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We give an algorithm that, for a fixed graph H and integer k, decides whether an n-vertex

H-minor-free graph G contains a path of length k in 2O (
√

k) · nO (1) steps. Our approach
builds on a combination of Demaine–Hajiaghayi’s bounds on the size of an excluded grid
in such graphs with a novel combinatorial result on certain branch decompositions of H-
minor-free graphs. This result is used to bound the number of ways vertex disjoint paths
can be routed through the separators of such decompositions. The proof is based on several
structural theorems from the Graph Minors series of Robertson and Seymour. With a slight
modification, similar combinatorial and algorithmic results can be derived for many other

problems. Our approach can be viewed as a general framework for obtaining time 2O (
√

k) ·
nO (1) algorithms on H-minor-free graph classes.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

One of the motivations of this paper was the seminal result of Alon, Yuster, and Zwick in [3] that proved that a path of
length log n can be found in polynomial time, answering to a question by Papadimitriou and Yannakakis in [32]. One of the
open questions left in [3] was: “Is there a polynomial time (deterministic or randomized) algorithm for deciding if a given graph

G contains a path of length, say, log2 n?”. Of course, a 2O (
√

k) · nO (1) step algorithm for checking if a graph contains a path of
length k would resolve this question. However, an algorithm of running time 2o(k) · nO (1) for this problem, even for sparse
graphs, would contradict the widely believed exponential time hypothesis, i.e. would imply that 3-SAT can be solved in
subexponential time [25]. In this paper, we devise a 2O (

√
k) · nO (1) step algorithm for this problem on H-minor-free graphs,

implying a polynomial-time algorithm for a log2 n-length path. This result is tight, because, according to Deı̆neko, Klinz, and
Woeginger [8], the existence of a 2o(

√
k) · nO (1) step algorithm, even for planar graphs, would again violate the exponential

time hypothesis.
Our work is also motivated by the paradigm of parameterized algorithms [21,22,31]. A common technique in parameter-

ized algorithms for problems asking for the existence of vertex/edge subsets of size k with certain properties is based on
branchwidth (treewidth) and involves the following two ingredients: The first is a combinatorial proof that if the branch-
width of the input graph is at least f (k) (where f is some function of k) then the answer to the problem is directly implied.
The second is a g(bw(G)) · nO (1) step dynamic programming algorithm for the problem (here bw(G) is the branchwidth of
the input graph G). For obtaining a 2O (

√
k) · nO (1) step algorithm out of this, we further require that
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(a) f (k) = O (
√

k), and
(b) g(k) = 2O (bw(G)) .

For planar graphs (and also for H-minor-free graphs or apex-minor-free graphs – see [13] and [9]) (a) can be proved sys-
tematically using the idea of Bidimensionality [12,19]. However, not an equally general theory exists for (b). On the positive
side, (b) holds for several combinatorial problems. Typical problems in NP that fall in this category are Vertex Cover,
Dominating Set or Edge Dominating Set, where no global conditions are imposed on their certificates [1,2,10,23]. This im-
plies that the existence of such a set of size log2 n can be decided in polynomial time and this answers positively the
analogue of the question in [3] for these problems on H-minor-free graphs. The bad news is that, for many combinatorial
problems, a general algorithm for proving (b) is missing. Longest path is a typical example of such a problem. Here the cer-
tificate of a solution should satisfy a global connectivity requirement. For this reason, the dynamic programming algorithm
must keep track of all the ways the required path may traverse the corresponding separator of the decomposition, that
is Ω(��) on the size � of the separator and therefore of treewidth/branchwidth. The same problem in designing dynamic
programming algorithms appears for many other combinatorial problems in NP whose solution certificates are restricted
by global properties such as connectivity. Other examples of such problems are Longest Cycle, Connected Dominating Set,
Feedback Vertex Set, Hamiltonian Cycle and Graph Metric Traveling Salesman Problem (TSP).

Recently, [20] overcame the above deadlock for the class of planar graphs. Later, a similar result was given in [17]
for graphs of bounded genus. The proofs in [20,17] are heavily based on arguments about non-crossing paths in graphs
embedded in topological surfaces. This makes it possible to construct special types of graph decompositions of the input
graph where the number of ways a path (or a cycle) traverses a separator of the decomposition is linearly bounded by the
Catalan number of the separator size (which yields the desired single exponential dependance on treewidth or branchwidth).
We refer to Stanley’s book [40] for more information and different applications of Catalan numbers. It is not clear, a priori,
whether this type of arguments can be extended to graphs excluding a minor. Another example of a technique, where the
extension from planar and bounded genus to H-minor-free graphs is not clear, is given in [27,14].

In this paper, we provide a general framework for the design of dynamic programming algorithms on H-minor-free
graphs. For this, it is necessary to go through the entire characterization of H-minor-free graphs given by Robertson and
Seymour in their Graph Minors project (in particular, in [37]) to prove counting lemmata that can suitably bound the
amount of information required in each step of the dynamic programming algorithm.

The main combinatorial result of this paper is Theorem 2, concerning the existence of suitably structured branch decom-
positions of H-minor-free graphs. While the grid excluding part follows directly from [13], the construction of the branch
decomposition of Theorem 2 is quite involved. Indeed it uses the fact, proven by Robertson and Seymour in [37], that any H-
minor-free graph can roughly be obtained by identifying in a tree-like way small cliques of a collection of components that
are almost embeddable on bounded genus surfaces. The main proof idea is based on a procedure of “almost”-planarizing
the components of this collection. However, we require a planarizing set with certain topological properties, able to reduce
the high genus embeddings to planar ones where the planarizing vertices are cyclically arranged in the plane. This makes
it possible to use a special type of planar branch decomposition, invented in [38], that permits to view collections of paths
that may pass through a separator as non-crossing pairings of the vertices of a cycle. This provides the so-called Catalan
structure of the decomposition and permits us to suitably bound the ways a path may cross its separators. Let us remark that
similar ideas were also used in parameterized and approximation algorithms on planar graphs [8,11,27]. This decomposition
is used to build a decomposition on the initial almost embeddable graph. Then using the tree-like way these components
are linked together, we build a branch decomposition of the entire graph. The most technical part of the proof is to show
that each step of this construction, from the almost planar case to the entire graph, maintains the Catalan structure, yielding
the claimed upper bound.

Almost immediately, Theorem 2 implies the main algorithmic result of this paper. If a graph G on n vertices contains a
(
√

k × √
k)-grid, then G has a path of length k. Otherwise, by Theorem 2, it has a branch decomposition of width O (

√
k)

with the Catalan structure. By standard dynamic programming on this branch decomposition (e.g., see [6]) we find the
longest path in G . We stress that the dynamic programming algorithm is not different from the standard one. It is the
special branch decomposition of Theorem 2 that accelerates its running time because the number of states at each step of
the dynamic programming is bounded by 2O (

√
k) . Thus the running time of the algorithm is 2O (

√
k) · nO (1) .

Organization of the paper. First, we give some preliminaries in Section 2, where we restate the structural theorem on H-
minor-free graphs for our purposes. In Section 3, we state our main theorem and give the algorithm for computing branch
decompositions with Catalan structure, which we employ in Section 5 for solving the problem of finding a path of length
k in H-minor-free graphs. In Section 4 we provide technical details of the correctness proof of the algorithm. We end
(Section 6) with concluding remarks and open problems.

2. Preliminaries

Surface embeddable graphs. We refer to the book of Diestel [16] for the basic Graph Theory terminology and to the book of
Mohar and Thomassen [29] on basics of Topological Graph Theory. We use the notation V (G) and E(G), for the set of the
vertices and edges of G . A surface Σ is a compact 2-manifold without boundary (we always consider connected surfaces).
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A line in Σ is a subset homeomorphic to [0,1]. An O -arc is a subset of Σ homeomorphic to a circle. Whenever we refer to
a Σ-embedded graph G we consider a 2-cell embedding of G in Σ . To simplify notations we do not distinguish between a
vertex of G and the point of Σ used in the drawing to represent the vertex or between an edge and the line representing
it. We also consider G as the union of the points corresponding to its vertices and edges. That way, a subgraph H of G can
be seen as a graph H where H ⊆ G . We call a region of G any connected component of (Σ \ E(G)) \ V (G). (Every region is
an open disk.) A subset of Σ meeting the drawing only in vertices of G is called G-normal. If an O -arc is G-normal, then
we call it noose. The length of a noose N is the number of its vertices and we denote it by |N|. If the intersection of a noose
with any region results into a connected subset of the surface, then we call such a noose tight. In that case the subset is a
line in Σ . Let � be a closed disk and the open disk int(�) its interior and bor(�) its boundary. Then � = int(�)∪ bor(�).
We say two closed disks �1,�2 touch if �1 ∩ �2 �= ∅ but int(�1) ∩ int(�2) = ∅.

