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Abstract We initiate the study of the algorithmic foundations of games in which
a set of cops has to guard a region in a graph (or digraph) against a robber. The
robber and the cops are placed on vertices of the graph; they take turns in moving
to adjacent vertices (or staying). The goal of the robber is to enter the guarded re-
gion at a vertex with no cop on it. The problem is to find the minimum number of
cops needed to prevent the robber from entering the guarded region. The problem
is highly non-trivial even if the robber’s or the cops’ regions are restricted to very
simple graphs. The computational complexity of the problem depends heavily on the
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chosen restriction. In particular, if the robber’s region is only a path, then the prob-
lem can be solved in polynomial time. When the robber moves in a tree (or even
in a star), then the decision version of the problem is NP-complete. Furthermore,
if the robber is moving in a directed acyclic graph, the problem becomes PSPACE-
complete.

Keywords Game of Cops and Robbers · Guarding of vertices · Winning strategy ·
Complexity · Algorithms · Approximation

1 Introduction

Chases and escapes, or pursuits and evasions, are activities which are firm parts of
our everyday or fantasy life. When young we are playing the game of tag or the game
of hide-and-seek and watch Tom & Jerry cartoons. Pursuit-evasion problems remain
fascinating for most of us even when we grow older, and it is not surprising that
in half of the Hollywood movies good guys are chasing the bad guys, while in the
remaining half bad guys are chasing the good ones.

The mathematical study of pursuit-evasion games has a long history, tracing back
to the work of Pierre Bouguer, who in 1732 studied the problem of a pirate ship
pursuing a fleeing merchant vessel. We refer to Differential games by Rufus Isaacs
[1], the now classic book on pursuit-evasion games, published in 1965 (and reprinted
by Dover in 1999), for a nice introduction to the area. One of the general pursuit-
evasion problems (mentioned in Isaacs’ book) is the guarding-the-target problem.
There are many variations of this problem like the deadline game, patrolling a chan-
nel, and patrolling a line. In this problem, both pursuer and evader travel with the
same speed. The goal of the pursuer is to guard a target C which is an area in the
plane, from attacks by the evader. In Isaacs’ military conception of this problem, the
evader must actually reach at least the boundary of the target to be successful in her
attack.

In this paper we study the cop-robber guarding game (guarding game for short),
a discrete version of the guarding-the-target problem. We use the setting from the
classic pursuit-evasion game on graphs called Cops and Robbers [2, 3].

The guarding game is played on a (directed or undirected) graph G = (V ,E) by
two players, the cop-player and the robber-player, each having her pawns (cops or a
robber, respectively) on the vertices of G. The focus of the game is on the protected
region (called also the cop-region) C � V —the cops guard C by preventing the rob-
ber from entering the protected region without being “caught”, which happens when
the robber is on a vertex of C with a cop on it. The game is played in alternating turns.
In the first turn the robber-player places her single robber on a vertex of V \ C, i.e.,
outside the protected region C. In the second turn the cop-player places her c cops
on vertices of C (more than one cop can be placed on a vertex). In each subsequent
turn the respective player can move each of her pawns to a neighboring vertex of the
pawn’s position (or leave it at its current position), following the rule that the cops can
move only within the protected region C, and the robber can move only on vertices
with no cops (thus avoiding being “caught”). At any time of the game both players
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know the positions of the cops and the robber in G. The goal of the cop-player is
to guard (or protect) the region C, i.e., to position and move the cops such that, in
any turn, the robber cannot move onto a vertex of C with no cop on it. We say that
a cop on vertex v guards the vertex v (as the robber cannot move onto v). Naturally,
the goal of the robber-player is to position and move the robber in such a way that
at some point in time the robber can move onto a vertex of C with no cop on it.
The region V \ C where the robber moves before it eventually enters C is called the
robber-region and is denoted by R.

The guarding game is a robber-win game if the robber-player can, at some turn,
move the robber to a vertex in C with no cop on it. In this case we say that the
robber-player wins the game. Otherwise (if the cop-player can forever prevent the
robber-player to win) we say that it is a cop-win game, and that the cop-player wins
the game, or that the cop-player can guard C. Thus, the game is fully specified by
the number of cops c, and by the board of the game which is given by the graph
G = (V ,E), the protected region C and the robber-region R. We denote the board by
[G; R,C] (obviously R = V \C, but it is convenient for us to keep both sets R and C

in our notation). In this work we will be considering cases when sets R or C induce
subgraphs of G with specific properties (like being a path, a tree, or a directed acyclic
graph—DAG). By slightly abusing notations, we will often be referring to robber or
cop regions as induced subgraphs.

Since the game is played in alternating turns starting at the first turn, the robber-
player moves her robber in odd turns, and the cop-player moves her cops in even
turns. Two consecutive turns 2 · i − 1 and 2 · i are jointly referred to as a round i,
i ≥ 1. A state of the game at time i is given by the positions of all cops and robbers
on the board after i −1 turns. A strategy of a cop-player (strategy of a robber-player)
is a function X which, given the state of the game, determines the movements of the
cops (the robber) in the current turn. If there are no cops (no robber) on the board, the
function determines the initial positions of the cops (the robber).

The guarding decision problem is, given a board [G; R,C], and a number c spec-
ifying the number of cops, to decide whether it is a cop-win game or a robber-win
game. The guarding problem is, given a board [G; R,C], to compute the minimum
number of cops that can guard the protected region C against all possible strategies
of the robber-player. We call this number the guard number of the game, and denote
it by � = gd(G;R,C). For illustration, Fig. 1 depicts a board of the guarding game.
If the robber is on v4, two cops must be on u3 and u4. If the robber moves to v3 none
of the two cops can reach u1 in the next turn, hence � > 2. Later we will see that for
this game � = 3.

