer Science 412 (2011) 3530–3536

Exact-Dist(G, d, h, J, g)
(Here d is the distortion, h is the fixed bucket assignment, J = {x, . . . , y} is the set of indices of buckets and g is
a partial embedding of some of the vertices in the graph.)

1. If | J| > n
log2 n

, then find a bucket Vj of the kind described in Lemma 2 else go to Step 3.
2. Enumerate all possible pushing partial embeddings gj : Vj → Bj of distortion at most d. For every such gj:

• Assign g ′(v) = gj(v) if v ∈ Vj and g ′(v) = g(v) if v is in the domain of g . Let J1 = {x, . . . , j− 1, j} and J2 =

{j, j+1, . . . , y}. Recursively solve the subproblems Exact-Dist(G, d, h, J1, g ′) and Exact-Dist(G, d, h, J2, g ′).
Return ‘‘YES’’ if both recursive calls return ‘‘YES’’.

3. In this case solve the problem using Lemma 5 of Section 3.3.

Fig. 1. Description of the Algorithm.

We now present an algorithm that decides whether there is an embedding of distortion at most d for the input graph G.
It is well known that any graph G with n vertices can be embedded into the line with distortion at most 2n − 1 [2]. Thus, if
we want to find the minimum d such that there is an embedding of G into the line with distortion at most d it is sufficient
to try all values between 1 and 2n − 1 for d. Next we describe the three main components of our algorithm and show how
to combine them in order to obtain an algorithm running in time 5n+o(n) and using 2n+o(n) space. The first and third parts
of our algorithm go along the lines of the known algorithms for Bandwidth [7,4]. While these two parts are sufficient to
compute bandwidth, in order to solve our problemwe need an intermediate divide-and-conquer step to bridge the first and
last parts.

3.1. Fixing an assignment into buckets

The algorithm loops over all possible distributions of the vertices into ‘‘buckets’’ on the integer line. The remaining
two steps of the algorithm deal with finding an optimal embedding that agrees with the distribution made in the first
step. Formally, we are looking for a pushing embedding f : V (G) → {0, . . . , dn}. A bucket assignment is a function
h : V (G) → {0, . . . , n} and an embedding f : V (G) → {0, . . . , dn} of G agrees with h if for every vertex v of G we have
h(v) = ⌊

f (v)

d+1⌋. For i ≥ 0, the ith bucket of h (or the ith bucket for short) is B i = {(d + 1)i, . . . , (d + 1)(i + 1) − 1} and the
content of the ith bucket is Vi = {v : h(v) = i}.

The outer loop of the algorithm goes over a set of bucket assignments such that if there is a pushing embedding
f : V (G) → {0, . . . , dn} with distortion at most d then some h we have looped over agrees with f . We guess a vertex v
such that h(v) = 0 and fix a spanning tree T of G with rT as root. Once h(p) has been determined for the parent p of a node
u in T , we loop over all possible values of h(u). If h is to agree with some pushing embedding f : V (G) → {0, . . . , dn} with
distortion at most d we have that h(u) = h(p) − 1, h(u) = h(p) or h(u) = h(p) + 1 and that h(u) ≥ 0. Since we have at
most 3 possibilities for the placement of each vertex the outer loop needs only to go over at most n · 3n different bucket
assignments h.

3.2. Dealing with many buckets

In this section and Section 3.3, we provide an algorithm which given an initial bucket assignment h, decides whether
there is a pushing embedding f of the input graph into the line with distortion at most d that agrees with h.

Our algorithm Exact-Dist solves a slight modification of the problem. Input to this problem is a graph G, an integer d,
a bucket assignment h, an interval J = {x, x + 1, . . . , y} of integers and a function g : V ′

→ {0, . . . , dn} for some subset
V ′ of V (G). Let BJ =

j∈J Bj and VJ =

j∈J Vj. The algorithm determines whether there is a partial pushing embedding

f : VJ → BJ with distortion at most d such that f agrees with h and f (v) = g(v) for all vertices in V ′
∩ VJ . To solve the

original problem we make a call to Exact-Dist (G, d, h, J, g) where J = {0, . . . , n} and the domain V ′ of g is empty. Before
commencing with the algorithm, we perform a ‘‘sanity check’’. That is, given h check whether it is even remotely feasible
that f can exist. We verify that h satisfies the following properties.

