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Partial Cover problems are optimization versions of fundamental and well-studied problems
like Vertex Cover and Dominating Set. Here one is interested in covering (or dominating)
the maximum number of edges (or vertices) using a given number k of vertices, rather
than covering all edges (or vertices). In general graphs, these problems are hard for
parameterized complexity classes when parameterized by k. It was recently shown by
Amini et al. (2008) [1] that Partial Vertex Cover and Partial Dominating Set are fixed
parameter tractable on large classes of sparse graphs, namely H-minor-free graphs, which
include planar graphs and graphs of bounded genus. In particular, it was shown that on
planar graphs both problems can be solved in time 2O(k)nO(1) .
During the last decade there has been an extensive study on parameterized subexponential
algorithms. In particular, it was shown that the classical Vertex Cover and Dominating Set

problems can be solved in subexponential time on H-minor-free graphs. The techniques
developed to obtain subexponential algorithms for classical problems do not apply to
partial cover problems. It was left as an open problem by Amini et al. (2008) [1] whether
there is a subexponential algorithm for Partial Vertex Cover and Partial Dominating Set.
In this paper, we answer the question affirmatively by solving both problems in time

2O(
√

k )nO(1) not only on planar graphs but also on much larger classes of graphs, namely,
apex-minor-free graphs. Compared to previously known algorithms for these problems our
algorithms are significantly faster and simpler.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and motivation

A generic instance of a covering problem consists of a
family of sets over a universe and the objective is to cover
the universe with as few sets from the family as possible.
Covering problems are basic problems not only in combi-
natorial optimization and algorithms but occur naturally
in variety of applications. One of the prominent covering
problems is the classical Set Cover problem. Other clas-
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FSTTCS 2009.
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sical problems in the framework of covering include the
well-known problems like Vertex Cover, Dominating Set,
Facility Location, k-Median, k-Center problems, on which
hundreds of papers have been written.

As the name suggests, in partial cover problems one is
interested in covering as much of the universe, if not the
entire universe. This makes the partial cover problems nat-
ural generalizations of the well-known covering problems.
More precisely, in the partial covering problem, for a given
integer t � 0, we want to cover at least t elements using
as few objects (vertices or edges) as possible. For an exam-
ple, in Partial Vertex Cover (PVC), the goal is to cover at
least t edges with the minimum number of vertices while
in Partial Dominating Set (PDS) the goal is to dominate
at least t vertices of the input graph with the minimum
number of vertices.

0020-0190/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.05.016
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Partial cover problems have been investigated exten-
sively and are well understood in the context of poly-
nomial time approximation [2,4,3,14] and parameterized
complexity [1,4,21,22,20,24]. In this paper we study partial
cover problems defined on graphs namely Partial Vertex

Cover and Partial r-Dominating Set from the view point
of parameterized algorithms. Partial Vertex Cover is de-
fined as follows.

Partial Vertex Cover (PVC): Given a graph G = (V , E)

and positive integers k and t , check whether there ex-
ists a set of vertices C ⊆ V such that |C | � k and there
are at least t edges incident to C .

The Partial r-Dominating Set is a generalization of Domi-

nating Set and is defined as follows.

Partial r-Dominating Set (P-r-DS): Given a graph G =
(V , E) and positive integers k, r and t , determine
whether there exists a set of vertices D ⊆ V such that
|D| � k and there are at least t vertices at distance at
most r from some vertex in D .

In parameterized algorithms, for decision problems with
input size n, and a parameter k, the goal is to design an
algorithm with runtime f (k) · nO (1) , where f is a func-
tion of k alone. Problems having such an algorithm are
said to be fixed parameter tractable (FPT). There is also a
theory of hardness using which one can identify parame-
terized problems that are not amenable to such algorithms.
This hardness hierarchy is represented by W [i] hierarchy
for i � 1. For an introduction and more recent develop-
ments see the books [11,12,26]. In this paper, we always
parameterize a problem by the size of the cover, that is,
the positive integer k.