Surface cutting. We need to define the graph obtained by cutting along a non-contractible tight noose N . We suppose that
for any v ∈ N ∩ V (G), there exists an open disk � containing v and such that for every edge e adjacent to v , e ∩ �

is connected. We also assume that � \ N has two connected components �1 and �2. Thus we can define a partition
of N(v) = N1(v) ∪ N2(v), where N1(v) = {u ∈ N(v): {u, v} ∩ �1 �= ∅} and N2(v) = {u ∈ N(v): {u, v} ∩ �2 �= ∅}. For each
v ∈ N ∩ V (G) we duplicate v: (a) remove v and its incident edges, (b) introduce two new vertices v1, v2, and (c) connect vi

with the vertices in Ni , i = 1,2. v1 and v2 are vertices of the new G-normal O -arcs N1 and N2 that meet the border �1
and �2, respectively. We say that the vertices v, v1, v2 are relatives while, after any further cutting, the relation of being
“relative” is inherited to new vertices that may occur by splitting v1 or v2. We call N1 and N2 cut-nooses. We can see the
operation of “cutting G along a non-contractible noose N” as “sawing” the surface where G is embedded. This helps us to
embed the resulting graph to the surface(s) that result after adding to the sawed surface two disks, one for each side of the
splitting. We call these disks holes and we will treat them as closed disks. Clearly, in the new embedding(s) the duplicated
vertices will all lay on the borders of these holes.

Branch and linear decompositions. Let G be a graph and let E ⊆ E(G). We define ∂ E as the set of vertices in G that are
incident to edges in both E and E(G) − E . We call the pair (T , τ ) branch decomposition of G if T is a ternary tree and τ is
a bijection mapping the edges of G to the leaves of T . For each edge of T we define ω(e) as the vertex set ∂ Fe where Fe

are all the preimages of the leaves of one of the connected components of T − e. The width of a branch decomposition is
the maximum |ω(e)| over all edges of T . The branchwidth of a graph is the minimum width over all branch decompositions
of G .

By modifying the definition of a branch decomposition such that T is a caterpillar, which is a path with attached pendant
edges, we obtain a linear variant of branchwidth. The occurring width parameter is essentially the same (and actually the
same for values bigger than one) as the notion of a linear-width of a graph and τ maps the edges of G to the edges of T . Let
e1, . . . , eq be an ordering of edges of graph G , the sets Xi = ∂({e1, . . . , ei}) form a linear ordering X = (X1, . . . , Xq), called
linear decomposition. For convenience, we will use such ordered sets to denote linear decompositions and, in order to include
all vertices of G in the sets of X , we will often consider linear decompositions of Ĝ that is G with loops added to all its
vertices (this operation does not increase the linear-width by more than one). Sets Xi correspond to sets ω(e), e ∈ E(T ).

Sphere cut decompositions. For a graph G embedded in the sphere, we define a sphere cut decomposition or sc-decomposition
(T , τ ,π) as a branch decomposition such that for every edge e of T and E1

e and E2
e , the two sets of preimages of the two

components of T − e, there exists a tight noose N bounding two open disks �1 and �2 such that Ei
e ⊆ �i ∪ N , 1 � i � 2.

Thus N meets G only in ∂ Ee and its length is |∂ Ee|. Clockwise traversal of N in the drawing of G defines the cyclic order
π of ∂ Ee . We always assume that in an sc-decomposition the vertices of ∂ Ee = E1

e ∩ E2
e are enumerated according to π .

According to the celebrated ratcatcher algorithm, due to Seymour and Thomas [38] (improved by [24]), there is a time
O (n3) algorithm finding an optimal branch decomposition of a planar graph. At the same time, shown by [20], this is also
an optimal sc-decomposition.

A cornerstone theorem of Graph Minors. We say that H is a minor of G if H is obtained from a subgraph of G by contracting
edges. Let be given two graphs G1 and G2 and two h-cliques Si ⊆ V (Gi) (i = 1,2). We obtain graph G by identifying S1 and
S2 and deleting none, some or all clique-edges. Then, G is called the h-clique-sum of the clique-sum components G1 and G2.
Note that the clique-sum gives many graphs as output depending on the edges of the clique that are deleted. According to
Lemma 21 (proved in Section 4), given a graph G with branch-decomposition (T , τ ), for any clique with vertex set S there
exists a node t ∈ T such that S ⊆ ω({t,a}) ∪ ω({t,b}) ∪ ω({t, c}) where a,b, c are the neighbors of t in T . We call such a
vertex of T a clique node of S .

Let Σ be a surface. We denote as Σ−r the subspace of Σ obtained if we remove from Σ the interiors of r disjoint closed
disks (we will call them vortex disks). Clearly, the boundary bor(Σ−r) of Σ−r is the union of r disjoint cycles. We say that
G is h-almost embeddable in Σ if there exists a set A ⊆ V (G) of vertices, called apices of G , where |A| � h and such that
G − A is isomorphic to Gu ∪ G1 ∪ · · · ∪ Gr , r � h, in a way that the following conditions are satisfied (the definition below
is not the original one from [37] but equivalent, slightly adapted for the purposes of our paper):
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• There exists an embedding σ : Gu → Σ−r , r � h, such that only vertices of Gu are mapped to points of the boundary
of Σ−r , i.e. σ(Gu) ∩ bor(Σ−r) ⊆ V (G) (we call Gu the underlying graph of G).

• The graphs G1, . . . , Gr are pairwise disjoint (called vortices of G). Moreover, for i = 1, . . . , r, if Ei = E(Gi) ∩ E(Gu) and
Bi = V (Gi) ∩ V (Gu) (we call Bi base set of the vortex Gi and its vertices are the base vertices of Gi ), then Ei = ∅ and
σ(Bi) ⊆ Ci where C1, . . . , Cr are the cycles of bor(Σ−r).

• For every i = 1, . . . , r, there is a linear decomposition Xi = (Xi
1, . . . , Xi

qi
) of the vortex Gi with width at most h and a

subset J i = { ji
1, . . . , ji|Bi |} ⊆ {1, . . . ,qi} such that ∀k=1,...,|Bi | ui

k ∈ Xi
ji
k

for some respectful ordering (ui
1, . . . , ui|Bi |) of Bi .

(An ordering (ui
1, . . . , ui|Bi |) is called respectful if the ordering (σ (ui

1), . . . , σ (ui|Bi |)) follows the cyclic ordering of the

corresponding cycle of bor(Σ−r).) For every vertex ui
k ∈ Bi , we call Xi

ji
k

the overlying set of ui
j and we denote it by X(ui

j).

If in the above definition A = ∅, then we say that G is smoothly h-almost embeddable in Σ . Moreover, if r = 0, then we
just say that G is embeddable in Σ . Note that the underlying graph Gu of a smoothly h-almost embeddable graph G in Σ

is itself embeddable in Σ .
For reasons of uniformity, we will extend the notion of the overlying set of a vertex in Bi to any other vertex v of the

underlying graph Gu by defining its overlying set as the set consisting only of v . For any U ⊆ V (Gu), the overlying set of U is
defined by the union of the overlying sets of all vertices in U and it is denoted as X(U ).

We will strongly use the following structural theorem of Robertson and Seymour (see [37],) characterizing H-minor-free
graphs.

Theorem 1. (See [37].) Let G be the graph class not containing a graph H as a minor. Then there exists a constant h, depending
only on H, such that any graph G ∈ G is the (repeated) h-clique-sum of h-almost embeddable graphs (we call them clique-sum
components) in a surface Σ of genus at most h.

That is, beginning with an h-almost embeddable graph G , we repeatedly construct the h-clique-sum of G with another
h-almost embeddable graph. As a result we obtain a tree-like structure of h-almost embeddable graphs connected by h-
clique-sums. It was proved in [26] that such a decomposition can be computed in O H (nO (1)) steps.