Our Contribution In this work, we initiate the study of algorithmic and combina-
torial issues of the guarding problem. We start with the case when R is a path. We
show that for such robber-regions the problem can be solved in polynomial time. The
solution is based on a reduction to the minimum flow problem. Furthermore, an inter-
esting special case of the problem is when C is a path, too. In this case we establish
a combinatorial result that the minimum number of cops needed to protect the path
is equal to the size of a maximum independent set in a (related) comparability graph.
By making use of the combinatorial result, we are able to obtain a faster solution
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Fig. 1 An instance of the guarding game with the path R and the graph C to be guarded (left). The robber
walks on the path R from vertex v1 in round 1 (layer t1) to vertex v4 in round 4 (layer t4). Three cops are
necessary to guard C, and a strategy of the cops is depicted by the thick polygonal curves traversing the
vertices which consist of 4 “copies” of C (right). The highlighted vertices depict vertices on which there
needs to be a cop at the respective time (the neighbors of vertex vi after round i)

for this case. The complexity of the problem increases even with small changes of
the robber-region R. We do not give an answer whether the problem can be solved in
polynomial time when R is a cycle, however, we are able to find a 2-approximation of
the guard number in this case. When R is a tree, or even a star, the problem becomes
NP-hard and the parameterized version of the problem is W [2]-hard. Moreover, our
reduction from MINIMUM SET COVER implies that there is a constant ρ > 0 such
that there is no ρ logn-approximation algorithm, unless P = NP.1 We also show that
the decision version of the problem is in NP when R is a tree. In case R is a directed
acyclic graph (DAG), the problem is PSPACE-complete. We do not solve the general
case, whether the problem is in PSPACE when R is an arbitrary graph.

Related Work The guarding game can be seen as a member of a vast class of games
called the pursuit-evasion games (see, e.g., [5] for an introduction). The discrete ver-
sion of pursuit-evasion games, played on graphs, is the Cops-and-Robbers game. The
game was defined (for one cop) by Nowakowski and Winkler [2]. Their work and
the work of Quilliot [6] characterized graphs for which one cop can catch the rob-
ber. Aigner and Fromme [3] initiated the study of the problem with several cops. The
minimum number of cops that are required to capture the robber is called the cop
number of a graph. This problem was studied intensively and we refer to Alspach’s
survey [7] for references. The Cops-and-Robbers game can be seen as a special case
of search games played on graphs, see the annotated bibliography [8] for further
references on search and pursuit-evasion games on graphs. The computational com-
plexity of finding the minimum number of cops in the game of Aigner and Fromme
is still not settled completely. Goldstein and Reingold [9] proved that the version
of the game on directed graphs is EXPTIME-complete. Also they have shown that
the version of the game on undirected graphs when cops and robbers are given their
initial positions is also EXPTIME-complete. They also conjectured that the problem
is EXPTIME-complete on undirected graphs (without given initial positions of the
players). However, until very recently even NP-hardness of the problem was open
[10]. To our knowledge, cop-robber guarding games, the topic of this paper, have

1If NP �⊂DTIME(npoly log n), Lund and Yannakakis [4] show that MINIMUM SET COVER cannot be ap-
proximated within the ratio ρ logn for any ρ < 1/4.
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not been studied in mathematical and algorithmic terms before. Let us note that the
nature of the guarding game is very different—in the guarding game the cops move
such that the robber cannot enter the protected region, while in the original Cops-
and-Robbers game, the cops are “hunting” the robber so that they eventually catch
the robber. The results or methods obtained for the original Cops-and-Robbers game
are not applicable to the cop-robber guarding game of this paper.

2 Guarding Against a Path

In this section we consider the guarding problem with board [G; R,C], where the
protected region C induces an arbitrary graph, and the robber-region R induces a path
P , i.e., the board of the game is a path P connected to C by interconnecting edges,
leading to the graph G. Modeling the problem as a flow problem we can design an
algorithm that computes in polynomial time the minimum number of cops that are
needed to guard C when R induces a path. Moreover, our algorithm also computes a
winning strategy of the cop-player.

Let n1 and n2 denote the number of vertices of R and C, respectively, and suppose
that R is the path P = v1, v2, . . . , vn1 . The restriction on the area where a robber can
move before entering the protected region C allows us to consider only one strategy
of the robber-player, the direct strategy: the robber-player places her robber on the
first vertex v1 of the path P and moves the robber from v1 along P to the last vertex
vn1 of the path P , and enters the protected region C when possible. As the following
lemma shows, the cops that can guard against this strategy can also guard against any
strategy of the robber-player.

Lemma 1 If c cops can guard C against the direct strategy of the robber-player—
in a guarding game where the robber-region R is a path—then c cops can guard C

against any strategy of the robber-player.

Proof Let us consider a winning strategy of the cop-player against the direct strategy
using c cops, and let us observe the positions of the c cops. Let Xi be the multiset
of vertices of C on which the cops are placed when the robber, following the direct
strategy, is on vertex vi , i = 1, . . . , n1, of the path P . (Hence, a vertex u ∈ C appears
k times in Xi if there are k cops on vertex u after the round in which the robber moves
to vertex vi .) Thus, X1,X2, . . . ,Xn1 describe the movements of the cops when the
robber moves from v1 to vn1 . Observe now that the cop-player can move the cops
from Xi to Xi−1 if the robber moves from vi to vi−1, and the cop-player can move
the cops from Xi to Xi+1 if the robber moves from vi to vi+1, and that there is no
other movement for the robber at vertex vi . Thus, for any strategy of the robber-
player, when the robber moves to vertex vi , the cop-player can always move the cops
to positions Xi . Therefore, at any time, the robber cannot enter C, and the cop-player
wins. �

Obviously, the number of cops in an optimal winning strategy of the cop-player
against the direct strategy of the robber-player cannot be larger than the number of
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cops in an optimal winning strategy of the cop-player against every strategy of the
robber-player. Thus optimality is preserved if we restrict the robber-player to play a
direct strategy. Using this remark we prove the main result of the section.

Theorem 1 Let [G; R,C] be a board such that R is a path. The guarding problem
for board [G; R,C] is solvable in time in O(n1n2m), where m = |E(G)|, n1 = |R|,
and n2 = |C|.

