
Algorithmica (2011) 61:252–273
DOI 10.1007/s00453-010-9418-9

Branch and Recharge: Exact Algorithms
for Generalized Domination

Fedor V. Fomin · Petr A. Golovach ·
Jan Kratochvíl · Dieter Kratsch · Mathieu Liedloff

Received: 17 September 2009 / Accepted: 20 May 2010 / Published online: 4 June 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper we present branching algorithms for infinite classes of prob-
lems.

The novelty in the design and analysis of our branching algorithms lies in the
fact that the weights are redistributed over the graph by the algorithms. Our partic-
ular setting to make this idea work is a combination of a branching approach with a
recharging mechanism. We call it Branch & Recharge. To demonstrate this approach
we consider a generalized domination problem.

A preliminary version of the paper appeared in the proceedings of WADS 2007 [7].

Research of J. Kratochvíl was supported by Czech research projects MSM0021620838 and 1M0545.

F.V. Fomin
Department of Informatics, University of Bergen, 5020 Bergen, Norway
e-mail: fedor.fomin@ii.uib.no

P.A. Golovach
School of Engineering and Computing Sciences, Durham University, South Road, DH1 3LE
Durham, UK
e-mail: petr.golovach@durham.ac.uk

J. Kratochvíl
Department of Applied Mathematics, and Institute for Theoretical Computer Science, Charles
University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic
e-mail: honza@kam.ms.mff.cuni.cz

D. Kratsch (�)
Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine—Metz, 57045 Metz
Cedex 01, France
e-mail: kratsch@univ-metz.fr

M. Liedloff
Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, 45067 Orléans Cedex 2,
France
e-mail: liedloff@univ-orleans.fr

mailto:fedor.fomin@ii.uib.no
mailto:petr.golovach@durham.ac.uk
mailto:honza@kam.ms.mff.cuni.cz
mailto:kratsch@univ-metz.fr
mailto:liedloff@univ-orleans.fr

Algorithmica (2011) 61:252–273 253

Let σ and � be two nonempty sets of nonnegative integers. A vertex subset S ⊆ V

of an undirected graph G = (V (G),E(G)) is called a (σ,�)-dominating set of G

if |N(v) ∩ S| ∈ σ for all v ∈ S and |N(v) ∩ S| ∈ � for all v ∈ V \ S. This notion
generalizes many domination-type graph invariants.

We present Branch & Recharge algorithms enumerating all (σ,�)-dominating sets
of an input graph G in time O∗(cn) for some c < 2, if σ is successor-free, i.e., it does
not contain two consecutive integers, and either both σ and � are finite, or one of them
is finite and σ ∩� = ∅. Our algorithm implies a non trivial upper bound of O∗(cn) on
the number of (σ,�)-dominating sets in an n-vertex graph under the above conditions
on σ and �.

Keywords Exact exponential algorithms · NP-hard problems · Generalized
domination · Branch and recharge

1 Introduction

Exact exponential time algorithms solving NP-hard problems have been studied ex-
tensively in the last decade. Dynamic Programming, Inclusion-Exclusion and Branch
& Reduce are the most important techniques to design and analyze such algorithms.
For an introduction to exact algorithms we refer to Woeginger’s survey [25]. Many
exact exponential time algorithms for NP-hard problems are branching algorithms.
By now the use of sophisticated measures when analyzing the running time of branch-
ing algorithms is a well-established technique which is often called Measure & Con-
quer (see e.g. [1, 6, 8, 11, 12]).

The typical branching algorithm consists of some branching and reduction rules.
Usually the correctness of the algorithm is straightforward, but its running time analy-
sis not. Very often to improve the analysis of the algorithm the following approach
is used. We assign different weights to the input elements according to some rules.
Say the input is a graph. Then we can assign a weight to each vertex of the graph and
introduce the measure of the graph as the sum of the weights of all its vertices. One
may normalize the measure such that all weights are reals of [0,1], and thus every
instance of a subproblem generated by the branching algorithm has a non negative
measure at most |V | = n, i.e. the number of vertices of the input graph. Let us em-
phasize that the measure is a tool to analyze the running time. There is neither weight
nor measure in the description of such algorithms. The usage of Measure & Conquer
is in the analyses of algorithms. It was shown in [11] that introducing measure in
the analyses of branching algorithm can lead to substantial improvements in the time
analysis. Indeed Measure & Conquer is one of the best methods available to analyze
branching algorithms.

Given the power of measures and weights when analyzing branching algorithms,
why do we use measures and weights only to support running time analysis? Why
should it not be possible to incorporate the weights in the branching algorithm? This
natural idea was our original motivation.

The main goal of this paper is to introduce the new approach which we call Branch
& Recharge. Like in Measure & Conquer, weights are assigned to the vertices of the

254 Algorithmica (2011) 61:252–273

Table 1 Examples of
(σ,�)-dominating sets. Here N

denotes the set of positive
integers and N0 = N ∪ {0}. Our
Branch & Recharge
enumeration algorithms apply to
the lower four problems

σ � (σ,�)-dominating set

N0 N dominating set

{0} N0 independent set

{0} {1} 1-perfect code

{0} {0,1} strong stable set

{0} N independent dominating set

{1} {1} total perfect dominating set

input graph. Branching is essentially done in a simple way such that the measure of an
instance obtained by branching is smaller than the measure of the original instance.
This decrease is used to obtain branching vectors and running time in a simple way.
The major novelty is a redistribution of the weights called recharging, done whenever
it becomes necessary.

We demonstrate the Branch & Recharge approach by applying it to generalized
domination problems.

1.1 Generalized Domination

We consider finite undirected graphs without loops or multiple edges. Thus a graph
is a pair G = (V (G),E(G)) where V (G) is the (finite) set of vertices and E(G) the
set of edges. The size of G is the number of vertices, and throughout the paper we
reserve n = |V (G)| to denote this quantity. We call two vertices u,v adjacent if they
form an edge, i.e., if uv ∈ E(G). The open neighborhood of a vertex u ∈ V is the
set of the vertices adjacent to it, denoted by N(u) = {x : xu ∈ E}. A set of vertices
S ⊆ V (G) is dominating if every vertex of G is either in S or adjacent to a vertex in S.
Finding a dominating set of the smallest possible size belongs to the most important
optimization problems on graphs. Many generalizations have been studied, such as
independent dominating set, connected dominating set, efficient dominating set, etc.
(cf. [18]).

In [24], Telle introduced the following framework of domination-type graph in-
variants (see also [17, 19]). Let σ and � be two nonempty sets of nonnegative inte-
gers. A vertex subset S ⊆ V (G) of an undirected graph G = (V (G),E(G)) is called
a (σ,�)-dominating set of G if |N(v)∩S| ∈ σ for all v ∈ S and |N(v)∩S| ∈ � for all
v ∈ V \ S. Table 1 shows a sample of previously defined and studied graph invariants
which can be expressed in this framework.

When studying algorithmic complexity of problems on (σ,�)-dominating sets the
following decision, search and counting problems are of interest.

∃(σ,�)-DS: Does an input graph G contain a (σ,�)-dominating set?
ENUM-(σ,�)-DS: Given a graph G, list all (σ,�)-dominating sets of G.

#-(σ,�)-DS: Given a graph G, determine the number of (σ,�)-dominating sets
of G.

MAX-(σ,�)-DS: Given a graph G, find a (σ,�)-dominating set of maximum size.
MIN-(σ,�)-DS: Given a graph G, find a (σ,�)-dominating set of minimum size.

