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Covering problems are fundamental classical problems in optimization, computer science
and complexity theory. Typically an input to these problems is a family of sets over
a finite universe and the goal is to cover the elements of the universe with as few
sets of the family as possible. The variations of covering problems include well-known
problems like Set Cover, Vertex Cover, Dominating Set and Facility Location to name
a few. Recently there has been a lot of study on partial covering problems, a natural
generalization of covering problems. Here, the goal is not to cover all the elements but to
cover the specified number of elements with the minimum number of sets. In this paper
we study partial covering problems in graphs in the realm of parameterized complexity.
Classical (non-partial) version of all these problems has been intensively studied in planar
graphs and in graphs excluding a fixed graph H as a minor. However, the techniques
developed for parameterized version of non-partial covering problems cannot be applied
directly to their partial counterparts. The approach we use, to show that various partial
covering problems are fixed parameter tractable on planar graphs, graphs of bounded local
treewidth and graph excluding some graph as a minor, is quite different from previously
known techniques. The main idea behind our approach is the concept of implicit branching.
We find implicit branching technique to be interesting on its own and believe that it can
be used for some other problems.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Covering problems are basic, fundamental and widely studied problems in algorithms and combinatorial optimizations. In
general these problems ask for selecting a least sized family of sets to cover all the elements. One of the prominent covering
problem is the classical Set Cover problem. Set Cover problem consists of a family F of sets over a universe U and
the goal is to cover this universe U with the least number of sets from F . Other classical problems in the framework of
covering include well-known problems like Vertex Cover, Dominating Set, Facility Location, k-Median, k-Center problems,
on which hundreds of papers have been written.

In this paper we study the generalization of these problems to the partial setting, where the objective is not to cover
all the elements but to cover a pre-specified number of elements with minimum number of objects. More precisely, in
the partial covering problem, for a given integer t � 0, we want to cover at least t elements rather than covering all
the elements. For an example, in Partial Vertex Cover (PVC), the goal is to cover at least t edges with minimum number
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of vertices not all the edges while in Partial Set Cover (PSC) the goal is to cover at least t elements of U with minimum
number of sets from F . Other problems are defined similarly. Partial covering problems are studied intensively not only
because they generalize classical covering problems, but also because of many real life applications. They have received a
lot of attention recently, see for example [5–7,10,23].

These generalizations are motivated by the fact that real data, for instance in clustering, often has errors, also called
outliers. Thus discarding small number of constraints posed by these outliers can be tolerated. The major drawback with
non-partial covering problems is that a few isolated elements can force the solution size to be large and hence exerting
a disproportional effect on the final solution of the problems. For example, as suggested in [10], in a k-center problem a
single client residing far from other clients may force a center to be picked in its vicinity. For the majority of commercial
applications of facility location like banking facilities, establishing super markets, etc. it may be economically essential to
ignore very distant clients. Another situation where partial covering problems become significant is when facilities are
limited, in this case we need to maximize the service within limited supply. All these problems can be formulated as PSC.
We refer to [6,7,10,12,23] for further applications.

While different variations of PSC were studied intensively and many approximation algorithm and non-approximability
results exist in the literature, only few things are known on their parameterized complexity. In this paper we fill this gap
by initiating parameterized algorithmic study of these problems. In parameterized algorithms, for decision problems with
input size n, and a parameter k, the goal is to design an algorithm with runtime τ (k) · nO (1) , where τ is a function of k
alone. Problems having such an algorithm are said to be fixed parameter tractable (FPT). There is also a theory of hardness
using which one can identify parameterized problems that are not amenable to such algorithms. This hardness hierarchy is
represented by W [i] for i � 1. For an introduction and more recent developments see the books [18,20,29]. In this paper,
we always parameterize a problem by the size of the partial set cover, i.e., all our algorithms for finding a partial set cover
of size k that cover at least t sets with input of size n are of running time τ (k) · nO (1) .

Archetypical examples for the study of PSC on graphs are Partial Vertex Cover and Partial Dominating Set (PDS) (we
postpone all the definitions till the next section). Parameterized version of the Dominating Set is known to be W [2]-
complete in general graphs, which implies that the existence of an FPT algorithm is highly unlikely. Tremendous amount
of literature is devoted to parameterized algorithms for Dominating Set on different classes of sparse graphs like planar
graphs, graphs with few crossings, graphs of bounded genus, graphs of bounded degree, graphs excluding a fixed graph
as a minor. We refer to surveys [15,17] for references. The most general class of sparse graphs for which Dominating Set

remains FPT is d-degenerated graphs [3]. A natural question motivating our research is which of these results are valid for
Partial Dominating Set? Vertex Cover is FPT with the current best algorithm running in time O (1.2721knO (1)) [11], and a
few papers have appeared giving FPT algorithms for partial covering problems when the parameter is both the number of
elements to be covered and the size of a subfamily chosen to cover these elements, that is, t and k [6,27,28]. In contrast
to that, Partial Vertex Cover is W [1]-complete [26]. Thus the parameterized complexity of Partial Vertex Cover on sparse
graphs is also an interesting question.

Unfortunately, none of the known techniques of designing FPT algorithms seems to work for partial covering problems.
For example, the approach based on bidimensionality [13] strongly exploits the fact that the existence of a large grid in a
graph as a minor (or contraction) forces also the parameter (or the solution size) to be large. This is not the case for partial
covering problems, i.e., they are not bidimensional. Similar situation arises when one considers the technique of reducing to
the problem kernel [2] or search tree based technique [1].

Our approach and results. The main ideas behind our approach can be illustrated by planar instances of Partial Vertex

Cover and Partial Dominating Set. Let a planar graph G = (V , E) on n vertices and integers k and t be an instance of
Partial Vertex Cover. Let S be the set vertices in G of degree at least t/k. If S is sufficiently big, say, its size is at least
4k, then, by the four color theorem, the subgraph of G induced on S contains an independent set of size at least k. This
yields that there are k vertices of S that are pairwise non-adjacent in G , and since each of these vertices covers at least
t/k edges, we have that in total they cover at least t edges. If the size of S is less than 4k, we apply explicit branching.
The crucial observation here is that if G has a partial vertex cover of size at most k, then this cover must contain at least
one vertex of S . Thus by making a guess on the vertices x ∈ S , whether x is in a partial vertex cover of size at most k,
we can guarantee, that if the problem has a solution, then at least one of our guesses is correct. For each of the guesses x,
we create a new subproblem for Partial Vertex Cover, where the input is the subgraph of G induced on V \ {x} and we
are asked to cover t − deg(x) edges by k − 1 vertices, where deg(x) is the number of edges adjacent to x. The number of
subproblems we generate in this way is at most 4k, and we call the procedure recursively on each subproblem. The depth
of the recursion is at most k, and the number of recursive calls at each steps is at most 4k, resulting in total running time
(4k)k · nO (1) . Actually, in our arguments we used planarity only to conclude that a graph has large independent set. Indeed,
this approach is valid for many other graph classes with large independent sets, like bipartite graphs, degenerate graphs
and graphs excluding some graph as a minor. (We provide detailed consequences of this approach in Section 5.)