Proof Thanks to the previous lemma, we can consider only the direct strategy of
the robber-player. We present a (constructive) algorithm that computes the minimum
number of cops and also a winning strategy of the cop-player.

Consider a walk of the robber from vertex v1 to vertex vn1 . Assume that � cops can
win the game. We can describe a winning strategy of the cops by the positions of the
cops in C: Let Xi , i = 1,2, . . . , n1, be a multiset of cardinality � with elements from
C, with the meaning that � cops are on vertices Xi when the robber is on vertex vi .
As {Xi : i = 1, . . . , n1} describes a winning strategy for the � cops (for the robber’s
direct strategy), the neighbors of vi in C are in Xi for every i = 1, . . . , n1 (otherwise
there would be a neighbor of vi in C with no cop on it and thus the robber could
move there in the subsequent move and win the game). We can visualize the walk
of the robber and the cops in the following way. We consider the vertices of C in
situations when the robber is on vertex vi , i = 1,2, . . . , n1. Thus, we consider n1
layers of “copies” of C, where the i-th layer consists of vertices ui

1, u
i
2, . . . , u

i
n2

, with
the obvious meaning that ui

j corresponds to the vertex uj ∈ C when the robber is
on vertex vi . We depict the movements of � cops by � polygonal curves traversing
the vertices ui

j , where each curve depicts the movement of one cop—vertex ui
j lies

on the curve if and only if the corresponding cop visited vertex uj in the turn when
the robber was on vertex vi . Consider Fig. 1 for an illustration. The example shows
the board consisting of C on five vertices, and a path induced by R of length four
(left). The dotted lines are the interconnecting lines of R and C. For the walk of the
robber from v1 to v4 in four rounds 1,2,3,4 we consider in each round the vertices
of C (right)—four layers (copies) t1, t2, t3, t4 of C. After the moves of each round
i are completed, the neighbors of vi have to be guarded by cops (the highlighted
vertices). An optimal solution is depicted by the three polygonal curves between the
layers, which show the position of each cop at every time, thus showing the number
of necessary cops (three in this case) and their movements.

The movements of the cops (the polygonal curves) can be seen as “graph-theoretic
paths” between the layers. Our algorithm computes such “paths”. We construct an
auxiliary directed graph A. If R induces a path on n1 vertices, there are n1 layers
(copies) of vertices C, where layer ti contains vertices ui

j , j = 1,2, . . . , n2. We add

a directed edge from vertex ui
j to vertex ui+1

k if j = k (a cop may stay on the same
vertex), or if ujuk is an edge in C (a cop moves from vertex uj to vertex uk in G).
There are two additional vertices in A—source s and target t , where s is connected to
every vertex of the first layer, and t is connected to every vertex of the last layer (see
Fig. 2). We want that the paths from s to t (which we want to compute) reflect the
guarding strategy of the cop-player. Thus, we require that at least one path traverses
through every vertex ui

j for which the corresponding vertex uj is a neighbor of vi in
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Fig. 2 The auxiliary graph A

constructed from the guarding
game of Fig. 1. For better
readability, not every edge has
its direction depicted. The
duplicate of a vertex ui

j
is

denoted by ūi
j

. The thick edges
between the original and
duplicated vertices denote the
edges with a flow demand
be = 1

graph G. We call such a vertex ui
j an endangered vertex. We say that a path covers an

endangered vertex v if the path traverses through v. It is now an easy observation that
the minimum number of paths, each from s to t , that cover all endangered vertices, is
the minimum number of cops for which the game is a cop-win game. Clearly, every
path suggests a movement for one cop, and similarly, every cop’s movement induces
one path. As both the cops’ movements and the paths traverse through all endangered
vertices, the connection between the two values becomes obvious. Let us call a set of
paths that together traverse through every endangered vertex a path cover.

To find an optimal guarding strategy for the cop-player, we are left to compute
a path cover of minimum cardinality. This problem has been studied previously for
the case where the paths should cover all vertices of a graph (i.e., the case where all
vertices of G are endangered) [11]. This problem can be solved by different methods.
To give an explicit solution here we show that it can be reduced to a minimum flow
problem using the same approach as in [11]. To ensure that the paths traverse through
endangered vertices, we modify the graph A a bit, and duplicate every vertex ui

j . All

ingoing edges to ui
j before duplication are now the ingoing edges of the original,

and all outgoing edges from ui
j before duplication are now the outgoing edges of the

copy. We connect the copy and the original with an edge. For each such newly created
edge e we set the minimum flow demand be to be one if the vertex ui

j is endangered

(i.e., we ask the flow to traverse through ui
j ), and we set be to be zero otherwise

(i.e., there is no need for the flow to go there—no cop is needed there). For all other
edges in the graph, we likewise set be to be zero. It is now an easy observation that
a minimum flow from s to t that satisfies the minimum demand be of flow for every
edge corresponds to a minimum path cover: since the flow requirements are integers
(and there are no cycles in A) the flow is integral (on every edge), too. Thus, every
unit of flow represents a path, and clearly the paths form a path cover. As the flow
is a minimum flow we further obtain that the path cover is of minimum cardinality.
As the minimum flow problem can be computed in time in O(f ∗ · |E|) (an easy
modification of the Ford-Fulkerson algorithm for maximum flow, see e.g. [12] for an
explicit description) where f ∗ is the value of an initial feasible flow for the problem,
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we can conclude (as for our graph A the number of edges is at most O(n1|E|); and
we can take as an initial feasible flow the flow of value n2 which uses n2 paths where,
for every i, path i goes through vertices ui only) that the guarding problem can be
solved in time in O(n1n2|E|). �

As we shall see in the next section, the complexity of the problem changes dras-
tically when R is not a path. For the case where R is a cycle, Theorem 1 gives a
possibility to obtain a constant factor approximation for the guard number.

