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A tournament T = (V , A) is a directed graph in which there is exactly one arc between
every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k,
the Feedback Arc Set problem asks whether the given digraph has a set of k arcs
whose removal results in an acyclic digraph. The Feedback Arc Set problem restricted to
tournaments is known as the k-Feedback Arc Set in Tournaments (k-FAST) problem. In
this paper we obtain a linear vertex kernel for k-FAST. That is, we give a polynomial time
algorithm which given an input instance T to k-FAST obtains an equivalent instance T ′ on
O (k) vertices. In fact, given any fixed ε > 0, the kernelized instance has at most (2 + ε)k
vertices. Our result improves the previous known bound of O (k2) on the kernel size for
k-FAST. Our kernelization algorithm solves the problem on a subclass of tournaments in
polynomial time and uses a known polynomial time approximation scheme for k-FAST.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Given a directed graph G = (V , A) on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether
the given digraph has a set of k arcs whose removal results in an acyclic directed graph. In this paper, we consider this
problem in a special class of directed graphs, tournaments. A tournament T = (V , A) is a directed graph in which there is
exactly one directed arc between every pair of vertices. More formally the problem we consider is defined as follows.

k-Feedback Arc Set in Tournaments (k-FAST): Given a tournament T = (V , A) and a positive integer k, does there exist
a subset F ⊆ A of at most k arcs whose removal makes T acyclic.

In the weighted version of k-FAST, we are also given integer weights (each weight is at least one) on the arcs and
the objective is to find a feedback arc set of weight at most k. This problem is called k-Weighted Feedback Arc Set in

Tournaments (k-WFAST).
Feedback arc sets in tournaments are well studied from the combinatorial [20,22,29,30,33,37], statistical [31] and algo-

rithmic [2,3,14,26,35,36] points of view. The problems k-FAST and k-WFAST have several applications. In rank aggregation we
are given several rankings of a set of objects, and we wish to produce a single ranking that on average is as consistent as
possible with the given ones, according to some chosen measure of consistency. This problem has been studied in the con-
text of voting [8,11,13], machine learning [12], and search engine ranking [18,19]. A natural consistency measure for rank
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aggregation is the number of pairs that occur in a different order in the two rankings. This leads to Kemeny rank aggregation
[24,25], a special case of k-WFAST.

The k-FAST problem is known to be NP-complete by recent results of Alon [3] and Charbit et al. [10] while k-WFAST
is known to be NP-complete by Bartholdi III et al. [5]. From an approximation perspective, k-WFAST is APX-hard [32] but
admits a polynomial time approximation scheme when the edge weights are bounded by a constant [26]. The problem is
also well studied in parameterized complexity. In this area, a problem with input size n and a parameter k is said to be
fixed parameter tractable (FPT) if there exists an algorithm to solve this problem in time f (k) ·nO (1) , where f is an arbitrary
function of k. Raman and Saurabh [28] showed that k-FAST and k-WFAST are FPT by obtaining an algorithm running in
time O (2.415k · k4.752 + nO (1)). Recently, Alon et al. [4] have improved this result by giving an algorithm for k-WFAST
running in time O (2O (

√
k log2 k) + nO (1)). This algorithm runs in sub-exponential time, a trait uncommon to parameterized

algorithms. Moreover, a new algorithm due to Karpinsky and Schudy [23] with running time O (2O (
√