Path collections. Let G be a graph and let E ⊆ E(G) and S ⊆ V (G). We will consider collections of internally vertex disjoint
paths using edges from E and having their endpoints in S . We use the notation P to denote such a path collection and
we define pathsG(E, S) as the collection of all such path collections. Define the equivalence relation ∼ on pathsG(E, S):
for P1,P2 ∈ pathsG(E, S), P1 ∼ P2 if there is a bijection between P1 and P2 such that corresponding paths have the same
endpoints. We denote by q-pathsG(E, S) = |pathsG(E, S)/ ∼ |, i.e. the cardinality of the quotient set of pathsG(E, S) by ∼.

Let G be a planar graph, S be a cyclic separator, i.e. the set of vertices lying on a noose N meeting G only in S , and E
be the set of edges inside one of the disks bounded by N . Then every equivalence class pathsG(E, S)/ ∼ corresponds to a
set of non-crossing matchings, which is a set of internally disjoint arcs drawn inside the disc and connecting vertices of S
lying on the border of the disk. In this case the number q-pathsG(E, S) is at most

CN

(
n

2

)
∼ 2n

√
π(n

2 )
3
2

≈ 2n,

where n = |S| and CN(n) is the n-th Catalan number: CN(n) = 1
n+1

(2n
n

) ∼ 4n

√
πn

3
2

≈ 4n.

3. Main result and the algorithm

Before we state our main result, we need some notation especially for the context of our algorithm. Given a graph H
and a function f we use the notation O H ( f ) to denote O ( f ) while emphasizing that the hidden constants in the big-O
notation depend exclusively on the size of H . We also define analogously the notation ΩH ( f ).

Given a graph G and a branch decomposition (T , τ ) of G we say that (T , τ ) has the Catalan structure if

for any edge e ∈ E(T ), q-paths(Ee, ∂ Ee) = 2O H (|∂ Ee |).

Our main result is the following.

Theorem 2. For any H-minor-free graph class G , the following holds:
For every graph G ∈ G and any positive integer w, there is an algorithm that in time O H (nO (1)) outputs one of the following:

1. A correct report that G contains a (w × w)-grid as a minor.
2. A branch decomposition (T , τ ) with the Catalan structure of width O H (w).
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Fig. 1. Re-routing a noose.

The proof of Theorem 2 is algorithmic. In the remaining part of this section we provide the description of the algorithm
used to prove Theorem 2. The correctness of the algorithm is given in Section 4. While the first statement of the theorem
follows almost directly from [15], our main contribution is the proof of statement 2 and, more concretely, the existence of
a branch decomposition of this particular type.

The algorithm starts with decomposing the graph into a collection of almost embeddable graphs whose clique-sum de-
composition forms the input graph G . For every such almost embeddable graph we show how to “planarize” it by removing
some vertices and cutting along some curves in the surface such that the planar branch decomposition of the resulting
graph can be transformed into a branch decomposition with Catalan structure of the almost embeddable graph. This part
(Step 2) is the most technical part of our paper. Finally (Step 3), we glue together the computed branch decompositions of
the almost embeddable components to form a branch decomposition with Catalan structure of G . The detailed description
of the algorithm follows.

Step 1. Use the time O H (nO (1)) algorithm of [26], see also [7,15], to decompose the input graph into a collection C of
clique-sum components as in Theorem 1. Every graph in C is a γH -almost embeddable graph to some surface of genus
� γH where γH = O H (1).

Step 2. For every Ga ∈ C , do

Step 2.a. Let Gs be the graph Ga without the apex vertices A (i.e. Gs is smoothly γH -almost embeddable in a surface of
genus γH ). Denote by Gs

u the underlying graph of Gs .

Step 2.b. Set G(1)
u ← Gs

u , G(1) ← Gs , and i ← 1.

Step 2.c. Apply the following steps as long as G(i)
u is non-planar.

Step 2.c.i. Find a non-contractible noose N in G(i)
u of minimum length, using the polynomial time algorithm in [41].

Step 2.c.ii. If |N| � 2i−1 f (H)w , then output “The input graph contains a (w × w)-grid as a minor” and stop. The estimation of
the value f (H) comes from the results in [13]. The correctness of this step is given in Lemmata 4 and 5.

We will see in Lemma 6 that N is tight, which means that N cannot intersect the interior of a hole or a vortex disc �

more than once. In Lemma 7 we show that N intersects bor(�) in at most two vertices. If int(�)∩ N = ∅ and bor(�)∩ N =
{v, w}, then v and w are both incident to one more region different than � which is intersected by N , as we will show in
Lemma 8. In this case, we re-route this portion of N so that it crosses the interior of � (see Fig. 1).

Step 2.c.iii. As long as N intersects some hole (initially the graph G(1) does not contain holes but they will appear later in
G(i) ’s for i � 2) or some vortex disc of G(i)

u in only one vertex v , update G(i) by removing v and the overlying set of all
its relatives (including X(v)) from G(1), . . . , G(i) . To maintain the O H (1)-almost embeddibility of Ga , compensate this loss
of vertices in the initial graph Gs = G(1) , by moving in A the overlying set of the relatives of v in G(1) (as the number of
vortex disks and holes depends only on H , the updated apex set has again size depending on H). Notice that after this
update, all cut-nooses found so far, either remain intact or they become smaller. The disks and vortices in G(1), . . . , G(i) may
also be updated as before and can only become smaller. We observe that after this step, if a noose N intersects a hole or
vortex disc � it also intersects its interior and therefore it will split � into two parts �1 and �2.

Step 2.c.iv. We cut G(i)
u along N and call the two disks created by the corresponding cut of the surface by holes of the new

embedding. We go through the same cut in order to “saw” G(i) along N as follows: If the base set of a vortex is crossed
by N then we also split the vortex according to the two sides of the noose; this creates two vortices in G(i+1) . For this,
consider a vortex G v and a linear decomposition X = (X1, . . . , Xq) of G v . Let also a,b be the vertices of the base set B
of G v that are intersected by N and let a ∈ X ja , b ∈ X jb , where w.l.o.g. we assume that a < b. When we split, the one vortex
is the subgraph of G v induced by X1 ∪ · · · ∪ X ja ∪ X jb ∪ · · · ∪ Xq the other is the subgraph of G v induced by X ja ∪ · · · ∪ X jb

(notice that the vertices that are duplicated are those in X ja and X jb ). Let G(i+1) be the graph embedding that is created

that way and let G(i+1)
u be its underlying graph. Recall that, from the previous steps, a vortex disc or a hole � (if divided)
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Fig. 2. The procedure of enhancing the branch decomposition (T p
u , τ

p
u ) of G p

u to a branch decomposition of G p .

is divided into two parts �1 and �2 by N . That way, the splitting of a vortex in G(i) creates two vortices in G(i+1) . As the
number of vortices in G(i) is O H (1), the same holds also for the number of vortices in G(i+1) . If N splits a hole of G(i+1) ,
then the two new holes �′

1,�
′
2, that the splitting creates in G(i+1) , are augmented by the two parts �1 and �2 of the old

hole � (i.e. �′
j ← � j ∪ �′

j , j = 1,2).

Step 2.c.v. i ← i + 1. The loop of Step 2.c ends up with a planar graph G(i)
u after O H (1) splittings because the genus of G(1)

u
is O H (1) (each step creates a graph of smaller Euler genus – see [29, Propositions 4.2.1 and 4.2.4]). This implies that the
number of holes or vortex disks in each G(i)

u remains O H (1). Therefore, G(i) is a smoothly O H (1)-almost embeddable graph
in the sphere. The total length of the holes of G(i)

u is at most the sum of the lengths of the nooses we cut along, which is
O H (w).

Step 2.d. Set G p ← G(i) and G p
u ← G(i)

u and compute an optimal sphere-cut branch decomposition (T p
u , τ

p
u ) of G p

u , using the
polynomial algorithm from [38].

Step 2.e. If bw(G p
u ) � 2γH −1 · f (H) · w = ΩH (w), then output “The input graph contains a (w × w)-grid as a minor” and stop.

The correctness of this step is given in Lemma 9.