Consider the case where R is a cycle v1, v2, . . . , vn1 and let e be the edge vn1v1.
Using the flow approach which we have used for the case when R is a path, we can
compute an optimal strategy of the cop-player against any strategy of the robber-
player which walks along the cycle R for d steps in one direction: just create d layers
of vertices of C, interconnect the vertices of the neighboring layers accordingly, sub-
stitute each vertex by an edge, introduce s, t and the right flow demands on edges, and
the minimum flow results in an optimal guarding strategy of the cop-player against
the d moves of the robber in one direction.

We now show that if we set d = n1, the resulting optimal strategy against the n1
moves of the robber can be used to design a 2-approximation of a best cop-strategy
against any strategy of the robber-player. The idea is to duplicate the number of cops
that are necessary to guard one walk of the robber around the cycle, and to use the two
groups of cops in alternating cycle-around-walks of the robber. To be more precise, let
us consider the robber-player’s strategy as a walk on the cycle R (before it eventually
enters C), and let us define a cycle-walk to be the maximal time-period in which the
walk does not use the edge vn1v1. We number the cycle-walks in the following way.
We assume, without loss of generality, that the robber starts at vertex v1. The cycle-
walk number one is then the part of the robber’s walk that starts in the first turn, and
ends at the time the robber uses the edge vn1v1 (in any direction). If the robber moves
along the edge from vertex vn1 to vertex v1, a new cycle-walk starts with number
two. If the robber moves along the edge from vertex v1 to vertex vn1 a new cycle-
walk starts with number zero. Recursively we can now define any cycle-walk i ∈ Z.
We are now ready to prove the following corollary of Theorem 1.

Corollary 2 Let [G; R,C] be a board such that R is a cycle v1, . . . , vn1 . Then there
is a 2-approximation polynomial time algorithm for the guarding problem on board
[G; R,C].

Proof Let us prove the following claim, which is an implicit proof of the corollary.

Claim 1 Let [G; R,C] be as in the corollary. Let e be the edge vn1v1 of cycle R.
Let G′ be a graph obtained from G by the removal of e, and let � = gd(G′;R,C)

be the guard number of the game played on [G′; R,C]. Then � ≤ gd(G;R,C) ≤ 2�.
Further, 2� can be computed in time polynomial in the number of vertices of G.

Guarding against the strategy where the robber walks within one cycle-walk can
be seen as guarding in the scenario where R is a path, i.e., in the game played on
[G′; R,C], and thus an optimal guarding strategy X for this case can be computed in
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polynomial time (Theorem 1). Let the multisets Xi of elements of C, i = 1, . . . , n1,
denote the positions of the cops in the optimal guarding strategy X of the game played
on [G′; R,C], when the robber is placed on vertex vi . Double the amount � of cops
that are used in X and form two groups of cops—the first � cops are in group A1 and
guard the cycle-walks with odd numbers, the next � cops are in group A2 and guard
the cycle-walks with even numbers. In the beginning, when the robber sits on vertex
v1 in the first cycle-walk (cycle-walk number one), the cops from group A1 sit on
vertices in X1 (thus guarding the protected region C), ready to move to vertices in
X2 if the robber moves to vertex v2, and the cops from group A2 sit on vertices in
Xn1 , ready to guard the protected region C if the robber moves to vertex vn1 and starts
a new cycle-walk. In general, in an odd cycle-walk, if the robber moves from vertex
vi to vi+1, 1 ≤ i < n1, the cops from group A1 move from Xi to Xi+1 and the cops
from group A2 move from Xn1−i+1 to Xn1−i . The cops move in the reverse direction
if the robber moves from vertex vi+1 to vertex vi , 1 ≤ i < n1. Thus, the cops of A1
guard C in the odd cycle-walks. The cops do not move if the robber moves using the
edge vn1v1, but switch their roles, i.e., for any move of the robber from vi to vi+1, the
cops of A2 follow the strategy from Xi to Xi+1, and the cops of A1 are getting ready
for next cycle-walk with a reverse walk from Xn1−i+1 to Xn1−i , and so on. Thus,
using this strategy with 2� cops, at any time when the robber is on vertex vi there
are cops on positions in Xi and hence this strategy of a cop-player guarantees that
the game is a cop-win game. Clearly, the minimum number of cops that can guard
in a game played on [G; R,C] is at least �, and obviously, 2� can be computed in
polynomial time. �

Now we consider an interesting special case when both the robber-region and the
protected regions are paths. We establish a combinatorial result stating that in this
case the guard number is equal to the size of a maximum independent set in a related
comparability graph.

The graph G of the game is a pseudo-bipartite graph G = (V1 ∪ V2,E), |V1| = n1
and |V2| = n2, where vertices V1 induce a path P1 = v1, v2, . . . , vn1 in G, and vertices
V2 induce a path P2 = u1, u2, . . . , un2 in G. We note that the paths P1 and P2 induce
a natural linear ordering of the vertices of V1 and V2, respectively. The vertices of P1
and P2 form the robber-region R and the protected region C, respectively, i.e., the
board is [G; V1,V2].

The auxiliary graph B = B(G) that reflects the structure of the game played on
a pseudo-bipartite graph G is defined as follows. Every edge e = vu between P1
and P2, v ∈ V1, u ∈ V2, corresponds to a vertex B(e) = B(vu) of B . The vertices
B(e) and B(e′) of B are connected in B , if in G one cop can guard the endpoints of
the edges e and e′ in P2 against the direct strategy. More formally, let e = viuj and
e′ = vi′uj ′ be two edges interconnecting P1 and P2. Then the vertices B(e) and B(e′)
form an edge in B if and only if |i − i′| ≥ |j − j ′|. Intuitively, this corresponds to the
situation where a single cop that guards vertex uj when a robber is on vertex vi can
also guard vertex uj ′ when the robber moves to vi′ , because the cop can get there on
time. Let us order the vertices of B (which correspond to edges in G) as follows: a
vertex B(e) = B(viuj ) is said to be smaller than the vertex B(e′) = B(vi′uj ′), if and
only if ij is lexicographically smaller than i′j ′, i.e., the vertices B(e) and B(e′) are
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sorted in the order as the edges e and e′ appear on the path P1, and in case of a tie,
the position of the edge on the path P2 decides the order. We call B the pair-distance
graph of G. We will show that B belongs to the class of comparability graphs. The
properties of comparability graphs will be further used to design an algorithm for
solving the guarding problem (for this special case). Recall that a comparability graph
is an undirected graph corresponding to a partial order of the vertices—there is an
edge between two vertices if and only if the two vertices are comparable (in the partial
order). We note that comparability graphs are a subclass of perfect graphs [13].