The main drawback of explicit branching is that we cannot use it for many partial covering problems, in particular for
Partial Dominating Set. Even for planar graphs, the existence of a large independent set of vertices of degree at least t/k
does not imply that k vertices can dominate at least t vertices. To overcome this obstacle, we do the following. We start
by selecting the set S consisting of vertices of degree at least t/k, as in the case of Partial Vertex Cover. If there are more
than k vertices in S which are at distance at least three from each other, we have the solution. Otherwise, we know that at
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least one vertex from S should be in a partial dominating set but we cannot use explicit branching by trying all vertices of
S because the size of S can be too large. However, we show in this case that the graph formed by S and their neighbors
is of small diameter, and thus, by well-known properties of planar graphs, has small treewidth. (Very loosely small here
means bounded by some function of k.) In this case we apply implicit branching, which means that we do not create a new
subproblem for every vertex of S , but instead for every i, 1 � i � k, we make a guess that exactly i vertices of S are in a
partial dominating set. Thus we branch on k cases and try to solve the problem recursively. We formulate these ideas in
details in Sections 3.1 and 3.2 and show how it is sufficient to just know the size of an intersection of an optimal partial
dominating set with S rather than the actual intersection itself to solve the problem.

Again, the only property of planar graphs we mentioned here was the property that non-existence of a large set of
pairwise remote vertices in the graph yields a small treewidth. But this property can be shown not only for planar graphs,
but more generally for graphs of bounded local treewidth, the class of graphs containing planar graphs, graphs of bounded
genus, graphs of bounded vertex degree, and graphs excluding an apex graph as a minor, cf., Lemma 1 and [14,19,25].
With more additional work we show that similar ideas can be used to prove that much more general problem, namely a
weighted version of the Partial (k, r, t)-Center problem, where the goal is to cover at least t elements by balls of radius r
centered around at most k vertices, is FPT on graphs of bounded local treewidth. This result can be found in Section 3.2.
This is mainly of theoretical interest because the running time of the algorithm is 2kO (k) · nO (1) . Such a huge running time
is due to the bounds on the treewidth of a graph, which is used in implicit branching. Due to the generality of the result
for graphs with bounded local treewidth, we do not see any reasonable way of overcoming this problem. But because of
numerous applications, we find it is worth to search for faster practical algorithms on subclasses of graphs of bounded local
treewidth, in particular on planar graphs. As a step in this direction, we obtain better combinatorial bounds on the treewidth
of planar graphs in implicit branching, which results in algorithms with running time 2O (k) · nO (1) on planar graphs. The
combinatorial arguments used for the exponential speedup (Section 3.3) are interesting on their own. In Section 4, we show
that the Partial (k, r, t)-Center problem is FPT on graphs excluding a fixed graph as a minor. The proof of this result is
based on the decomposition theorem of Robertson and Seymour from Graph Minors [32]. The algorithm is quite involved,
it uses two levels of dynamic programming and two levels of implicit branching, and can be seen as a non-trivial extension
of the algorithm of Demaine et al. [13] for classical covering problems to partial covering problems.

Finally, let us remark that while Dominating Set is FPT on d-degenerated graphs [3], there are strong arguments that our
results cannot be extended to this class of sparse graphs. This is because Golovach and Villanger [24] showed that Partial

Dominating Set is W[1]-hard on d-degenerated graphs.

2. Preliminaries

Let G = (V , E) be an undirected graph where V (or V (G)) is the set of vertices and E (or E(G)) is the set of edges.
We denote by n and m the number of vertices and the number of edges respectively. For a subset V ′ ⊆ V , by G[V ′] we
mean the subgraph of G induced by V ′ . By N(u) we denote (open) neighborhood of u that is set of all vertices adjacent
to u and by N[u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V , we define N[D] = ⋃

v∈D N[v]. The distance dG(u, v) between
two vertices u and v of G is the length of the shortest path in G from u to v . The diameter of a graph G , denoted
by diam(G), is defined to be the maximum length of a shortest path between any pair of vertices of V (G). By abuse of
notation, we define diameter of a graph as the maximum of the diameters of its connected components. For r � 0, the
r-neighborhood of a vertex v ∈ V is defined as Nr

G [v] = {u | dG(v, u) � r}. We also let Br(v) = Nr
G [v] and call it a ball

of radius r around v . Similarly Br(A) = ⋃
v∈A Nr

G [v] for A ⊆ V (G). Given a weight function w : V → R and A ⊆ V (G),
w(Br(A)) = ∑

u∈Br(A) w(u).
Given an edge e = (u, v) of a graph G , the graph G/e is obtained by contracting the edge (u, v) that is we get G/e by

identifying the vertices u and v and removing all the loops and duplicate edges. A minor of a graph G is a graph H that
can be obtained from a subgraph of G by contracting edges. A graph class C is minor closed if any minor of any graph in C
is also an element of C . A minor closed graph class C is H-minor-free or simply H-free if H /∈ C .

A tree decomposition of a (undirected) graph G is a pair (U , X) where U is a tree whose vertices we will call nodes and
X = ({Xi | i ∈ V (U )}) is a collection of subsets of V (G) such that

1.
⋃

i∈V (U ) Xi = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U ) such that v, w ∈ Xi , and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition (U , {Xi | i ∈ V (U )}) equals maxi∈V (U ){|Xi|−1}. The treewidth of a graph G is the minimum
width over all tree decompositions of G . We use notation tw(G) to denote the treewidth of a graph G .

The definition of treewidth can be generalized to take into account the local properties of G and is called local
treewidth [19,25].

Definition 1 (Local treewidth). The local treewidth of a graph G is a function ltwG : N → N which associates to every integer
r ∈ N the maximum treewidth of an r-neighborhood of vertices of G , i.e.,

ltwG(r) = max
v∈V (G)

{
tw

(
G
[
Nr

G(v)
])}

.
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A graph class G has bounded local treewidth if there exists a function f : N → N such that for each graph G ∈ G and
for each integer r ∈ N, we have ltwG(r) � f (r). The class G has linear local treewidth, if in addition the function f can be
chosen to be linear, that is f (r) = cr where c ∈ R is a constant. For a given function f : N → N, G f is the class of all graphs
G of local treewidth at most f , that is ltwG(r) � f (r) for every r ∈ N. See [19] and [25] for more details. A few well-known
graph classes which are known to have bounded local treewidth are planar graphs, graphs of bounded genus, and graphs of
bounded maximum degree.

By a result of Robertson and Seymour [30], f (r) can be chosen as 3r for planar graphs. Similarly Eppstein [19] showed
that f (r) can be chosen as cg g(Σ)r for graphs embeddable in a surface Σ , where g(Σ) is the genus of the surface Σ and
cg is a constant depending only on the genus of the surface. Demaine and Hajiaghayi [14] extended this result and showed
that the concept of bounded local treewidth and linear local treewidth are the same for minor closed families of graphs.

3. FPT algorithms for weighted partial-(k, r, t)-center problem

3.1. Developing a step by step procedure

In this section we give a template of a generic algorithm for partial covering problems arising on graphs. We use this
later to show that partial covering problems arising on graphs are fixed parameter tractable in graphs of bounded local
treewidth. We formulate the template through the following problem.

Weighted Partial-(k, r, t)-Center (WP-(k, r, t)-C): Given an undirected graph G = (V , E), with weight function w : V →
{0,1} and integers k, r and t . The problems ask whether there exists a C ⊆ V of size at most k (k centers), such that
w(Br(C)) � t . Here k and r are the parameters.