k) + nO (1)) improves
again the complexity of k-WFAST. Finally, Fomin et al. [21] provided a sub-exponential local search algorithm for k-WFAST.
In this paper we investigate k-FAST from the view point of kernelization, currently one of the most active subfields of
parameterized algorithms.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial (in n) time algorithm, called a
kernelization algorithm, that reduces the input instance to an instance whose size is bounded by a polynomial p(k) in k,
while preserving the answer. This reduced instance is called a p(k) kernel for the problem. When p(k) is a linear function
of k then the corresponding kernel is a linear kernel. Kernelization has been at the forefront of research in parameterized
complexity in the last couple of years, leading to various new polynomial kernels as well as tools to show that several
problems do not have a polynomial kernel under some complexity-theoretic assumptions [6,7,9,15,17,34]. In this paper we
continue the current theme of research on kernelization and obtain a linear vertex kernel for k-FAST. That is, we give a
polynomial time algorithm which given an input instance T to k-FAST obtains an equivalent instance T ′ on O (k) vertices.
More precisely, given any fixed ε > 0, we find a kernel with a most (2 + ε)k vertices in polynomial time. The reason we call
it a linear vertex kernel is that, even though the number of vertices in the reduced instance is at most O (k), the number
of arcs is still O (k2). Our result improves the previous known bound of O (k2) on the vertex kernel size for k-FAST [4,16].
For our kernelization algorithm we find a subclass of tournaments where one can find a minimum sized feedback arc set in
polynomial time (see Lemma 3.8) and use the known polynomial time approximation scheme for k-FAST by Kenyon-Mathieu
and Schudy [26]. The polynomial time algorithm for a subclass of tournaments could be of independent interest.

The paper is organized as follows. In Section 2, we give some definition and preliminary results regarding feedback arc
sets. In Section 3 we give a linear vertex kernel for k-FAST. Finally we conclude with some remarks in Section 4.

2. Preliminaries

Let T = (V , A) be a tournament on n vertices. We use Tσ = (Vσ , A) to denote a tournament whose vertices are ordered
under a fixed ordering σ = v1, . . . , vn (we also use Dσ for an ordered directed graph). We say that an arc vi v j of Tσ is
a backward arc if i > j, otherwise we call it a forward arc. Moreover, given any partition P := {V 1, . . . , Vl} of Vσ , where
every V i is an interval according to the ordering of Tσ , we use AB to denote all arcs between the intervals (having their
endpoints in different intervals), and AI for all arcs within the intervals. If Tσ contains no backward arc, then we say that
it is transitive.

For a vertex v ∈ V we denote its in-neighborhood by N−(v) := {u ∈ V | uv ∈ A} and its out-neighborhood by N+(v) :=
{u ∈ V | vu ∈ A}. A set of vertices M ⊆ V is a module if and only if N+(u) \ M = N+(v) \ M for every u, v ∈ M . For a subset
of arcs A′ ⊆ A, we define T [A′] to be the digraph (V ′, A′) where V ′ is the union of endpoints of the arcs in A′ . Given an
ordered digraph Dσ and an arc e = vi v j , S(e) = {vi, . . . , v j} denotes the span of e. The number of vertices in S(e) is called
the length of e and is denoted by l(e). Thus, for every arc e = vi v j , l(e) = |i − j| + 1. Finally, for every vertex v in the span
of e, we say that e is above v .

In this paper, we will use the well-known fact that every acyclic tournament admits a transitive ordering. In particular,
we will consider maximal transitive modules. We also need the following result for our kernelization algorithm.

Lemma 2.1. (See [28].) Let D = (V , A) be a directed graph and F be a minimal feedback arc set of D. Let D ′ be the graph obtained
from D by reversing the arcs of F in D, then D ′ is acyclic.

We now introduce a definition which is useful for a lemma we prove later.

Definition 2.2. Let Dσ = (Vσ , A) be an ordered directed graph and let f = vu be a backward arc of Dσ . We call certificate
of f , and denote it by c( f ), any directed path from u to v using only forward arcs in the span of f in Dσ .

Observe that such a directed path together with the backward arc f forms a directed cycle in Dσ whose only backward
arc is f .

