
On the Complexity of
Reconstructing H-Free
Graphs from Their Star
Systems

Fedor V. Fomin,1 Jan Kratochvı́l,2 Daniel Lokshtanov,1

Federico Mancini,1 and Jan Arne Telle1

1DEPARTMENT OF INFORMATICS, UNIVERSITY
OF BERGEN, N-5020 BERGEN, NORWAY
E-mail: fomin@ii.uib.no, daniello@ii.uib.no,

federico@ii.uib.no, telle@ii.uib.no

2DEPARTMENT OF APPLIED MATHEMATICS
AND INSTITUTE FOR THEORETICAL

COMPUTER SCIENCE, CHARLES UNIVERSITY
PRAHA, CZECH REPUBLIC

E-mail: honza@kam.mff.cuni.cz

Received October 17, 2008; Revised July 12, 2010

Published online 26 October 2010 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt.20544

Abstract: In the Star System problem we are given a set system and
asked whether it is realizable by the multi-set of closed neighborhoods of
some graph, i.e. given subsets S1,S2, . . . ,Sn of an n-element set V does
there exist a graphG= (V ,E) with {N[v ] :v ∈V }={S1,S2, . . . ,Sn}? For a fixed
graph H the H-free Star System problem is a variant of the Star System
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problem where it is asked whether a given set system is realizable by
closed neighborhoods of a graph containing no H as an induced subgraph.
We study the computational complexity of theH-free Star System problem.
We prove that when H is a path or a cycle on at most four vertices the
problem is polynomial time solvable. In complement to this result, we show
that if H belongs to a certain large class of graphs the H-free Star System
problem is NP-complete. In particular, the problem is NP-complete when
H is either a cycle or a path on at least five vertices. This yields a complete
dichotomy for paths and cycles. � 2010 Wiley Periodicals, Inc. J Graph Theory 68: 113–124,

2011

1. INTRODUCTION

The closed neighborhood of a vertex in a graph is sometimes called the “star” of the
vertex. The “star system” of a graph is then the multi-set of closed neighborhoods of
all the vertices of the graph and the Star System problem is the problem of deciding
whether a given system of sets is a star system of some graph. The Star System
problem is a natural combinatorial problem that fits into a broader class of realizability
problems. In a realizability problem we are given a list P of invariants or properties
(like a sequence of vertex degrees, set of cliques, number of colorings, etc.) and the
question is whether the given list is graphical, i.e. corresponds to the list of parameters
of some graph. One of the well-studied problems of realizability is the case when P
is a degree sequence. This can be seen as a modification of the Star System problem
where, instead of stars, the list P contains only the sizes of the stars. In this case,
graphic sequences can be characterized by the Erdős–Gallai Theorem [7].

The Star System problem (also known as the Closed Neighborhood Realization
problem) is related to a number of other interesting problems. For example, it is
equivalent to the question of whether a given 0−1 matrix A is symmetrizable, i.e.
whether by permuting rows (or columns) A can be turned into a symmetric matrix with
all diagonal entries equal to 1. We refer to the recent survey of Boros et al. [4] for this
and further problems related to the Matrix Symmetrization and Star System problems.

The question of the computational complexity of the Star System problem was first
posed by Gert Sabidussi and Vera Sós at a conference in the mid-70s [9] (and since this
appears to be the oldest reference to the problem, we choose to use the Star System
terminology). At the same conference Babai observed that the Star System problem was
at least as hard as the Graph Isomorphism problem. There are strong similarities with
Graph Isomorphism, e.g. as will explained later, the Star System problem is equivalent
to deciding if a given bipartite graph allows an automorphism of order 2 such that each
vertex is adjacent to its image. In view of these connections to Graph Isomorphism, the
NP-hardness of the Star System problem came somewhat unexpected. The proof of this
fact was achieved in two steps. First, a related effort of Lubiw [12] showed that deciding
whether an arbitrary graph has an automorphism of order 2 is NP-complete. Then
Lalonde [11] showed that the Star System problem was NP-complete by a reduction
from Lubiw’s problem. This reduction came as a small surprise considering that, after
Lubiw’s proof, Babai had written that between Lubiw’s problem and the Star System
problem he “did not believe there was a deeper relationship” [3].
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The result of Lalonde was rediscovered by Aigner and Triesch [1, 2], who proved it
in a stronger form, and indeed discovered a subproblem which is equivalent to Graph
Isomorphism. It is easy to see that the problems of reconstructing graphs from their
closed neighborhood hypergraphs and from their open neighborhood hypergraphs are
polynomially equivalent. It is more convenient however, to describe the results of Aigner
and Triesch in the language of open neighborhoods. They proved that deciding if a set
system is the open neighborhood hypergraph of a bipartite graph is Graph Isomorphism-
complete, while deciding if the open neighborhood hypergraph of a bipartite graph can
be realized by a nonisomorphic (and non-bipartite) graph becomes again NP-complete.