Algorithmica (2011) 61:252–273 255

Obviously, the enumeration problem ENUM-(σ,�)-DS is the most difficult one,
since as soon as we have all (σ,�)-dominating sets in a list, we can quickly see if the
list is nonempty (and hence answer the ∃(σ,�)-DS problem), we can also compare
the sizes of the listed sets to answer the minimization and maximization questions,
and we can quickly count the number of listed sets. However, maybe slightly sur-
prisingly, already the existence problem is NP-complete for many parameter pairs σ

and �, including some of those listed in Table 1 (1-perfect code and total perfect dom-
inating set). In fact, Telle [24] proves that ∃(σ,�)-DS is NP-complete for every two
finite nonempty sets σ,� such that 0 	∈ �. Complexity results on partitioning graphs
into (σ,�)-dominating sets can be found in [19]. More complexity results on ∃(σ,�)-
DS restricted to special graph classes and also from the fixed parameter complexity
point of view are presented in [13–15]. Exact algorithms for generalized domination
are given in [10].

The main contribution of the paper is the presentation of a new approach to design
and analyze branching algorithms. The novelty is that weights are redistributed over
the graph. We call this approach Branch & Recharge. It may also be seen as combi-
nation of a branching algorithm with a recharging mechanism which was inspired by
recharging techniques in proofs of graph coloring theorems.

The application of the new method to generalized domination problems establishes
two main results. Firstly, we present a O∗(cn)-time1 algorithm for the ENUM-(σ,�)-
DS problem, where the constant c < 2 depends on σ and �, for a fairly wide class
of parameter sets σ and �. Secondly, an upper bound on the running time of an enu-
meration algorithm immediately implies an upper bound on the number of enumer-
ated objects. Thus our Branch & Recharge algorithm has the combinatorial corollary
stating that every isolate-free graph with n vertices contains at most O∗(cn) (σ,�)-
dominating sets (under the same assumptions on σ and �).

The relation of exact exponential time algorithms and combinatorial upper bounds
is interesting in its own. For several moderately exponential-time algorithms, the run-
ning time analysis is based on combinatorial theorems bounding the number of cer-
tain objects. For example a number of coloring algorithms are based on bounds on
the number of certain maximal independent sets and bipartite subgraphs in a graph
[3–5, 21] and the algorithm for domatic number in [2] is based on a bound for the
number of minimal dominating sets.

From the other side, the time analysis of a branching algorithm might provide the
proof of combinatorial upper bounds. The most famous combinatorial result of this
type is the well-known Moon-Moser theorem stating that the maximum number of
maximal cliques (resp. maximal independent sets) of an n-vertex graph is 3n/3 [22]
(while its original proof is combinatorial it can be easily turned into a branching
algorithm enumerating all maximal independent sets). Techniques inspired by the
analysis of exact algorithms were later used to obtain the bounds on the number of
minimal dominating sets, minimal feedback vertex sets, and maximal r-regular sub-
graphs among others [8, 9, 16]. In general, moderately exponential-time algorithms

1As has recently become standard, we write f (n) = O∗(g(n)) if f (n) ≤ p(n) · g(n) for some polynomial
p(n).

256 Algorithmica (2011) 61:252–273

and their analysis seem to be useful tools to obtain such combinatorial results (up to
a polynomial factor).

Our paper is organized as follows. In Sect. 2 we present basic observations on
(σ,�)-dominating sets and also discuss our conditions imposed on the parameter sets
σ and �. In Sect. 3 our Branch & Recharge algorithms are presented and their run-
ning time analysis is given. Combinatorial upper and lower bounds on the number of
(σ,�)-dominating sets are discussed in Sect. 4.

2 Preliminaries and the Main Combinatorial Theorem

In this paper we present Branch & Recharge algorithms enumerating all (σ,�)-
dominating sets in an n-vertex graph. A trivial brute-force algorithm trying all possi-
ble subsets and checking (we assume here that the check whether an integer is in σ or
ρ can be performed in polynomial time) if a given subset is a (σ,�)-dominating set,
works in time O∗(2n). It is easy to show that in general case, there is no enumeration
algorithm better than O∗(2n). This is because a graph on n vertices may contain as
many as 2n (σ,�)-dominating sets, e.g., if 0 ∈ σ ∩ �, then the edgeless graph does.
Another less trivial example is σ = � = {0,1, . . . , d}, since then any set of vertices
in a graph of maximum degree d is a (σ,�)-dominating. Therefore, no enumeration
algorithm significantly faster than �(2n) for the general case of (σ,�)-domination is
possible.

Before discussing the choice of the conditions on the parameter sets σ and � let us
emphasize that our priority is the presentation of Branch & Recharge on interesting
problems. Nevertheless we have tried to make the framework work for as large as
possible parameter sets σ and �. We call a set of integers successor-free if it contains
no pair of consecutive integers. In the rest of the paper we use the notation p = maxσ

and q = max� (with p = ∞ if σ is infinite, and q = ∞ if � is infinite). We denote
by N the set of positive integers and by N0 the set of nonnegative integers.

The crucial technical condition required by our algorithms is the successor-
freeness of σ . It is used to make sure that whenever needed recharging is possible.
However, simple examples show that even this condition is too general. For example,
when σ is the set of even integers and � the set of odd integers, then the complete
graph G = Kn contains 2n−1 (σ,�)-dominating sets (every odd subset of vertices is
one), and yet σ and � are successor-free and disjoint (but both are infinite). Similarly,
for σ = {0} and � = N0 (σ successor-free and finite, but σ and � are not disjoint), the
star K1,n−1 contains 2n−1 + 1 (σ,�)-dominating sets.

Another observation concerns disconnected graphs. The number of (σ,�)-
dominating sets in a graph is equal to the product of the numbers of (σ,�)-dominating
sets in its connected components. Hence it would suffice to consider connected
graphs. However, the analysis of our algorithm also works for isolate-free input
graphs (i.e., graphs without isolated vertices), which is more interesting for the main
combinatorial result of our paper:

Theorem 1 If σ is successor-free and either both σ and � are finite, or one of them
is finite and σ ∩ � = ∅, then every isolate-free graph contains at most O∗(cn) (σ,�)-
dominating sets, where c = cσ,� < 2 is a constant depending on σ and �. Moreover,

Algorithmica (2011) 61:252–273 257

all the (σ,�)-dominating sets can be enumerated in time O∗(cn) (where c is the same
constant).

It is worth noting that the constant c depends only on p = maxσ and q = max�.
Furthermore we emphasize that the Branch & Recharge algorithms provide explicitly
the currently best known constants c = cσ,� (and not only the proof that some constant
smaller than 2 can be achieved). The theorem is established by the presentation of the
Branch & Recharge approach for the corresponding generalized domination problems
in the next section. (For some values of c = cσ,� = cp,q see also the two tables in the
next section.)

Recent results of Gupta et al. [16] give an enumeration algorithm as well as upper
and lower bounds on the number of maximal r-regular subgraphs in a given graph.
Induced r-regular subgraphs are ({r},N0)-dominating sets, and thus this result is
somewhat related to our work.

Finally we would like to mention that our running time analysis uses standard tools
for the worst-case running time analysis of branching algorithms (with very simple
branching vectors).

To sketch the main ideas, let us consider a branching rule that, when applied to
an instance of weight k, branches into t ≥ 2 subproblems such that the weight of
the instance on subproblem i is at most k − ki , i ∈ {1,2, . . . , t}, where k1, k2, . . . , kt

are positive reals. Then we say that this branching rule has the branching vector
(k1, k2, . . . , kt). The running time of a branching algorithm on an instance of weight k

that applies (only) this branching rule can be obtained by solving the linear recurrence

T [k] = T [k − k1] + T [k − k2] + · · · + T [k − kt].
Solutions of such linear recurrences can be determined by using the roots of the
characteristic polynomial

xk − xk−k1 − xk−k2 − · · · − xk−kt .