Definition 2.3. Let Dσ = (Vσ , A) be an ordered directed graph, and let F ⊆ A be a set of backward arcs of Dσ . We say that
we can certify F whenever it is possible to find a set F = {c( f ): f ∈ F } of arc-disjoint certificates for the arcs in F .
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Let Dσ = (Vσ , A) be an ordered directed graph, and let F ⊆ A be a subset of backward arcs of Dσ . We say that we can
certify the set F using only arcs from A′ ⊆ A if F can be certified by a collection F such that the union of the arcs of the
certificates in F is contained in A′ . In the following, fas(D) denotes the size of a minimum feedback arc set, that is, the
cardinality of a minimum sized set F of arcs whose removal makes D acyclic.

Lemma 2.4. Let Dσ be an ordered directed graph, and let P = {V 1, . . . , Vl} be a partition of Dσ into intervals. Assume that the set F
of all backward arcs of Dσ [AB ] can be certified using only arcs from AB . Then fas(Dσ ) = fas(Dσ [AI ])+ fas(Dσ [AB ]). Moreover, there
exists a minimum sized feedback arc set of Dσ containing F .

Proof. For any bipartition of the arc set A into A1 and A2, fas(Dσ ) � fas(Dσ [A1]) + fas(Dσ [A2]). Hence, in particular for a
partition of the arc set A into AI and AB we have that fas(Dσ ) � fas(Dσ [AI ]) + fas(Dσ [AB ]). Next, we show that fas(Dσ ) �
fas(Dσ [AI ]) + fas(Dσ [AB ]). This follows from the fact that once we reverse all the arcs in F , each remaining directed cycle
lies in Dσ [V i] for some i ∈ {1, . . . , l}. In other words once we reverse all the arcs in F , every cycle is completely contained
in Dσ [AI ]. This concludes the proof of the first part of the lemma. In fact, what we have shown is that there exists a
minimum sized feedback arc set of Dσ containing F . This concludes the proof of the lemma. �
3. Kernels for k-FAST

In this section we first give a subquadratic vertex kernel of size O (k
√

k) for k-FAST and then improve on it to get our
final vertex kernel of size O (k). We start by giving a few reduction rules that will be needed to bound the size of the
kernels.

Rule 3.1. If a vertex v is not contained in any triangle, delete v from T .

Rule 3.2. If there exists an arc uv that belongs to more than k distinct triangles, then reverse uv and decrease k by 1.

We say that a reduction rule is sound, if whenever the rule is applied to an instance (T ,k) to obtain an instance (T ′,k′),
T has a feedback arc set of size at most k if and only if T ′ has a feedback arc set of size at most k′ . Moreover, applying a
reduction rule in polynomial time means that the structure sought by the reduction rule can be identified in polynomial
time and the instance can be updated in polynomial time. Finally, we say that an instance (T ,k) is reduced according to a
set of reduction rules whenever none of the reduction rules can be applied to (T ,k).

Lemma 3.1. (See [4,16].) Rules 3.1 and 3.2 are sound and can be applied in polynomial time.

Rules 3.1 and 3.2 together led to a quadratic kernel for k-WFAST [4]. Earlier, these rules were used by Dom et al. [16] to
obtain a quadratic kernel for k-FAST. We now add a new reduction rule that will allow us to obtain the claimed bound on
the kernel sizes for k-FAST. Given an ordered tournament Tσ = (Vσ , A), we say that P = {V 1, . . . , Vl} is a safe partition of
Vσ into intervals whenever it is possible to certify the backward arcs of Tσ [AB ] using only arcs from AB .

Rule 3.3. Let Tσ be an ordered tournament, and P = {V 1, . . . , Vl} be a safe partition of Vσ into intervals such that F �= ∅,
where F denotes the set of backward arcs of Tσ [AB ]. Then reverse all the arcs of F and decrease k by |F |.

Lemma 3.2. Rule 3.3 is sound.