Theorem 3 Let [G; R,C] be a board such that R = P1 and C = P2 are paths,
and let B(G) be the auxiliary graph of G[G; R,C]. Then a) the guard number � is
equal to the size of a maximum independent set in B(G), and b) graph B(G) is a
comparability graph.

Proof We first prove that B is a comparability graph. Let us show that B corresponds
to a partial order of the vertices of B (which correspond to edges in G). We note
that the lexicographical order of the vertices of B is not the partial order we are
looking for. For two vertices B(e) = B(viuj ) and B(e′) = B(vi′uj ′) in B we define
B(e) ≺ B(e′) if (1) ij is lexicographically smaller than i′j ′, and (2) |j −j ′| ≤ |i − i′|,
i.e., if a single cop can guard the vertices uj and uj ′ . Observe that (2) indeed reflects
the construction of the graph B from G. Thus, we are left to prove that the relation
≺ is transitive (and therefore, a partial order). Suppose therefore that for some three
lexicographically sorted edges vi1uj1 , vi2uj2 , vi3uj3 of E(G) we have B(vi1uj1) ≺
B(vi2uj2) and B(vi2uj2) ≺ B(vi3uj3). It follows that |j2 − j1| ≤ |i2 − i1| = i2 − i1
and |j3 − j2| ≤ |i3 − i2| = i3 − i2. Thus we have that |j3 − j1| = |j3 − j2 + j2 −
j1| ≤ |j3 − j2| + |j2 − j1| ≤ (i3 − i2) + (i2 − i1) = i3 − i1 = |i3 − i1|. Consequently,
B(ui1vj1) ≺ B(ui3vj3), and thus ≺ is transitive.

We now prove the first claim. Let mB and cB be the size of a maximum indepen-
dent set of the pair-distance graph B = B(G) and the size of a smallest clique cover
of B (i.e., the least number of cliques required to cover B), respectively. We show
that mB ≤ � ≤ cB holds.

To see mB ≤ �, let a maximum independent set M of B be given. Let vi1, . . . , vimB

be the (not-necessarily distinct) vertices of P1 that are the endpoints of the edges that
correspond to the vertices in M , where i1 ≤ i2 ≤ · · · ≤ imB

. Consider the following
strategy of the robber-player. The robber-player places initially the robber on vi1 and
a set of cops must be placed on the neighbors of vi1 in P2. In every round, the robber-
player moves the robber towards vimB

. By construction of B , whenever the robber is
located on vertex vij , 1 ≤ j ≤ mB , the cops that are preventing the robber to enter P2
must be cops that were not previously used to prevent the robber to enter P2 from the
vertices vi1, . . . , vij−1 . This establishes mB as a lower bound of �.

To show that � ≤ cB , we describe a strategy for the cop-player using cB cops that
prevents the robber to enter P2. As argued before (Lemma 1), it suffices to show
a winning strategy for the cop-player against a direct strategy of the robber-player.
Given a clique cover of B , this is an easy task. Every clique in the cover specifies as
before a set of vertices vi1, . . . , vicB

, i1 ≤ i2 ≤ · · · ≤ icB
, in P1 and uj1 , . . . , ujcB

in
P2, so that B(vikuik ) is a vertex of the clique in B (and corresponds to an edge of
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the original graph). The cop-player’s strategy is to use one cop for every clique of the
clique cover. When the robber is on vertex vik during its trip to vn1 , the cop is located
on vertex uik . By construction the cop reaches uik+1 no later than in the same round
as the robber reaches vik+1 . Since the clique cover spans the whole board, the robber
cannot win and the inequality � ≤ cB is proved.

In general graphs, the size of a maximum independent set is a lower bound for
the size of a minimum clique cover (every vertex of the independent set needs to be
covered by a distinct clique). In perfect graphs, however, the two parameters are equal
[14], which proves the claim. �

Note that there are known polynomial time algorithms for computing a maximum
independent set in comparability graphs [15]. However we now describe a tailor-
made problem-specific dynamic programming algorithm for computing the minimum
number of cops needed to guard P2, which runs in time O(m′2), where m′ is the
number of interconnecting edges of the original graph G, i.e., the number of edges
between V1 and V2. The algorithm, which we simply call Alg, efficiently computes
a maximum independent set of a pair-distance graph B .

The dynamic-programming approach works in the following way. First, Alg con-
siders the vertices of B in the following order (different from the order we con-
sidered in the previous sections): B(e1) = B(vi1uj1) is said to be smaller than
B(e2) = B(vi2uj2) if j1i1 is lexicographically smaller than j2i2. For every ver-
tex B(ei) of B the algorithm stores a biggest independent set among the vertices
B(e1), . . . ,B(ei) that contains the vertex B(ei). Let T (ei) denote such an inde-
pendent set, and |T (ei)| its size. At the beginning, the algorithm sets T (e0) = ∅
and T (e1) = {B(e1)}. In the generic step of computing T (ei), Alg tries to add
B(ei) to every independent set T (ej ), 0 ≤ j < i, resulting into candidate sets
Ij := {B(ei)} ∪ T (ej ). From Ij , the algorithm considers only independent sets
Yi := {Ij | 1 ≤ j < i, Ij is an independent set}, and defines T (ei) to be a maximum-
cardinality set in Yi . After the algorithm completes the computation of T (em′), a set
T (ei), 1 ≤ i ≤ m′, of the maximum cardinality is declared to be a maximum inde-
pendent set of B .