Since bipartite graphs (and their complements) are hereditary classes of graphs, it
is natural to pay closer attention to restrictions of the Star System problem to classes
of graphs defined by forbidden-induced subgraphs. The problem we investigate in this
article is the following variation of the Star System problem, for a fixed graph H:

H-free Star System Problem
Input: A set system S over a ground set V
Question: Does there exist an H-free graph G= (V ,E) such that S is the star system
of G?

Our main result is a complete dichotomy in the case when H is either a cycle
Ck, or a path Pk on k vertices. We prove that the H-free Star System problem for
H ∈{Ck,Pk} is polynomial time solvable when k≤4 (Section 3) and NP-complete when
k>4 (Section 4). Our NP-completeness result for paths and cycles follows from a more
general result, which shows that there exists a much larger family of graphs H such
that the H-free Star System problem is NP-complete.

2. PRELIMINARIES

We use standard graph notation with G= (V ,E) being a simple loopless undirected
graph with vertex set V and edge set E. We denote by N[v] and N(v) the closed and
open neighborhoods of a vertex v, respectively, and by G the complement of a graph G
having an edge uv iff u �=v and uv �∈E(G). We also call N[v] the star of v and say that v is
the center of N[v]. An automorphism of a graph G= (V ,E) is an isomorphism f :V →V
of the graph to itself, and it has order 2 if for every vertex x we have f (f (x))=x, i.e. the
image of its image is itself. For a graph G= (V ,E), we define the |V|-element multiset
Stars(G)={N[v] :v∈V}. (Let us note that in this article set brackets always indicate
multisets.) Similarly, we define the multiset OpenStars(G)={N(v) :v∈V}. For a fixed
graph H we say that a graph G is H-free if G does not contain an induced subgraph
isomorphic to H.

3. FORBIDDING SHORT PATHS AND CYCLES

A. Forbidding Short Paths

In this section we show that the Pk-free Star System Problem is solvable in polynomial
time for k≤4 (as usual, Pk denotes the path with four vertices). For k≤2 the Pk-free
Star System Problem is trivially polynomial time solvable. (For k=1 the realizing
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graph has no vertices, and for k=2 it has no edges.) For k=3 the realizing graph is a
disjoint union of cliques, and in this case the problem is again trivial—for every star
S∈S, the star system S should contain exactly |S| copies of S.

The proof that the P4-free Star System can be solved in polynomial time occupies
the remaining part of this subsection.

The graphs without induced P4 are called cographs. We exploit the following two
results on cographs.

Proposition 1 (Corneil et al. [6]). A graph G is a cograph if and only if every non-
trivial-induced subgraph of G either is disconnected or is the complement of a discon-
nected graph.

Proposition 2 (Corneil et al. [6]). A graph G is a cograph if and only if G is a
cograph.

Let us remark that a graph is a cograph if and only if each of its connected components
is a cograph.

Given a set system S over a ground set V , we define the graph

GS = (V ,{uv|∃S∈S :u∈S,v∈S}).
The vertex sets V1, . . . ,Vk of the connected components of GS form a partition of V .
We will call each such Vi a component of S. Furthermore, for each non-empty set
S∈S, we have that there is unique Vi with S⊆Vi. We say that S corresponds to Vi.
For each i∈{1, . . . ,k}, we define the set system Si to be the set system over Vi of all
sets in S corresponding to Vi.

Observation 3. There is a cograph G with Stars(G)=S if and only if for each i∈
{1, . . . ,k} there is a cograph Gi with Stars(Gi)=Si.

If S has more than one component, by Observation 6 the problem breaks down
into independent subproblems. When S has exactly one component, we define the
set system S={V \S :S∈S}. Note that the sets corresponding to isolated vertices are
empty, but are listed in the OpenStar system. Notice also that since S can have multiple
occurrences of the same set S, so can S. Now, for any graph G= (V ,E) and set system
S over V we have that Stars(G)=S if and only if OpenStars(G)=S. In particular, by
Proposition 2, we have the following Lemma.