Proof. Let P be a safe partition of Tσ . Observe that it is possible to certify all the backward arcs, that is F , using only arcs
in AB . Hence using Lemma 2.4 we have that fas(Tσ ) = fas(Tσ [AI ])+ fas(Tσ [AB ]). Furthermore, by Lemma 2.4 we also know
that there exists a minimum sized feedback arc set of Dσ containing F . Thus, Tσ has a feedback arc set of size at most k
if and only if the tournament T ′

σ obtained from Tσ by reversing all the arcs of F has a feedback arc set of size at most
k − |F |. �
3.1. A subquadratic kernel for k-FAST

In this section, we show how to obtain an O (k
√

k) sized vertex kernel for k-FAST. To do so, we introduce the following
reduction rule (see Fig. 1).

Rule 3.4. Let Tm be a maximal transitive module of size p, and I and O be the set of in-neighbors and out-neighbors of the
vertices of Tm in T , respectively. Let Z be the set of arcs uv such that u ∈ O and v ∈ I . If q = |Z | < p then reverse all the
arcs in Z and decrease k by q.



1074 S. Bessy et al. / Journal of Computer and System Sciences 77 (2011) 1071–1078
Fig. 1. A transitive module on which Rule 3.4 applies.

Lemma 3.3. Rule 3.4 is sound and can be applied in O (n + m) time.

Proof. We first prove that the partition P = {I, Tm, O } forms a safe partition of the input tournament. Let T ′
m =

{w1, . . . , wq} ⊆ Tm be an arbitrary subset of size q of Tm and let Z = {ui vi | 1 � i � q}. Consider the collection F = {vi wiui |
ui vi ∈ Z , wi ∈ T ′

m} and notice that it certifies all the arcs in Z . In fact we have managed to certify all the backwards arcs
of the partition using only arcs from AB and hence P forms a safe partition. Thus, by Rule 3.3, it is safe to reverse all the
arcs from O to I .

The time complexity follows from the fact that computing the modular decomposition tree can be done in O (n+m) time
on directed graphs [27]. It is well known that the modular decomposition tree of a tournament has nodes labelled either
prime or transitive and that each maximal transitive module corresponds to the set of leaves attached to some transitive
node of the modular decomposition tree. �

We show that any Yes-instance to which none of Rules 3.1, 3.2 and 3.4 could be applied has at most O (k
√

k) vertices.

Theorem 3.4. Let (T = (V , A),k) be a Yes-instance to k-FAST which has been reduced according to Rules 3.1, 3.2 and 3.4. Then T has
at most O (k

√
k) vertices.

Proof. Let S be a feedback arc set of size at most k of T and let T ′ be the tournament obtained from T by reversing all
the arcs in S . Let σ be the transitive ordering of T ′ and Tσ = (Vσ , A) be the ordered tournament corresponding to the
ordering σ . We say that a vertex is affected if it is incident to some arc in S . Thus, the number of affected vertices is
at most 2|S| � 2k. The reduction Rule 3.1 ensures that the first and last vertex of Tσ are affected. To see this note that
if the first vertex in Vσ is not affected then it is a source vertex (vertex with in-degree 0) and hence it is not part of
any triangle and thus Rule 3.1 would have applied. We can similarly argue for the last vertex. Next we argue that there
is no backward arc e of length greater than 2k + 2 in Tσ . Assume to the contrary that e = uv is a backward arc with
S(e) = {v, x1, x2, . . . , x2k+1, . . . , u} and hence l(e) > 2k + 2. Consider the collection T = {vxiu | 1 � i � 2k} and observe that
at most k of these triples can contain an arc from S \{e} and hence there exist at least k +1 triplets in T which corresponds
to distinct triangles all containing e. But then e would have been reversed by an application of Rule 3.2. Hence, we have
shown that there is no backward arc e of length greater than 2k + 2 in Tσ . Thus

∑
e∈S l(e) � 2k2 + 2k.