• For every i, |Vi| ≤ d + 1.
• Similarly, for every edge uv, |h(u) − h(v)| ≤ 1.

Indeed, if some of these cases do not hold, there is no embedding f with distortion d that agrees with h and we can
immediately answer ‘‘NO’’. At all later stages of the algorithm we assume that h satisfies these properties. An outline of
the algorithm without these preliminary steps is given in Fig. 1. In Section 3.3 we will give an algorithm which implements
Step 3 in time 2n

· nO(b) time, where b = | J| is the number of buckets considered.
The idea behind the algorithm is as follows. When the number of buckets | J| is large, our algorithm follows a divide-

and-conquer approach and if the number of buckets is ‘‘small’’, that is roughly n/ log2 n, we do dynamic programming. To
deal with the large number of buckets we look for a ‘‘small balanced separator’’ to branch on. The first step of algorithm
Exact-Dist is based on the following lemma.

Author's personal copy

F.V. Fomin et al. / Theoretical Computer Science 412 (2011) 3530–3536 3533

Lemma 2. Let h be a bucket assignment and let J = {x, x + 1, . . . , y} be an integer interval such that n
log2 n

< | J|. Then there

exists j ∈ I = {
3x+y
4 + 1, . . . , x+3y

4 } such that |Vj| ≤ 2 log2 n.

Proof. The proof follows from an averaging principle. For the sake of contradiction, let us assume that for every j ∈ I ,
|Vj| > 2 log2 n. Then the total number of elements in the buckets Vj with j ∈ I is at least−

j∈I

|Vj| > 2 log2 n ·
| J|
2

> 2 log2 n ·
n

2 log2 n
= n.

But the sets Vj are disjoint, and thus the sum does not exceed |V (G)| = n, which is a contradiction. �

If | J| is at least n/ log2 n, the algorithm picks a bucket Bj and branches on all possible ways to lay out Vj in Bj. After this
the problem breaks up into two independent subproblems (G, d, h, J1, g ′) and (G, d, h, J2, g ′); see Fig. 1. We argue that the
two subproblems are indeed independent. Let f be a pushing partial embedding of VJ into BJ with distortion at most d such
that f agrees with h and coincides with g . This means that f restricted to Vj is a pushing partial embedding of Vj into Bj. We
choose gj to coincide with f on Vj and define g ′(v) = gj(v) if v ∈ Vj and g ′(v) = g(v) if v is in the domain of g , just as in
Step 2 of algorithm Exact-Dist. If J = {x, . . . , y} then J1 = {x, . . . , j} and J2 = {j, . . . , y}. Now f restricted to J1 is a pushing
partial embedding from VJ1 to BJ1 while f restricted to J2 is a pushing partial embedding from VJ2 to BJ2 .

In the other direction, let f1 and f2 be pushing partial embeddings from VJ1 toBJ1 and from VJ2 toBJ2 respectively, agreeing
with h and coinciding with g ′. Since J = J1 ∪ J2 and J1 ∩ J2 = {j} we can choose f to be the partial embedding from VJ to BJ
that coincides with both f1 and f2. Since both f1 and f2 are pushing partial embeddings, so is f . Since every edge with both
endpoints in VJ has both endpoints either in VJ1 or in VJ2 and both f1 and f2 have distortion at most d, so does f .

Let T (n, b) be the time required by algorithm Exact-Dist on an n-vertex graph G with | J| = b. Let T ∗(n) be the time
required by algorithm Exact-Dist on an n-vertex graph G and with | J| < n/ log2 n. An analysis of Steps 1 and 2 of algorithm
Exact-Dist yields the following recurrence.

T (n, b) =

 d+1
2 log2 n

(2 log2 n)! · 2T

n, 3b

4

if b > n

log2 n
T ∗(n) otherwise.

Thus

T (n, b) ≤

[
2

d + 1
2 log2 n

(2 log2 n)!