Step 2.f. Enhance (T p
u , τ

p
u ), so that the edges of the vortices of G p are included in it, as follows: Let G v be a vortex of G p

with base set B = {u1, . . . , um} ordered in a respectful way such that ∀k=1,...,m uk ∈ ω( f jk ) where the ordering f j1 , . . . , f jm

contains the edges of a longest path of the tree T ∗ of some linear decomposition (T ∗, τ ∗) of G v . Update (T p
u , τ

p
u ) to a

branch decomposition (T̂ p
u , τ̂

p
u ) of Ĝ p (if the branchwidth of a graph is more than 1, it does not change when we add

loops). Let l1, . . . , lm be the leaves of (T̂ p
u , τ̂

p
u ) corresponding to the loops of the base vertices of G v . We subdivide each

f jk in T ∗ and we identify the subdivision vertex with lk for any k = 1, . . . ,m. We transform the resulting graph into a
ternary tree, by removing a minimum number of edges in T ∗ and desolving their endpoints in the resulting forest. That
way, we construct a branch decomposition of Ĝ p

u ∪ G v which, after discarding the leaves mapped to loops, gives a branch
decomposition of G p

u ∪ G v (see Fig. 2).
Applying this transformation for each vortex G v of G p , we construct a branch decomposition of G p . Moreover, the width

of this decomposition is O H (bw(G p
u )). The correctness of this construction and the proof that bw(G p) = O H (bw(G p

u )) is
given in Lemma 10 in Section 4.2.

Step 2.g. Notice that, while successively splitting Gs during the loop of Step 2.c, all edges remain topologically intact and
only vertices may be duplicated. This establishes a bijection between E(Gs) and E(G p), which allows us to transform
(T p, τ p) to a branch decomposition (T s, τ s) where T s = T p . The branch decomposition (T s, τ s) of Gs = G(1) which is a
smoothly O H (1)-almost embeddable in a surface of higher genus, is a decomposition with the Catalan structure of width
O H (w). The proof of this claim is non-trivial, and we provide it in Section 4.3.

Step 2.h. Construct a branch decomposition (T a, τ a) of Ga by adding in (T s, τ s) the edges incident to the apices of Ga . To
do this, for every apex vertex a and for every neighbor v , choose an arbitrary edge e of T s , such that v ∈ ∂ Ee . Subdivide e
and add a new edge to the new node and set τ ({a, v}) to be the new leaf. The proof that bw(Ga) = O H (bw(Gs)) is easy,
as Gs contains only O H (1) more vertices (Lemma 12 in Section 4.3). With more effort (and for the same reason) we prove
that the Catalan structure for Gs implies the Catalan structure for Ga (Lemma 20 in Section 4.5).

Step 3. For any Ga ∈ C , merge the branch decompositions constructed above according to the way they are joined by
clique sums and output the resulting branch decomposition of the input graph G . In particular, if (T a

1, τ a
1 ) and (T a

2, τ a
2 ) are

two branch decompositions of two graphs Ga
1 and Ga

2 with cliques S1 and S2 respectively and |S1| = |S2|, we construct
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a branch-decomposition (T ′, τ ′) of the graph G ′ , taken after a clique sum of Ga
1 and Ga

2, as follows: Let ti be a clique-
node of Si in (Ti, τi), i = 1,2. Then, the branch decomposition (T ′, τ ′) of G ′ is obtained by first subdividing an incident
edge eti , i = 1,2, and then connecting the new nodes together. Secondly, remove each leaf l of T ′ that corresponds to an
edge that has a parallel edge or is deleted in the clique-sum operation and finally contract an incident edge in T ′ of each
degree-two node. We prove (Lemma 24 in Section 4.6) that this merging does not harm neither the bounds for branchwidth
nor the Catalan structure of the obtained branch decomposition and this finally holds for the input graph G , justifying
Theorem 2.

4. Correctness of the algorithm

4.1. Correctness of Steps 2.c.ii and 2.e: exit conditions for the algorithm

In this subsection, we give a lower bound on the branchwidth of the input graph G , that is, we give two exit conditions
on which the algorithm terminates and fulfills the first part of Theorem 2, namely to give a certificate that G has large
branchwidth. Representativity [35] is a measure how densely a non-planar graph is embedded on a surface. The represen-
tativity (or face-width) rep(G) of a graph G embedded in surface Σ �= S0 is the smallest length of a non-contractible noose
in Σ . The following lemma follows from Theorem 4.1 of [36].

Lemma 3. Let G be a graph embedded on a surface which is not a sphere. Then rep(G) � bw(G).

The function f (H) in Step 2.c.ii of the algorithm is defined by the following lemma that follows from [13, Lemmata 5,
6, and 7].

Lemma 4. Let G be an H-minor-free graph and let Gs
u be as in Step 2.a. Then, there exists a function f (H) such that if bw(Gs

u) �
f (H) · w, then G contains a (w × w)-grid as a minor.

The following lemma justifies the first terminating condition for the algorithm, depending on the value of f (H) estimated
in Lemma 4.

Lemma 5. If in the x-th application of Step 2.c.ii |N| � 2x−1 f (H) · w, then Gs
u = G(1)

u has branchwidth at least f (H) · w.

Proof. Let N1, . . . , Nx−1 be the nooses along which we cut the graphs G(1)
u , . . . , G(x−1)

u in Step 2.c.iv towards creating G(x)
u .

We have that
∑

j=1,...,x−1

|N j| �
∑

j=1,...,x−1

2 j−1 f (H) · w = (
2x−1 − 1

)
f (H) · w.

We also observe that G j−1
u contains as a subgraph the graph taken from G j

u if we remove one copy of each of its |N j−1|
duplicated vertices. This implies that

bw
(
G j−1

u
)
� bw

(
G j

u
) − |N j−1|, j = 2, . . . , x.

Inductively, we have

bw
(
G1

u

)
� bw

(
Gx

u

) −
∑

j=1,...,x−1

|N j| � bw
(
Gx

u

) − (
2x−1 − 1

)
f (H) · w.

We set N = Nx . By Lemma 3, bw(Gx
u) � rep(Gx

u) and rep(Gx
u) � |Nx| � 2x−1 f (H) · w . Thus, we conclude that bw(G1

u) �
f (H) · w . �

The following lemmata help in finding non-contractible nooses eligible for planarizing the embeddable graph.

Lemma 6. Let N be a non-contractible noose of mimimum length (� 3) in an embeddable graph. Then N is tight.

Proof. This is a proof by contradiction on the choice of minimality of the non-contractible noose. Let us assume N is not
tight. Then there exists a region � where we have that � ∩ N is a union of more than one connected subset of the surface.
Let us pick two such subsets S1 and S2 such that � \ (S1 ∪ S2) contains at least one component �S with int(�S ) ∩ N = ∅.
Next we add a line L to int(�S ) connecting one point of bor(�) ∩ S1 with one point of bor(�) ∩ S2. L always separates
N into two lines L1 and L2 and thus forms two news nooses N1 := L ∪ L1 and N2 := L ∪ L2, respectively. We will now
argue using the 3-path-condition (see for example [29]) that one of the nooses N1 and N2 is a non-contractible noose
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which is shorter than N . The 3-path-condition applies to cycles in embeddable graphs. The property of interest for us is
that: let three internally vertex-disjoint paths P1, P2, P3 have common two endvertices. If any two cycles formed by Pi ∪ P j

(1 � i < j � 3) are contractible so is the third cycle. The 3-path-condition also applies to non-contractible nooses.1 Since
N is non-contractible, we have according to the 3-path-condition that at least one of N1 and N2 must be non-contractible,
too, and we get a contradiction on the minimality assumption. �
Lemma 7. Let N be a non-contractible noose of mimimal length in an embeddable graph G and � a region of G. Then N intersects
bor(�) in at most two vertices.

Proof. The proof idea is the same as in the proof of Lemma 6. Let us assume a region � with bor(�) ∩ N containing more
than two points. Since N is tight, at least one of those points, say x, is not an endpoint of line L := int(�) ∩ N (in the case
L �= ∅). We can then again achieve a shorter non-contractible noose when connecting x to another point y of bor(�) ∩ N
by a line through the connected surface component of int(�) \ N to which both x and y are incident. �
Lemma 8. Let N be a non-contractible noose of mimimal length in an embeddable graph G and � a region of G. If int(�)∩ N = ∅ and
N intersects bor(�) in two vertices u, v, then u, v are both incident to one more region different than � which is intersected by N.

Proof. As before we will use the 3-path-condition to prove this statement. We simply draw a line L through int(�) con-
necting the points u and v . Then if both u and v are incident only to �, we argue that L forms a shorter non-contractible
noose and get a contradiction. �

The following lemma justifies the first terminating condition for the algorithm, depending on the value of f (H) and the
genus γH .

Lemma 9. If in Step 2.e bw(G p
u ) � 2γH −1 f (H) · w, then Gs

u = G(1)
u has branchwidth at least f (H) · w.