We also know that between two consecutive affected vertices there is exactly one maximal transitive module. Let us
denote by ti the number of vertices in these modules, where i ∈ {1, . . . ,2k − 1}. The objective here is to bound the number
of vertices in Vσ or V using

∑2k−1
i=1 ti . To do so, observe that since T is reduced under Rule 3.4, there are at least ti backward

arcs above every module with ti vertices, each of length at least ti . This implies that
∑2k−1

i=1 t2
i �

∑
e∈S l(e) � 2k2 + 2k. Now,

using the Cauchy–Schwarz inequality we can show the following:

2k−1∑
i=1

ti =
2k−1∑
i=1

ti · 1 �

√√√√2k−1∑
i=1

t2
i ·

2k−1∑
i=1

1 �
√(

2k2 + 2k
) · (2k − 1) =

√
4k3 + 2k2 − 2k.

Thus every reduced Yes-instance has at most
√

4k3 + 2k2 − 2k + 2k = O (k
√

k) vertices. �
3.2. A linear kernel for k-FAST

We begin this subsection by showing some general properties about tournaments which will be useful in obtaining a
linear kernel for k-FAST.

3.2.1. Backward weighted tournaments
Let Tσ be an ordered tournament with weights on its backward arcs. We call such a tournament a backward weighted

tournament and denote it by Tω , and use ω(e) to denote the weight of a backward arc e. For every interval I := [vi, . . . , v j]
we use ω(I) to denote the total weight of all backward arcs having both their endpoints in I , that is, ω(I) = ∑

e=uv w(e)
where u, v ∈ I and e is a backward arc.
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Fig. 2. Illustration of the contraction step for the interval I := [vi , . . . , v j ].

Definition 3.5 (Contraction). Let Tω = (Vσ , A) be an ordered tournament with weights on its backward arcs and I =
[vi, . . . , v j] be an interval. The contracted tournament is defined as Tω′ = (Vσ ′ = Vσ \ {I} ∪ {cI }, A′). The arc set A′ is
defined as follows.

• It contains all the arcs A1 = {uv | uv ∈ A, u /∈ I, v /∈ I}.
• Add A2 = {ucI | uv ∈ A, u /∈ I, v ∈ I} and A3 = {cI v | uv ∈ A, u ∈ I, v /∈ I}.
• Finally, we remove every forward arc involved in a 2-cycle after the addition of arcs in the previous step.

The order σ ′ for Tω′ is provided by σ ′ = v1, . . . , vi−1, cI , v j+1, . . . , vn . We define the weight of a backward arc e = xy of A′
as follows:

w ′(xy) =
⎧⎨
⎩

w(xy) if xy ∈ A1,∑
{xz∈A|z∈I} w(xz) if xy ∈ A2,∑
{zy∈A|z∈I} w(zy) if xy ∈ A3.

We refer to Fig. 2 for an illustration.

Next we generalize the notions of certificate and certification (Definitions 2.2 and 2.3) to backward weighted tourna-
ments.

Definition 3.6. Let Tω = (Vσ , A) be a backward weighted tournament, and let f = vu ∈ A be a backward arc of Tω . We call
ω-certificate of f , and denote it by C( f ), a collection of ω( f ) arc-disjoint directed paths going from u to v and using only
forward arcs in the span of f in Tω .

Definition 3.7. Let Tω = (Vσ , A) be a backward weighted tournament, and let F ⊆ A be a subset of backward arcs of Tω .
We say that we can ω-certify F whenever it is possible to find a set F = {C( f ): f ∈ F } of arc-disjoint ω-certificates for the
arcs in F .

Lemma 3.8. Let Tω = (Vσ , A) be a backward weighted tournament such that for every interval I := [vi, . . . , v j] the following holds:

2 · ω(I) � |I| − 1. (1)

Then it is possible to ω-certify the backward arcs of Tω .

Proof. Let Vσ = v1, . . . , vn . The proof is by induction on n, the number of vertices. Note that by applying (1) to the interval
I = [v1, . . . , vn], we have that there exists a vertex vi in Tω that is not incident to any backward arc. Let T ′

ω = (V ′
σ , A′)

denote the tournament Tω \{vi}. We say that an interval I is critical whenever |I| � 2 and 2 ·ω(I) = |I|−1. We now consider
several cases, based on different types of critical intervals.