Most of the research on partial cover problems in pa-
rameterized complexity has considered the number of ob-
jects to be covered (t) as a parameter rather than the size
of the cover (k). Bläser [4] initiated the study of partial
cover problems parameterized by t and obtained a ran-
domized algorithm with running time 5.45tnO(1) for PDS.
Kneis et al. [22] improved this algorithm and obtained
a randomized algorithm with running time (4 + ε)tnO(1)

for every fixed ε > 0. Koutis and Williams [24] obtained
an even faster randomized algorithm for PDS, which runs
in time 2tnO(1) . Kneis et al. [21] studied the PVC prob-
lem when parameterized by the number edged to be cov-
ered (t) and obtained a randomized algorithm running in
time 2.0911tnO(1) . The algorithm for PVC was recently im-
proved by Kneis et al. [20]. They obtain a randomized algo-
rithm with running time 1.2993tnO(1) and a deterministic
algorithm with running time 1.396tnO(1) for PVC. When
parameterized by the size of cover k, PVC is known to be
W [1]-complete [15]. The P-r-DS problem being a general-
ization of Dominating Set is also known to be W [2]-hard
on general graphs when parameterized by the cover size.
Amini et al. [1] considered these problems with the size
of the cover k being the parameter and initiated a study
of these problem on sparse graphs namely planar graphs,
apex-minor-free graphs and H-minor-free graphs. They ob-
tained algorithms with running time 2O(k)nO(1) for PVC

and P-r-DS and left an open question of whether these
problems have an algorithm with running time 2o(k)nO(1) ,
like their non-partial counterpart on planar graphs or more
generally on H-minor-free graphs. In this paper we answer
this question in affirmative and obtain algorithms with
running time 2O(

√
k )nO(1) for PVC and P-r-DS on planar

graphs and more general classes of sparse graphs, namely,
apex-minor-free graphs.

Most of the known subexponential time algorithms
on planar graphs, graphs of bounded genus, apex-minor-
free graphs and H-minor-free graphs are based on the
meta-algorithmic theory of bidimensionality, developed by
Demaine et al. [5]. The bidimensionality theory is based
on algorithmic and combinatorial extensions to various
parts of Graph Minors Theory of Robertson and Sey-
mour [27] and provides a simple sufficient criteria for
checking whether a parameterized problem is solvable in
subexponential time on H-minor-free graphs. The theory
applies to the graph problems that are bidimensional in the
sense that the value of the solution for the problem in
question on the k × k grid or “grid like graph” is at least
Ω(k2) and the value of solution decreases while contract-
ing or sometimes deleting the edges. Problems that are
bidimensional include k-Feedback Vertex Set, k-Edge Dom-

inating Set, k-Leaf Spanning Tree, k-Path, k-r-Dominating

Set, k-Vertex Cover and many others. We refer to sur-
veys by Demaine and Hajiaghayi [8] and Dorn et al. [10]
for further details on bidimensionality and subexponential
parameterized algorithms. But neither PVC nor P-r-DS are
bidimensional problems. This is because an optimum solu-
tion to PVC or P-r-DS need not cover all the edges (or the
vertices respectively) of a k × k grid, and hence its value
need not be large on such a grid. Hence this theory is not
amenable to our problems.

Our subexponential time algorithms for PVC and P-r-
DS are based on a technique used to solve the classi-
cal Disjoint Path problem in the Graph Minors Theory of
Robertson and Seymour [28], called the irrelevant vertex
argument. The technique can be described as follows, in
polynomial time we find a vertex which is irrelevant for
the solution and hence can be deleted and when we can-
not find an irrelevant vertex, we show that the reduced
instance has bounded treewidth. This technique has re-
cently been used to solve several problems around finding
disjoint paths [16–19,23]. To obtain subexponential time
algorithms for PVC and P-r-DS we introduce a notion of
“lexicographically smallest” solution and use its properties
to obtain an irrelevant vertex in the graph. When we can-
not find any irrelevant vertex then we are able to show
that the treewidth of the reduced graph is at most O(

√
k ).

Once we have a sublinear bound on the treewidth of the
input graph, we can solve the problem in 2O(

√
k )nO(1)

time using dynamic programming over graphs of bounded
treewidth. Our results are based on a simple but powerful
observation relating lexicographically least solutions and
r-dominating sets of size at most k.