Theorem 4 The algorithm Alg computes a maximum independent set of a given
auxiliary graph B of the guarding game played on the board [G; R,C] (where R

and C are paths) in time O(m′2), where m′ is the number of edges in G between R

and C (i.e., m′ = |E(G)| − (n1 − 1) − (n2 − 1)).

Proof It is obvious that Alg computes an independent set of B , as every set T (ei),
i = 1, . . . ,m′, is an independent set. It is also obvious that the algorithm runs in time
in O(m′2). We now show that T (ei) indeed is a maximum independent set among the
vertices B(e1), . . . ,B(ei) that contains the vertex B(ei). Then, as the algorithm out-
puts as the result a maximum-cardinality set T (ei∗) among sets T (ei), i = 1, . . . ,m′
(i.e., i∗ = arg maxi |T (ei)|), the algorithm clearly outputs a maximum independent
set.

We are left to prove the claim. We prove the claim using mathematical induc-
tion. Clearly, for i = 1, the set T (e1) = {B(e1)} is a maximum independent set
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of elements B(e1), . . . ,B(e1) (i.e., of one element only) containing vertex B(e1).
Let i > 1, and let us assume the claim holds for every j < i. We show that the
claim also holds for i. Let O denote a maximum independent set among vertices
B(e1), . . . ,B(ei) that contains B(ei). We show that |T (ei)| ≥ |O| which proves the
claim. Let O ′ = O \ {B(ei)}. Let B(el) be the last vertex in O ′ (in the order the algo-
rithm considers the vertices). We have l < i. Clearly, O ′ is an independent set among
vertices B(e1), . . . ,B(el) that contains B(el). Using the induction hypothesis, we get
|T (el)| ≥ |O ′|. We now show that T (el) ∪ {ei} is an independent set (containing ei ).
Using this we then obtain the desired |T (ei)| ≥ |T (el) ∪ {ei}| ≥ |O ′ ∪ {ei}| = |O|.
To show that T (el) ∪ {ei} is an independent set we show that B(ei) is not ad-
jacent to any vertex B(ej ) from T (el). We denote ei = vai

ubi
, el = val

ubl
and

ej = vaj
ubj

. Observe that bi ≥ bl ≥ bj . We use the fact that B(ei) is not adja-
cent with B(el), and B(el) is not adjacent with any vertex B(ej ) of T (el). Thus,
according to the definition of B , |bi − bl | > |ai − al |, and |bl − bj | > |al − aj |.
Hence |bi − bj | = |bi − bl + bl − bj | = |bi − bl | + |bl − bj | > |ai − al | + |a−aj | ≥
|ai − al + al − aj | = |ai − aj |. Consequently, there is no edge between B(ei) and
B(ej ) in B .

�

3 Hardness of Guarding

It is not difficult to guess that the problem of computing the guard number is a hard
problem. In this section we provide two hardness results for quite restricted classes
of boards.

We first show that the problem is NP-hard even when the robber-region is a star.
A star is a tree where one vertex is adjacent to all other vertices, and the other ver-
tices have all degree one. We present a reduction from SET COVER [16] (which is an
NP-complete problem) to the guarding decision problem, which then shows that the
guarding decision problem is NP-hard. SET COVER is the problem of covering a uni-
verse U = {u1, . . . , un} by at most k sets from a given set system S = {S1, . . . , Sm},
Si ⊆ U , i = 1, . . . ,m, where U ⊆ ⋃

i Si .

Theorem 5 The guarding decision problem is NP-hard (for both directed and undi-
rected graphs) even if the robber-region R is a star (or even a directed rooted star
in the case of directed graphs). Moreover, the parameterized version of the problem
with c (the number of cops) being a parameter is W[2]-hard.

Proof We prove the theorem for undirected graphs. The proof for directed graphs is
a simple adaptation of what follows. We describe how to reduce SET COVER to the
guarding decision problem. Consider an instance of SET COVER. We first define U

as vertices which shall be effectively guarded by the cops. Thus, U will be part of the
protected region C. We add to our construction one single vertex a connected to all
vertices of U by paths of length two. Denote by b1, b2, . . . , bn the middle vertices of
these paths. The robber-region R is then {a, b1, b2, . . . , bn}—a star. We finally add
vertices where the cops can be placed and from which the cops can “cover” U in the
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same way as a solution to the SET COVER: we add one vertex si for every set Si ,
and connect it to every vertex u ∈ Si ⊆ U by an edge. These vertices define, together
with U , the protected region C. The guarding game is defined by setting the number
of cops c = k. Suppose that c cops can win the game. Initially, if the robber is placed
on a, we can assume, w.l.o.g., that cops occupy vertices from the set {s1, s2, . . . , sm}.
Obviously these vertices correspond to the set cover of size no more than c = k.
Assume now that X ⊆ {S1, S2, . . . , Sm} is a set cover of size at most k. Then for
every ui ∈ U there is Sji

∈ X such that ui ∈ Sji
. Therefore, in our graph construction,

ui and sji
are adjacent. Let x ⊆ {s1, s2, . . . , sm} be the set of vertices that correspond

to the set cover X. Let xi = (x \ {sji
}) ∪ {ui} for every i ∈ {1,2, . . . , n}. We consider

the cop-player’s strategy where the cops occupy vertices of x if the robber is in a, and
the cops occupy vertices of xi if the robber is in bi . Clearly, this is a winning strategy
for the cop-player.