Proof. The proof is the same as the proof of Lemma 5 if we set x = i and with deference that, in the end, we directly have
that G(i)

u = G p
u has branchwidth at least 2i−1 f (H) · w . The result follows as the genus of Gs

u is bounded by γH and therefore
i � γH . �
4.2. Correctness of Step 2.f: enhancing the branch decomposition of G p

u

We want to prove that the enhancement of the branch decomposition of G p
u by the linear decompositions of the vortices

performed in Step 2.f can add O H (1) vertices for each vertex in ω(e), e ∈ E(T p
u ), and therefore, bw(G p) = O H (bw(G p

u )).

Lemma 10. Let (T p
u , τ

p
u ) be a branch decomposition of G p

u and let (T p, τ p) be the branch decomposition of G p constructed in Step 2.f.
Then the width of (T p, τ p) is bounded by the width w of (T p

u , τ
p

u ) plus some constant that depends only on H.

Proof. By the construction of (T p, τ p), for any e ∈ E(T p), we have that ∂ Ee(G p) ⊆ X(∂ Ee(G p
u )). As the vertices of ∂ Ee(G p

u )

are the vertices of some tight noose Ne of S0, and this noose meets at most r � h vortex disks we have that there are at
most 2r � 2h vertices of ∂ Ee(G p

u ) that are members of some base sets B . Therefore, for any e ∈ E(T p), |∂ Ee(G p)| � w + 2h2.
We conclude that the width of (T p, τ p) is at most w + 2h2. �
4.3. Correctness of Step 2.g: towards Catalan structure

The next two subsections are devoted to the proof that the branch decomposition constructed for a smoothly almost-
embeddable graph has the Catalan structure. We start with an overview of the proof and then proceed with a sequence of
lemmata.

We want to prove that if the bounds of Theorem 2 hold for the graph G p = G(i) (a graph that is smoothly O H (1)-almost
embeddable in the sphere), then they also hold for the graph Gs = G(1) that is smoothly O H (1)-almost embeddable in a
surface of higher genus. We prove that bw(Gs) = O H (bw(G p)) with the help of Lemma 11.a. However, what is far more
complicated is to prove that (T s, τ s) has the Catalan structure. For this, we first prove (Lemma 11.b) that for any edge e
of T s = T p , it holds that

q-pathsGs (Ee, ∂ Ee) � q-pathsG p (Ee, ∂ Ee ∪ De), (1)

1 In our graph, by definition, we add an edge for every line segment of N intersecting a region of the graph. We also add an edge for L. Then we have
that N is a cycle as well as N1 and N2.
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Fig. 3. Vortices and holes around the disc �e .

where De is the set of all vertices of the holes of G p that are endpoints of edges in Ee . Intuitively, while splitting the graph
Gs along non-contractible nooses, the split vertices in the nooses (i.e., the vertices in De) may separate paths counted in the
left side of Eq. (1). Therefore, in order to count them, we have to count equivalence classes of collections of internally vertex
disjoint paths in the planar case allowing their endpoints to be not only in ∂ Ee but also in De . That way, we reduce the
problem of proving that (T s, τ s) has the Catalan structure, to the following problem: to bound the number of equivalence
classes of collections of vertex disjoint paths whose endpoints may be:

a) Vertices of the disc �e bounding the edges Ee in the sphere-cut decomposition (T p, τ p) of G p
u (see Lemma 17 in

Section 4.4), along with their overlying sets. By Lemma 10, the number of such vertices is bw(G p) = O H (w).
b) Vertices (and their overlying sets) of 2 · γH = O H (1) disjoint holes created by cutting along nooses. We prove in

Lemma 18 in Section 4.4 (and by making use of Lemma 5) that the total amount of such vertices is at most
γH · (2γH − 1) · f (H) · w = O H (w).

Notice that these paths can be routed also via at most γH · 2i � γH · 2γH = O H (1) vortices (because, initially, Gs
u had γH

vortices and, in the worst case, each noose can split every vortex into two parts), each of unbounded size (see Lemma 19
in Section 4.4). Recall that the holes and the vortex disks of G p

u do not touch (recall the notion touch) because of the
simplification in Step 2.c.iii, however, they may have common interiors. Finally, the boundary of �e can touch any number
of times a vortex disc or a hole but can traverse it only once (recall that by the definition of sc-decompositions bor(�e)

should be a tight noose). (For an example of the situation of the holes and vortices around the disc bounding the edges Ee ,
see Fig. 3.) Now our target is to relate q-pathsG p (Ee, ∂ Ee ∪ De) to the classical Catalan structure of non-crossing partitions
on a cycle. This is done in Lemma 12. The proof is technical and is performed in several steps in Section 4.4. The first two
steps are to “force” holes and vortex disks not to touch the boundary of �e and to “force” vortex disks not to intersect
with holes or with bor(�e). For each of these two steps, we bound q-pathsG p (Ee, ∂ Ee ∪ De) by its counterpart in a
“normalized” instance of the same counting problem (related to the original one by a “rooted minor” relation). That way,
the problem is reduced to counting equivalence classes of collections of vertex disjoint paths with endpoints (recall that
there are O H (w) such endpoints) on the boundary of O H (1) disjoint holes (the disc taken if we remove from �e all holes
that intersect it, is also considered as one of these holes). However, we still do not have to count equivalence classes of non-
crossing collections of paths because of the presence of the vortices that may permit crossing paths. At that point, we prove
that no more than O H (β) paths can mutually cross, where β = O H (1) is the number of vortices. Using this observation, we
prove that each equivalence class is the superposition of O H (1) equivalence classes of non-crossing collections of disjoint
paths. Because of this, the number of equivalence classes of collections of disjoint paths are in total 2O H (w) and, that way,
we bound q-pathsG p (Ee, ∂ Ee ∪ De) as required.

With the following lemma, we can inductively show how to get a branch decomposition with the Catalan structure of
a smoothly almost-embeddable graph Gs

u embedded on a higher surface when starting with a branch decomposition of its
planarized version G p

u .

Lemma 11. Let G, G ′ be two almost embeddable graphs created successively during Step 2.c (i � 2), let N be the noose along which
Gu was cut towards constructing G ′

u and G ′ , and let N1 and N2 be the boundaries of the two holes of G ′
u created after this splitting

during Step 2.c.iv. Let also (T ′, τ ′) be a branch decomposition of G ′ and let (T , τ ) be the branch decomposition of G defined as
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T = T ′ and τ = τ ′ ◦ σ , where σ : E(T ) → E(T ′) is the bijection between topologically equivalent edges in G and G ′ . Then for every
e ∈ E(T ) = E(T ′), the following hold:

a. |ωG(e)| � |ωG ′ (σ (e))| + |X(N)|.
b. For S ⊆ V (Ee), the number |pathsG(Ee, ∂ Ee ∪ S)| is at most

∣∣pathsG ′
(
σ(Ee), ∂σ (Ee) ∪ S ∪ X

(
N1 ∩ V

(
σ(Ee)

)) ∪ X
(
N2 ∩ V

(
σ(Ee)

)))∣∣.
Proof. To see |ωG(e)| � |ωG ′ (e)| + |X(N)|, it is enough to observe that the identification of vertices in a graph may only add
identified vertices in the border of an edge set and that any overlying set is a separator of vortices.

The second relation follows from the fact that any path in G[Ee] connecting endpoints in ∂ Ee ∪ S is the concatenation of
a set of paths in G ′[Ee] connecting endpoints in ∂ Ee ∪ S but also the vertices of cut-noose N1, N2 that are endpoints of Ee

(along with their overlying sets). �
Section 4.4 is devoted to the proof of the following lemma:

Lemma 12. Let G p be a smoothly O H (1)-almost embeddable graph in the sphere and let �1, . . . ,�r (r = O H (1)) be disjoint closed
disks (holes) of the sphere whose interiors do not intersect the underlying graph G p

u . Assume also that, if a vortex disc and a hole
intersect, then they have common interior points. Let �e be a closed disc of the sphere whose boundary is a tight noose touching
G p

u in vertex set ∂ Ee . We denote as De the set containing all points on the boundary of the disks �1, . . . ,�r that are endpoints of
edges in G p

u ∩ �e and as Ee the set of edges in G p ∩ �e . In G p , let X(∂ Ee ∪ De) be the overlying set of vertex set ∂ Ee ∪ De. If
|X(∂ Ee ∪ De)| = O H (w), then

q-pathsG p
(

Ee,X(∂ Ee ∪ De)
) = 2O H (w).