]O(log b)

T ∗(n).

Since b ≤ n, we have that T (n, b) ≤ 2
O(log n

n/ log2 n
)
· T ∗(n) = 2o(n)

· T ∗(n). In Section 3.3, we show how to implement the
last step of algorithm Exact-Dist to run in time 2nnO(b) which is at most 2n

· 2o(n) since b ≤ n/ log2 n. This yields a 2n+o(n)

runtime bound for algorithm Exact-Dist and a 6n+o(n) bound for deciding whether G can be embedded into the line with
distortion at most d. In Section 3.4 we will show that the running time of our algorithm in fact is bounded by 5n+o(n).

3.3. Dealing with few buckets

In this section we give an algorithm which given an initial bucket assignment h, a partial assignment g , and an integer
interval J = {x, . . . , y} with | J| = b < n/ log2 n decides whether there is a pushing partial embedding f : VJ → BJ with
distortion at most d, agreeing with h and coinciding with partial assignment g . Our algorithm runs in time and space 2nnO(b).

The number of slots in J , that is positions in the line to where vertices can be mapped, is at most b · (d + 1). Thus there
could be many slots with no vertex mapped to them. We start our algorithm by guessing for every j ∈ J the leftmost non-
empty slot in each bucket Bj and a vertex from Vj to be placed there. Naturally, if the layout of a bucket Bj with j ∈ J has
already been determined by g our guesses must be consistent with this. For every j ∈ J , let tj denote the vertex guessed to be
placed leftmost in bucket j. Also let lj denote the position guessed for tj. After havingmade the guess wemodify the problem
at hand—we now look for a pushing partial embedding f : VJ → BJ with distortion at most d, agreeing with h, coinciding
with g such that for every bucket Bj with j ∈ J , the leftmost vertex mapped to Bj is tj, which is mapped to lj. The number of
possible guesses is bounded by (d + 1)bnb.

We choose the ordering π1, π2, . . . , π|BJ | of the entries of BJ such that for every i < j we have that πi mod (d + 1) ≤

πj mod (d + 1) and such that if πi mod (d + 1) = πj mod (d + 1) then πi
d+1 <

πj
d+1 . In other words, the number pik is in the

position k mod (d + 1) in the bucket with number ⌊k/(d + 1)⌋.
For example, if J = 3, 4, 5 and d = 4, then

π1, . . . , π15 = 15, 20, 25, 16, 21, 26, 17, 22, 27, 18, 23, 28, 19, 24, 29.

We call the ordering π1, . . . , π|BJ | the bucket order of BJ . Next we define the notion of a state.

Definition 1. A state ζ is a quadruple (P,Q , R, p), where P ⊆ VJ , Q ⊆ P is a set of vertices containing at most one vertex
from each Vj such that if Vj ∩ P ≠ ∅ then Vj ∩ Q ≠ ∅ and tj ∈ P , R ⊆ BJ , is a set of integers containing at most one integer
from each bucket Bj and p ≤ | J| is a non-negative integer.

Author's personal copy

3534 F.V. Fomin et al. / Theoretical Computer Science 412 (2011) 3530–3536

Let us observe that the number of states is at most 2n
× n| J|

× (d + 1)| J| × |Bj|. If Q ∩ Vj ≠ ∅, then define qj to be the
vertex in Q ∩ Vj. If R ∩ Bj ≠ ∅ let rj be the integer in R ∩ Bj. Next we define what it means for a state to be feasible.

Definition 2. A state is called feasible if there exists a partial embedding f assigning the vertices of P to the first p positions
in the bucket order such that the following conditions hold.

1. For any edge uv with u ∈ P and v ∈ P , |f (u) − f (v)| ≤ d, f agrees with h and coincides with g .
2. If Vj ∩ P ≠ ∅, then f (tj) = lj and f (qj) = rj. There is no vertex v ∈ Vj ∩ P such that f (v) < lj or f (v) > rj.
3. For any bucket Vj with j ∈ J , if x, y ∈ Vj, f (x) < f (y) and no vertex is mapped by f to the interval {f (x) + 1, f (y) − 1},

then f (y) − f (x) = DG(x, y).
4. If j ∈ J and j is not the largest element of J , Vj ⊆ P and Vj+1 ∩ P ≠ ∅, then f (lj+1) − f (rj) = DG(lj+1, rj).