In the case of recurrences established by branching algorithms it is known that the
characteristic polynomial has a unique positive real root c and that the running time
of the branching algorithm is O∗(ck). This c is also called the branching factor of the
branching vector (k1, k2, . . . , kt).

We refer to a textbook of Discrete Mathematics as e.g. [23] for an introduction to
solving linear recurrences. Concerning the use of linear recurrences in the analysis of
branching algorithms we refer to [25] for an easy to read introduction and to [20] for
a comprehensive presentation.

3 Branch & Recharge Algorithms

The overall presentation of our algorithm will be somewhat different from the one
of typical branching algorithms since the changes of the weights are explicitly spec-
ified. We do need such a careful algorithm description since details are crucial for
the correctness of the algorithm and the time analysis. Though the algorithms do not

258 Algorithmica (2011) 61:252–273

need the weights for their execution, the treatment of the weights is crucial for the
correctness of the time analysis by recharging. Indeed the correctness proofs are dif-
ficult and need a careful analysis of how the weights will change during an execution
of the algorithm. On the other hand, the running time analysis becomes easy since it
is based on one or two branching vectors only.

We present two Branch & Recharge algorithms (called A and B) depending on
conditions on σ and �. First we describe some common and fundamental features
of the two Branch & Recharge algorithms. A full description, correctness proofs and
time analysis will be given separately in the subsequent subsections.

Case A: σ successor-free, σ and � finite (Sect. 3.1).
Case B: σ successor-free, either σ or � finite, σ ∩ � = ∅ (Sect. 3.2).

Let us mention that three of the problems of Table 1 satisfy the conditions of
Case A (1-perfect code, strong stable set, total perfect dominating set) and that two
of the problems satisfy the conditions of Case B (1-perfect code, independent dom-
inating set). Furthermore, no enumeration algorithm of running time O∗(cn) with
c < 2 can be achieved for the problems dominating set and independent set, since
a complete graph on n vertices has 2n − 1 dominating sets and the star K1,n−1 has
2n−1 + 1 independent sets.

The key idea of the Branch & Recharge algorithms is to enumerate all (σ,�) dom-
inating sets by one or two simple branching rules. Using weights on the vertices and
operations on the weights, like decreasing and redistributing weights, only one or two
branching vectors are needed. This implies a simple running time analysis based on
the tools described in the previous section.

Initially every vertex v ∈ V (G) of the isolate-free input graph G = (V (G),E(G))

is assigned weight w(v) = 1, and thus the total weight of the input graph is w(G) =∑
v∈V w(v) = n. The weight of a vertex will always be a real between 0 and 1, and

thus the total weight of any graph treated by the algorithm is at most n.
The Branch & Recharge algorithm recursively builds candidate sets S for (σ,�)-

dominating sets in G by calling for a candidate vertex v the procedure SigmaRho
which consists of three subroutines: Forcing (which identifies vertices that must or
must not be placed in S), Recharge (which prepares the ground for the subroutine
Branch by sending charges from vertices to other vertices such that the weight of v

is recharged to the value 1), and Branch (which either selects or discards the candi-
date vertex v; the core of the algorithm, as it is responsible both for the exponential
running time of the algorithm and for the base of the exponential function). All these
subroutines and the procedure work with the same graph G and leave it unchanged,
and with a global variable L which is the list of candidate sets S. Their parame-
ters are S (containing the vertices selected for the candidate set), S (containing the
vertices discarded from the candidate set), the weight function w : V → [0,1] and
an auxiliary directed graph H which is an orientation of a spanning subgraph of G

(H is tracking the recharging moves). Moreover, Forcing, Recharge and Branch are
called on a particular free vertex v, i.e. v has not been allocated to S or S yet.

Vertices belonging to S ∪ S are called allocated. Free vertices keep nonnegative
weights. All allocated vertices have weight zero. Once a vertex is allocated in S (we
say it is selected) or in S (we say it is discarded) it never changes its status during

Algorithmica (2011) 61:252–273 259

further calls. At every stage of the algorithm a vertex is called free if it does not
belong to S ∪ S.

It should be noted that these algorithms require exponential space (as they are
given), but such space is needed only to keep the global variable L which contains the
list of all candidate sets S. If we do not need this list then for every candidate set S, we
can check whether this is really a (σ,�)-dominating set, and consider it immediately
after it has been generated (send it to the output, count it, compare it with current
minimum and maximum sets). So the correspondingly modified algorithm uses only
polynomial space. Finally we like to mention that no treatment of multiples is needed,
since both of our algorithms produce a fixed (σ,�)-dominating set S only once; due
to the branching rules used in the algorithms.

In the following two subsections we study Branch & Recharge algorithms for enu-
merating all (σ,�) dominating sets under certain conditions on the parameter sets σ

and �. The Branch & Recharge algorithm solving Case A (Sect. 3.1) is called Algo-
rithm A. It is simpler and its correctness is easier to verify. The Branch & Recharge
algorithm solving Case B (Sect. 3.2) is called algorithm B. It shows some new and
powerful ideas compared to those used in Algorithm A, in particular a more sophisti-
cated recharging mechanism. Algorithm B illustrates the power and the potentials of
the Branch & Recharge paradigm.

3.1 Algorithm A

Throughout this subsection we assume that σ and � are finite, and also that σ is
successor-free (Case A). Recall that p = maxσ and q = max�. If σ = � = {0}, then
for every isolate-free graph the empty set is the unique (σ,�)-dominating set. Hence
we may assume that max{p,q} > 0.

Before presenting our Branch & Recharge algorithm A and its correctness proof
in details, let us sketch some of the main ideas of Branch & Recharge with emphasis
on the updates of the weights. The key idea of algorithm A is to guarantee that in any
branching step on a chosen vertex v the measure, i.e. the total weight, of the instance
decreases by at least 1 when v is discarded, and it decreases by at least 1 + ε when v

is selected. Here ε = 1
max{p,q} > 0 is a constant dependent on p and q only. Therefore

the branching vector (1,1 + ε) with ε > 0 immediately implies that the running time
is O∗(cn) where c is the branching factor of (1,1 + ε). Decreasing the total weight
is achieved by first recharging the weight of v to 1 if necessary. If v is discarded its
weight is set to 0; otherwise (i.e., if v is selected) the weight of v is set to 0 and the
weight of some neighbor w of v is decreased by ε. (It may help to think of this as if
vertex v ∈ S borrowed an ε from its neighbor w.) This demonstrates an advantage of
Branch & Recharge: one may use weights to guarantee a certain branching vector.

The idea of the forcing procedure is to allocate vertices or halt (since no solution
can be found) if certain obvious conditions are fulfilled. For example, if a free vertex
u has negative weight then it has lent more than max{p,q} charges to neighbors in
S, and thus it has more than max{p,q} neighbors in S, which is impossible; hence
no solution can be found in this instance and the subroutine halts. The forcing is
a kind of cleaning procedure that is needed to guarantee that recharging is always
possible.