4.4. Proof of Lemma 12: fixing paths in smoothly h-almost embeddable graphs on the sphere

In the following and for an easier estimation on q-pathsG p (Ee,X(∂ Ee ∪ De)), we stepwise transform the graph in a way
such that neither of the holes, the vortices and ∂ Ee mutually intersect, while simultaneously nondecreasing the number of
sets of paths.

Inverse edge contractions. From now on we will use the notation Ve for the vertex set X(∂ Ee ∪ De).
The operation of inverse edge contraction is defined by duplicating a vertex v and connecting it to its duplicate v ′ by a

new edge. However, we have that v maintains all its incident edges.
If two closed disks �1 and �2 touch in vertices, we call these vertices touching vertices of the closed disks �1

and �2.
In order to simplify the structure of the planar embedding of G p we will apply a series of inverse edge contractions to

the touching vertices between the boundary of �e and the vortex disks and holes.
Also, we assume that if we apply inverse edge contraction on a base vertex v of a vortex, v keeps all its incident edges

and the duplicate of the respective boundary of a hole and of �e has degree one. This creates a new graph G p∗ that contains
G p as a minor and thus, each set of paths in G p corresponds to a set of paths in G p∗ .

We obtain the following:

Lemma 13. Let Ee,Ve be as above. Then,

q-pathsG p (Ee,Ve) � q-pathsG p∗
(

E∗
e ,V∗

e

)
,

where E∗
e and Ve

∗ are the enhanced sets in G p∗ .

The red (in the web version) lines in the diagram in Fig. 4 emphasize inverse edge contractions.
Notice that each splitting creates duplicates of some vertex of Ve . Therefore,

Lemma 14. |Ve
∗| � 2|Ve|.

On the left of Fig. 5, we have the now resulting graph of Fig. 4 where the gray part is G p∗[Ee]. On the right, we only
emphasize G p∗[Ee] as the part where the sets of pathsG p∗(E∗

e ,Ve
∗)/ ∼ should be drawn.
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Fig. 4. Vortices and holes not intersecting the disc �e (first normalization).

Fig. 5. Another way to see Fig. 4.

Vortex pattern. In order to have a more uniform image on how paths cross a vortex, we define the graph Rh,s so that

V (Rh,s) = V 1 ∪ · · · ∪ V s for mutually disjoint vertex sets V i with |V i | = h and

E(Rh,s) = {{x j, xk}
∣∣ x j, xk ∈ V i, 1 � j �= k � h, 1 � i � s

} ∪ {{x j, y j}
∣∣ x j ∈ V i−1 ∧ y j ∈ V i, 1 � j � h, 2 � i � s

}
.

In Rh,s we also distinguish a subset S ⊆ V (Rh,s) containing exactly one vertex from any V i . We call the pair (Rh,s, S) an
(h, s)-vortex pattern. See Fig. 6 for an example of a normalized vortex.

We now prove the following:

Lemma 15. Any vortex of an h-almost embeddable graph with base set B is a minor of an (h, s)-vortex pattern (Rh,s, S) where the
minor operations map bijectively the vertices of S to the vertices in B in a way that the order of the vortex and the cyclic ordering of S
induced by the indices of its elements is respected. Moreover, Rh,s has linear-width at most h.

Proof. We show how any vortex with base set B and linear decomposition X = (X1, . . . , X|B|) of width < h is a minor of
some (h, s)-vortex pattern (Rh,s, S) with V (Rh,s) = V 1 ∪ · · · ∪ V s and |V i| = h (1 � i � s). Choose s = |B| and set S = B . Start
with the vertices in X1: set V 1 = X1 plus some additional vertices to make |V 1| = h and make G[V 1] complete. Iteratively,
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Fig. 6. Normalizing vortices. An example of a (5,14)-vortex pattern.

set V i = Xi \ Xi−1. Apply inverse edge contraction for all vertices in Xi ∩ Xi−1 and add the new vertices to V i . Again, add
additional vertices to make |V i| = h. Make G[V i] complete and add all missing edges between V i and V i−1 in order to
obtain a matching. �

Using Lemma 15, we can replace G p by a new graph G p′ where any vortex of G p is replaced by a suitably chosen Rh,s .
The bijection of the lemma indicates where to stick the replacements to the underlying graph G p

u . We adopt the same
notions as for vortices. I.e, we denote S as base set consisting of base vertices, etc. In the remainder of the paper we
will refer to h-almost embeddable graphs as graphs with (h, s)-vortex pattern instead of vortices, unless we clearly state
differently and we will use the term vortex for (h, s)-vortex pattern eventually.

Normalizing vortices. We can now apply one more transformation in order to have both all vortex disks entirely inside
int(�e) and no vortices intersecting holes. In fact, we can handle both cases in exactly the same way, because Σ \ De can
be treated as any hole � where ∂ Ee corresponds to bor(�). Thus, assume that for any (h, s)-vortex pattern we have that V i

and V j are the two vertex sets of Rh,s ∩ bor(�), where � is one of the holes �1, . . . ,�r . For every vertex in V i and V j , we
create new vertex sets which we connect in the same way as in the construction of vortex patterns. Thus we create 2h − 2
new vertex sets V 1

i , . . . , V h−1
i and V 1

j , . . . , V h−1
j to obtain a new (h, s + 2h − 2)-vortex pattern. We then apply inverse edge

contraction on the base vertices of V i and V j and the new sets. This transformation is shown in the next figure, where
contracting the red (in the web version) edges illustrated to the right leads to the minor illustrated to the left.

Again we can rename the graph before this new transformation G p and the graph produced G p′ and prove the following
using the fact the later contains the former as a minor.

Lemma 16. Let G p and G p′ be as above. Then

q-pathsG p (Ee,Ve) � q-pathsG p′
(

E ′
e,V′

e

)
.

Final setting. To have an idea of how �e looks like after the previous transformation, see the left part of the next figure.
The outer face can now be seen as a hole and we redraw the whole embedding in a sphere as indicated by the second part
of the same figure. We will denote by �∂ Ee the new disk in the graph embedding that is bounded by the union ∂ Ee and
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some intersecting holes of �1, . . . ,�r .

In the current setting, we have a collection of holes in the sphere with � vertices on their borders. We will now count
q-pathsG p′(E ′

e,V′
e) for the sets of vertex disjoint paths pathsG p′(E ′

e,Ve
′) between these � vertices.

Tree structure for fixing paths. Before we are ready to prove Lemma 12, namely that

q-pathsG p (Ee,Ve) = 2O H (w),

we need some auxiliary lemmas:

Non-crossing matchings

Lemma 17. (See [28].) Let P (n) = {P1, . . . , P n
2
} be a partition of an ordered set S = {x1, . . . , xn} into tuples, such that there are no

elements xi < x j < xk < x� with {xi, xk} and {x j, x�} in P (n). Let PS be the collection of all such partitions of S. Then

|PS | = O
(
2n).

The partitions of Lemma 17 are called non-crossing matchings. A non-crossing matching can be visualized by placing n
vertices on a cycle, and connecting matching vertices by non-crossing arcs at one side of the cycle. In a graph G , each
element P of pathsG(E, S)/ ∼ can be seen as a set of arcs with endpoints in S . If every P is a non-crossing matching, we
say that the paths in Pi ∈ pathsG(E, S) with P ∼ Pi are non-crossing and S has a Catalan structure.

(n, r)-non-crossing matchings. The next lemma gives an estimation on the non-crossing matchings arising from the case that
one has several cycles in the plane that are connected by non-crossing arcs. After planarizing the graph of bounded genus
by cutting along non-contractible nooses, the situation arises, that components and paths, respectively, have their endpoints
in several such “cut-nooses”.

Lemma 18. Let r disjoint empty disks �1, . . . ,�r be embedded on the sphere S0 where each disc is bounded by a cycle of at most n
vertices. Let P be a set of arcs connecting the vertices, such that P can be embedded onto S0 − {�1, . . . ,�r} without arcs crossing. Let
Pn,r be the collection of all such P . Then,

|Pn,r | � rr−2 · n2r · 2rn.

Proof. We show how to reduce the counting of |Pn,r | to non-crossing matchings. Here we deal with several open disks and
our intention is to transform them into one single disc in order to apply Lemma 17.