The idea is to go through the slots in J one by one in the bucket order and for each of them determine which vertex
(if any) gets mapped by f to this slot. The number p denotes the position in the bucket order that we have reached. The set P
corresponds to the set of vertices that have already been placed. For every j ∈ J , tj and qj denote the vertices placed leftmost
and rightmost in Bj respectively. Also lj and rj denote the positions of tj and qj in Bj. Now we define the notion of a state
succeeding another state.

Definition 3. Let ζ1 = (P1,Q1, R1, p) and ζ2 = (P2,Q2, R2, p + 1) be two states. We say that ζ2 succeeds ζ1 if the following
holds.

• Either P2 = P1, or P2 = P1 ∪ {v}.
• If P1 = P2, then Q1 = Q2 and R1 = R2.
• If P2 = P1 ∪ {v} and v ∈ Vj, then j = ⌊

πp+1
d+1 ⌋ and

1. If v ∈ tj, then lj = πp+1. If g(v) is defined then g(v) = πp+1.
2. Q2 = (Q1 \ {qj}) ∪ {v} and R2 = (R1 \ {rj}) ∪ {πp+1}.
3. If Vj ∩ P1 ≠ ∅ then πp+1 − rj = DG(v, qj).
4. If j is not the largest element of J then lj+1 − πp+1 ≥ D(v, tj+1).
5. If j ∈ J and j is not the largest element of J , Vj ⊆ P2 and Vj+1 ∩ P2 ≠ ∅ then f (lj+1) − f (v) = DG(lj+1, v).
6. If j is not the smallest element of J then N(v) ∩ Vj−1 ∩ P2 = ∅.

We now proceed to prove an observation that will be helpful for the correctness proof.

Lemma 3. Let ζ1 = (P1,Q1, R1, p) be a feasible state and ζ2 = (P2,Q2, R2, p+ 1) be a state that succeeds ζ1. Then ζ2 is feasible.

Proof. Since ζ1 = (P1,Q1, R1, p) is feasible there is a partial embedding f satisfying points 1–4 in Definition 2. If P1 = P2
then f satisfies the points 1–4 for ζ2 as well. If P2 ≠ P1 then P2 \ P1 contains a single vertex v. Let f ′ be a partial embedding
assigning the vertices of P2 to the first p + 1 positions in the bucket order such that f ′ and f coincide and f ′(v) = πp+1. By
point 1 of the definition of succession f ′ agrees with h and coincides with g . Since v has no neighbour in P1 ∩ Vj−1 it follows
that for any edge uw with u ∈ P2 and w ∈ P2, |f (u) − f (w)| ≤ d. Also, f ′ satisfies point 2 of Definition 2 because πp+1 is the
rightmost position in P2 ∩ Bj. Furthermore, f ′ satisfies point 3 of Definition 2 by point 3 of Definition 3. Finally f ′ satisfies
point 4 of Definition 2 by point 5 of Definition 3. �

Now we are ready to prove the main lemma of the section which allows us to obtain the desired result.

Lemma 4. There is a pushing partial embedding f : VJ → BJ with distortion at most d such that f agrees with h, coincides with
g and such that for every j ∈ J , f (tj) = lj and no other vertex in Vj is mapped before tj by f if and only if there exists sequence of
states ζ1, ζ1, . . . , ζ|BJ | such that

(a) ζ1 = (∅, ∅, ∅, 0);
(b) ζi+1 succeeds ζi for all i ∈ {1, . . . , |BJ | − 1}; and
(c) ζ|BJ | = (VJ , X, Y , |BJ |) for some vertex sets X and Y .