2. Preliminaries

Let G = (V , E) be an undirected graph where V is
the set of vertices and E is the set of edges. We denote
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the number of vertices by n and number of edges by m.
For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph of
G induced by V ′ . By N(u) we denote (open) neighbor-
hood of u that is set of all vertices adjacent to u and by
N[u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V , we de-
fine N[D] = ⋃

v∈D N[v]. The distance dG(u, v) between two
vertices u and v of G is the length of the shortest path in
G from u to v . For r � 0, the r-neighborhood of a vertex
v ∈ V is defined as Nr[v] = {u | dG(v, u) � r}. We also let
Br(v) = Nr[v] and call it a ball of radius r around v . Sim-
ilarly Nr(A) = ⋃

v∈A Nr
G [v] for A ⊆ V . For a given vertex

v ∈ V by ∂(v) we denote the set of edges which are inci-
dent with v . For a subset X ⊆ V , ∂(S) = ⋃

v∈S ∂(v).
Given an edge e = (u, v) of a graph G , the graph G/e

is obtained by contracting the edge (u, v) that is we get
G/e by identifying the vertices u and v and removing all
the loops and duplicate edges. A minor of a graph G is a
graph H that can be obtained from a subgraph of G by
contracting edges. A graph class C is minor closed if any
minor of any graph in C is also an element of C . A minor
closed graph class C is H-minor-free or simply H-free if
H /∈ C . A graph H is called an apex graph if the removal of
one vertex makes it a planar graph.

A tree decomposition of a graph G = (V , E) is a pair
(X, T ) where T is a tree on vertex set V (T ) whose ver-
tices we call nodes and X = ({Xi | i ∈ V (T )}) is a collection
of subsets of V such that

1.
⋃

i∈V (T ) Xi = V ,
2. for each edge (v, w) ∈ E , there is an i ∈ V (T ) such that

{v, w} ∈ Xi , and
3. for each v ∈ V the set of nodes {i | v ∈ Xi} forms a

subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T )

equals maxi∈V (T ){|Xi| − 1}. The treewidth of a graph G is
the minimum width over all tree decompositions of G . We
use notation tw(G) to denote the treewidth of a graph G .

Given a graph G = (V , E) a set of vertices D of V is
called an r-dominating set for G if Nr(D) = V . For r = 1
the set D is called a dominating set. In the r-Dominating

Set problem, we are given a graph G = (V , E) and the ob-
jective is to find the smallest sized D such that Nr(D) = V .

3. Subexponential algorithm for Partial Vertex Cover

In this section, we consider the PVC problem. In fact we
will solve a slightly more general problem, that is, given
an undirected graph, a non-negative integer k, we find the
maximum number of edges that can be covered by a subset
of at most k vertices. The decision version of that problem
is precisely PVC. If the maximum number of edges covered
by any vertex set of size at most k is at least t then we
return “yes” else we return “no”.

The key idea of the algorithm is to identify a set of
irrelevant vertices, I , which can be deleted without de-
stroying at least one set C ⊆ V such that |C | � k and
|∂(C)| � t , if such a set exists. Then we will show that the
tw(G[V \ I]) � O(

√
k ) and hence the dynamic program-

ming over graphs of bounded treewidth can be applied. To

identify a set of irrelevant vertices we introduce the notion
of lexicographically smallest solution.

Definition 1. Given a graph G = (V , E), an ordering σ =
v1 . . . vn of the vertices in V and subsets X and Y of V , if
X is lexicographically smaller than Y then we denote it by
X �σ Y . We call a set C ⊆ V the lexicographically smallest
solution for PVC if for any other solution C ′ for the PVC we
have that C �σ C ′ .

Let σ = v1 v2 . . . vn be an ordering of the vertices such
that the vertices are in non-increasing order of their de-
grees, with ties being broken arbitrarily. That is,

d(v1) � d(v2) � · · · � d(vn−1) � d(vn).

Throughout this section, we will assume that the vertex
set of the input graph is ordered by this fixed ordering σ
and denote the graph by G = (Vσ , E) to emphasize the fact
that the vertex set is ordered with respect to σ . By V i

σ we
denote the vertex set v1 . . . vi . Our goal will be to find the
lexicographically smallest solution for PVC. The algorithm
is based on the following properties of the lexicographi-
cally smallest solution for PVC.

Lemma 1. Let G = (Vσ , E) be a yes instance to PVC, C =
{ui1 , . . . , uik } be the lexicographically smallest solution for PVC

and uik = v j for some j. Then C is a dominating set of size at

most k for G[V j
σ ].

Proof. Let us assume to the contrary that C is not a dom-
inating set for G[V j

σ ]. Then there exists a vertex vi , 1 �
i < j, such that N[vi] ∩ C = ∅. Set C ′ := C \ {v j} ∪ {vi}. We
claim that C ′ covers at least as many edges as are covered
by C . That is, |∂(C ′)| � |∂(C)|. Since d(vi) � d(v j), we have
that
∣∣∂

(
C ′)∣∣ �

∣∣∂(C)
∣∣ − d(v j) + d(vi) �

∣∣∂(C)
∣∣.