Since our reduction is a parameterized reduction and SET COVER is a well-known
W[2]-hard problem, the second claim follows immediately.2

The only difference for the case of directed graphs is that a is joined with
u1, u2, . . . , un by directed paths, and vertices s1, s2, . . . , sm are joined with u1, u2,

. . . , un by arcs with the obvious orientation.
�

Let us note that the second claim of Theorem 5 is “tight” in some sense. It is well-
known for Cops-and-Robbers games that determining whether c cops can capture the
robber on a graph with n vertices can be done by a backtracking algorithm which
runs in time O(nO(c)) (thus polynomial for fixed c) [9, 18, 19]. A similar result holds
for the guarding game. Given an integer c and a graph G on n vertices, it can be
determined whether c cops can guard a given set C (and the corresponding winning
strategy of c cops can be computed) by constructing the game-graph on 2

(|C|+c−1
c

)|R|
vertices (every vertex of the game-graph corresponds to a possible position in G of c

cops and one robber before the robber enters R, taking into account two possibilities
for whose turn it is, and allowing more than one cop to be on one vertex), and then by
making use of backtracking to find if some robber-winning position can be obtained
from an initial position. The proof of the following proposition is standard and easy
(and we omit it here).

Proposition 1 For a given integer c ≥ 1 and a graph G on n vertices, the question

whether the c cops can guard C can be answered in time
(|C|+c−1

c

)2 · |R|2 · nO(1) =
nO(c).

Thus for every fixed c, one can decide in polynomial time if c cops can guard the
protected region against the robber on a given graph G. But on the other side the fact
that our problem is W [2]-hard means that the existence of a O(f (c) · nO(1))-time
algorithm deciding if c cops can win, where f is a function only of the parameter c,
and G is a graph on n vertices, would imply that FPT = W[2], which is considered
to be very unlikely in parameterized complexity.

2We refer to the book of Downey and Fellows [17] for an introduction to parameterized complexity.
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It can be easily proved that the guarding problem is difficult to approximate. We
combine the (approximation preserving) reduction from the proof of Theorem 5 and
the non-approximability for MINIMUM SET COVER problem [20] and obtain the
following statement.

Corollary 6 There is a constant ρ > 0 such that there is no polynomial time algo-
rithm that, for every instance, approximates the minimum number of cops which are
necessary to guard the protected region within a multiplicative factor ρ logn, unless
P = NP.

Theorem 5 claims only that the guarding problem is NP-hard, i.e., not NP-
complete, but for some cases we can prove that the problem is in NP.

Proposition 2 If R is a tree or a directed tree, then the guarding decision problem is
NP-complete.

Proof The NP-hardness was proved in Theorem 5. We only have to prove the in-
clusion of our problem in NP. We give the proof for undirected graphs (for directed
graphs the proof is almost identical). Let R be a tree and denote it as T . Suppose that
there is a winning strategy of the cop-player using c cops. Observe, as R is a tree, that
there is also a winning strategy of the cop-player using c cops of a special kind: at
any time the robber is on a position v ∈ V (T ), the cops are always on the same posi-
tions Xv—a multiset of C. Obviously, if a family of cops’ positions {Xv | v ∈ V (T )}
is given then it is possible to test in polynomial time if this family corresponds to a
winning strategy—all neighbors of v in C have to be in Xv (thus the cops guard C),
and if a robber can get from vertex v to vertex w in one turn, then the cops have to be
able to move from Xv to Xw in one turn, too. �

For directed graphs the problem becomes more difficult, if we allow only a slightly
more general robber-region.

Theorem 7 The guarding decision problem is PSPACE-hard for directed graphs
even if R is a directed acyclic graph (DAG).

Proof We reduce the PSPACE-complete QUANTIFIED BOOLEAN FORMULA IN

CONJUNCTIVE NORMAL FORM problem [16] to the guarding decision problem.
For given Boolean variables x1, x2, . . . , xn and a Boolean formula F = C1 ∧ C2 ∧
· · · ∧ Cm, where Cj is a clause, this problem asks whether the expression φ =
Q1x1Q2x2 · · ·QnxnF , where either Qi = ∀ or Qi = ∃, has value true.

Given a quantified Boolean formula φ, we construct an instance of a guarding
game in the following way. For every quantification Qixi we introduce a gadget
graph Gi . If Qi = ∀ then we define graph Gi(∀) as the graph with the vertex set
{ui, vi, xi, xi, yi, yi, zi} and the arc set {uiyi, yivi, uiyi, yivi, yixi, yixi, zixi, zixi}.
Let Wi = {xi, xi, zi}. If Qi = ∃ then Gi(∃) is the graph with the vertex set
{ui, vi, xi, xi, yi, ai, bi, zi} and the arc set {uiyi, yivi, yiai, aibi, xibi, xibi, zixi,

zixi}. In this case let Wi = {xi, xi, bi, zi}. These graphs are joined together by gluing
vertices vi−1 and ui for i ∈ {2,3, . . . , n}.
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Fig. 3 Construction of G for
φ = ∀x1∃x2∀x3(x1 ∨ x2 ∨ x3)

∧ (x1 ∨ x2 ∨ x3)

In our construction we further introduce vertices C1,C2, . . . ,Cm, which corre-
spond to clauses. A vertex xi is joined with Cj by an arc (pointing towards Cj ) if Cj

contains the literal xi , and xi is joined with Cj if Cj contains the literal xi . The ver-
tex vn is connected with all vertices C1,C2, . . . ,Cm by directed paths of length two
with middle vertices w1,w2, . . . ,wm. Denote the obtained directed graph by G, and
let C = W1 ∪ W2 ∪ · · · ∪ Wn ∪ {C1,C2, . . . ,Cm} be the cop-region, and R = V \ C

be the robber-region. Clearly, R is a DAG. For the guarding decision problem we set
c = n. Construction of G for φ = ∀x1∃x2∀x3(x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x3) is shown
in Fig. 3.

Suppose that φ = false. We describe a winning strategy for the robber. He chooses
vertex u1 as a starting point and then moves to vertex vn along some directed path.
If the robber comes to the vertex yi of a graph Gi(∀) then one cop has to occupy the
vertex xi , and if the robber comes to yi then some cop has to occupy the vertex xi .
So, cops are “forced” to occupy vertices that correspond to literals. Similarly, if the
robber occupies the vertex yi in a graph Gi(∃) then at least one cop has to occupy
one vertex from the set {xi, xi, bi}, and here this cop can choose between vertices xi

and xi . Since the number of cops is equal to the number of graphs Gi(∀) and Gi(∃),
exactly one cop can stand on vertices of each such a gadget-graph. It follows from the
condition φ = false that there is a directed path from u1 to vn such that if the robber
moves along it to vn then there is at least one vertex Cj which is not “covered” by
cops, i.e. there are no cops on this vertex and on vertices xi or xi which are joined by
arcs with it. Then the robber can move to this vertex and win.