Proof. Let f : VJ → BJ be a pushing partial embedding with distortion at most d such that f agrees with h, coincides with
g and such that for every j ∈ J , f (tj) = lj and no other vertex in Vj is mapped before tj by f . With the help of f we define
the sequence of feasible states as follows. For every p ≤ |BJ |, P is the set of vertices f maps to π0, . . . , πp, Q is the set of
vertices in P such that for every j such that P ∩ Vj ≠ ∅, Q contains exactly one vertex qj, f maps all vertices in P ∩ Vj to the
left of qj. Finally R is the set of positions that f maps the vertices of Q . The construction of the sequence of states implies that
ζ1 = (∅, ∅, ∅, 0), ζi+1 succeeds ζi for all i ∈ {1, . . . , |BJ | − 1} and that ζ|BJ | = (VJ , X, Y , |BJ |).

For the reverse direction suppose that we have a sequence of feasible states ζ1, ζ1, . . . , ζ|BJ | such that ζ1 = (∅, ∅, ∅, 0);
(b) ζi+1 succeeds ζi for all i ∈ {1, . . . , |BJ | − 1}; and (c) ζ|BJ | = (VJ , X, Y , |BJ |). Since ζ1 = (∅, ∅, ∅, 0) is feasible, we
have that by Lemma 3, ζ|BJ | = (VJ , X, Y , |BJ |) is feasible as well. The definition of feasibility guarantees the existence of the
desired f , concluding the proof. �

Finally, we ready to proceed with the lemma used for the analysis of Step 3.

Author's personal copy

F.V. Fomin et al. / Theoretical Computer Science 412 (2011) 3530–3536 3535

Lemma 5. There is an algorithm that for given G, d, h, J , g and T decideswhether there is a pushing partial embedding f : VJ → BJ
with distortion at most d such that f agrees with h, coincides with g and such that for every j ∈ J , f (tj) = lj and no other vertex
in Vj is mapped before tj by f in time and space 2n

· nO(| J|).

Proof. As we observed already, the number of states is at most 2n
× n| J|

× (d + 1)| J| × |Bj| ≤ 2n
· nO(| J|). The algorithm

decides the existence of f by applying Lemma 4. The algorithm starts in the state (∅, ∅, ∅, 0) and does breadth first search
on the graph where vertices are the states and there is a directed edge from a state ζi to a state ζj if ζj succeeds ζi. We do not
keep this graph explicitly and rather generate the vertices of this graph as and when required in our breadth first search.
Whenever we are at state ζ we can find all possible successor states in polynomial time. By Lemma 4 there is a required
embedding f if and only if there is a path from (∅, ∅, ∅, 0) to (VJ , X, Y , |BJ |). Our algorithm needs 2n

· nO(| J|) space to keep
track of the set of states visited by the breadth first search algorithm. Since the number of states is bounded by 2n

·nO(| J|) and
the number of successors of a state is at most d + 2 the number of vertices and edges in the state graph is upper bounded
by 2n

· nO(| J|). Hence the algorithm takes 2n
· nO(| J|) time and space. �

Observe that applying Lemma 5 together with the analysis presented for Algorithm Exact-Dist over the previous section
yields a running time bound of 6n+o(n). In fact, our algorithm runs in time 5n+o(n). The next section is devoted to proving
this.

3.4. A refined analysis

In this section we prove that the total number of states ever produced by our algorithm is 5n+o(n). Since the running
time of the algorithm is proportional to the number of states we generate up to a subexponential factor; this implies that
algorithm Exact-Dist runs in time 5n+o(n).

Lemma 6. The algorithm described in the previous sections runs in time 5n+o(n).

Proof. Let a super-state be a two-tuple (h, ζ) where h is a bucket assignment and ζ is a state generated by algorithm Exact-
Dist. We say that a super-state is visited by the algorithm to decide whether there is an embedding f of G into the line with
distortion at most d if ζ is generated at a call to Exact-Dist with h as the required bucket assignment. The total running
time of the algorithm is directly proportional to the total number of times each super-state is visited. First we argue that
each super-state is visited at most 2o(n) times. For a fixed h, J = {x, . . . , y}, T , lx . . . ly and g the state (h, ζ) is visited at most
one. However, the number of possible J ’s is O(n2), |T | ≤

n
log2 n

, y − x ≤ |T | so the number of possible sets T and | J|-tuples

lx, . . . , ly is 2o(n). Finally, in any recursive call the domain of g is at most log2 n · log n
n/ log2 n