260 Algorithmica (2011) 61:252–273

Fig. 1 The process of recharging a vertex v. On the left side, a vertex v gave 5ε to some neighbors being
in S, namely w1, w2, w3, w4 and w5. Due to the successor-freeness property of σ , each wi , i ∈ {1, . . . ,5},
has a free neighbor uk , k ∈ {1, . . . ,5} (otherwise, v would be forced by a reduction rule and thus not free
when attempting to branch on). The value of ε ensures that each free vertex uk has a weight being no
smaller than ε (otherwise, such a vertex would have more neighbors in S than allowed by σ and �). On
the right side, the vertex v is recharged: Instead of giving ε’s to the wi ’s, the ε’s are given by the uk ’s to
the wi ’s. The redistribution of the weights leads to w(v) = 1

Finally recharging is done if the algorithm branches on a vertex v of weight 1 − tε

with t ≥ 1. Hence vertex v lent t charges to its neighbors and all those neighbors
w1,w2, . . . ,wt are allocated to S. The idea is to imagine that all those t neighbors
wi of v actually borrowed ε from a wrong vertex. Now we imagine that each such
neighbor wi of v borrows from another neighbor ui (instead of v) and passes this
charge to v. This is the underlying idea of recharging in algorithm A. A proof that this
recharging is always possible needs a more careful study of the weights in instances
of a subproblem and will be given later.

The correctness proof of our Branch & Recharge algorithm needs a detailed de-
scription of algorithm A, thus we describe it in pseudocode (the global variable L and
the input graph G are not listed in the preamble). Note that whenever a charge is sent
from one vertex to another along an edge of H , its value is equal to ε. We shall prove
later that the outdegree of a vertex in H is at most max{p,q}, and thus no vertex ever
gets a negative weight.

Algorithm Main-EnumSigmaRho-A(G)
Prepossessing: Choose an arbitrary vertex v1 and order the vertex set of G in a
BFS ordering B : v1, v2, . . . , vn

Initialization: L := ∅; S := ∅; S := ∅; H := (V (G),∅); forall v ∈ V (G) do
w(v) := 1
SigmaRhoA(S,S,w,H,B)
Termination:
forall S ∈ L do

if S is not a (σ,�)-dominating set in G then L := L \ {S}
output(L)

Algorithmica (2011) 61:252–273 261

Procedure SigmaRhoA(S,S,w,H,B)
if there is no free vertex then L := L ∪ {S}
else

let v be the last free vertex in the BFS ordering B of V (G)

if v = v1 then
L := L ∪ {S,S ∪ {v}}

else
ForcingA(v,S,S,w,H,B)
if ForcingA halted then Halt
if v is still free then

RechargeA(v,S,S,w,H,B)
BranchA(v,S,S,w,H,B)

else SigmaRhoA(S,S,w,H,B)

Subroutine ForcingA(v,S,S,w,H,B)
if ∃ free vertex x s.t. x is adjacent to the free vertex v in G and
|N(x) ∩ S| = max{p,q} then

S := S ∪ {v},w(v) := 0

else
if ∃x ∈ S s.t. v is its unique free neighbor in G then

case
|N(x) ∩ S| ∈ σ then S := S ∪ {v},w(v) := 0
|N(x) ∩ S| + 1 ∈ σ then S := S ∪ {v},w(v) := 0
{|N(x) ∩ S|, |N(x) ∩ S| + 1} ∩ σ = ∅ then Halt

if ∃x s.t. |N(x) ∩ S| > max{p,q} then Halt

Subroutine RechargeA(v,S,S,w,H,B)
if w(v) < 1 then

let {w1, . . . ,wt } = {x : vx ∈ E(H)}
for i := 1 to t do let ui 	= v be a free neighbor (in G) of wi

for i := 1 to t do
w(ui) := w(ui) − ε

E(H) := (E(H) ∪ {uiwi}) \ {vwi}
w(v) := 1

Comment Note that w1, . . . ,wt are distinct vertices, while u1, . . . , ut need not be.
Note that {u1, u2, . . . , ut }∩{w1, . . . ,wt } = ∅ since all wi ’s are allocated, and thus not
free, when the subroutine is called. If some u is the chosen free neighbor of several,
say k, vertices from w1, . . . ,wt , then its weight drops by kε and also k edges starting

262 Algorithmica (2011) 61:252–273

in u are added to H . Lemma 5 shows that each wi has indeed a free neighbor different
from v in G.

Subroutine BranchA(v,S,S,w,H,B)
1. S′ := S; S′ := S ∪ {v}; w′ := w; w′(v) := 0; H ′ := H

SigmaRhoA(S′, S′,w′,H ′,B)
2. let u be a free neighbor of v

S := S ∪ {v}; w(v) := 0; w(u) := w(u) − ε; E(H) := E(H) ∪ {uv}
SigmaRhoA(S,S,w,H,B)

Having described the recursive procedure and its subroutines, the entire algorithm
named Main-EnumSigmaRho-A (see above) can be formalized as one call of the
recursive procedure (and necessary prepossessing and final check of the items in the
candidate list). See Lemma 9 for a further discussion of crucial properties of the
procedures and their interplay.

The correctness of the algorithm follows from the following lemmas, from the fact
that it branches on each vertex whose membership in S or S is not forced, and since
each set S of L is explicitly checked for being (σ,�)-dominating.

Lemma 2 (Weights and charges)

(i) An allocated vertex v has always weight w(v) = 0.
(ii) At the time of each call of the SigmaRhoA procedure, the weight of a free vertex

x is w(x) = 1 − dε, where d is the outdegree of x in H .
(iii) Whenever any of the subroutines has been terminated, the oriented graph H is

a disjoint union of out-oriented stars, and xy ∈ E(H) implies that y ∈ S.
(iv) The weight of a free vertex x is always nonnegative: w(x) ≥ 0.

Proof (i) Weight of allocated vertices. The weight of a vertex allocated to S or S

becomes 0 at the time of allocation and remains unchanged afterwards.
(ii) The weight of free vertices. At the beginning the weight of every vertex is 1,

and also H is edgeless, so the outdegree of every vertex is 0 (in H). The invariant
follows by induction on the number of recursive calls. The weights of free vertices
are changed in the RechargeA and BranchA subroutines, and in each case the mul-
tiple of ε subtracted from (or added to) the weight of the vertex is the same as the
number of oriented edges starting in the vertex that are added to (deleted from, re-
spectively) H .

(iii) The shape of H . First it is worth noting that the charge sent along an edge of
H is always of value ε. Clearly, at the beginning of algorithm A the oriented graph
H is edgeless. It gets modified in the RechargeA and BranchA subroutines. When
recharging, an edge vwi may be replaced by an edge uiwi in H . When branching on
v and selecting v, the edge uv is added to H . Therefore, the endpoint of an edge in
H is always a vertex allocated to S and every vertex of S is the end vertex of at most
one edge of H .

Algorithmica (2011) 61:252–273 263

On the other hand, the start point of an edge added to H is always a free vertex at
the time when the edge is added to H . However ForcingA might later allocate such
a free vertex while keeping the edge in H . Thus H may contain an edge with a start
vertex x ∈ S and an end vertex y ∈ S. However in this case x has been allocated to S

by forcing, and there has never been a branching on x. Consequently no edge of H

has end point x. Therefore, H is indeed a union of out-oriented stars.
(iv) Weights of free vertices are nonnegative. A free vertex, say x, would have

weight less than 0 only if it had outdegree t > max{p,q} in H . But then x must have
t neighbors in S. Certainly at the beginning of the first call of SigmaRhoA, no such
vertex exists. The number of S-neighbors may get raised during the first part of the
ForcingA subroutine, but that is immediately discovered by the second part of the
subroutine and the execution is halted. The only other possibility is during the second
part of the BranchA subroutine, when v is selected into S. If there is a free neighbor
x of v such that x has outdegree t > max{p,q} in H , when calling SigmaRhoA,
then the free vertex x had exactly max{p,q} neighbors in S at the previous call of
the ForcingA subroutine. Hence v would have been placed into S, and never been
considered for branching. Consequently w(x) < 0 for a free vertex is impossible. �

Lemma 3 (Halting) If ForcingA halted with current values S,S, then G contains no
(σ,�)-dominating set M such that S ⊆ M ⊆ V \ S.