Assume now that φ = true and describe a winning strategy for cops. It can be
easily seen that if the robber chooses some vertex ai or wj as an initial position then
he loses immediately. So we can assume that he occupies some vertex r on the path
from u1 to vn. Suppose that this vertex belongs to the graph Gs (Gs(∀) or Gs(∃),
it is assumed that vs−1 = us belongs to Gs for s > 1, and vn belongs to a virtual
Gn+1). We place one cop on a vertex xi or xi for every i < s. The vertex is chosen
arbitrarily if we consider graph Gi(∀), and if xi is chosen then we suppose that the
variable xi = true and xi = false otherwise. If Gi(∃) is considered then the choice
corresponds to the value of the variable xi : if xi = true then the vertex xi is occupied
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by a cop, and xi = false otherwise. If r = ys in Gs(∀) then one cop is placed on the
vertex xs , and if r = ys in Gs(∀) then one cop is placed on the vertex xs . As before,
xi = true in the first case and xi = false in the second. If r = ys in Gs(∃) then a cop is
placed either on xs or xs and the choice of the vertex corresponds to the value of the
variable xs . If r = us then we place one cop on zs . For all i > s one cop is placed on
each vertex zi . Now the robber starts to move. If he moves to the vertex yi of Gi(∀)

then the cop moves from zi to xi and it is assumed that the variable xi = true, and if
the robber moves to yi then the cop moves to xi and xi = false. If the robber comes
to yi of Gi(∃) then the cop moves from zi to xi or xi , and the choice corresponds
to the value of the variable xi . Note that if the robber moves from yi to ai then the
cop moves to bi and cops win. So the robber is “forced” to move along some directed
path from r to vn. Since φ = true, cops on graphs Gi(∃) can move in such a way that
when the robber occupies the vertex vn all vertices Cj are “covered” by cops, i.e. for
every vertex Cj there is an adjacent vertex xi or xi which is occupied by a cop. Now
the robber can move only to some vertex wj . Cops respond by moving one cop to Cj

and win. �

Note that Theorem 7 (as Theorem 5) claims only “hardness”, but in some
cases we can prove that the problem is PSPACE-complete. The proof of PSPACE-
completeness is based on the fact that when the robber region is a DAG, the number
of steps in the game is polynomial.

Theorem 8 If R is a DAG then the guarding decision problem is PSPACE-complete
for directed graphs.

Proof PSPACE-hardness is proved above, so we have to prove that our problem can
be solved by an algorithm which uses polynomial space. We need the following ob-
servation the proof of which is easy.

Observation 1 Let X be the positions (a multiset) of the k cops in C. Then it is
possible to generate all possible positions of k cops that can be obtained from X in
one step of the cops (note that the amount of such positions can be exponential) in
polynomial space.

We assume that at every step of the game the robber moves to an adjacent ver-
tex (if the robber does not move then the cops can either also stay or improve their
positions).

We describe now a recursive procedure W(r,X, l) which returns true if k cops can
win starting from a position X against the robber which starts from a vertex r ∈ R

with the additional restriction that the robber can make at most l moves, and the
procedure returns false otherwise.

If l = 1 then the procedure returns false if r is joined by an arc with some vertex
u ∈ C which is not occupied by a cop, and it returns true otherwise. Suppose that
l > 1. If there is a vertex u ∈ C to which the robber can move and which is not
occupied by a cop then our procedure returns false. Otherwise we consider all vertices
u ∈ R to which the robber can move before entering C. For every such vertex all



Algorithmica (2011) 61:839–856 855

positions of the cops X′ such that the cops can move from X to X′ are listed, and
then we call W(u,X′, l − 1). The procedure W returns true for r , X and l if and only
if for every vertex u there is a position X′ such that W(u,X′, l − 1) = true.

Since the depth of the recursion is at most l, by Observation 1, the procedure
W(r,X, l) uses O(l · nO(1)) space for a graph on n vertices.

Since R is a DAG, we have that the robber can make at most |R| < n moves, and
we can use our procedure to solve the guarding problem in polynomial space. We
check all possible initial positions of the robber and for every such position we test
all possible positions (Observation 1 is also used here) of cops and run our procedure
for l = |R|. Obviously k cops can win if and only if for every initial position of the
robber there is an initial position for the cops such that they can win starting from
this position. �

4 Conclusions and Future Research

We have shown that when the robber territory R is a DAG, the decision version
of the problem is in PSPACE. We do not know if this is the case when R is a more
complicated graph. An interesting related question, which remains open, concerns the
number of the rounds in the game. Is it true that for a given number k and a (di)graph
G, we can always decide if a subgraph of G can be guarded by k cops by playing
a game with only a polynomial number of rounds? If the answer to this question is
“yes”, then similarly to the proof of Theorem 8 one can show that the problem is in
PSPACE. Another consequence of this would be that the case when R is a cycle can
be solved in polynomial time by making use of an approach similar to the path case. If
the answer is “no”, what is the complexity of the problem? In this paper we have not
answered the question if on (undirected) graphs the guarding problem is PSPACE-
hard. Since the first public appearance of the results presented in this paper, these
questions have been answered: The guarding problem for a guarding game where
R is a cycle can be solved in polynomial time, as was shown by Nagamochi [21];
Reddy et al. have shown that the guarding problem is PSPACE-hard for undirected
graphs [22].

To conclude, we feel that with this paper we barely scratched the tip of the ice-
berg of the universe of guarding games, but should provide insights and incentives to
motivate further research in the area.
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