(i) Suppose that there are no critical intervals. Thus, in T ′
ω , every interval satisfies (1), and hence by induction on n the

result holds.
(ii) Suppose now that the only critical interval is I = [v1, . . . , vn], and let e = vu be a backward arc above vi with the

maximum length. Note that since vi does not belong to any backward arc, we can use it to form a directed path
c(e) = uvi v , which is a certificate for e. We now consider T ′

ω where the weight of e has been decreased by 1. In this
process if ω(e) becomes 0 then we reverse the arc e. We now show that every interval of T ′

ω respects (1). If an interval
I ′ ∈ T ′

ω does not contain vi in the corresponding interval in Tω , then by our assumption we have that 2 ·ω(I ′) � |I ′|−1.
Now we assume that the interval corresponding to I ′ in Tω contains vi but either u /∈ I ′ ∪ {vi} or v /∈ I ′ ∪ {vi}. Then we
have 2 · ω(I ′) = 2 · ω(I) < |I| − 1 = |I ′| and hence we get that 2 · ω(I ′) � |I ′| − 1. Finally, we assume that the interval
corresponding to I ′ in Tω contains vi and u, v ∈ I ′ ∪ {vi}. In this case, 2 · ω(I ′) = 2 · (ω(I) − 1) � |I| − 1 − 2 < |I ′| − 1.
Thus, by the induction hypothesis, we obtain a family of arc-disjoint ω-certificates F ′ which ω-certify the backward
arcs of T ′

ω . Observe that the maximality of l(e) ensures that if e is reversed then it will not be used in any ω-certificate
of F ′ , thus implying that F ′ ∪ c(e) is a family ω-certifying the backward arcs of Tω .

(iii) Finally, suppose that there exists a critical interval I � Vσ . Roughly speaking, we will show that I and Vσ \ I can be
certified separately. To do so, we first show the following.
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Claim 1. Let I ⊂ Vσ be a critical interval. Then the tournament Tω′ = (Vσ ′ , A′) obtained from Tω by contracting I satisfies the
conditions of the lemma.

Proof. Let H ′ be any interval of Tω′ . As before if H ′ does not contain cI then the result holds by hypothesis. Otherwise,
let H be the interval corresponding to H ′ in Tω . We will show that 2ω(H ′) � |H ′| − 1. By hypothesis, we know that
2ω(H) � |H| − 1 and that 2ω(I) = |I| − 1. Thus we have the following.

2ω
(

H ′) = 2 · (ω(H) − ω(I)
)
� |H| − 1 − |I| + 1 = (|H| + 1 − |I|) − 1 = ∣∣H ′∣∣ − 1.

Thus, we have shown that the tournament Tω′ satisfies the conditions of the lemma. �
We now consider a minimal critical interval I . By induction, and using the claim, we know that we can obtain a family
of arc-disjoint ω-certificates F ′ which ω-certifies the backward arcs of Tω′ without using any arc within I . Now, by
minimality of I , we can use (ii) to obtain a family of arc-disjoint ω-certificates F ′′ which ω-certifies the backward arcs
of I using only arcs within I . Thus, F ′ ∪ F ′′ is a family ω-certifying all backward arcs of Tω .

This concludes the proof of the lemma. �
In the following, any interval that does not respect condition (1) is said to be a dense interval.

Lemma 3.9. Let Tω = (Vσ , A) be a backward weighted tournament reduced under Rule 3.1 with |Vσ | � 2p + 1 and ω(Vσ ) � p.
Then there exists a safe partition of Vσ with at least one backward arc between the intervals and it can be computed in polynomial
time.