= 2 log2 n log log n. Hence the

number of possible g ’s is 2o(n). Thus each super-state is visited at most 2o(n) times.
For every fixed h and P ⊆ V (G) there are at most 2o(n) triplets (Q , R, p) such that the super-state (h, (P,Q , R, p)) is

visited. This is true because |Q | ≤ n/ log2 n, |R| ≤ n/ log2 n and p is an integer in {1, . . . , dn}.
Finally, we need to argue that there are at most n2

· 5n pairs (h, P) such that there is a triplet (Q , R, p) such that the
super-state (h, (P,Q , R, p)) is visited. Let T be the spanning tree of G rooted at rT that we used to list bucket assignments
of G. We prove that for a fixed integer interval J ⊆ {1, . . . , n} with | J| ≤ n/ log2 n the number of pairs (h, P) such that
there is a triplet (Q , R, p) such that the super-state (h, (P,Q , R, p)) is visited by the algorithm during a call to algorithm
Exact-Dist with J as parameter is at most 5n. Every such pair corresponds to a labelling of the tree T . The vertices of T are
labelled from the set {0, 1} with a vertex v labelled 1 if v ∈ P . The edges of T are labelled from the set {−1, 0, 1} such that
for every uv ∈ E(T) where u is a parent of v, the edge uv is labelled h(v) − h(u). For a subtree T ′ of T rooted at rT we say
that a labelling L of T ′ is good if there is a super-state visited by the algorithm whose labelling restricted to T ′ is exactly L.
We prove that if T ′ has n′ vertices then the number of good labellings of T ′ is at most 5n′

by induction on n′. If n′
= 1 this

follows trivially. Suppose now that the assertion holds for some n′ and consider a subtree T ′ on n′
+ 1 vertices. Let l be a leaf

of T ′. Notice that any good labelling of T ′ restricted to T ′
\ l is a good labelling of T ′

\ l. By the induction hypothesis there are
at most 5n′

good labellings of T ′
\ l. We prove that there are at most 5 ways to extend a good labelling L of T ′

\ l to a good
labelling of T ′.

Let l′ be the parent of l in T and let Pl′ be the path from rT to l′ in T ′. Let z =
∑

uv∈E(Pl′)
L(uv). If z −1 /∈ J , z /∈ J or z +1 /∈ J

we prove that there are only 5 ways to extend L to a good labelling of T ′. In order to extend L we need to specify L(ll′) and
L(l). Notice that if z + L(ll′) /∈ J then L(l)must be 0 in any good labelling. Thus in this case there are at most 5 ways to extend
L. Now, consider the case that {z−1, z, z+1} ⊆ J and L(l′) = 0. Then if L(ll′) = −1 then L(l) cannot be 1 in a good labelling.
Finally, consider the case that {z − 1, z, z + 1} ⊆ J and L(l′) = 1. Then if L(ll′) = 1 then L(l) cannot be 0 in a good labelling.
In both these cases there are at most 5 ways to extend L, concluding the proof. �

We conclude with the following theorem.

Theorem 1. There is an algorithm that given a graph G on n vertices constructs a non-contracting embedding of the shortest path
metric generated by G into the line with minimum distortion in time 5n+o(n) and space 2n+o(n).

Author's personal copy

3536 F.V. Fomin et al. / Theoretical Computer Science 412 (2011) 3530–3536

4. Concluding remarks and open problems

In this paper we have provided the first single vertex exponential time algorithm for computing a minimum distortion
embedding of a graph metric into the line. This result gives rise to many challenging questions.

How fast is it possible to compute a minimum distortion embedding of a graph G into the metric of another graph H? Is
there a 2O(|V (G)|) time algorithm for this problem, or can one show that this is impossible up to some complexity theoretic
assumption? How does the problem behave if the host graph H is a tree? Even when H is a binary tree, this does not seem
to be an easy problem. At a first glance it would seem that our algorithm should be directly extendable to find a minimum
distortion embedding of a graph G into a given cycle C . However, this does not look to be easy and we leave it as an open
problem whether finding a minimum distortion embedding of a graph G into a given cycle C can be done in 2O(|V (G)|) time.