Proof If ForcingA halts because some x has more than max{p,q} neighbors in S,
then such an S cannot be a subset of any (σ,�)-dominating set M . Indeed, if x ∈ M

then |N(x) ∩ M| ≥ |N(x) ∩ S| > p = maxσ and |N(x) ∩ M| cannot be in σ , as well
as |N(x)∩M| ≥ |N(x)∩S| > q = max� and |N(x)∩M| cannot be in � if x 	∈ M . If
ForcingA halts because some x ∈ S has a unique free neighbor, but neither |N(x)∩S|
nor |N(x) ∩ S| + 1 are in σ , then no M containing S is a (σ,�)-dominating set since
|N(x) ∩ M| equals |N(x) ∩ S| or |N(x) ∩ S| + 1, depending on whether v ∈ M or
not. �

Lemma 4 (Necessity) If at some stage, with current values of S,S, ForcingA wants
to place x in S (resp. in S), then for every (σ,�)-dominating set in G such that
S ⊆ M ⊆ V \ S, it holds that x ∈ M (resp. x 	∈ M).

Proof Assume that M is a (σ,�)-dominating set such that S ⊆ M ⊆ V \ S. Suppose
that v is adjacent to a free vertex x such, that |N(x) ∩ S| = max{p,q}. If v ∈ M then
|N(x) ∩ M| > max{p,q} and this is impossible, so v ∈ M . Suppose now that v is the
unique neighbor of x ∈ S and |N(x) ∩ S| ∈ σ . Then |N(x) ∩ S| + 1 	∈ σ because σ is
successor-free. Thus v cannot be in M , since then |N(x)∩M| = |N(x)∩ S| + 1 	∈ σ .
Similarly, |N(x) ∩ S| + 1 ∈ σ implies |N(x) ∩ S| 	∈ σ and v must be in M , since it is
the only possible additional M-neighbor of x. �

Lemma 5 (Correctness) The subroutines RechargeA and BranchA can always be
executed.

264 Algorithmica (2011) 61:252–273

Proof The vertex v chosen in the SigmaRhoA subroutine is allocated either in
ForcingA or the next executions of BranchA. If v is allocated in ForcingA then
SigmaRhoA is called recursively to choose the next vertex to allocate.

The ForcingA subroutine guarantees that no S-neighbor of v has v as its only
free neighbor. This is crucial for the algorithm since it guarantees that recharging is
possible. In RechargeA, for all i = 1,2, . . . , t , vwi is an edge of H and hence wi ∈ S.
But then each wi has another free neighbor and RechargeA does not get stuck.

For the BranchA subroutine, we note that vertices of G get allocated into S or
S only when we attempt to branch on them (in the preceding ForcingA subroutine,
or in BranchA itself). Thus the vertices are allocated in the reverse BFS ordering.
Therefore when v is the last free vertex in the BFS ordering of the vertex set of G,
either v = v1 is the root (and then we do not bother checking anything and just add
both S and S ∪ {v} to the candidate list L) or v has a predecessor u in the BFS tree
of G. This u comes earlier in the BFS ordering of G, hence was not attempted to
branch on yet, and hence is free at the time when v is processed. �

Analysis of the Running Time The weight of an instance (G,w,S,S,H) is w(G) =∑
v∈V w(v). In each branching on a vertex v the measure of the input decreases by 1

when discarding v, and it decreases by 1 + ε when selecting v. In the standard termi-
nology of branching algorithms this implies that the branching vector is (1,1 + ε).
The running time of each execution of SigmaRhoA (without recursive calls) is poly-
nomial, and so the total running time is O∗(T) where T is the number of leaves of
the search tree. Note that each (σ,�)-dominating set corresponds to one leaf of the
search tree.

Let T [k] be the maximum number of leaves of the search tree that any execution of
our algorithm may generate on a problem instance of weight k. Due to the branching
vector we obtain:

T [k] ≤ T [k − 1] + T [k − 1 − ε].
Thus the number of (σ,�)-dominating sets (which is bounded from above by T [n])
in an isolate-free graph on n vertices is O∗(cn), and the running time of our algo-
rithm that enumerates all of them is O∗(cn), where c is the largest real root of the
characteristic polynomial

x1+ε − xε − 1.

The table shows the base of the exponential function bounding the running time
of our algorithm for some particular values of ϕ = max{p,q}.

ϕ 1 2 3 4 5 6 7 8 9 100

c 1.6181 1.7549 1.8192 1.8567 1.8813 1.8987 1.9116 1.9216 1.9296 1.9932

As can be expected, c converges to 2 when ϕ converges to infinity (and ε converges
to 0). This is easily seen from the characteristic polynomial, which converges to
x − 2.

Algorithmica (2011) 61:252–273 265

3.2 Algorithm B

Now we assume that σ is successor-free, at least one of the sets σ and � is fi-
nite, and σ ∩ � = ∅ (case B). Recall that p = maxσ and q = max�. Algorithm B
demonstrates the potentials of our approach. Contrary to algorithm A of the previous
subsection, the recharging and the branching in algorithm B are more sophisticated.
Instead of ε being the unique value of a charge, various values of charge might be
sent now (along an edge of H). Therefore we denote the charge of an edge e ∈ E(H)

by a(e). Thus a(xy) is the charge sent from vertex x to vertex y along the edge
xy ∈ E(H).

To discuss the major refinement in algorithm B compared to Algorithm A, let
us consider the subroutine BranchB. When branching on a free vertex v its weight
w(v) is equal to 1 which is guaranteed by the subroutine RechargeB. In algorithm A
there is one way of branching and one way to send a necessary charge of ε from a free
neighbor. In algorithm B there are two ways of branching. Firstly either v is discarded
and the weight of the instance is decreased by 1, or v is selected and the weight of
the instance is decreased by 1 + ε by sending v a charge ε1 from one free neighbor
(in G) and a charge ε2 from another free neighbor (in G) such that ε = ε1 +ε2. Hence
the branching vector is (1,1 + ε). Secondly, if v has only one free neighbor then the
weight of v will be increased by a charge of ε3 sent by its unique free neighbor, and
this happens when v is selected and also when v is discarded. Hence the branching
vector is (1 + ε3,1 + ε3).

Although the value of ε will be fixed later as to minimize the constant c (depend-
ing on p and q) and thus the upper bound on the running time, some constraints
concerning the choice of ε and εi for i = 1,2,3 are crucial for the correctness proof
and need to be mentioned here. We set δ = 1

1+min{p,q} , a natural value in such a
Branch & Recharge algorithm. Then ε is chosen such that it satisfies the inequal-
ity δ < ε ≤ δ + δ2 = 2+min{p,q}

(1+min{p,q})2 . The values of ε1 and ε2 will depend on the
vertex v on which the algorithm branches. The only conditions to be satisfied are
ε1(v) + ε2(v) = ε and 0 < ε1(v), ε2(v) ≤ δ for all v; thus εi(v) ≤ δ for all i = 1,2
and all v. Finally we set ε3 = δ − min{p,q}(ε − δ). First of all this guarantees
ε3 > 0 since ε − δ ≤ δ2 and min{p,q}δ2 = δ(min{p,q} 1

1+min{p,q}) < δ. The rea-
son for choosing the value of ε3 in this way will become clear in the analysis (see
Lemma 6(iv)).