Proof. The proof is by induction on n = |Vσ |. Observe that by hypothesis every vertex of Tω belongs to the span of some
backward arc (since otherwise it would not be contained in any triangle). It follows that the statement is true for n = 3: in
such a case, Tω is a triangle with exactly one backward arc, and hence the partition into singletons is a safe partition. This
constitutes our base case.

For the inductive step, we assume first that there is no dense interval in Tω . In this case Lemma 3.8 ensures that the
partition of Vσ into singletons of vertices is a safe partition. So from now on we assume that there exists at least one dense
interval.

Let I be a dense interval. By definition of I , we have that ω(I) � 1
2 · |I|. We now contract I and obtain the backward

weighted tournament Tω′ = (Vσ ′ , A′). In the contracted tournament Tω′ , we have:
⎧⎨
⎩

|Vσ ′ | � 2p + 1 − (|I| − 1
) = 2p − |I| + 2;

ω′(Vσ ′) � p − 1

2
· |I|.

Thus, if we set r := p − 1
2 · |I|, we get that |Vσ ′ | � 2r + 1 and ω′(Vσ ′ ) � r. Since |Vσ ′ | < |Vσ |, by the induction hypothesis

we can find a safe partition P of Tω′ , and thus obtain a family Fω′ that ω-certifies the backward arcs of Tω′ [AB ] using only
arcs in AB . Observe that every vertex of Tω′ still belongs to the span of some backward arc, and hence it is safe to apply
our induction hypothesis.

We claim that P ′ obtained from P by substituting cI by its corresponding interval I is a safe partition in Tω . To see this,
first observe that if cI has not been used to ω-certify the backward arcs in Tω′ [AB ], that is, if cI is not an end point of any
arc in the ω-certificates, then we are done. So from now on we assume that cI has been part of an ω-certificate for some
backward arc. Let e = vu be such a backward arc in Tω′ [AB ], and let cω′ (e) ∈ Fω′ be a ω-certificate of e. First we assume
that cI is neither the first nor the last vertex of the certificate cω′(e) (with respect to ordering σ ′), and let c1 and c2 be the
left (in-) and right (out-) neighbors of cI in cω′(e). By definition of the contraction step together with the fact that there is
a forward arc between c1 and cI and between cI and c2 in Tω′ , we have that there were no backward arcs between any
vertex in the interval corresponding to cI and c1 and c2 in the original tournament Tω . So we can always find a vertex in I
to replace cI in cω′ (e), thus obtaining a certificate c(e) for e in Tω[AB ] (observe that e remains a backward arc even in Tω).
Now we assume that cI is either the first or last vertex in the certificate cω′ (e). Let e′ be an arc in Tω corresponding to e
in Tω′ with one of its endpoints being eI ∈ I . To certify e′ in Tω[AB ], we need to show that we can construct a certificate
c(e′) using only arcs of Tω[AB ]. We have two cases to deal with.

(i) If cI is the first vertex of cω′ (e), then let c1 be the right neighbor of cI for any directed path P between u = cI
and v in cω′ (e). Using the same argument as before, there are only forward arcs between any vertex in I and c1. In
particular, there is a forward arc eI c1 in Tω , meaning that we can construct a ω-certificate for e′ in Tω by setting
c(e′) := (cω′ (e) \ {cI }) ∪ {eI }. (See Fig. 3.)

(ii) If cI is the last vertex of cω′ (e), then let cq be the left neighbor of cI for any directed path P between u and v = cI in
cω′ (e). Once again, we have that there are only forward arcs between cq and vertices in I , and thus between cq and eI .
So using this we can construct a ω-certificate for e′ in Tω .
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Fig. 3. On the left, the ω-certificate cω′ (e) ∈ Fω′ . On the right, the corresponding ω-certificate obtained in Tω by replacing cI by the interval I .

Algorithm 1: Kernelization algorithm for the (2 + ε)k-vertex kernel of k-FAST.

Input: An instance T = ((V , A),k) of k-FAST, where k ∈ N, and a fixed ε > 0.
Output: An equivalent instance T ′ = ((V ′, A′),k′) with |V ′| � (2 + ε)k.