Lemma 4. Given a set system S over V , there exists a cograph G= (V ,E) such that
Stars(G)=S, if and only if there is a cograph G′ such that OpenStars(G′)=S.

This means that given a set system S, our problem is equivalent to checking whether
there exists a cograph whose open star system realizes S. The next lemmata will give
us all tools needed to solve this equivalent problem.

Lemma 5. Let V1, . . . ,Vk be the components of S and suppose that OpenStars(G)=S.
Then for each i∈{1, . . . ,k},

• either G[Vi] is a connected component of G and G[Vi] is not bipartite;
• or G[Vi] is an independent set and there is j∈{1, . . . ,k} such that G[Vi ∪Vj] is a

connected component of G and G[Vi ∪Vj] is bipartite.
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Proof. We claim that if OpenStars(G)=S, then two elements u and v of V are in
the same component of S if and only if there is an even length walk between them in G.
Indeed, suppose that there is an even length walk u,w1,w2,w3, . . . ,w2k+1,v in G. Then
N(w1) contains both u and w2, N(w3) contains both w2 and w4 , etc., and N(w2k+1),
contains w2k and v. Hence u and v are in the same connected component of GS and
thus the same component of S. Now, suppose that u and v are in the same component
of S. Then there is a path P=u,w2,w4,w6, . . . ,w2k,v from u to v in GS . This means
that there is a sequence of vertices P′ =u,w1,w2,w3,w4,w5,w6, . . . ,w2k,w2k+1,v such
that N(w1) contains both u and w2, N(w3) contains both w2 and w4, etc., and N(w2k+1),
contains w2k and v. But then P′ is an even length walk from u to v in G.

We prove that there is an even length walk between two vertices u and v in G if and
only if they either appear in the same connected non-bipartite component of G or if they
appear in the same bipartition class of a bipartite connected component of G. If there
is an even length walk between two vertices u and v in G, then u and v must appear
in the same connected component of G. Furthermore, if this component is bipartite,
u and v must appear in the same bipartition class. In the other direction, if u and v
appear in the same bipartition class of a bipartite component of G, any path between
u and v forms an even walk. If u and v appear in a non-bipartite component of G, this
component must contain an odd length cycle C. Let W1 be a walk from u to v that
passes through a vertex x in C. Construct the walk W2 from W1 by walking around C
upon the first visit to x. Since C is an odd cycle at least one of W1 and W2 must be an
even walk from u to v. This concludes the proof. �

The following observation is folklore.

Observation 6. Every connected bipartite cograph is a complete bipartite graph.

Proof. Let G = (V1 ∪ V2,E) be a bipartite connected cograph. Then G is
complete because otherwise its complement G is connected, which is a contradiction
to Proposition 1. �

We say that a component Vi of S is normal if every set in Si is a proper subset
of Vi and |Si|=|Vi|. For positive integers a and b we say that a component Vi is an
(a,b)-component if |Vi|=a, |Si|=b and for every set S∈Si we have that S=Vi.

Lemma 7. There is a cograph G with OpenStars(G)=S if and only if all of the
following conditions are satisfied:

• Every component of S is either a normal component or an (a,b)-component for
some positive integers a, b.

• For every normal component Vi of S there is a cograph Gi with OpenStars(Gi)=Si.
• For every pair of integers a, b with a �=b and b �=0, the number of (a,b)-components

is equal to the number of (b,a)-components.
• For every integer a the number of (a,a)-components is even.
• The number of empty sets in S is equal to the number of isolated vertices of GS

not contained in any set in S.

Proof. Suppose that there is a cograph G with OpenStars(G)=S. By Lemma 5,
for each i, either G[Vi] is a non-bipartite connected component of G or there is j such
that Vi and Vj are bipartition classes of a bipartite connected component G[Vi ∪Vj]
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of G. Thus, for every component G[C] of G, either C=Vi for some i or C=Vi ∪Vj for
some i, j.

Let us consider first the case when C=Vi, and thus G[C] is not bipartite. Then for
every set S in Si there is v∈C=Vi such that S=N(v). Since N(v)⊂Vi for every v∈Vi,
it follows that Vi is a normal component of S and that OpenStars(G[C])=Si.