When all the vertices have weight 1 this is a Partial-(k, r, t)-Center (P-(k, r, t)-C) problem, and for r = 1 and w(v) = 1
for all v ∈ V this is Partial Dominating Set problem. To formulate PSC problem as WP-(k, r, t)-C problem, we consider
the incidence bipartite graph associated with the instance of PSC problem and give weights 1 to the vertices associated
with elements and 0 to the vertices associated with sets. Since PVC can be transformed to PSC problem, WP-(k, r, t)-C also
generalizes PVC. One defines Partial Hitting Set similarly.

Unlike the non-partial and non-weighted version of WP-(k, r, t)-C problem, the first major challenge in partial covering
problems is: which t elements we choose to cover? To find an answer to this we define the following set S and the
corresponding graph G , which forms the first step of the algorithm:

(T1) Define S = {v | v ∈ V , w(Br(v)) � t/k} and G = G[⋃v∈S Br(v)].

The basic observation is that if there exists a subset C ⊆ V of size at most k such that w(Br(C, r)) � t , then C ∩ S 	= ∅. Given
the graph G , our second idea is to

(T2) Check the diameter of G , and if diam(G) is large, then we argue that this is a Yes instance by providing a subset C of
size at most k and w(Br(C)) � t .

Now when the diam(G) is small, the treewidth of the graph G is bounded and hence dynamic programming over graphs
with bounded treewidth can be used. But we still do not know whether we can find the desired C among the vertices of G .
Hence even if we find out that there is no X ⊆ S such that |X | � k and w(Br(X)) � t , we cannot guarantee that this is a No

instance of the problem. So to overcome this difficulty we resort to an implicit branching by using the earlier observation
that there is no desired C whose intersection with S is empty. Before we go further, given a vertex set S and G (as defined
above), we define μ(S, i) := maxA⊆S, |A|=i{w(Br(A))}.

(T3) Using dynamic programming over graphs with bounded treewidth, compute μ(S, i) for G for 1 � i � k as well as a
subset Ai ⊆ S such that w(Br(Ai)) = μ(S, i).

(T4) We make k recursive calls to reduce the size of k by using the fact that if there exists a C , then its intersection with
S is between 1 � i � k. Now we reduce the parameters t to t − μ(S, i) and k to k − i and try to solve the problem
recursively.

In the recursive steps, we follow the above steps and either we move forward to a larger G or we get a desired solution
for the problem. More precisely, suppose we are at the ith step of recursion, then we proceed as follows:

(T5) Enlarge G by adding some new vertices to S . Let Si be the set of new vertices added to S that is those set of vertices
which are not in S and w(Br(v)) � t/k where t and k are the current parameters obtained after reductions done in
previous recursive calls.
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(T6) Either we bound the diameter and hence the treewidth of G , or, we select a set of at most k vertices respecting the
guesses made on the number of vertices we need to select from S j , 1 � j � i − 1. That is, the possible number of
vertices in C ∩ S j .

This completes the framework in which we will be working. In the next section we prove that WP-(k, r, t)-C problem is
FPT in graphs with bounded local treewidth by proving the necessary technical lemmas needed for this generic algorithm
to work.

3.2. An algorithm for WP-(k, r, t)-C in graphs of bounded local treewidth

We start this section from a general combinatorial upper bound on the diameter of the graph (valid for any graph).
Combined with the bounded local treewidth property, we use Lemma 1 to bound the treewidth of G , the graphs we
obtained in the recursive calls of the algorithm.

Lemma 1. Let k, r, and � be three integers. Let G be a graph on n vertices and let H be an induced subgraph of G such that the diameter
of each of the connected components of H is at most �. Let C be a subset of V (H) of size at most k such that Br(C) ⊂ H, and let A be
a subset of V (G). Then there exists a function g(k, r, �) such that if diam(G[Br(A) ∪ V (H)]) > g(k, r, �), then there is a subset T ⊆ A
such that

(a) |T | � k;
(b) for all u, v ∈ T , dG(u, v) � 2r + 1; and
(c) for all u ∈ T and for all v ∈ C, dG(u, v) � 2r + 1.

In particular, one can take g(k, r, �) = (4r + 4)2k� and find the desired set T in O (m + n) time, where m is the number of edges of G.

Proof. Let H1, . . . , Hs be all the connected components of H . We construct a new graph G ′ from G by contracting each
connected component Hi of H to a vertex v Hi . Let X be the set of all the vertices v Hi in G ′ . For a vertex v ∈ V (G), we
define its image im(v) in G ′ to be v Hi if v is in Hi for 1 � i � s, and to be v itself otherwise. For a subset W ⊆ V (G), its
image im(W ) in V (G ′) is the set {im(v) | v ∈ W }. By the hypothesis of the lemma, im(Br(C)) ⊆ X .

For any subset W ⊆ V (G), we claim that

diam
(
G ′[im(W ) ∪ X

])
� diam

(
G
[
W ∪ V (H)

])
/�.

(We recall that the diameter of a (non-necessarily connected) graph is defined to be the maximum diameter of its connected
components.)

To prove the claim we observe that a path P ′ in G ′[im(W ) ∪ X] can be lifted to a path P in G[W ∪ V (H)] by replacing
each vertex v Hi appearing on the path P ′ by a path in the connected component Hi of H . As the diameter of each Hi
is bounded by �, each of these local paths can be chosen to have length at most �. Thus, in this way, the length of P ′ ,
once lifted in G , can only be increased by at most a constant multiplicative factor �. This gives diam(G[W ∪ V (H)]) �
� · diam(G ′[im(W ) ∪ X]) and the claim follows.

To finish the proof of the lemma we proceed as follows. We apply the above claim to the subset W = Br(A). Since
diam(G[Br(A) ∪ V (H)]) > g(k, r, �) = (4r + 4)2k�, we have

diam
(
G ′[im

(
Br(A)

) ∪ X
])

� diam
(
G
[

Br(A) ∪ V (H)
])

/� > g(k, r, �)/� = 2(4r + 4)k.

Thus, there is a connected component C of G ′[im(Br(A)) ∪ X] of diameter more than 2(4r + 4)k. Let A0 be the set of all
the vertices in A with image in C. It is clear that im(Br(A0)) = im(Br(A)) ∩ C. Since the graph C consists of G ′[im(Br(A0))]
and some vertices of X , and since there is no edge in G ′ between the vertices of X , we have that the set im(A0) forms an
(r + 1)-center in C. We now claim the existence of a subset Y ⊆ im(A0) of size at least 2k such that for any two vertices
u and v in Y , dC(u, v) � 2r + 1. To see this, note that since the diameter of C is at least 2(4r + 4)k, there is a path
P = u0u1u2 . . . uq of size q � 2(4r + 4)k in C realizing the diameter. In particular, for any two vertices ui and u j on P , we
have dC(ui, u j) = |i − j|. Let V i ⊆ V (C) be the subset of vertices of distance exactly i from u0 in C. Since im(A0) forms

an (r + 1)-center in C, we have that for each 1 � i � q − 2r − 2, the intersection of im(A0) with
⋃i+2r+2

j=i V i is non-empty.