We will now describe the details our Branch & Recharge algorithm B in pseudo-
code.

Algorithm Main-EnumSigmaRho-B(G)
Initialization: L := ∅; S := ∅; S := ∅; H := (V (G),∅); forall v ∈ V (G) do
w(v) := 1
SigmaRhoB(S,S,w,H)
Termination:
forall S ∈ L do

if S is not a (σ,�)-dominating set in G then L := L \ {S}
output(L)

266 Algorithmica (2011) 61:252–273

Procedure SigmaRhoB(S,S,w,H)
if there is no free vertex then L := L ∪ {S}
else

let v be a free vertex with maximum number of free neighbors in G

ForcingB(S,S,w,H)
if ForcingB halted then Halt
if v is still free then

RechargeB(v,S,S,w,H)
BranchB(v,S,S,w,H)

else SigmaRhoB(S,S,w,H)

Subroutine ForcingB(S,S,w,H)
while (∃x s.t. x is free and |N(x) ∩ S| > min{p,q}) or
(∃y ∈ S with a unique free neighbor z in G) or (∃ a free vertex u with no free
neighbor in G) do

let x or y, z or u be such vertices
case

|N(x) ∩ S| > max{p,q} then Halt
|N(x) ∩ S| > p then S := S ∪ {x};w(x) := 0
|N(x) ∩ S| > q then S := S ∪ {x};w(x) := 0
|N(y) ∩ S| ∈ σ then S := S ∪ {z};w(z) := 0
|N(y) ∩ S| + 1 ∈ σ then S := S ∪ {z};w(z) := 0
{|N(y) ∩ S|, |N(y) ∩ S| + 1} ∩ σ = ∅ then Halt
|N(u) ∩ S| ∈ σ then S := S ∪ {u};w(u) := 0
|N(u) ∩ S| ∈ � then S := S ∪ {u};w(u) := 0
|N(u) ∩ S| 	∈ σ ∪ � then Halt

Subroutine RechargeB(v,S,S,w,H)
if w(v) < 1 then

let {z1, . . . , zt } = {x : vx ∈ E(H)}
for i := 1 to t do

if ∃ free neighbor x of zi (in G) s.t. xzi /∈ E(H) then
w(x) := w(x) − a(vzi)

E(H) := E(H) ∪ {xzi}
a(xzi) := a(vzi)

else
let x be a free neighbor of zi s.t. xzi ∈ E(H) and x 	= v

w(x) := w(x) − a(vzi)

a(xzi) := a(xzi) + a(vzi)

E(H) := E(H) \ {vzi}
w(v) := 1

Algorithmica (2011) 61:252–273 267

Subroutine BranchB(v,S,S,w,H)
if v has two different free neighbors x and y then

1. S′ := S; S′ := S ∪ {v}; w′ := w; w′(v) := 0; H ′ := H ;
SigmaRhoB(S′, S′,w′,H ′)
2. S := S ∪ {v}; w(v) := 0

E(H) := E(H) ∪ {xv, yv}; a(xv) := min{δ,w(x)}; a(yv) := ε − a(xv)

w(x) := w(x) − a(xv); w(y) := w(y) − a(yv); SigmaRhoB(S,S,w,H)

else
let x be the unique free neighbor of v

E(H) := E(H) ∪ {xv}; a(xv) := ε3; w(x) := w(x) − ε3; w(v) = 0
1. S′ := S; S′ := S ∪ {v}; w′ := w; H ′ := H ; SigmaRhoB(S′, S′,w′,H ′)
2. S := S ∪ {v}; SigmaRhoB(S,S,w,H)

Algorithm B is a classical branching algorithm using a so-called maximum de-
gree rule, namely BranchB branches on a free vertex with maximum number of free
neighbors. See Lemma 9 for a further discussion of crucial properties of the proce-
dures and their interplay.

The correctness of algorithm B follows from the subsequent four technical lem-
mas.

Lemma 6 (Weights and charges)

(i) An allocated vertex v has always weight 0.
(ii) At the time of a call of the SigmaRhoB procedure, every vertex of H has indegree

at most two, and either indegree or outdegree zero. After the termination of any
ForcingB subroutine, x free and xy ∈ E(H) implies y ∈ S.

(iii) At the time of each call of the SigmaRhoB procedure, the weight of a free vertex
x satisfies w(x) ≥ 1 − dε, where d is the outdegree of x in H . Furthermore
after the termination of any ForcingB subroutine, w(x) ≥ 1 − dδ for each free
vertex x.

(iv) The weight of a free vertex is always nonnegative. Furthermore, after the termi-
nation of any ForcingB subroutine, w(x) ≥ δ for each free vertex x.

Proof (i) The weight of allocated vertices. The weight of a vertex allocated to S or S

becomes 0 at the time of allocation and remains unchanged afterwards.
(ii) The shape of H . At the beginning, H is edgeless. It is modified only in the

RechargeB and BranchB subroutines. When recharging, either (in the first part)
edge vzi is replaced by edge xzi , or (in the second part) edge vzi is removed. When
branching, in the first type of branching, when v is discarded then H remains un-
changed, when v is selected then two edges xv and yv are added to H . In the second
type of branching, an edge xv is added to H , no matter whether v is discarded or
selected.

Clearly allocated vertices have out-degree 0. Furthermore, if xy ∈ H then y is al-
located. Thus free vertices have indegree zero in H . Thus, when calling SigmaRhoB

268 Algorithmica (2011) 61:252–273

for a free vertex v, the indegree of v in H is zero. Therefore at the termination of
BranchB the indegree of the now allocated vertex v is at most two. Only recharging
may add an edge xy to H where y is allocated, however this never increases the in-
degree of such a vertex y. Consequently allocated vertices have indegree at most two
in H .

We have seen that if xy ∈ E(H) then y is allocated. Suppose that y ∈ S. Such
an edge is only added to H in case of a second type branching. Hence x was the
unique free neighbor of y when y was allocated to S by branching and the edge xy

was added to H . Since y was chosen as a free vertex with maximum number of free
neighbors, the vertex x has no free neighbor after the allocation of y. Hence the next
call of the ForcingB subroutine will select or discard x (or halt).

(iii) The weight of free vertices. As already discussed any charge a(xy) as-
signed to an edge xy of H during BranchB has value at most δ. A higher charge
can only be assigned to an edge during the second part of RechargeB: x is a
free neighbor of zi , vzi ∈ E(H) and xzi ∈ E(H). This implies zi ∈ S, as shown
above, and a(vzi) + a(xzi) = ε since only the first type of branching creates two
charges sent to zi . Consequently the charge assigned to xzi during the recharg-
ing is ε. Thus any charge sent along an edge of H is at most ε. Consequently
w(x) = 1 − ∑

xy∈E(H) a(xy) ≥ 1 − dε.
As pointed out, a(xy) > δ only if y = zi and the RechargeB subroutine is called

for the free vertex v adjacent to zi . Hence after executing RechargeB, the vertex x is
the unique free neighbor of zi , and thus in the next call of ForcingB it will select or
discard x (or halt). Hence w(x) = 1 −∑

xy∈E(H) a(xy) ≥ 1 − dδ for each free vertex
x after the execution of ForcingB.