First let us assume r = 2. Choose a set P ∈Pn,2. Assume two vertices x and y on the boundary of two different disks �1
and �2 in being two endpoints of an arc {x, y} in P . We observe that no other arc in P crosses {x, y} in the S0-embedding
of P . So we are able to ‘cut’ the sphere S0 along {x, y} and, that way, create a “tunnel” between �1 and �2 unifying them
to a single disc and thus reduced the problem to counting non-crossing matchings. That is, for obtaining a rough upper
bound on |Pn,2|, one fixes every pair of vertices x ∈ �1 and y ∈ �2 and we obtain

|Pn,2| = O
(
n2 · 22n).
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The next difficulty is that all disks in �1, . . . ,�r are connected by arcs of P ∈ Pn,r in an arbitrary way. We use a tree
structure in order to cut the sphere along that structure. Given such a tree structure, we create tunnels in order to connect
the open disks and to merge them to one disk.

Consider all � nn−2 possible spanning trees on n vertices [4]. Here, we have a spanning tree over r vertices, representing
the r disks in �1, . . . ,�r . Then the boundary of each disc has length � n. Hence, there are O (n2) possible fixed arcs
between the boundaries of each two disks. Then we obtain a rough upper bound of n2r on the number of possible fixed
arcs between the disks in a given tree-structure. We obtain rr−2 ·n2r possibilities for the above concatenation and tunneling
of �1, . . . ,�r . We argue that P has a Catalan structure when tunneling the disks in this way. Thus,

|Pn,r | � rr−2 · n2r · 2rn. �
We call an element of Pn,r an (n, r)-non-crossing matching. If for a graph G , each element of pathsG(E, S)/ ∼ is an

(n, r)-non-crossing matching then S has Catalan structure.

h-almost-(n, r)-non-crossing matchings. For obtaining a Catalan structure on H-minor-free graphs, we extend the case of
bounded genus graphs with additional h “areas of non-planarity”, the vortices.

Lemma 19. Let r disjoint empty disks �1, . . . ,�r be embedded on the sphere S0 where each disc is bounded by a cycle of at most n
vertices. Let S0 − {�1, . . . ,�r} contain � h disjoint disks R1, . . . , Rh.

Let P be a set of arcs connecting the vertices of bor(�1), . . . ,bor(�r), such that

• P can be embedded onto S0 − {�1, . . . ,�r} with arcs crossing only inside R1, . . . , Rh,
• at most h arcs of P ∩ R j cross mutually for every j (1 � j � h).

Then P is a superposition of O ((h + r)h) many (n, r)-non-crossing matchings. Let Ph
n,r be the collection of all such P . Thus,

∣∣Ph
n,r

∣∣ �
(
rr−2 · n2r · 2rn)[(h+r)h]

.

Proof. We interpret P ∩ R j as a circular arc graph C j with maximum clique size h. That is, the arcs in P ∩ R j form the
vertex set of C j and we connect two vertices by an edge if the corresponding arcs intersect. As there are only up to h arcs
mutually intersecting, C j may only contain cliques of size at most h. By [42] the chromatic number of a circular arc graph
is bounded by twice the clique number, here 2h.

But looking at an entire arc α of P connecting two disjoints disks �i and � j (1 � i < j � r), α may intersect R j

arbitrarily often. Thus we may have more than h mutually crossings of arcs in P when intersecting R j .
Together with the observation that α cuts S0 − {�1, . . . ,�r} into several disks, we conclude that there are less than

2h + r − 1 arcs that mutually cross in R j . We color the arcs of P such that no two arcs of the same color class cross. For
arcs crossing in one R j we thus need up to 2h + r − 1 colors.

Furthermore, we observe that two arcs of P may be assigned the same color in R j but cross in another Ri , etc. Hence,
we have a rough upper bound of (h + r)h colors, that is every arc can be assigned by 2h + r − 1 colors per R j and is
thus assigned by an h-vector of colors for all R j (1 � j � h). With Lemma 18, we count for every color class the number

of (n, r)-non-crossing matchings and we get that the overall size of Ph
n,r is bounded by (rr−2 · n2r · 2rn)[(h+r)h] . �

We can apply Lemma 19 to our terminology:
We say two paths P1, P2 ∈ pathsG p (Ee,Ve) cross inside an (h, s)-vortex pattern (Rh,s, S) if there is a vertex set V i ∈ V (Rh,s,)

that is used by P1 and P2.
Each element of P O H (1)

O H (w),O H (1) is an equivalence class of the paths in the set pathsG p (Ee,Ve)/ ∼ with O H (w) endpoints
in Ve crossing inside O H (1) vortex patterns. Thus, we have proven Lemma 12, namely that

q-pathsG p (Ee,Ve) = ∣∣PO H (1)
O H (w),O H (1)

∣∣ = 2O H (w). �
4.5. Proof of Step 2.h: dealing with the apices

So far, we considered smoothly h-almost Σ-embeddable graphs Gs without apices. To include the apices, we enhance
the branch decomposition (T s, τ s) of Gs of width O H (w) so that each middle set contains at most all O H (1) apices. We
construct an enhanced branch decomposition (T , τ ) of an h-almost Σ-embeddable graph Ga as follows: For every apex
vertex α and for every neighbor v , choose an arbitrary edge e of T s , such that v ∈ ∂ Ee . Subdivide e and add a new edge to
the new node and set τ ({α, v}) to be the new leaf. In this way, the enhanced branch decomposition (T , τ ) of Ga has width
O H (w) + O H (1). We obtain the following:
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Lemma 20. Let G be an h-almost embeddable graph and let Ga be the smoothly h-almost embeddable graph Gs obtained after remov-
ing the apices. Suppose also that Gs has a branch decomposition (T s, τ s) of width O H (w). Then the enhanced branch decomposition
(T , τ ) of Ga has width O H (w) and

q-pathsGa (Ee, ∂ Ee) � w O H (1) · q-pathsGs
(

Es
e, ∂ Es

e

)
.

Proof. For an edge e ∈ T , we observe: Any path in Ga[Ee] going through an apex vertex α one or two neighbors of α
(depending whether a is an internal vertex of the path or not). If Ga[Ee] does not contain any neighbor of any α ∈ Ga[Ee]
then q-pathsGa (Ee, ∂ Ee) � w O H (1) · q-pathsGs (Es

e, ∂ Es
e). If Ga[Ee] contains some neighbor, then α may be connected by

a path to one or two vertices in ∂ Es
e . I.e., any apex vertex can only contribute to one path P in Ga[Ee]. Thus, for one α we

count O H (w2) different possible endpoint of P in ∂ Es
e , and for all O H (1) apices w O H (1) . �

4.6. Proof of Step 3: dealing with the clique-sums

Let be given a graph an H-minor-free graph G . By Theorem 1, G can be decomposed in a tree-like way into several
h-almost embeddable graphs by reversing the clique-sum operation. That is, we obtain a collection C = {Ga

1, . . . , Ga
n} with

each Ga
i being h-almost embeddable graphs with up to n (possibly intersecting) h-cliques that contributed to the clique-sum

operation.

Lemma 21. Let G be a graph with a branch decomposition (T , τ ). For any k-clique S in G, there are three adjacent edges e, f , g in T
such that S ⊆ ∂ Ee ∪ ∂ E f ∪ ∂ E g .

Proof. Say, for node t incident to above e, f , g , ∂ Et = ∂ Ee ∪ ∂ E f ∪ ∂ E g . We will prove the lemma inductively. Let a 3-clique
consist of the vertices u, v, w . In (T , τ ), we consider path Pu ∈ T to be the path between the leaves τ ({u, v}) and τ ({u, w}).
By definition, u ∈ ∂ Ee for all e ∈ Pu . Let node t ∈ Pu be an endpoint of the path in T \ Pu with other endpoint τ ({v, w}).
Then, {u, v, w} ⊆ ∂ Et . For an i � k, let Si ⊂ S be an i-clique for which there is a t ∈ T with Si ⊆ ∂ Et . Let Ti ⊆ T be the tree
induced by the paths between the leaves corresponding to the edges of Si . Let z ∈ S \ Si and T z ⊆ T be the subtree induced
by the paths connecting the leaves corresponding to edges between z and Si . Then, we differ two cases: either t ∈ Ti ∩ T z
or there is a path in Ti connecting t and the closest node tz in T z . In the first case, under the assumption that Si ⊆ ∂ Et we
obtain that Si ∪ {z} ⊆ ∂ Et . In the second case, since Si ⊆ ∂ Et and each vertex of Si is an endpoint of some edge in a leaf
of T z , we get that Si ⊆ ∂ Etz . By definition z ∈ ∂ Etz and we are done. �

We define the node t incident to above edges e, f , g ∈ T as a k-clique-node.
Since for any edge e ∈ T for a branch decomposition (T , τ ), the vertex set ∂ Ee separates the graph into two parts, we

obtain the following lemma:

Lemma 22. Let be given a graph G and a branch decomposition (T , τ ). For any edge e ∈ T if q-pathsG(Ee, ∂ Ee) � q and
q-pathsG(Ee, ∂ Ee)�q then q-pathsG(E(G), ∂ Ee)�q2 . For any three adjacent edges e1, e2, e3 ∈ T , if q-pathsG(Eei , ∂ Eei )�q
and q-pathsG(Eei , ∂ Eei ) � q for i = 1,2,3 then q-pathsG(E(G),

⋃
i=1,2,3 ∂ Eei ) � q3 .

