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Abstract Cops & Robber is a classical pursuit-evasion game on undirected graphs,
where the task is to identify the minimum number of cops sufficient to catch the
robber. In this work, we consider a natural variant of this game, where every cop can
make at most f steps, and prove that for each f ≥ 2, it is PSPACE-complete to decide
whether k cops can capture the robber.

Keywords Pursuit-evasion games on graphs · Cops and Robbers games ·
Complexity

1 Introduction

The study of pursuit-evasion games is driven by many real-world applications where
a team of agents/robots must reach a moving target. The mathematical study of such
games has a long history, tracing back to the work of Pierre Bouguer, who in 1732
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studied the problem of a pirate ship pursuing a fleeing merchant vessel. In 1960s
the study of pursuit-evasion games, mostly motivated by military applications like
missile interception, gave a rise to the theory of Differential Games [11]. Besides
the original military motivations, pursuit-evasion games have found many applica-
tions reaching from law enforcement to video games and thus were studied within
different disciplines and from different perspectives. The necessity of algorithms for
pursuit tasks occur in many real-world domains. In the Artificial Intelligence liter-
ature many heuristic algorithms for variations of the problem like Moving Target
Search have been studied extensively [8, 12, 13, 17, 18]. In computer games, for in-
stance, computer-controlled agents often pursue human-controlled players and mak-
ing a good strategy for pursuers is definitely a challenge [15]. The algorithmic study
of pursuit-evasion games is also an active area in Robotics [10, 22] and Graph Algo-
rithms [4, 16].

One of the classical pursuit-evasion problems is the Man and Lion problem at-
tributed to Rado by Littlewood in [14]: A lion (pursuer) and a man (evader) in a
closed arena have equal maximum speeds. What tactics should the lion employ to
be sure of his meal? See also for more recent results on this problem [3, 21]. The
discrete version of the Man and Lion problem on graphs was introduced by Winkler
and Nowakowski [19] and Quilliot [20]. Aigner and Fromme [1] initiated the study
of the problem with several pursuers. This game, named Cops & Robber, is played
on a graph G by two players: the cop-player C and the robber player R, which make
moves alternately. The cop-player C has a team of k cops who attempt to capture the
robber. At the beginning of the game this player selects vertices and put cops on these
vertices. Then R puts the robber on a vertex. The players take turns starting with C .
At every turn each of the cops can be either moved to an adjacent vertex or kept on
the same vertex. Let us note that several cops can occupy the same vertex at some
move. Similarly, R responds by moving the robber to an adjacent vertex or keeping
him on same vertex. It is said that a cop catches (or captures) the robber at some
move if at that move they occupy the same vertex. The cop-player wins if one of his
cops catches the robber, and the player R wins if he can avoid such a situation. The
game was studied intensively and there is an extensive literature on this problem. We
refer to surveys [2, 4] for references on different pursuit-evasion and search games
on graphs.

In the game of Cops & Robber there are no restrictions on the number of moves
the players can make. Such model is not realistic for most of the applications: No lion
can pursuit a man without taking a nap and no robot can move permanently without
recharging batteries. In this work, we introduce a more realistic scenario of Cops &
Robber, the model capturing the fact that each of the cops has a limited amount of
power or fuel.

We also find the Cops & Robber problem with restricted power interesting from
combinatorial point of view because it generalizes the Minimum Dominating Set
problem, one of the fundamental problems in Graph Theory and Graph Algorithms.
Indeed, with fuel limit 1 every cop can make at most one move, then k cops can win
on a graph G if and only if G has a dominating set of size k. Thus two classical
problems—Minimum Dominating Set (fuel limit is 1) and Cops & Robber (unlim-
ited fuel) are the extreme cases of our problem. It would be natural to guess that if the
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amount of fuel the cops possess is some fixed integer f , then the problem is related to
distance f domination. Indeed, for some graph classes (e.g. for trees), the problems
coincide. Surprisingly, the intuition that Cops & Robber and Minimum f -Dominating
Set (the classical NP -complete problem) should be similar from the computational
complexity point of view is wrong. The main result of this paper is that the prob-
lem deciding if k cops can win on an undirected graph is PSPACE-complete even for
f = 2. Another motivation for our work is the long time open question on the com-
putational complexity of the Cops & Robber problem (without power constrains) on
undirected graphs. In 1995, Goldstein and Reingold [9] have shown that the classical
Cops & Robber game is EXPTIME-complete1 on directed graphs and conjectured
that similar holds for undirected graphs. However, even NP-hardness of the problem
was not known until very recently [5].