Construct a subset Y as follows: select a vertex from the intersection of im(A0) with
⋃2r+2

i=0 V i and skip the next (2r + 1)

V i ’s, select again a vertex of im(A0) from one of the next 2r + 3 consecutive V i ’s and skip the next (4r + 1) V i ’s, and so on.
By the bound on the length of P , |Y | � 2k. Now, C is a subset of size at most k by the assumption and thus |im(C) ∩ C| � k.
For each vertex u in im(C) ∩ C, there is at most one vertex v in Y such that dC(u, v) � r, otherwise the condition that the
distance in C between any two vertices of Y is at least 2r + 1 would be violated. We construct the set T ′ by removing from
Y all vertices which are at distance at most r from a vertex of im(C) ∩ C. The subset T ′ ⊆ im(A0) satisfies the following
properties:
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(a′) |T ′| � k;
(b′) for all u, v ∈ T ′ , dC(u, v) � 2r + 1; and
(c′) for all u ∈ T ′ and for all v ∈ im(C) ∩ C, dC(u, v) � r + 1.

Let T be a subset of A0 with im(T ) = T ′ . We show that T has all the properties of the lemma. It is obvious that
|T | � k (Property (a) of the lemma). To prove Property (b), suppose for the sake of a contradiction that there are two
vertices u, v ∈ T such that dG(u, v) � 2r. This means that Br(u) ∩ Br(v) 	= ∅, and so dC(u, v) � 2r contradicting the way
T ′ was constructed (Property (b′) above). To prove Property (c), we have to show that for all u ∈ C and for all v ∈ T ,
dG(u, v) � 2r + 1. Suppose, for the sake of a contradiction, that this is not the case for a pair v ∈ C and u ∈ T . It follows
that Br(u) ∩ Br(v) 	= ∅. Since Br(C) ⊂ H , we know that im(Br(v)) = im(v) and so im(v) is in im(Br(v)) ⊂ C. Thus, we have
dC(u, v) � r which contradicts the construction of T ′ (Property (c′) above). �

Another essential part of our algorithm is dynamic programming on graphs with bounded treewidth which will be used
in (T6). Our proof of Theorem 1 is based on the following proposition proved in [12].

Proposition 1. (See [12, Theorem 4.1].) For a graph G on n vertices and with a given tree decomposition of width � b, and integers k, r,

the existence of a (k, r)-center in G can be checked in O ((2r + 1)
3b
2 n) time and, in case of a positive answer, construct a (k, r)-center

of G in the same time.

Now we give the necessary variations required in the proof of Proposition 1 to give the proof of the following theorem.

Theorem 1. Let G be a graph on n vertices, given with (a) a weight function w : V → {0,1}, (b) a tree decomposition of width � b,
and (c) positive integers k, r and t. Furthermore let S1, . . . , S p be disjoint subsets of V (G) with an associated positive integer ai for
1 � i � p and

∑p
i=1 ai = a. Then we can check the existence of a weighted partial-(k, r, t)-center such that it contains ai elements

from Si , 1 � i � p, in O ((2r + 1)
3b
2 2

a
2 · nt) time and, in case of a positive answer, construct a weighted partial-(k, r, t)-center of G in

the same time.

Proof sketch. To prove the theorem we increase the size of the table kept for each of the bags in the tree decomposition in
Theorem 1. Apart from associating following 2r + 1 colors to

{0,↑ 1,↑ 2, . . . ,↑ r,↓ 1,↓ 2,↓ r}
each of the vertices, we also associate a tuple from

{0,1, . . . ,a1} × {0,1, . . . ,a2} · · · {0,1, . . . ,ap} × {0,1, . . . , t} (1)

to each coloring of bags of the tree decomposition, remembering how many elements from each of Si has been selected
from the bags below it and the last entry represents sum of weights of vertices which are at distance at most r from the
vertices selected in the solution for WP-(k, r, t)-C problem. The bound on the number of tuples generated in Eq. (1) is given
by

p∏
i=1

ai · t �
p∏

i=1

2ai/2 · t � 2a/2t. �

The rest of the section is devoted to the proof of the following theorem.

Theorem 2. Let f : N → N be a given function. Then WP-(k, r, t)-C problem can be solved in time O (τ (k, r) · t · (m + n)) for graphs
in G f , where τ is a function of k and r. In particular, WP-(k, r, t)-C problem is FPT for planar graphs, graphs of bounded genus and
graphs of bounded maximum degree.

Let us remark that for fixed k, r and t , our algorithm runs in linear time.

Proof. The proof of the theorem is divided into three parts: algorithm, correctness and the time complexity. We first de-
scribe the algorithm.

Algorithm. First we set up notations used in the algorithm. By S we mean a family of pairs (X, i) where X is a subset
of V (G), i is a positive integer, and for any two elements (X1, i1), (X2, i2) ∈ S , X1 ∩ X2 = ∅. Given a family S , we define
ρ(S) = ∑

(X,i)∈S i and

μ(w,S) = max
{

w
(

Br(D)
) ∣∣ D ⊆ V (G), |D| = ρ(S), ∀(X, i) ∈ S|D ∩ X | = i

}
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Algorithm PCentre(G, r,k, t, w, S, C, S,μ(w, S)).
(The algorithms take as an input (a) a graph G = (V , E) ∈ G f , (b) positive integers k, r and t , (c) a weight function w : V → {0,1}, (d) a
family S of pairs (X, i), (e) an S -center C , (f) a set S which is equal to

⋃
(X,i)∈S X and (g) the value of μ(w, S). It returns either a set C

such that w(Br(C)) � t or returns No, if no such set exists. The algorithm is initialized with PCentre(G, r,k, t, w,∅,∅,∅,0)).

Step 0: If μ(w, S) � t , then answer Yes and return C .
Step 1: If k = 0 and μ(w, S) < t , then return No and Exit.
Step 2: First define A as follows: A = {v | v ∈ V , v /∈ S, w(Br(v)) � t/k}. If A is empty return No and Exit. Else let S = S ∪ A and define

G = [⋃v∈S Br(v)].
Step 3: Compute the diameter, diam, of G .
Step 4: If diam > ((8r + 8)(k + ρ(S)))|S|+1 then apply Lemma 1 to find the subset T ⊆ A of size k such that: (a) for all u, v ∈ T ,

dG (u, v) � 2r + 1; and (b) for all u ∈ T and for all v ∈ C , dG (u, v) � 2r + 1 and return C = C ∪ T and Exit.
Step 5: Else, the graph G has bounded local treewidth, compute a tree decomposition of width f (diam) of G .
Step 6: For every 1 � p � k, using the dynamic programming of Theorem 1, compute an S ∪ {(A, p)}-center D p of weight μ(w, S ∪

{(A, p)}). If for some recursive calls, 1 � p � k,
PCentre(G , r, k − p, t − μ(w, S ∪ {(A, p)}), w , S ∪ {(A, p)}, D p , S , μ(w, S ∪ {(A, p)}))
returns a set C then answer Yes and return C else answer No and Exit.

Fig. 1. Algorithm for weighted partial center problem.

that is a subset D ⊆ ⋃
(X,i)∈S X of size ρ(S), under the additional constraint that for each element (X, i) of S we pick

exactly i elements in X . A subset D realizing μ(w,S) will be called an S-center. Our detailed algorithm is given in Fig. 1.