We now show how to construct the branch decomposition of an h-clique-sum by connecting the branch decompositions
of the two clique-sum components at some h-clique-nodes that correspond to the involved h-clique: Let Ga

1 and Ga
2 be the

two clique-sum components with the cliques Si ⊆ V (Ga
i ) (i = 1,2) together with the branch decompositions (T a

i , τ a
i ) and an

h-clique-node ti . Then, the branch decomposition (T ′, τ ′) of the clique-sum G ′ is obtained by first subdividing an incident
edge eti and connecting the new nodes together. Secondly, remove each leaf l of T ′ that corresponds to an edge that has a
parallel edge or is deleted in the clique-sum operation, and finally contract an incident edge in T ′ of each degree-two node.

Lemma 23. Let Ga
1 and Ga

2 have branch decompositions (T a
1, τ a

1 ), (T a
2, τ a

2 ) with maximum width w and for all edges e ∈ T ′
1 ∪ T ′

2 let
q-pathsG ′(Ee, ∂ Ee) � q. The above construction of the branch decomposition (T ′, τ ′) of the h-clique-sum G ′ has width � w + h
and for all edges e ∈ T ′ q-pathsG ′(Ee, ∂ Ee) � q2 .

Proof. For all e ∈ T ′ , ∂ Ee has the same cardinality as in T a
1 ∪ T a

2 . Only for the edges eti , we have that ∂ Eeti ⊆ ∂ Eti . Hence,
the width increases by at most h.

For any tree edge e ∈ T ′ , let L be a set of leaves in the subtree inducing Ee corresponding to the edges of the cliques Si
in Ee . Then, for all τ ′({u, v}) ∈ L, both endpoints u, v are vertices in ∂ Ee . Let ti be in the subtree inducing Ee . Since in T a

i ,
q-pathsGa

i
(Ee, ∂ Ee) � q and q-pathsGa

i
(Ee, ∂ Ee) � q, and also q-pathsGa

i
(Ee ∩ E(Si), ∂ Ee ∩ Si) � |L||L| , we have that in T

q-pathsG ′(Ee, ∂ Ee) � q · |L||L| � q2 for e �= eti . From Lemma 22, and since ∂ Eeti ⊆ ∂ Eti , we get q-pathsG ′ (Eeti , ∂ Eeti ) � q2

and q-pathsG ′(Eeti , ∂ Eeti ) � q2. Deleting leaves from (T ′, τ ′) does neither increase the width nor increase the number of
path collections. �
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In this way, we construct the branch decomposition (T , τ ) of an H-minor-free graph G out of the branch decompositions
(T a

1, τ a
1 ), . . . , (T a

n , τ a
n ) of � 1.5 times the maximum width O H (w) of the h-almost embeddable graphs Ga

1, . . . , Ga
n . Extending

the arguments of the previous proof, and taking account that the additional value of h that is added in Lemma 23 for each
1 � i < j � n, comes from the “gluing” clique-sum vertices between Ga

i and Ga
j that can be added in the resulting branch

decomposition without contributing more than h vertices in its overall width, we obtain the following lemma.

Lemma 24. Let be given above h-almost embeddable graphs Ga
1, . . . , Ga

n and branch decompositions (T a
1, τ a

1 ), . . . , (T a
n , τ a

n ) of maxi-
mum width O H (w) and a collection S of h-cliques, each in one of G1, . . . , Gn. Then, the new branch decomposition (T , τ ) of G has
width O H (w) and for all edges e ∈ T , we have q-pathsG(Ee, ∂ Ee) � 2O H (w) .

Proof. Let L be the set of leaves for one branch decompositions (T a
j , τ

a
j ) defined as above for all h-cliques of the h-clique-

sum operation for Ga
j . Since the edges corresponding to L contribute already to the sets of q-pathsG(Ee, ∂ Ee) for all

e ∈ T with e �= et j+1 , we get that q-pathsG(Ee, ∂Ee) � q2. By Lemma 22 combined with ∂ Eet j+1 ⊆ ∂ Et j+1 , we have that

q-pathsG(Eet j+1 , ∂ Eet j+1 ) � q3. �
5. Algorithmic consequences

The first application of Theorem 2 is the following.

Corollary 25. The problem of checking whether an n-vertex H-minor-free graph G has a path of length k can be solved in time

2O H (
√

k) · nO (1) .

Proof. We apply the algorithm of Theorem 2 for w = √
k. If it reports that G contains a (

√
k × √

k)-grid as a minor, then
G also contains a path of length k. If not, then the algorithm outputs in time O H (nO (1)) a branch decomposition (T , τ )

of width O H (
√

k) with the Catalan structure. In this case we use standard dynamic programming on (T , τ ) (see e.g. [6]).
At every step of the dynamic programming for each e ∈ E(T ), we keep track of all the ways the required path (or cycle)
can cross ω(e) = ∂ Ee . In other words, we count all ways these paths can be rooted through ∂ Ee . But this is proportional
to q-pathsG(Ee, ∂ Ee). As q-pathsG(Ee, ∂ Ee) = 2O H (

√
k) , dynamic programming can be performed in time O (2O H (

√
k)n).

Thus the running time of the algorithm is O H (nO (1)) + O (2O H (
√

k)n). �
Note, that for k = log2 n, Corollary 25 gives a polynomial time algorithm for checking if an n-vertex graph has a path of

length log2 n.

6. Conclusion

In this paper we have shown that every H-minor-free graph G of branch-width w has a branch decomposition of width
O (w) with the Catalan structure. Based on this combinatorial result we obtain a time 2O (

√
k)nO (1) algorithm deciding if an

H-minor-free n-vertex graph contains a k-vertex path.
Other problems that can be solved in 2O H (

√
k) · nO (1) steps in H-minor-free graph classes, applying simple modifications

to our technique, are the standard parameterizations of Longest Cycle, Cycle Packing, and Cycle/Path Cover (parameterized
either by the total length of the cycles/paths or the number of the cycles/paths).

For a wider family of problems, where the tables of the dynamic programming are encoding packings instead of pairings,
Rué et al. [34] obtained subexponential algorithms for graphs of bounded genus (see also [39]). Recently, in a breakthrough
paper, Cygan et al. [5] gave a randomized algorithm solving many “connectivity” problems, including Longest Path, in time
2O (w)nO (1) , where w is the branch-width of a graph. See also the work of Pilipczuk [33] on a logical characterization of
such problems.

We conclude with a number of open questions.

• Our algorithmic framework is heavily based on the Robertson and Seymour’s structural theorem and the suitable (topo-
logical) extension of the concept of sphere-cut decomposition. It is a challenge to prove the existence of 2o(k)nO (1) step
algorithms for H-minor free graphs without using this machinery. A combinatorial bound to the size of the tables of the
dynamic programming would be a significant step in this direction.

• A natural question is if our combinatorial result for H-minor-free graphs can be extended to larger graph classes, such
as graphs locally excluding some graph as a minor [7] or graphs of bounded expansion [30]. Our result is based on
bidimensionality and Robertson and Seymour’s structural theorem. It is not clear if one can extend these concepts to
the aforementioned larger graph classes. Even the existence of a subexponential FPT algorithm, i.e. of running time
2o(k)nO (1) , solving the k-Path on these classes of graphs is unknown.
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• The longest path in a (general) n-vertex graph of branch-width w can be found in time 2O (w log w)nO (1) by making use
of the standard dynamic programming on graphs of bounded branch-width. On the other hand, by a recent result of
Cygan et al. [5], the problem is solvable in 2O (w)nO (1) randomized time. The natural question here is to find a single
exponential deterministic algorithm for this problem.

• It is a remaining challenge to extend the framework of [34] from bounded genus graphs to H-minor free graphs.
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