Similarly, when G[C] is bipartite, then C=Vi ∪Vj for some i, j. Furthermore, by
Observation 6, G[C] is a complete bipartite graph. Thus, for every u∈Vi, N(u)=Vj
whereas for every v∈Vj, N(v)=Vi. Hence Vi is a (|Vi|, |Vj|)-component and Vj is a
(|Vj|, |Vi|)-component. Since every vertex of G is in some connected component of G, we
have that every component of S is either a normal component or an (a,b)-component.

Finally, every bipartite component of G with bipartition (Vi,Vj) forms exactly two
components of S: (|Vj|, |Vi|)-component and (|Vi|, |Vj|)-component. Thus for every pair
of integers a, b with a �=b the number of (a,b)-components is equal to the number of
(b,a)-components, and for every integer a the number of (a,a)-components is even.
Every isolated vertex v of G is also isolated in GS . Furthermore, N(v)=∅ and for every
non-isolated vertex u, we have that N(u) �=∅.

In the other direction, suppose that every component of S is either a normal compo-
nent, or an (a,b)-component, for every normal component Vi of S there is a cograph
Gi with OpenStars(Gi)=Si, the number of (a,b)-components is equal to the number of
(b,a)-components, the number of (a,a)-components is even, and the number of empty
sets in S is equal to the number of isolated vertices of GS not contained in any set in S.

We construct the graph G as follows. For every normal component Vi, G has Gi as
a connected component. Then we match every (a,b)-component Vi with some (b,a)-
component Vj. Since the number of (a,b)-components is equal to the number of (b,a)-
components and the number of (a,a)-components is even, we can find such a matching.
For each pair i, j, the graph G[Vi ∪Vj] is a complete bipartite graph. For every empty
set in S, we create an isolated vertex of G.

Finally, it follows from the construction that OpenStars(G)=S. �

We now have the required toolkit to give an algorithm for the P4-free Star System
problem.

Theorem 8. There is an O(n4) algorithm for the P4-free Star System problem.

Proof. If S is a system with a single set on a single element we can safely answer
“Yes”. Now, if S has more than one component, we apply Observation 6 to run the
algorithm recursively on each Si separately. If S has one component, we count the
number of components of S. If S has one component, the algorithm answers “No”.
This step is correct because if there is a cograph G with Stars(G)=S, and equivalently
OpenStars(G)=S, then by Observation 6, G is connected and by Lemma 5, we conclude
that G is connected, contradicting Proposition 1. If on the other hand, S has more than
one component, we apply Lemma 4 and check whether there is a cograph G′ such
that OpenStars(G′)=S by using Lemma 7. To do this we need to verify that for every
normal component Vi of S there is a cograph G′

i such that OpenStars(G′
i)=S i. This can

be done by running the algorithm StarSystem recursively on Si =S i. The correctness
follows immediately from Lemmas 3 and 7 together with Proposition 1.

We show that this algorithm terminates in O(n4) time. Building GS and GS and
finding the components of S and S can be done in O(n3) time. Except for the recursive
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steps, checking the conditions of Lemma 7 can be done in O(n3) time as well. The
number of nodes in the recursion tree is O(n). Thus, the total amount of work is
bounded by O(n4). �

B. Forbidding C3 and C4

In this subsection we show that the C3-free and C4-free Star System Problems are
solvable in polynomial time.

Theorem 9. The C3-free Star System problem is solvable in O(n3) time.

Proof. Let S be a set system on a ground set V . The crucial observation is that if
S is a star system of a C3-free graph G= (V ,E), then for every edge uv∈E there are
exactly two sets containing u and v. In fact, since uv∈E, we have that u and v should
be in at least two stars, one of which is centered in u and one centered in v. Let Su and
Sv be these stars. If there is a third star S containing u and v, then the center of this star,
x �=u,v is adjacent to u and v, and thus xuv forms a C3 in G, which is a contradiction.

Let us assume that the system S is connected, i.e. for every two elements u and v
there is a sequence of elements u=u1,u2, . . . ,uk =v such that for every i∈{1, . . . ,k−1}
there is a set S∈S containing ui and ui+1. (If S is not connected, then we apply our
arguments for each connected component of S.)