Correctness. The correctness of the algorithm follows (almost directly) from its detailed description in the earlier sections
and hence we remark on the necessary points of the proof. Whenever we answer Yes, we output a set C which has
weight at least t that is w(Br(C)) � t and C is of size at most k and hence these steps do not require any justification. Our
observation is that if there exists a subset C such that w(Br(C)) � t and |C | � k, then C and A = {v | v ∈ V , w(Br(v)) � t/k}
have non-empty intersection. Hence we recursively solve the problem with an assumption that |C ∩ A| = p, p ∈ {1,2, . . . ,k}.
In recursive steps, we have a family S of pairs (X, i) such that we want to compute C with additional constraints that for
all (X, i) ∈ S , |C ∩ X | = i. At this stage, the only way we can have solution is when there exists a non-empty set A such that

C ∩ A 	= ∅,

where

A =
{

v
∣∣∣ v ∈ V , v /∈

( ⋃
(X,i)∈S

X

)
, w

(
Br(v)

)
� t − μ(w,S)

k − ρ(S)

}
	= ∅.

Now based on the diameter of the graph G = G[⋃v∈S Br(v)], where S = A
⋃

(X,i)∈S X , we either apply Lemma 1 or make
further recursive calls.

(1) When we apply Lemma 1, the diameter of the graph is more than ((8r + 8)k)|S|+1, and hence we obtain a set T ⊆ A
such that T is of cardinality k − ρ(S) and the distance between any two vertices in T and distance between vertices of T
and C , C an S-center, is at least 2r + 1. In |C ∪ T | = |C | + |T | � ρ(S) + k − ρ(S) � k, and

w
(

Br(C ∪ T )
) = w

(
Br(C)

) + w
(

Br(T )
)
� μ(w,S) + (

k − ρ(S)
) × t − μ(w,S)

k − ρ(S)
� t.

(2) Else, the diameter and hence the treewidth of the graph G is at most f (((8r + 8)k)|S|+1). Therefore, in this case there
is a solution to the problem precisely when there exists p, 1 � p � k − ρ(S), for which recursive call to PCentre returns a
solution in Step 6 of the algorithm. This completes the correctness of the algorithm.

Time complexity. The running time depends on the number of recursive calls we make and the upper bound on the
treewidth of the graphs G which we obtain during the execution of the algorithm. First we bound the number of recursive
calls. An easy bound is kk since the number of recursive calls made at any step is at most k and the depth of the recursion
tree is also at most k. This bound can be improved as follows. Let N(k) be the number of recursive calls. Then N(k) satisfies
the recurrence N(k) �

∑k
i=1 N(k − i), which solves to 2k .

At each recursive call, we perform a dynamic programming algorithm and, since the size of the family S is at most k −1,
the diameter of the graph does not exceed ((8r + 8)k)k at any step of the algorithm. Let h(r,k) = 3 · f (((8r + 8)k)k)/2. Then

the dynamic programming algorithm can be performed in O ((2r + 1)h(r,k)2
k
2 · (n + m)t) time in any recursive step of the
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algorithm. Hence the total time complexity of the algorithm is upper bounded by

O
(
(2r + 1)h(r,k)2

3k
2 · (n + m)t

)
.

This completes the proof. �
3.3. Improved algorithm for planar graphs

In the previous section, we gave an algorithm for WP-(k, r)-C problem in graphs of bounded local treewidth. The time
complexity of the algorithm was dominated by the upper bound on the treewidth of the graph G , which were considered
in the recursive steps of the algorithm. If the input to the algorithm Algorithm PCentre is planar, then a direct application
of Lemma 1 gives us that the treewidth of the graph G , obtained in the recursive steps of the algorithm, is bounded by
O ((rk)O (rk)). In this section we reduce this upper bound to O (rk) using grid arguments. We also need to slightly modify
Algorithm PCentre by replacing the diameter arguments with treewidth based arguments. We present the modified steps
here.

Modified Step 3: Compute the treewidth of G .
Modified Step 4: If tw(G) > g(r,k) (to be specified later) find a subset T ⊆ A of size k such that: (a) for all u, v ∈ T ,

dG(u, v) � 2r + 1; and (b) for all u ∈ T and for all v ∈ C , dG(u, v) � 2r + 1 and return C = C ∪ T and Exit.
Modified Step 5: Else, the graph G has bounded treewidth, compute a tree decomposition of width at most g(r,k) of G .

To give the combinatorial bound on the treewidth of the graph G , we need the following relation between the size of
grids and the treewidth of the planar graph.

Lemma 2. (See [31].) Let s � 1 be an integer. The treewidth of every planar graph G with no (s × s)-grid as a minor is upper bounded
by 6s − 4.

The notations used in the next lemma is the same as in Algorithm PCentre.

Lemma 3. Let G = (V , E) be a planar graph on n vertices and m edges. Let k, r and t be positive integers, and w be a weight function
w : V → {0,1}. Suppose that at some step in Algorithm PCentre we are given a family S of pairs (X, i), an S-center C , a set
S = ⋃

(X,i)∈S X and the value of μ(ω,S). Furthermore, let A = {v | v ∈ V , v /∈ S, w(Br(v)) � t/k′} 	= ∅, S∗ = S ∪ A, where
k′ = k − ∑

(X,i)∈S i. Finally, let G = G[⋃v∈S∗ Br(v)]. Then either there is a subset T ⊆ A of size k′ such that

(a) for all u, v ∈ T , dG(u, v) � 2r + 1; and
(b) for all u ∈ T and for all v ∈ C, dG(u, v) � 2r + 1,

or tw(G) � O (rk).

Proof. Let S = {(A1, p1), (A2, p2), . . . , (Al, pl)}, where we obtain the couple (Ai, pi) by branching in the ith stage (basically
we are looking at the recursion tree associated with the algorithm and S is used to specify the path from the root to this
node in this recursion tree). Let

Si = {
(A1, p1), (A2, p2), . . . , (Ai, pi)

}
and Ci be an Si -center. For an ease of the presentation, we define A0 = ∅, p0 = 0 and C0 = ∅ (an S0-center). Then notice
that for every set Ai+1, 0 � i � l − 1, the following holds

(D∗) There is no subset Ti+1 ⊆ Ai+1 such that (a) |Ti+1| � k − ∑i
j=0 p j , (b) for all u, v ∈ Ti+1, dG(u, v) � 2r + 1; and (c) for

all u ∈ Ti+1 and for all v ∈ Ci , dG(u, v) � 2r + 1.

Now we move towards the main part of the proof. We assume that we do not have the desired set T . Under this
assumption we show that tw(G) < h(r,k) = 6((8r + 2)(k + 1) + 4r + 4). For a sake of contradiction, let us suppose that the
treewidth of the graph is at least h(r,k). Then by Lemma 2, G contains a h(r,k)

6 × h(r,k)
6 grid as a minor. We refer to Fig. 2

for an intuitive picture of the definitions to follow. We set q = (8r + 2)(k + 1), and define

Q = {−(4r + 1), . . . ,−1,0,1, . . . ,q,q + 1, . . . ,q + 4r + 2
}

× {−(4r + 1), . . . ,−1,0,1, . . . ,q,q + 1, . . . ,q + 4r + 2
}
.