(iv) Weights of free vertices are nonnegative. Let x be a free vertex at the time
of calling SigmaRhoB. Let us consider the execution of the previous SigmaRhoB
that had been called for some vertex v 	= x. Note that v has been allocated during its
execution. Let d be the outdegree of x in H and let xzi ∈ E(H) for i = 1,2, . . . , d .
By (ii), all zi ’s are allocated and even more, at most one might be allocated to S (by
a second type branching in the previous call of SigmaRhoB; since the next call of
ForcingB would allocate x or halt).

The vertex x had t ≤ min{p,q} neighbors w1,w2, . . . ,wt in S when the previous
call of ForcingB was terminated, otherwise the subroutine would have allocated x or
halted. Let us consider this particular moment during the execution of algorithm B.
By (iii), w(x) ≥ 1 − dδ, where d is the outdegree of x in H , and by (ii), the end-
point of an edge belongs to S if its starting point is a free vertex, and thus d ≤ t .
Furthermore, any charge sent along an edge of H is at most δ = 1

1+min{p,q} . Hence

w(x) ≥ 1 − dδ ≥ 1 − min{p,q}
1+min{p,q} = 1

1+min{p,q} . Consequently w(x) ≥ δ.
Now we consider the RechargeB subroutine when called for v. Clearly zi ∈ S. In

the first part an edge xzi is added and the former charge a(vzi) ≤ δ is assigned to it.
Since zi ∈ S, all other at most t − 1 S-neighbors of x are endpoints of an edge from
x with charge at most δ (if any) and thus w(x) ≥ 1 − (min{p,q} − 1)δ = 2δ > 0. In
the second part the edge vzi is deleted and the charge of xzi is increased to ε. Hence
w(x) ≥ 1 − (min{p,q} − 1)δ − ε ≥ δ − δ2 > 0.

Finally we consider the BranchB subroutine when called for v. In the first type
of branching there are two free vertices x and y and edges xv and yv are added

Algorithmica (2011) 61:252–273 269

when selecting v. As we have shown, when calling BranchB for v, both free vertices
x and y have weight at least δ − δ2. The vertices x and y need to recharge v by a
value of δ in total. Their common weight w(x) + w(y) ≥ 2δ − 2δ2 is greater than or
equal to δ if δ ≤ 1/3; and this is the case since x has at least two S-neighbors. In the
second type of branching an edge xv with charge ε3 for a free vertex x is added. As
shown above, w(x) ≥ 1 − (min{p,q} − 1)δ − ε ≥ 2δ − ε. The following justifies our
choice of ε3. We need that ε3 ≤ 2δ − ε to guarantee w(x) ≥ 0. Since δ < ε we obtain
δ(min{p,q}−1) < ε(min{p,q}−1). Therefore ε3 = δ+δ min{p,q}−ε min{p,q} ≤
2δ − ε ≤ w(x).

Summarizing for a free vertex x we have w(x) ≥ 0 at any time of the execution of
the algorithm. �

The next two lemmas show the correctness of ForcingB.

Lemma 7 (Halting) If ForcingB halts with current values S,S, then G contains no
(σ,�)-dominating set M such that S ⊆ M ⊆ V \ S.

Proof If ForcingB halts because some x has more than max{p,q} neighbors in S,
then such an S cannot be a subset of any (σ,�)-dominating set M . Indeed, if x ∈ M

then |N(x) ∩ M| ≥ |N(x) ∩ S| > p = maxσ and |N(x) ∩ M| cannot be in σ , as
well as |N(x) ∩ M| ≥ |N(x) ∩ S| > q = max� and |N(x) ∩ M| cannot be in � if
x 	∈ M . If ForcingB halts because some y ∈ S has a unique free neighbor z, but
neither |N(y) ∩ S| nor |N(y) ∩ S| + 1 are in σ , then no M containing S is a (σ,�)-
dominating set since |N(y) ∩ M| equals |N(y) ∩ S| or |N(y) ∩ S| + 1, depending on
whether z ∈ M or not. If the subroutine halts because for some free vertex u without
any free neighbor, |N(u) ∩ S| is neither in σ nor in �, then no superset M of S can
be a (σ,�)-dominating set since u can be neither in M nor outside it. �

Lemma 8 (Necessity) If at some stage, with current values of S,S, ForcingB wants
to place x in S (resp. in S), then for every (σ,�)-dominating set in G such that
S ⊆ M ⊆ V \ S, it holds that x ∈ M (resp. x 	∈ M).

Proof Assume that M is a (σ,�)-dominating set such that S ⊆ M ⊆ V \ S.
Suppose x is free and |N(x)∩S| > p (and ≤ q since the subroutine did not halt in

the previous step), x cannot be in M because then |N(x) ∩ M| ≥ |N(x) ∩ S| > p =
maxσ and |N(x)∩M| could not be in σ . If x free and |N(x)∩S| > q , then x cannot
be outside M because then |N(x) ∩ M| ≥ |N(x) ∩ S| > q = max� and |N(x) ∩ M|
could not be in �.

Suppose z is the unique free neighbor of y ∈ S. If |N(y)∩S| ∈ σ then |N(y)∩S|+
1 	∈ σ because σ is successor-free. Thus z cannot be in M , since then |N(y) ∩ M| =
|N(y) ∩ S| + 1 	∈ σ . Similarly, if |N(y) ∩ S| + 1 ∈ σ then |N(y) ∩ S| 	∈ σ and z must
be in M , since it is the only possible additional M-neighbor of y ∈ S.

Finally, suppose that u is a free vertex with no free neighbor. Then |N(u) ∩ M| =
|N(u)∩S| and the membership of u in M is uniquely determined since σ ∩� = ∅. �

270 Algorithmica (2011) 61:252–273

Lemma 9 (Correctness) The subroutines RechargeB and BranchB can always be
executed. Whenever algorithm B changes the weight of an instance (G,S,S,w) by
ForcingB or BranchB then the weight of the instance never increases.

Proof The ForcingB subroutine allocates free vertices without free neighbor. Fur-
thermore it guarantees that no S-neighbor of a free vertex has only one free neigh-
bor. This guarantees that in a possibly following RechargeB subroutine, for every
i = 1,2, . . . , t , vwi is an edge of H and hence wi ∈ S. Consequently, each wi has
another free neighbor and RechargeB does not get stuck; recharging is possible.

Additionally, by Lemma 6(i) and (iv), the weight of any vertex during the execu-
tion of algorithm B is always nonnegative. Hence all charges to be transfered from
one vertex to another one are always available. Since no vertex can have negative
weight, the ForcingB subroutine may decrease the overall weight of the instance or
keep it unchanged. Clearly, RechargeB will not change the weight of the instance
(which is part of its underlying idea). �

Analysis of the Running Time The weight of an instance (G,w,S,S,H) is w(G) =∑
v∈V w(v). Recall that there are two types of branching. If we branch on a vertex

v with at least two free neighbors then the weight of the input decreases by 1 when
discarding v, and it decreases by 1 + ε when selecting v, hence the branching vec-
tor is (1,1 + ε). On the other hand, if we branch on a vertex with exactly one free
neighbor then the weight of the input decreases by 1+ ε3 = 1+ δ −min{p,q}(ε − δ),
when discarding v and also when selecting v. Hence the branching vector is (1 + ε3,

1 + ε3). Therefore we obtain the following two recurrences to estimate the running
time O∗(T).

T [k] ≤ T [k − 1] + T [k − 1 − ε],
T [k] ≤ 2T [k − 1 − ε3].