Assume that we have correctly guessed the star Sv ∈S of a vertex v in some C3-free
graph G with Stars(G)=S. Then each x∈Sv, x �=v, is adjacent to v in G. Thus there is
a unique star Sx �=Sv containing both v and x, and vertex x should be the center of Sx.
Now every vertex y from Sx should have a unique star containing x and y, and so on.
Since S is connected, we thus have that after guessing the star for the first vertex v we
can uniquely assign stars to the remaining vertices. There are at most n guesses to be
made for the first vertex and we can in O(n2) time check the correctness of the guess,
i.e. check if the star system of the constructed graph corresponds to S. This proves the
theorem. �

Theorem 10. The C4-free Star System Problem is solvable in O(n4) time.

Proof. The proof is based on the following observation. Let G= (V ,E) be a C4-free
graph and let x,y∈V . Let S1,S2, . . . ,St be the set of stars of G containing both x and y.
If xy∈E, then

2≤
∣
∣
∣
∣

t⋂

i=1
Si

∣
∣
∣
∣≤ t. (1)

Indeed, when xy∈E, x and y have t−2 common neighbors. Every vertex v∈⋂t
i=1 Si \

{x,y} is adjacent to x and y, thus v is the center of the star Si for some i∈{1, . . . , t} and
(1) follows.

If xy �∈E, then

t=0 or

∣
∣
∣
∣

t⋂

i=1
Si

∣
∣
∣
∣≥ t+2. (2)

In fact, if xy �∈E and t>0, then x and y have t neighbors in common. Moreover,
because G is C4-free, these neighbors form a clique in G. Thus

⋂t
i=1 Si contains all

these t vertices plus the vertices x and y which yields (2).
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Given a set system S on ground set V , the algorithm checking if S is a star system
of some C4-free graph works as follows. We already have shown that if S is a star
system of some C4-free graph G, then every pair of adjacent vertices x,y of G should
satisfy (1), and for every pair of non-adjacent vertices x,y, (2) holds. Thus if S is a star
system of some C4-free graph, it should also be the star system of the C4-free graph
G= (V ,E) constructed by taking xy∈E when the sets of S containing both x and y
satisfy (1) and by taking xy �∈E when the sets of S containing both x and y satisfy (2).
Thus if we fail to construct such a graph G, we conclude that S is not a star system
of a C4-free graph. For constructed graph G, we check if Stars(G)=S and that G is
C4-free. If this is the case, then the answer is “Yes”. Otherwise the answer is “No”.

The running time of the algorithm is proportional to the time required to construct
graph G by making use of (1) and to check if Stars(G)=S and that G is C4-free. All
these operations can be done in time O(n4). �

4. FORBIDDING LONG PATHS AND CYCLES

In this section we show that there exists an infinite family of graphs H for which the
H-free Star System problem is NP-complete. In particular both Pk and Ck, with k>4,
belong to it.

Definition 11. For an arbitrary graph H, we define B(H) to be its bipartite neighbor-
hood graph, i.e. the bipartite graph with both bipartition classes having |V(H)| vertices
labelled by V(H) and having an edge between a vertex labelled u in one bipartition
class and a vertex labelled v in the other one if and only if uv∈E(H).

For example, for the cycle on 5 vertices C5, we have C5 =C5 and B(C5)=C10 (see
Fig. 1). Our main NP-completeness result is that the H-free Star System problem is
NP-complete whenever B(H) has a cycle or two vertices of degree larger than two
in the same connected component. For a bipartite graph G= (V ,E) with bipartition
classes V1,V2 we say that an automorphism f :V →V is side-switching if f (V1)=V2
and f (V2)=V1. Consider the following two problems.

AUT-BIP-2SS
Input: A bipartite graph G
Question: Does G have an automorphism of order 2 that is side-switching?

AUT-BIP-2SS-NA
Input: A bipartite graph G
Question: Does G have an automorphism of order 2 that is side-switching and such
that every vertex is non-adjacent to its image?

Lalonde [11] has shown that the AUT-BIP-2SS problem is NP-complete. Together
with Sabidussi he also reduced AUT-BIP-2SS to AUT-BIP-2SS-NA. The proof of our
main NP-completeness result is a (nontrivial) refinement of the reduction of Lalonde-
Sabidussi, which will ensure that AUT-BIP-2SS-NA remains NP-complete for various
restricted classes of bipartite graphs.

To relate NP completeness of AUT-BIP-2SS-NA to the Star System Problem, we
use the following lemma.
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FIGURE 1. Example of bipartite neighborhood graphs for the complement of a
C5, that remains a C5, and the complement of a P5, that is equivalent to a house.