Reduce (T ,k) according to Rule 3.1;1
Compute a feedback arc set S using the (1 + ε

2 )-PTAS for k-FAST [26];2
if (|S| > (1 + ε

2 )k) then3
Return a small trivial No-instance;4

else5
Tσ ← the transitive ordering obtained by reversing every arc of S in T (observe that ω(Tσ ) � p := (1 + ε

2 )k);6
repeat7

if |Vσ | � 2p + 1 > (2 + ε)k then8
P ← the safe partition (with at least one backward arc between its intervals) obtained by Lemma 3.9;9
Tσ ← reverse all backward arcs between intervals of P in Tσ (Rule 3.3);10
k ← decrease the value of k accordingly;11
if (k � 0) then12

Reduce (Tσ ,k) according to Rule 3.1;13
if (Vσ = ∅) then14

Return a small trivial Yes-instance;15

until (k � 0) or (|Vσ | � (2 + ε)k);16
if (k � 0) then17

Return a small trivial No-instance;18

else19
Return Tσ ;20

Notice that the fact that all ω-certificates are pairwise arc-disjoint in Tω′ [AB ] implies that the corresponding ω-certificates
are arc-disjoint in Tω[AB ], and so P ′ is indeed a safe partition of Vσ . �

We are now ready to give the linear size kernel for k-FAST. To do so, we make use of the fact that there exists a
polynomial time approximation scheme for this problem [26]. The kernelization algorithm is depicted in Algorithm 1.

Theorem 3.10. For every fixed ε > 0, there exists a vertex kernel for k-FAST with at most (2 + ε)k vertices that can be computed in
polynomial time.

Proof. Let (T = (V , A),k) be an instance of k-FAST. First, we reduce (T ,k) according to Rule 3.1. Then, for a fixed ε > 0,
we compute a feedback arc set S using the known (1 + ε

2 )-polynomial time approximation scheme for k-FAST [26]. If
|S| > (1 + ε

2 )k, then there is no feedback arc set of size at most k for T . Hence we return a trivial small No-instance.
Otherwise, S has size at most (1 + ε

2 )k. We then order T with the transitive ordering of the tournament obtained by
reversing every arc of S in T . Let Tσ denote the resulting ordered tournament. By the upper bound on the size of S , we
know that Tσ has at most (1 + ε

2 )k backward arcs. Thus, if Tσ has more than (2 + ε)k vertices then Lemma 3.9 ensures that
we can find a safe partition with at least one backward arc between the intervals in polynomial time. Hence we can reduce
the tournament by applying Rule 3.3, decreasing the value of k accordingly. Finally, if k � 0, we reduce the tournament
according to Rule 3.1; notice that if we get V = ∅ doing so, then we return a small trivial Yes-instance. We repeat the
previous steps until we do not find a safe partition or k � 0. In the former case, we know by Lemma 3.9 that T can have at
most (2 + ε)k vertices, thus implying the result. In the latter case we return a trivial small No-instance. �
4. Conclusion

In this paper we obtained linear vertex kernel for k-FAST, in fact, a vertex kernel of size (2 + ε)k for any fixed ε > 0.
The new bound on the kernel size improves the previous known bound of O (k2) on the vertex kernel size for k-FAST given
in [4,16]. Moreover, it would be interesting to see if one can obtain kernels for other problems using either polynomial
time approximation schemes or a constant factor approximation algorithm for the corresponding problem. An interesting
problem which remains unanswered is, whether there exists a linear or even an o(k2) vertex kernel for the k-Feedback

Vertex Set in Tournaments (k-FVST) problem. In the k-FVST problem we are given a tournament T and a positive integer k
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and the aim is to find a set of at most k vertices whose deletion makes the input tournament acyclic. The smallest known
kernel for k-FVST has size O (k2) [1].
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