Let H = (Q , {((x, y), (x′, y′)) | |x− x′|+ |y − y′| = 1}) be a planar grid which is a minor of some fixed planar embedding of G .
(This is the h(r,k)

6 × h(r,k)
6 grid with the vertex set Q .) We call the subgrid of H induced by vertices {1, . . . ,q} × {1, . . . ,q}
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Fig. 2. The grid used in the proof of Lemma 3. Here each of the gridoid Hi′ j′ is a smaller grid of size (4r + 1) × (4r + 1) with vi′ j′ as its center.

by internal grid and denote it by Hin . Now we define the set of small gridoids in Hin .

R = {
Hi′ j′

∣∣ i′, j′ ∈ {1,2, . . . ,k + 1}}.
By Hi′ j′ we mean the gridoid whose bottom-left corner vertex is given by ((8r + 3)(i′ − 1) + 1, (8r + 3)( j′ − 1) + 1). The
other corner vertices of this particular gridoid are given by ((8r + 3)(i′ − 1) + 4r + 1, (8r + 3)( j′ − 1) + 1) (bottom-right
corner vertex), ((8r + 3)(i′ − 1) + 1, (8r + 3)( j′ − 1) + 4r + 1) (top-left corner vertex) and ((8r + 3)(i′ − 1) + 4r + 1,

(8r + 3)( j′ − 1) + 4r + 1) (top-right corner vertex). For a particular gridoid Hi′ j′ , we define its center vertex vi′ j′ as
((8r + 3)(i′ − 1) + 2r + 1, (8r + 3)( j′ − 1) + 2r + 1).

Consider a sequence σ of edge contractions and removals that transforms G to H. It is well known that the result
of the transformation does not depend on the order of edge removals and contractions. We denote the vertex obtained
by contraction of an edge (u, v) by uv and call such a vertex fat. If we only apply edge contractions of the sequence σ ,
then we obtain a partially triangulated grid H∗ , which is a planar graph which can be obtained from the grid H by
adding some edges to non-consecutive vertices of its faces. Notice that the vertices of S∗ form an r-center of the graph G .
This implies that for every gridoid Hi′ j′ either the center vi′ j′ is in S∗ , or there exists a fat or a normal vertex V in
Hi′ j′ , which contains a vertex u in S∗ (the vertex from which the distance to center is at most r in G). We say that a
gridoid Hab and a set Ai+1 intersects if Hab has either a fat or a normal vertex V which contains a vertex u ∈ Ai+1. Let
Ri+1 = {Hab | Hab intersects Ai+1}.

Claim 1. For 0 � i � l − 1, |Ri+1| < k.

Let Ci be an Si -center. The number of gridoids from Ri+1 which intersect Ci is at most
∑i

j=0 p j because |Ci | � ∑i
j=0 p j .

Let R′
i+1 be the set of gridoids which are not intersected by Ci . By picking a vertex (exactly one) of Ai+1 from each of the

gridoids in R′
i+1 (the one which is in the intersection of Ai+1 and Ha′b′ ∈ R′

i+1), we construct a set Ti+1 ⊆ Ai+1. Since the
distance between any two vertices of Ai+1 (or A) in two different gridoids is at least 2r + 1 in G , by condition (D∗), we
have |Ti+1| < k − ∑i

j=0 p j . Thus, we infer that |Ri+1| < k.

By Claim 1, we have
∑l

j=1 |R j | � kl, where l < k. This implies that all other gridoids which do not contain vertices from

S = ⋃l
j=1 A j have at least one vertex from the set A (by the definition of the graph G and the fact that S∗ is an r-center

in G). Let R′ be the set of gridoids containing no vertex from S . Since |R| = (k + 1)2, the number of gridoids hit by A is at
least (k + 1)2 − kl > k. By selecting a vertex (exactly one) of A from the gridoids of R′ , we construct a set T such that

(a) for all u, v ∈ T , dG(u, v) � 2r + 1; and
(b) for all u ∈ T and for all v ∈ C , dG(u, v) � 2r + 1.

The existence of such a set T contradicts our initial assumption. Thus tw(G) � h(r,k) = O (rk). �
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Let us set g(r,k) = 6h(r,k). One can compute in O (|G|4) time a tree decomposition of width ω of G such that tw(G) �
ω � 1.5tw(G) [33]. Moreover, given a graph G whose largest grid minor is of order b × b, one can find a grid minor of G
of size (b/4) × (b/4) in time O (|G|2 log |G|) [9]. Hence, if ω > g(r,k) then the tw(G) > 4h(r,k) and then by applying the
polynomial time algorithm to compute grid minor, we can obtain a grid of size 4

24 h(r,k). Let us finally observe that the
proof of Lemma 3 is constructive, in the sense that given the grid H, we can construct the desired set T in polynomial
time. Hence by setting h(r,k) = O (rk) in the time complexity analysis of Theorem 2, we obtain the following theorem.

Theorem 3. WP-(k, r, t)-C problem can be solved in time O (2O (kr) · nO (1)) for planar graphs.

4. H -minor free graphs

The arguments of the previous sections were based on a specific graph class property, namely, that a graph with small
diameter has bounded treewidth. Thus, the natural limit of our framework is the class of graphs of bounded local treewidth.
We overcome this limit and extend the framework on the class of graphs excluding a fixed graph H as minor. To do so, we
need to use the structural theorem of Robertson and Seymour [32] and an algorithmic version of this theorem by Demaine
et al. [16]. The algorithm is quite involved, it uses two levels of dynamic programming and two levels of implicit branching,
and can be seen as a non-trivial extension of the algorithm of Demaine et al. [13] for classical covering problems to partial
covering problems. Since several steps of our proof follows the algorithm of Demaine et al. [13], we indicate here only the
most important differences on how the techniques of Demaine et al. [13] can be extended to partial covering problems. Also
while all our arguments can be used for the PW-(k, r, t)-C problem, to make our presentation clear, we restrict ourselves to
the Partial Dominating Set problem.

Before describing the structural theorem of Robertson and Seymour, we need to recall some definitions.

Definition 2 (Clique-Sums). Let G1 = (V 1, E1) and G2 = (V 2, E2) be two disjoint graphs, and k � 0 an integer. For i = 1,2,
let W i ⊂ V i , form a clique of size h and let G ′

i be the graph obtained from Gi by removing a set of edges (possibly empty)
from the clique Gi[W i]. Let F : W1 → W2 be a bijection between W1 and W2. We define the h-clique-sum or the h-sum of
G1 and G2, denoted by G1 ⊕h,F G2, or simply G1 ⊕ G2 if there is no confusion, as the graph obtained by taking the union
of G ′

1 and G ′
2 by identifying w ∈ W1 with F (w) ∈ W2, and by removing all the multiple edges. The images of the vertices

of W1 and W2 in Gi ⊕ G2 is called the join of the sum.

We remark that ⊕ is not well defined; different choices of G ′
i and the bijection F could give different clique-sums.

A sequence of h-sums, not necessarily unique, which result in a graph G is called a clique-sum decomposition of G .

Definition 3 (h-Nearly embeddable graphs). Let Σ be a surface with boundary cycles C1, . . . , Ch . A graph G is h-nearly em-
beddable in Σ if G has a subset X of size at most h, called apices, such that there are (possibly empty) subgraphs G0, . . . , Gh
of G \ X such that the following properties are verified.