Lemma 12. If AUT-BIP-2SS-NA is NP-complete on bipartite B(H)-free graphs, then
the H-free Star System Problem is NP-complete.

Proof. We reduce the first problem, which takes as input a bipartite B(H)-free
graph F, to the second one, which takes as input a set system S. We may assume
that the two partition classes of F are of equal size, since otherwise an automorphism
switching the two sides cannot exist. Let the vertices of one partition class of F
be V1 ={v1,v2, . . . ,vn} and of the other one V2 ={w1,w2, . . . ,wn}. We construct a set
system S={S1,S2, . . . ,Sn} over V2 where Si ={wj :viwj �∈E(F)}, i.e. the non-neighbors
of vi in V2.

As already noted by Babai [3], it is not hard to see that F is a Yes-instance of AUT-
BIP-2SS-NA iff there exists a graph G with Stars(G)=S. Let us give the argument.

First, assume a graph G on the vertex set V2 satisfies Stars(G)=S. Let g :
{1,2, . . . ,n}→{1,2, . . . ,n} be a mapping such that wg(i) is the center of the star Si,
i.e. Si =NG[wg(i)]. Clearly, g is a permutation of {1,2, . . . ,n}. We define a mapping
f :V(F)→V(F) as follows

f (vi) = wg(i) for vi ∈V1,

f (wj) = vg−1(j) for wj ∈V2.

It is obvious that f is a side-switching bijection of order 2. Since wg(i) ∈Si for every i,
each vertex is mapped onto a non-adjacent one. It remains to show that f is an auto-
morphism of F. To see this we only need to check pairs viwj since F is bipartite. For
such a pair we see that viwj ∈E(F) iff wj �∈Si iff wj �∈NG[wg(i)] iff wjwg(i) �∈E(G) iff
wg(i) �∈NG[wj] iff wg(i) �∈Sg−1(j) iff wg(i)vg−1(j) ∈E(F) iff f (vi)f (wj)∈E(F).

Secondly, assume that f :V1 ∪V2 →V1 ∪V2 is a side-switching automorphism of F of
order 2 such that xf (x) �∈E(F) for all x∈V(F). Construct the graph G on the vertex set
V2 by making wf (i) adjacent to all vertices of Si (except itself), for i=1,2, . . . ,n. Since
f maps every vertex on a nonadjacent one, we have wf (i) ∈Si and hence Si ⊆NG[wf (i)].
We could only have Si �=NG[wf (i)] if there is a wf (j) such that wf (i) ∈Sj and wf (j) �∈Si.
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But since f is an order 2 automorphism, wf (i)vj �∈E(F) (which is equivalent to wf (i) ∈Sj)
implies viwf (j) �∈E(F) and indeed wf (j) ∈Si, a contradiction. Thus Si =NG[wf (i)] for every
i=1,2, . . . ,n and S=Stars(G).

It remains to show that if F is B(H)-free and Stars(G)=S, then G must be H-free.
Suppose for the contrary that G[{wj : j∈ I}]∼=H for some I ⊆{1,2, . . . ,n}. Let wj be
the center of Sf (j). Then vf (i)wi �∈E(F) for all i∈ I and vf (i)wj ∈E(F) iff wj �∈Sf (i) iff
wjwi �∈E(G) for all i, j∈ I. Thus F[{wi,vf (i) : i∈ I}]∼=B(H), a contradiction. �

Definition 13. Let Dp be the class of bipartite graphs of girth larger than p such that
the distance of any two vertices of degree greater than two is at least p.

Theorem 14. For any integer p the problem AUT-BIP-2SS-NA is NP-complete even
when restricted to graphs in Dp.

Proof. We reduce from the NP-complete AUT-BIP-2SS problem and adapt the
construction given by Lalonde and Sabidussi [11] for our purposes.

Given a bipartite graph G= (V ,E) with bipartition classes A and B we describe how
to construct F∈Dp with the property that G is a yes-instance of AUT-BIP-2SS if and
only if F is a yes-instance of AUT-BIP-2SS-NA. Note first that we can assume G has
no vertex v of degree 1 since if we remove each such v (simultaneously) and add a
cycle of length 2k, where k is greater than the maximum cycle length in G, attached
to the unique neighbor of v, then G has a side-switching automorphism of order 2 if
and only if the new graph has one.

Let p′ be the smallest even integer at least as large as p. Let F be the graph obtained
by replacing each edge of G by two paths of length p′+1. Note that the inner vertices
of these paths are then the only vertices of degree 2 in F. Moreover, we have F∈Dp
and the two bipartition classes of F respect A and B.