By our results, in the game on an n-vertex undirected graph if the number of steps
each cop is allowed to make is at most some polynomial of k, then deciding if k cops
can win is PSPACE-complete.

2 Basic Definitions and Preliminaries

We consider finite undirected graphs without loops or multiple edges. The vertex set
of a graph G is denoted by V (G) and its edge set by E(G), or simply by V and E if
this does not create confusion. If U ⊆ V (G) then the subgraph of G induced by U is
denoted by G[U ]. For a vertex v, the set of vertices which are adjacent to v is called
the (open) neighborhood of v and denoted by NG(v). The closed neighborhood of v

is the set NG[v] = NG(v) ∪ {v}. The distance distG(u, v) between a pair of vertices
u and v in a connected graph G is the number of edges in a shortest u,v-path in G.
For a positive integer r , Nr

G[v] = {u ∈ V (G): distG(u, v) ≤ r}. Whenever there is no
ambiguity we omit the subscripts.

The Cops & Robber game can be defined as follows. Let G be a graph, and let
f > 0 be an integer. The game is played by two players: the cop-player C and the
robber player R. The players use the same rules as in the original game introduced
Winkler, Nowakowski and Quilliot [19, 20] with one additional condition: during the
whole game each of the cops can be moved from a vertex to another vertex at most
f times in total. In other words, each of the cops has an amount of fuel which allows
him to move at most f steps. Notice that even if a cop cannot move to adjacent vertex
(run out of fuel), he is still active and the robber cannot move to the vertex occupied
by the cop without being caught. Observe also that the player R wins if he can survive
for kf + 1 moves, since it can be assumed that at least one cop is moved at each step
(otherwise the robber can either keep his position or improve it). For an integer f and
a graph G, we denote by cf (G) the minimum number k of cops sufficient for C to
win on graph G.

We define the position of a cop as a pair (v, s) where v ∈ V (G) and s is an integer,
0 ≤ s ≤ f . Here v is the vertex occupied by the cop, and s is the number of moves
along edges (amount of fuel) which the cop can do. The position of a team of k cops

1Goldstein and Reingold in [9] call EXPTIME = DTIME(2O(|I |)), where |I | is the input size.



614 Theory Comput Syst (2012) 50:611–620

(or position of cops) is a multiset ((v1, s1), . . . , (vk, sk)), where (vi, si) is the position
of the i-th cop. For the initial position, all si = f . The position of the robber is a
vertex of the graph occupied by him.

We consider the following COPS AND ROBBER decision problem:

Input: A connected graph G and two positive integers k,f .
Question: Is cf (G) ≤ k?

Let us finish the section on preliminaries with the proof of relations between Cops
& Robber and r-domination announced in Introduction. The Cops & Robber problem
with restricted power is closely related to domination problems. Let r be a positive
integer. A set of vertices S ⊂ V (G) of a graph G is called an r-dominating set if
for any v ∈ V (G), there is u ∈ S such that dist(u, v) ≤ r . The r-domination number
γr(G) is the minimum k such that there is an r-dominating set with at most k vertices.
Then γ1(G) is the domination number of G.

The proof of the following observation is straightforward.

Observation 1 For any connected graph G, c1(G) = γ1(G).