To balance the two recurrences ε is chosen such that the characteristic polynomials

x1+ε − xε − 1

x1+ε3 − 2

have the same unique positive real root c.
How to choose ε? First, if min{p,q} = 0, then we choose ε = 2. Now let us

assume that min{p,q} ≥ 1. Hence, if c1, c2 are the unique positive real roots of

the above mentioned two polynomials then c2 = 2
1

1+ε3 . Furthermore, ε = δ implies
c1 < c2, and ε = δ + δ2 implies c2 < c1. Consequently, it is possible to choose ε in
such a way that c = c1 = c2, and this is our choice of ε.

ψ 0 1 2 3 4 5 6 7 8 100

c 1.4656 1.6957 1.7901 1.8393 1.8698 1.8905 1.9055 1.9169 1.9258 1.9932

ε 2 0.6873 0.4047 0.2875 0.2231 0.1823 0.1541 0.1335 0.1177 0.00995

Algorithmica (2011) 61:252–273 271

The table shows the base of the exponential function bounding the running time
of our algorithm and values of ε for some particular values of ψ = min{p,q}.

4 Lower Bounds

This section discusses the combinatorial consequences of our Branch & Recharge
algorithms. We have shown that (under certain assumptions on σ and �) every isolate-
free graph on n vertices contains at most 2n(1−θ) (σ,�)-dominating sets, for some
θ > 0.

Taking σ = {0} and � = N we obtain the Independent Dominating Set problem
and the (σ,�)-dominating sets are precisely the maximal independent sets. Hence
our theorem implies that the maximum number of maximal independent sets is upper
bounded by O∗(1.4656n); while the bound of Moon and Moser [22] is 1.4423n and
this is asymptotically tight.

While the upper bound of Moon and Moser is tight, others like the one by Fomin
et al. for the maximum number of minimal dominating sets [9] might not be tight.
Likewise, our upper bounds established by a general approach are unlikely to be tight
for all particular values of (σ,�). Thus it is natural to look after lower bounds.

Let σ be the set of all even integers from the interval [0, r − 1], and � be the
set of all odd integers from this interval, where r ≥ 2 is a positive integer. Consider
G = sKr , the disjoint union of s copies of the complete graph Kr . Clearly, this graph

G has 2(r−1)s = 2
r−1
r

n (σ,�)-dominating sets.
Since both σ and � are finite, and σ ∩ � = ∅, our algorithms of both cases can be

applied. The next table compares the bases of the exponential upper bounds given by

our algorithms, distinguished as cA and cB , respectively, with the base cL = 2
r−1
r of

the exponential function given by the lower bound from the above example.

r 2 3 4 5 6 7 8 9 101

cA 1.6181 1.7549 1.8192 1.8567 1.8813 1.8987 1.9116 1.9216 1.9932

cB 1.4656 1.6957 1.7901 1.8393 1.8698 1.8905 1.9055 1.9169 1.9932

cL 1.4142 1.5874 1.6817 1.7411 1.7817 1.8114 1.8340 1.8517 1.9863

5 Open Problems

It would be interesting to investigate the complexity of enumerating all (σ,�)-
dominating sets for other sets σ and �, as well as the relationship to combinatorial
upper bounds on their numbers.

We conclude with the following concrete open problems.

Problem 1 Characterize all pairs σ,� for which every isolate-free n-vertex graph
has at most 2δn (σ,�)-dominating sets for some δ < 1.

272 Algorithmica (2011) 61:252–273

Is it possible to solve the counting problem #-(σ,�)-DS in time O∗(2δn) for some
δ < 1, in the following cases:

Problem 2 The set σ is finite and the set � is equal to N0.

Problem 3 Both sets σ and � are complements of finite sets.

Note that Problem 2 includes Independent Set, Induced Matching, Regular Sub-
graph and Bounded Degree Subgraph, while Problem 3 includes Dominating Set and
Total Dominating Set. Thus in both cases the enumeration problem ENUM-(σ,�)-DS
cannot be solved in time faster than �(2n).

The recharging mechanism of our algorithms strictly needs the successor-freeness
of σ . Nevertheless it is an interesting question whether the successor-freeness of σ is
a condition that can be avoided.

Acknowledgements We are grateful to the anonymous referees for their suggestions helping us to im-
prove the presentation of the paper.

References

1. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54, 168–204 (2005)
2. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings

of FOCS 2006, pp. 575–582. IEEE Press, New York (2006)
3. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper.

Res. Lett. 32, 547–556 (2004)
4. Byskov, J.M., Madsen, B.A., Skjernaa, B.: On the number of maximal bipartite subgraphs of a graph.

J. Graph Theory 48, 127–132 (2005)
5. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithm

Appl. 7, 131–140 (2003)
6. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination—a case study. In: Proceed-

ings of ICALP 2005. LNCS, vol. 3380, pp. 192–203. Springer, Berlin (2005)
7. Fomin, F.V., Golovach, P., Kratsch, D., Kratochvil, J., Liedloff, M.: Branch and recharge: exact algo-

rithms for generalized domination. In: Proceedings of WADS 2007. LNCS, vol. 4619, pp. 508–519.
Springer, Berlin (2007)

8. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem:
exact and enumeration algorithms. Algorithmica 52, 293–307 (2008)

9. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and
conquer: bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1), 9 (2008)

10. Fomin, F.V., Golovach, P.A., Kratochvil, J., Kratsch, D., Liedloff, M.: Sort and search: exact algo-
rithms for generalized domination. Inf. Process. Lett. 109, 795–798 (2009)

11. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact
algorithms. J. ACM 56(5), 25 (2009)

12. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: A simple O(20.288n) independent set
algorithm. In: Proceedings of SODA 2006, pp. 18–25. SIAM, Philadelphia (2006)

13. Golovach, P., Kratochvíl, J.: Computational complexity of generalized domination: a complete di-
chotomy for chordal graphs. In: Proceedings of WG 2007. LNCS, vol. 4769, pp. 1–11. Springer,
Berlin (2007)

14. Golovach, P., Kratochvíl, J.: Generalized domination in degenerate graphs: a complete dichotomy of
computational complexity. In: Proceedings of TAMC 2008. LNCS, vol. 4978, pp. 182–191. Springer,
Berlin (2008)

15. Golovach, P., Kratochvíl, J., Suchý, O.: Parameterized complexity of generalized domination prob-
lems. In: Proceedings of WG 2009. LNCS, vol. 5911, pp. 133–142. Springer, Berlin (2009)

Algorithmica (2011) 61:252–273 273

16. Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for Maximum r-regular induced sub-
graph problems. In: Proceedings of FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Berlin
(2006)

17. Halldorsson, M.M., Kratochvíl, J., Telle, J.A.: Independent sets with domination constraints. Discrete
Appl. Math. 99, 39–54 (2000)

18. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Dekker, New
York (1998)

19. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nord. J. Comput. 5,
128–142 (1998)

20. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor. Comput. Sci. 223,
1–72 (1999)

21. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5, 66–67
(1976)

22. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 5, 23–28 (1965)
23. Rosen, K.H.: Discrete Mathematics and Its Applications. McGraw-Hill, New York (2007)
24. Telle, J.A.: Complexity of domination-type problems in graphs. Nord. J. Comput. 1, 157–171 (1994)
25. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Combinatorial

Optimization—Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Berlin (2003)

	Branch and Recharge: Exact Algorithms for Generalized Domination
	Abstract
	Introduction
	Generalized Domination

	Preliminaries and the Main Combinatorial Theorem
	Branch & Recharge Algorithms
	Algorithm A
	Comment
	Analysis of the Running Time

	Algorithm B
	Analysis of the Running Time

	Lower Bounds
	Open Problems
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