Another interesting question is on the embedding into line of weighted graphs. Even the first step of our algorithm,
guessing the bags, does not work for the weighted case. If the maximum edge weight of a graph is W , then our algorithm
can be adapted to run in time O(WO(n)). We leave the possibility (or non-possibility) of embedding a weighted graph into
line in time 2O(n) as another interesting question.

We believe that the world of embeddings provides a lot of challenges to the area of exact exponential time algorithms
[9] and is worth to be explored. We hope that our result will lead to further investigation of the combinatorially challenging
field of embeddings within the framework of exact exponential time algorithms.

Very recently, Cygan and Pilipczuk in [6] succeed to improve the running time of our algorithm to O(4.383n) thus
matching the running time of their algorithm for bandwidth from [5].

References

[1] M. Bădoiu, J. Chuzhoy, P. Indyk, A. Sidiropoulos, Low-distortion embeddings of general metrics into the line, in: Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, STOC, ACM, 2005, pp. 225–233.

[2] M. Bădoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Räcke, R. Ravi, A. Sidiropoulos, Approximation algorithms for low-distortion embeddings into
low-dimensional spaces, in: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, SIAM, 2005, pp. 119–128.

[3] M. Badoiu, P. Indyk, A. Sidiropoulos, Approximation algorithms for embedding general metrics into trees, in: Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, ACM, SIAM, 2007, pp. 512–521.

[4] M. Cygan,M. Pilipczuk, Faster exact bandwidth, in: Proceedings of the 34th InternationalWorkshop onGraph-Theoretic Concepts in Computer Science,
WG 2008, in: Lecture Notes in Computer Science, vol. 5344, 2008, pp. 101–109.

[5] M. Cygan, M. Pilipczuk, Exact and approximate bandwidth, Theoret. Comput. Sci. 411 (2010) 3701–3713.
[6] M. Cygan, M. Pilipczuk, Bandwidth and Distortion Revisited, arXiv:1004.5012v1.
[7] U. Feige, Coping with the NP-hardness of the graph bandwidth problem, in: Proceedings of the 7th Scandinavian Workshop on Algorithm Theory,

SWAT, in: LNCS, vol. 1851, Springer, Berlin, 2000, pp. 10–19.
[8] M. Fellows, F.V. Fomin, D. Lokshtanov, E. Losievskaja, F. Rosamond, S. Saurabh, Distortion is fixed parameter tractable, in: Proceedings of the 36th

International Colloquium on Automata, Languages and Programming, ICALP, in: LNCS, vol. 5555, Springer, Berlin, 2009, pp. 463–474.
[9] F.V. Fomin, D. Kratsch, Exact Exponential Algorithms, in: Texts in Theoretical Computer Science. An EATCS Series, Springer-Verlag, Berlin, 2010.

[10] F.V. Fomin, D. Lokshtanov, S. Saurabh, An exact algorithm for minimum distortion embedding, in: Proceedings of the 35th Workshop on Graph
Theoretic Concepts in Computer Science, WG, in: LNCS, vol. 5911, Springer, Berlin, 2009, pp. 112–121.

[11] A. Gupta, I. Newman, Y. Rabinovich, A. Sinclair, Cuts, trees and l1-embeddings of graphs, Combinatorica 24 (2004) 233–269.
[12] P. Indyk, Algorithmic applications of low-distortion geometric embeddings, in: Proceedings of the 42nd IEEE Symposium on Foundations of Computer

Science, FOCS, IEEE, 2001, pp. 10–33.
[13] C. Kenyon, Y. Rabani, A. Sinclair, Lowdistortionmaps between point sets, in: Proceedings of the 36th Annual ACMSymposiumon Theory of Computing,

STOC, ACM, 2004, pp. 272–280.
[14] N. Linial, Finite metric-spaces—combinatorics, geometry and algorithms, in: Proceedings of the International Congress of Mathematicians, Vol. III,

Higher Ed. Press, Beijing, 2002, pp. 573–586.