For f > 1, the values cf (G) and γf (G) can differ arbitrarily. Consider, for ex-
ample, the graph G which is the union of k complete graphs Kk with one additional
vertex joined with all vertices of these copies of complete graphs by paths of length
f . It can be easily seen that γf (G) = 1 but cf (G) = k. Still, for some graph classes
(e.g. for trees) these numbers are equal. Recall, that the girth of a graph G, denoted
by g(G), is the length of a shortest cycle in G (if G is acyclic then g(G) = ∞).

Lemma 1 Let f > 0 be an integer and let G be a connected graph of girth at least
4f − 1. Then cf (G) = γf (G).

Proof The proof of γf (G) ≤ cf (G) is trivial. To prove that cf (G) ≤ γf (G), we give
a winning strategy of γf (G) cops. Suppose that S is an f -dominating set in G of size
γf (G). The cops are placed on the vertices of S. Suppose that the robber occupies

a vertex u. Then the cops from vertices of S ∩ N
2f −1
G (u) move towards the vertex

occupied by the robber at the current moment along the shortest paths. We claim
that the robber is captured after at most f moves of the cops. Notice that the robber
can move at distance at most f − 1 from u before the cops make f moves. Because
g(G) ≥ 4f − 1, the paths along which the cops move are unique. Suppose that the
robber is not captured after f − 1 moves of the cop-player, and the robber occupies
a vertex w after his f − 1 moves. Since S is an f -dominating set, there is a vertex
z ∈ S such that distG(w, z) ≤ f . Using the fact that g(G) ≥ 4f − 1, and since the
robber was not captured before, we observe that the cop from z moved to w along the
shortest path between z and w and by his f -th move he has to enter w and capture
the robber. �
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3 PSPACE-Completeness

The minimum dominating set problem is one of the classical NP-complete problems
[7] and by Observation 1, it is NP-complete to decide whether c1(G) ≤ k. Here we
prove that for f ≥ 2, the complexity of the problem changes drastically.

Theorem 1 For any f ≥ 2, the COPS AND ROBBER problem is PSPACE-complete.

Remaining part of this section contains the proof of this theorem.

3.1 PSPACE-Hardness

In this subsection we prove the first part of Theorem 1 that the COPS AND ROBBER

problem is PSPACE-complete for every f ≥ 2.
We reduce to the PSPACE-complete QUANTIFIED BOOLEAN FORMULA IN CON-

JUNCTIVE NORMAL FORM (QBF) problem [7]. For a set of Boolean variables
x1, x2, . . . , xn and a Boolean formula F = C1 ∧ C2 ∧ · · · ∧ Cm, where Cj is a clause,
the QBF problem asks whether the expression

φ = Q1x1Q2x2 · · ·QnxnF

is true, where for every i, Qi is either ∀ or ∃. We assume additionally that Qn = ∃.
Clearly, QBF remains PSPACE-complete with this restriction. Given a quantified
Boolean formula φ, we construct an instance (G,n) of our problem such that φ is
true if and only if the cop-player can win on G with n cops.

Constructing G For every Qixi we introduce a gadget graph Gi . For Qi = ∀, we
construct the graph Gi(∀) as follows.

• Construct vertices xi, xi, yi, yi, zi and edges zixi, xiyi, zixi, xiyi, xixi .
• Add vertices ui and vi assuming that ui = zi for f = 2.
• Join zi and ui by the path Pi of length f − 2 and join ui and vi by the path P ′

i of
length f .

For Qi = ∃, we construct the graph Gi(∃):

• Construct vertices xi, xi, yi, zi and edges zixi, xiyi, zixi, xiyi, xixi .
• Add vertices ui and vi assuming that ui = zi for f = 2.
• Join zi and ui by the path Pi of length f − 2 and join ui and vi by the path P ′

i of
length f .

The graphs Gi(∀) and Gi(∃) are shown in Fig 1. Let Xi = {xi, xi}, Yi = {yi, yi} for
Gi(∀) and Yi = {yi} for Gi(∃).

Using these gadgets we construct G as follows.