If f :V(G)→V(G) is an order-two side-switching automorphism of G, then define
g :V(F)→V(F) as follows:

• g(v)= f (v) for every v∈A∪B,
• for the newly added vertices of degree 2, let u,uv1

1,uv1
2, . . . ,uv1

p′ ,v and

u,uv2
1,uv2

2, . . . ,uv2
p′ ,v be the two paths joining u and v, and let x,xy1

1,xy1
2, . . . ,xy1

p′ ,y

and x,xy2
1,xy2

2, . . . ,xy2
p′ ,y be the two paths joining x= f (v) and y= f (u). Then set

g(uvi
j)=xy3−i

p′+1−j for i=1,2 and j=1,2, . . . ,p′.

It is straightforward to see that g is an order-two side-switching automorphism.
The only place where ug(u) might be an edge would be in the middle of a path
u,uv1

1,uv1
2, . . . ,uv1

p′ ,v when f (u)=v, but note that the vertices of one path are mapped
onto vertices of the other one and xg(x) �∈E(F) is fulfilled.

On the other hand, suppose g :V(F)→V(F) is an order-two side-switching auto-
morphism of F. Since the original vertices of G have degrees greater than 2 in F,
the restriction of g to V(G) is a correctly defined mapping g :V(G)→V(G). Since the
paths of length p′+1 uniquely correspond to edges of G, this restriction of g is an
automorphism of G. It is obviously of order 2, and since the sides of F respect the sides
of G, it is side-switching. (Note that we even did not need to assume that ug(u) �∈E(F)
for this implication.) �
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Definition 15. Let H be a graph. We define a function f (H) from graphs to integers
and infinity. If B(H) is acyclic with no connected component having two vertices of
degree larger than two then we set f (H)=∞. Otherwise, let f (H) be the smallest of
(i) the length of the smallest induced cycle of B(H), and (ii) the length of the shortest
path between any two vertices of degree larger than two in B(H).

For example, for the cycle on 5 vertices C5, we have B(C5)=C10 and thus f (C5)=10.
Note that if f (H) �=∞ then Df (H) is contained in the class of bipartite B(H)-free graphs.
We therefore have the following Corollary of Lemma 12 and Theorem 14.

Corollary 16. The H-free Star System Problem is NP-complete whenever f (H) �=∞.
Moreover, if F is a set of graphs for which there exists an integer p such that for
any H ∈F we have f (H)≤p, then the F-free Star System Problem (i.e. deciding on an
input S if there is a graph having no induced subgraph isomorphic to any graph in F )
is NP-complete.

Since B(Ck) contains a cycle for any k≥5 we have the corollary.

Corollary 17. For any k≥5, the Ck-free Star System problem is NP-complete.

Similarly, B(Pk) is connected and contains at least 2 vertices of degree greater or
equal to 3 for any k≥5. Hence we also have the following corollary.

Corollary 18. For any k≥5, the Pk-free Star System problem is NP-complete.

5. CLOSING REMARKS

In this article we obtained a complete dichotomy for the H-free Star System
problem when the forbidden graph H is either a path or a cycle. Moreover, our
NP-completeness result holds for H taken from a much larger family of graphs,
and thus the remaining cases in which the problem might not be NP-complete are
very restricted. It is tempting to ask if the H-free Star System problem has a P vs
NP-completeness dichotomy in general, i.e. whether for any graph H the H-free Star
System problem is either polynomial-time solvable or NP-complete (and thus presum-
ably not Graph Isomorphism-complete). See [5, 10] for a discussion of such dichotomy
results.

A closely related question is on the complexity of the Star System problem restricted
to graph classes defined by several forbidden-induced subgraphs as in Corollary 16.
By the result of Aigner and Triesch [1, 2] (see also [4]), we do not have dichotomy
in general, as there are classes of graphs defined by an infinite set of forbidden-
induced subgraphs (like forbidding the complements of odd cycles) such that the Star
System problem is Graph Isomorphism complete on these classes. However, we do not
know whether there is a graph class characterized by a finite set of forbidden induced
subgraphs such that the Star System problem on this class is Graph Isomorphism
complete, or if instead dichotomy may hold in this case.

And finally, two concrete questions: What is the complexity of the H-free Star
System problem for H =K4 and for H =K4 −e?
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