This is because the edges covered by vi are not covered
by any element of C − {v j}. Hence, |C ′| = |C |, C ′ is lexi-
cographically smaller than C and |∂(C ′)| � |∂(C)| a contra-
diction to the choice of C . �

We also need the following results for our algorithm.

Lemma 2. Let G be an n-vertex graph excluding an apex graph
H as a minor. If G has an r-dominating set of size at most k,
then G has treewidth at most cH r

√
k = O(r

√
k ), where cH is a

constant depending only on the size of H.

Lemma 2 follows from the fact that the size of r-
dominating set is a “contraction bidimensional” parame-
ter and that if a contraction bidimensional parameter has
value at most k on a graph G which excludes an apex
graph H as a minor then tw(G) � O(r

√
k ) [6,13]. We will

use the following known algorithm to solve PVC on graphs
of bounded treewidth.

Lemma 3. (See [25].) Let G be an undirected graph such that
the treewidth of G is at most w. Then in time 2wnO(1) we can
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find a subset C of at most k vertices that cover the maximum
number of edges of G.

For our proof we also need the following result by De-
maine and Hajiaghayi to obtain a polynomial time approx-
imation scheme (PTAS) for r-Dominating Set.

Lemma 4. (See [7].) There is a PTAS for r-Dominating Set on
apex-minor-free graphs.

The basic schema of the algorithm is as follows. We
start with the vertex set Vσ and scan the vertices in the
reverse order of σ = v1 v2 . . . vn , that is, we scan the ver-
tices in the order vn vn−1 . . . v2 v1. The algorithm can be
viewed as having a stick, initially positioned to the right
of vn which we slide towards its left if the vertex to its
left satisfies certain properties. See Fig. 1. At any interme-
diate stage, we have a vertex set N which are the vertices
in the original order σ , to the right of the stick. The first
vertex to the left of the stick is s. The stick represents the
fact that the lexicographically smallest solution C we are
looking for lies completely in V \ N , that is, C ⊆ V \ N .
To slide the stick we do as follows. Let s = v j for some j.

Now we check whether G[V j
σ ] has a dominating set of size

“roughly k”. If not, we slide the stick to one position left.
Else we find an appropriate induced subgraph G ′ = (V ′, E ′)
of G such that tw(G ′) � O(

√
k ) and G has a set C of size

at most k such that |∂(C)| � t if and only if there exists
a set C ′ ⊆ V ′ such that |C ′| � k and |∂(C ′)| � t . A formal
description of our algorithm for Partial Vertex Cover is
given in Fig. 2. The Algo-PC is called with the parameter
(G = (Vσ , E),k, ε,∅). Now we state our main theorem of
this section.

Theorem 1. Let G = (V , E) a graph that excludes an apex
graph H as a minor and k and t be positive integers. Then, in

2O(
√

k )nO(1) time we can determine whether there exists a sub-
set C ⊆ V of size at most k such that |∂(C)| � t.

Fig. 1. The algorithmic schema.

Proof. We argue that the algorithm is correct. In the first
part of the algorithm we try to identify the subset N of
vertices such that it does not intersect with the lexico-
graphically least solution C we are looking for. We itera-
tively run through the vertices in the reverse order and try
to maintain the invariant that N is a subset of the vertices
that does not intersect with the lexicographically least so-
lution. Initially N is empty, so the invariant trivially holds.
The set N only grows if in any step, the PTAS algorithm of
Lemma 4 finds a dominating set of G[V \ N] of size more
than (1+ε)k. Let v p be the largest indexed vertex in V \ N ,
that is, v p is to the left of the set N in the ordering σ .
Now by Lemma 1, we know that if v p ∈ C then G[V \ N]
has a dominating set of size at most k and hence the PTAS
from Lemma 4 would find an approximate dominating set
of size at most (1+ε)k. This implies that v p /∈ C and hence
we can safely place v p in N . This proves the correctness of
the first part.

Note that edges in G[N] will not be covered by C , and
hence vertices in N that have neighbors only in N are
collected in the set I and deleted at the end. The set I
is the irrelevant set of vertices we were looking for. Let
V ′ = V \ I . Thus we have shown that G has a set C of size
at most k such that |∂(C)| � t if and only if there exists
a set C ′ ⊆ V ′ such that |C ′| � k and |∂(C ′)| � t . Now ap-
plying Lemma 3 we find a subset C ′ of size at most k of
G[V ′] which covers the maximum number of edges. So if
|∂(C ′)| � t then we return “yes” else we return “no”. The
correctness of this step follows from Lemma 3.