• Construct gadget graphs Gi for i ∈ {1, . . . , n}.
• For each i ∈ {2, . . . , n}, join vertices from the set Yi−1 with all vertices from

Xi ∪ Yi .
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Fig. 1 Graphs Gi(∀), Gi(∃) and G for φ = ∀x1∃x2 (x1 ∨ x2) ∧ (x1 ∨ x2), f = 3. The edges shown by
dashed lines are used to force the payers to move in a special way

• For each i ∈ {2, . . . , n}, introduce vertices w
(1)
i and w

(2)
i , add edges ziw

(1)
i and

ziw
(2)
i , and join the vertices w

(1)
i ,w

(2)
i with all vertices from the sets Yj for j ∈

{1, . . . , i − 1}.
• Add vertices C1,C2, . . . ,Cm corresponding to clauses and join them with the

unique vertex of Yn (recall that Qn = ∃) by edges.
• For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, the vertex xi is joined with Cj by an edge if

Cj contains the literal xi , and xi is joined with Cj if Cj contains the literal xi .

Now we prove the following two lemmata.

Lemma 2 If φ = true then n cops have a winning strategy on G.

Proof We describe a winning strategy for the cop-player. The cops start by occupying
vertices u1, . . . , un. If the robber occupies a vertex of some path P ′

i , then the cop from
the vertex ui moves toward him and captures the robber in at most f steps. Suppose
that there is no robber on vertices of the paths P ′

1, . . . ,P
′
n. For each i ∈ {1, . . . , n}, the

cop from ui moves to zi in f − 2 steps. Now the cops occupy the vertices z1, . . . , zn

and each of them can do two moves along edges. Assume that the robber is not
captured after these moves of the cops. Observe that if after the robber’s last move he
occupies a vertex of some set Xi or {w(1)

i ,w
(1)
i } for i ∈ {1, . . . , n}, then he is captured

by the cop from zi in one step. Hence, we assume that the robber is in a vertex of some
set Yi or in {C1, . . . ,Cm}. We consider two cases.

Case 1. The robber occupies a vertex of some set Yi . For each j ∈ {1, . . . , i −
1}, the cop from zj moves either to xj or to xj . We assume that the choice of xj

corresponds to the value true of the variable xj and the choice of xj corresponds
to the value false of xj . Since φ = true, the variables x1, . . . , xi−1 can be assigned
values such that Qixi . . .QnxnF = true. The cop from the vertex zj moves according
to the value of xj . If xj = true then he moves to the vertex xj , otherwise he moves to
xj . Now inductively for j ∈ {i, . . . , n}, we assume that the robber occupies a vertex
of Yj and we move the cop from zj according to the following subcases.
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(a) Qj = ∀. If the robber occupies the vertex yj then the cop from zj moves to xj ,
and if the robber is in yj then the cop moves to xi . We again suppose that a
placement of a cop in xj corresponds to the value true of the variable xj , and a
moving a cop to xj corresponds to the value false. Notice that now the robber
choses the value of the variable xj . Now the robber should make his move:

• If the robber stays in his old position then he will be captured in one step by
the cop which is either in xi or xi .

• If the robber moves to a vertex of Yj−1 then again he will be captured in one
step by the cop which is either in xi or xi .

• If the robber moves to a vertex w
(1)
s or w

(2)
s for s > j then he will be captured

in one step by the cop from zs .

Hence he should move to a vertex of Yj+1 or to one of the vertices C1, . . . ,Cm if
j = n to avoid the capture.

(b) Qj = ∃. Then the robber occupies yj . The cop from zj moves either to xi or to
xi . The vertex is chosen in such a way that it corresponds to the value of the vari-
able xi for which (and for already assigned values of the variables x1, . . . , xj−1)
Qj+1xj+1 . . .QnxnF = true. Then similarly to Subcase a), the robber is either
captured by the next step or moves to a vertex of Yj+1 or to one of the vertices
C1, . . . ,Cm if j = n.

Finally, the robber is either captured or occupies some vertex Cs . Observe, that the
cops have chosen the vertices of the sets X1, . . . ,Xn such that F = true for the corre-
sponding values of boolean variables. Hence there is a cop in a vertex adjacent with
Cs and he captures the robber by the next move.