• G \ X = G0 ∪ · · · ∪ Gh ,
• G0 is embeddable in Σ , we fix an embedding of G0,
• G1, . . . , Gh are pairwise disjoint,
• for 1 � i � h, let Ui := {ui1 , . . . , uimi

} = V (G0) ∩ V (Gi), Gi has a path decomposition (Bij), 1 � j � mi , of width at most
h such that
– for 1 � i � h and for 1 � j � mi we have u j ∈ Bij ,
– for 1 � i � h, we have V (G0)∩ Ci = {ui1 , . . . , uimi

} and the points ui1 , . . . , uimi
appear on Ci in this order (either if we

walk clockwise or anti-clockwise).

The class of graphs h-nearly embeddable in a fixed surface Σ has linear local treewidth after removing the set of apices.
More specifically, the result of Robertson and Seymour [32], which was made algorithmic by Demaine et al. in [16], states
the following:

Theorem 4. (See Robertson and Seymour [32], Demaine et al. [16].) For every graph H there exists an integer h, depending only on the
size of H, such that every graph excluding H as a minor can be obtained by h-clique sums from graphs that can be h-nearly embedded
in a surface Σ in which H cannot be embedded and such a clique-sum decomposition can be obtained in time nO (1) . The exponent in
the running time depends only on H.

Let G be an H-minor free graph, and (T ,B = {Ba}) be a clique-sum decomposition of G obtained in polynomial time by
Theorem 4. Given this rooted tree T , we define Aa := Ba ∩ B p(a) where p(a) is the unique parent of the vertex a in T , and
Ar = ∅. Let B̂a be the graph obtained from Ba by adding all possible edges between the vertices of At and also between
the vertices of As , for each child s of t , making At and As ’s as cliques (these are also called torso in the literature [25]).
In this way, G becomes an h-clique sum of the graphs B̂a , according to the above tree T and can also be viewed as a



Author's personal copy

O. Amini et al. / Journal of Computer and System Sciences 77 (2011) 1159–1171 1169

tree decomposition given by (T ,B = {Ba}), where each B̂a is h-nearly embeddable in a surface Σ in which H cannot be
embedded. Let Xa be the set of apices of B̂a . Then |Xa| � h, and B̂a \ Xa has linear local treewidth. By Ga we denote the
subgraph induced by all vertices of Ba

(⋃
s Bs), s being a descendant of a in T . Now we are ready to state the main theorem

of the section.

Theorem 5. PDS is fixed parameter tractable for the class of H-minor free graphs and the algorithm takes time O (τ (k) · t ·nC H ), where
τ is the function of k only and C H is the constant depending only on the size of H.

Proof sketch. Our proof is based on the combination of two levels of dynamic programming over clique-sum decomposition
from [13] with two level of implicit recursive calls. Our algorithm is similar to the one for graphs with locally bounded
treewidth. We here give a sketch of the difficulties which arise in generalizing the algorithm of Fig. 1 and explain how to
resolve that. The outline of the algorithm remains the same, the only difficulty we face is when the diameter of the graph
G is bounded above and we need to calculate the value μ(w,S) for the given family S , as no longer we can guarantee an
upper bound on the treewidth of G . We show how to compute μ(w, {(S, i)}) for 1 � i � k, that is when we are in the first
case and have not made any recursive calls yet. Here we have G = G[B1(S)] and S = {v | w(B1(v)) � t/k}. Let us remind
that since we are dealing with PDS, we have w(v) = 1 for every v ∈ V in the beginning. This case itself presents all the
difficulty we will need to handle for cases when there are more than one elements in S . All other steps of the algorithm of
Fig. 1 remain the same.

1. Obtain a clique-sum decomposition (T ,B = {Ba}) for G using Theorem 4.
2. For a given bag p ∈ T , we fix a coloring function ψ : A p ∪ X p → {0,1,2,3}, where ψ(v) ∈ {0,1,2,3} if v ∈ (S ∩ A p),

ψ(v) ∈ {0,2,3} if v ∈ (A p \ S), ψ(v) ∈ {0,1,2} if v ∈ ((S ∩ X p) \ A p) and ψ(v) ∈ {0,2} if v ∈ X p \ (A p ∪ S). Our goal
is to compute μ(p,ψ, S, j) in G p , 1 � j � i, which means we want to compute the maximum number of new vertices
dominated by j vertices in (S ∩ V (G p)) in V (G p). Let C ′ be the set realizing μ(p,ψ, S, j). To compute this we guess
1 � tp � t and check whether μ(p,ψ, S, j) � tp and finally set it to the maximum tp it satisfies. The meaning of the
colors of the vertices are as follows:
• ψ(v) = 1 means v is in the set C ′ that we are constructing;
• ψ(v) = 2 means v /∈ C ′ but needs to be dominated by vertices in (S ∩ V (G p));
• ψ(v) = 3 means v /∈ C ′ but is already dominated from the vertices in S \ V (G p);
• ψ(v) = 0 otherwise.
Notice that for r ∈ T , Gr = G , Ar = ∅ and ψ , and μ(S, i) = maxψ μ(r,ψ, S, i).

3. For a fixed ψ , we guess C ′
ψ = {u | u ∈ ((N(v) ∩ B p ∩ S) \ (A p ∪ X p)),ψ(v) = 2}, a set of vertices of size at most 2h from

B p \ (X p ∪ A p) such that it dominates all the vertices v in A p ∪ X p , such that ψ(v) = 2.
4. For a fixed ψ and C ′

ψ , let C ′ = {v | ψ(v) = 1} ∪ C ′
ψ and m(C ′) = w(B1(C ′)). Notice that we do not count already

dominated vertices. Now we redefine our weight function. We have w(v) = 0 either if ψ(v) = 3 and v ∈ X p or if v is
dominated by some vertex in C ′ .

5. Now we guess the number of vertices q, 1 � q � j − |C ′|, such that our optimal C ′ consists of q vertices from B p \ C ′
and j − |C ′| − q vertices from V (G p) \ B p . We compute the maximum weight mq of vertices dominated by j − |C ′| − q
vertices from (S ∩ V (G p) \ B p) by using the known values stored for μ(s,ψ ′, S, j′), where s is a child of p in the tree
T and the fact that weight of the vertices in X p is zero and so we can remove them. Let mq := mq + m(C ′).

6. Let Z1 = {v | v ∈ B p \ (A p ∪ X p ∪ C ′), w(B1(v)) � (tp − mq)/q}. Our final C ′ must intersect Z1. Consider the diameter
diam of B̂ p[B1(Z1) \ (X p ∪ B1(C ′))].