Now we analyze the time complexity of the algorithm.
We know that when the algorithm exits the while loop,
G[V \ N] has a dominating set of size at most (1 + ε)k. Let
D be a dominating set of G[V \ N] of size at most (1 +
ε)k. This implies that D is a 2-dominating set of G[V ′] as
every vertex v ∈ (N ∩ V ′) has a neighbor in V \ N . Hence
by Lemma 2, tw(G ′) � O(

√
(1 + ε)k ) = O(

√
k ). Now using

the constant factor approximation algorithm of Demaine et
al. [9] for computing the treewidth of H-minor-free graph,
we find a tree-decomposition of G[V ′] of width O(

√
k ) in

time nO(1) . Finally, the dynamic programming algorithm
mentioned in Lemma 3 runs in time 2wnO(1) on graphs
of treewidth w and hence our algorithm has running time
2O(

√
k )nO(1) . �

Algo-PC(G = (Vσ , E),k, ε, N)
(Here G is a graph with vertices ordered in non-increasing order σ of their degrees, k a non-negative integer, ε > 0 is an arbitrary
fixed constant, N is a set of vertices (initially ∅), and the goal is to find a subset of V \ N of size at most k that covers the maximum
number of edges of G = (V , E).)

1. Let p := n.
2. While there does not exist a dominating set of size at most (1 + ε)k for G[V p

σ ] (determined using Lemma 4)
• set N := N ∪ {v p} and p := p − 1.
endwhile

3. Let I = {u | u ∈ N, N(u) ⊆ N} and set V ′ = V \ I . Find a tree-decomposition (U , T ) of G[V ′] using the constant factor approxi-
mation algorithm of Demaine et al. [9] for computing the treewidth of H-minor-free graph.

4. Apply Lemma 3 to find a subset C ′ of size at most k of G[V ′] which covers the maximum number of edges.

Fig. 2. Description of the partial cover Algorithm.
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4. PARTIAL DOMINATING SET problems

In this section we consider Partial r-Dominating Set

problem. We first modify Lemma 1 to prove the following.

Lemma 5. Let G = (V , E) be a graph and let σ be the or-
dering of the vertices in non-increasing order of their sizes of
Nr(v), that is, if vi < v j in σ , then |Nr(vi)| � |Nr(vi+1)| with
ties being broken arbitrarily. Let G = (Vσ , E) be a yes instance
to P-r-DS, C = {ui1 , . . . , uik } be the lexicographically small-
est solution for P-r-DS and uik = v j for some j. Then C is a

2r-dominating set of size at most k for G[V j
σ ].

Proof. Let Nr(C) = ⋃
s∈C Nr(s) be the set of vertices of V j

σ

that are r-dominated by C , and suppose that C is not a
2r-dominating set of V . Let vi , i < j, be a vertex of V j

σ

that is not 2r-dominated by C (vi /∈ N2r(C)). Then Nr(vi)∪
Nr(s) = ∅ for every s ∈ C as otherwise if for some vertex
s ∈ C , the intersection is non-empty, then vi will be 2r
dominated by s. Let C ′ = C − v j ∪ {vi}, then |C ′| = |C |, C ′
is lexicographically smaller than C and |Nr(C ′)| � |Nr(C)|+
|Nr(vi)| − |Nr(v j)| � Nr(C) a contradiction to the choice
of C . �

We also need a lemma similar to Lemma 3 which we
state below.

Lemma 6. (See [5].) Let G be an undirected graph such that the
treewidth of G is at most w. Then in time (2r + 1)1.5wnO(1)

we can find a subset C of at most k vertices that r-dominate the
maximum number of vertices of G.

With all these ingredients, the subexponential algo-
rithm for the P-r-DS is very similar to our algorithm for
PVC. The only difference is in the while loop where in-
stead of finding a dominating set of size (1 + ε)k, we find
a 2r-dominating set of size (1 + ε)k, and in the final step,
use the dynamic programming algorithm of Lemma 6 to
find a subset C of at most k vertices that r-dominate the
maximum number of vertices of G . Thus we have

Theorem 2. Let G = (V , E) a graph that excludes an apex
graph H as a minor and k and t be a positive integers. Then in

2O(r(log r)
√

k )nO(1) time we can determine whether there exists
a subset C ⊆ V of size at most k such that |Nr(C)| � t.
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