7. If diam is larger than (16k)k , then by Lemma 1 we can find a subset T1 ⊆ Z1 of size q such that the distance between
any two vertices in T1 is at least 3, distance between vertices in T1 and the set of j − |C ′| − q already selected vertices
of S ∩ (V (G p) \ B p) is at least 3 and so w(B1(T1)) + mq � tp . So we assume that we have bounded diameter. The graph
Gψ = B̂ p[B1(Z1) \ X p] has linear local treewidth and we can obtain a tree decomposition (Tψ, {Ur}) of width dH (16k)k

in polynomial time, where dH is a constant. Now since As ∩Gψ is a clique it appears in a bag of this tree decomposition.
Let r′ be the node representing this bag in this tree. We now create a new bag containing the vertices of As ∩ Gψ and
make it a leaf of the tree Tψ by adding a node and connecting this node to r′ .
By abuse of notation, by s we denote this distinguished leaf containing the bag As ∩ Gψ . We can apply a dynamic
programming algorithm similar to the one we used for the bounded local treewidth case (Theorem 1). For this fixed ψ ,
C ′

ψ , q, we run the tree decomposition algorithm of Theorem 1 with the restriction that colorings of the bags respect
ψ and selection of vertices in C ′

ψ , to compute μ(p,ψ,q, C ′
ψ, Z1,q1), 1 � q1 � q. This is to compute the maximum

weight of vertices in V (G p) one can dominate by selecting a set T1, containing q1 vertices from Z1, and j − |C ′| − q
vertices from S ∩ (V (G p) \ B p). We initialize the bag s (distinguished bag) by the appropriate value μ(s,ψ ′, S, j′) for an
appropriate coloring ψ ′ of As (respecting the coloring ψ , C ′

ψ).
8. After we have computed the values μ(p,ψ,q, C ′

ψ, Z1,q1), 1 � q1 � q, we make implicit recursive calls as in (T4) of the
framework based on the fact that |C ′ ∩ Z1| � q and reduce q := q − q1 and tp := tp − m(C ′) − μ(p,ψ,q, C ′

ψ, Z1,q1).
In this recursive call we define Z2 = {v | v ∈ B p \ (A p ∪ X p ∪ Z1 ∪ C ′), w(B1(v)) � tp/q} and either we find a subset
T2 of Z2 of size q using Lemma 1 such that w(B1(T2)) � tp and C ′ ∪ T1 ∪ T2 is the desired C ′ or we do implicit
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recursive calls as in algorithm of Fig. 1 and we similarly continue further. Using this algorithm we compute the value
of μ(p,ψ, j, C ′

ψ, S,q). Hence at the end we have

μ(p,ψ, S, j) = max
C ′

ψ ,q

{
μ

(
p,ψ, j, C ′

ψ, S,q
)}

.

One can handle in the similar way the general case, that is when there are more than one elements in S . In the general
case for each bag p and for each coloring ψ , we also fix the number j of chosen elements in S for each pair (S, i) in S . For
one bag of the tree decomposition, we have 42h choices for ψ and we make at most nO (h) guesses for a fixed ψ . Notice that
after fixing ψ , C ′

ψ and q, we make at most 2k calls to dynamic programming algorithm of Theorem 1. Since the Tψ has at

most O (n) nodes, the time taken of the above one step of the algorithm is O (nO (h)4h3(3h(k)/2)2kt) where h(k) = dH (16k)k .
Since the algorithm of Fig. 1 makes at most 2k recursive calls and we can obtain the clique-sum decomposition in nO (1) , we
get the desired time complexity for the algorithm. �
5. Partial vertex cover

While the results of the previous section can be used to prove that PVC is FPT on H-minor free graphs, we do not need
that heavy machinery for this specific problem. In this section we show how implicit branching itself does the job, even for
more general classes of graphs. We present a simple modification to our framework developed in Section 3.1 and use it to
show that PVC problem is FPT in triangle free graphs. Given a graph G = (V , E) and a subset S ⊆ V , by ∂ S ⊆ E we denote
the set of all edges having at least one end-point in S . Our modification in the generic algorithm is in step (T2).

(T2′) Bound the size of S as a function of the parameter in every recursive step.

We call a graph class G hereditary if for any G ∈ G , all the induced subgraphs of G also belong to G . Let ξ : N → N be
an increasing function. We say that a hereditary graph class G has the ξ -bounded independent set property, or simply the
property ISξ , if for any G ∈ G , there exists an independent set X ⊆ V (G) such that |V (G)| � ξ(|X |) and X can be found
in time polynomial in the input size. There are various graph classes which have the property of ISξ . Every bipartite graph
has an independent set of size at least n/2 and hence we can choose ξb : N → N as ξb(k) = 2k. A triangle free graph has
an independent set of size at least max{�,n/(� + 1)} where � is the maximum degree of the graph which implies that
a triangle free graphs has an independent set of size at least

√
n/2. In this case we can choose the function ξt : N → N by

ξt(k) = 4k2. H-minor free graphs, and in particular, planar graphs and graphs of bounded genus, have chromatic number at
most g(H) for some function depending only on H . In this case G has an independent set of size at least n/g(|H|) and we
can take ξH (n) = g(H)n. For planar graphs g(H) is 4.

We can show that if a graph class G has the property ISξ , then in the case of PVC for every G ∈ G either we can upper
bound the size of S used in the implicit branching step by ξ(k) or we can find a subset V ′ of size at most k such that
|∂V ′| � t . The main theorem of this section is as follows.

Theorem 6. Let G be a hereditary graph class with the property of ISξ for some integer function ξ . Then PVC can be solved in
O (τ (k) · nO (1)) time in G where τ (k) = ξ(k)k.

Proof. Let k and t be two integers. Let G = (V , E) ∈ G be a graph on n vertices. Let us define S and G as follows:

S = {
v

∣∣ v ∈ V , deg(v) � t/k
}

and G = G[S].
Notice that any partial vertex cover V ′ must contain a vertex from S . As G is hereditary and has the property ISξ , we have
G ∈ G , and one can find in time polynomial in n, an independent set X ⊆ A of H , such that |H| � ξ(|X |). Now we have two
cases based on the size of the independent set X .

• If |X | � k, then the answer to PVC is YES and a partial vertex cover can be obtained by taking a subset Y of X of size k.
Since every independent set in H remains to be an independent set in G , we have that Y ⊆ X is an independent set in
G . This implies that |∂Y | � k t

k = t .
• If |X | < k, then the size of S is bounded above by ξ(k). Since every partial vertex cover intersects S , in this case we

recursively solve the problem by selecting a vertex v ∈ S , in the partial vertex cover V ′ and then looking for partial
vertex cover of size k − 1 and covering t − |∂v| edges in the graph G − {v}.

Since the number of recursive calls made at any step is at most ξ(k) and the depth of the recursion tree is at most k, in the
worst case the time taken to solve PVC problem in G is O (ξ(k)knO (1)). This proves that PVC is fixed parameter tractable in
G and gives the desired running time. �
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Corollary 1. The PVC problem can be solved in time O ((2k)knO (1)), O ((4k2)knO (1)), O ((4k)knO (1)) and O ((λHk)knO (1)) in bipartite
graphs, triangle free graphs, planar graphs and graphs excluding a fixed minor H respectively. Here λH is a constant depending only on
the size of H.

6. Conclusion

In this paper we obtained a framework to give FPT algorithms for various partial covering problems in graphs with
locally bounded treewidth and graphs excluding a fixed graph H as a minor. The main idea behind our approach was the
concept of implicit branching which is of independent interest. We believe that it will be useful for other problems as
well.

Many non-partial parameterized problems on planar graphs can be solved by reducing to a kernel of linear size [2,8,22].
This does not seem to be the case for their partial counterparts and an interesting question here is, whether Partial

Dominating Set or Partial Vertex Cover can be reduced to polynomial sized kernels on planar graphs.
Recently, the running time of algorithms for Partial Dominating Set and Partial Vertex Cover on planar graphs, and

more generally, on apex-minor-free graphs was improved in [21].
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