Case 2. The robber occupies some vertex Cj . For each i ∈ {1, . . . , n}, the cop from
zi moves either to xi or to xi . Again we assume that the choice of xi corresponds to
the value true of the variable xi and the choice of xi corresponds to the value false of
xi . Since φ = true, the variables x1, . . . , xn can be assigned values such that F = true.
The cop from the vertex zi moves according to the value of xi . If xi = true then he
moves to the vertex xi and he moves to xi otherwise. Now the robber makes his
move:

• If the robber moves to the vertex yn then he will be captured in one step by the cop
which is either in xn or xn.

• If the robber moves to a vertex of Xi unoccupied by a cop then he will be captured
in one step by the cop from another vertex of this set.

Hence he should stay in Cj to avoid the capture. Since F = true for the values of
boolean variables which correspond to positions of the cops, there is a cop in a vertex
adjacent with Cj and he captures the robber by the next move. �

To complete the proof of PSPACE-hardness, it remains to prove the following
lemma.

Lemma 3 If φ = false then the robber has a winning strategy against n cops on G.

Proof We describe a winning strategy for the robber-player. Assume that the cops
have chosen their initial positions. If there is a path P ′

i such that all vertices of the
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path are unoccupied by the cops then we place the robber on vi . Since there are no
cops at distance at least f from vi , the winning strategy for the robber is trivial—he
should stay in vi . Suppose now that for each path P ′

i , there is a cop in one of the
vertices of the path. We have n cops. Hence exactly one cop occupies one vertex of
each path. Denote this cop by Ci . Observe that if Ci move to vertex zi , then he has no
capacity to move further than distance two from this vertex. The robber is placed on
a vertex of Y1. The choice of the vertex and further moves of the robber are described
inductively for i ∈ {1, . . . , n}.

Suppose that for each i ≤ j ≤ n, the cop Cj is on the path Pj or P ′
j , the robber does

not occupy a vertex that out of reach of the cops (i.e. he didn’t win yet), and currently
the robber-player chooses a vertex of Yi to move the robber there. Assume also that
values of the variables x1, . . . , xi−1 are already defined and Qixi . . .QnxnF = false
for this assignment. Clearly, these conditions hold for i = 1. We consider two cases.

(a) Qi = ∀. Since Qixi . . .QnxnF = false, there is a value of xi for which
Qi+1xi+1 . . .QnxnF = false. If this value is true then the robber is placed on
yi and he is placed on yi otherwise. Observe, that the value of xi is chosen by
the robber-player. Now the robber stays in his position until the cop Ci moves
from zi to the vertex of Xi adjacent with his current position (notice that if Ci

moves to this vertex by sliding along two edges then the robber does not move)
or some other cop Cj for j > i moves from zj to an adjacent vertex t . In the last

case if t �= w
(1)
j then the robber moves to w

(1)
j and he moves to w

(2)
j otherwise.

The remaining strategy is trivial—he stays in this vertex, since no cop can reach
it. Assume that Ci have moved from zi to the vertex of Xi adjacent with the rob-
ber’s position. Then the robber moves to a vertex of Yi+1 or to some vertex of
{C1, . . . ,Cm} if i = n.

(b) Qi = ∃. The robber is placed on yi and he stays in his position until the cop Ci

moves from zi to the vertex of Xi or some other cop Cj for j > i moves from zj

to an adjacent vertex t . In the last case if t �= w
(1)
j then the robber moves to w

(1)
j

and he moves to w
(2)
j otherwise. The remaining strategy is trivial—he stays in

this vertex, since no cop can reach it. Assume that Ci moves from zi to a vertex
of Xi . If he moves to xi then we let xi = true and xi+1 = false otherwise. Now
the cop-player chooses the value of xi . Notice that for both values of xi and for
already defined values of x1, . . . , xi−1, Qi+1xi+1 . . .QnxnF = false. Then the
robber moves to a vertex of Yi+1 or to some vertex of {C1, . . . ,Cm} if i = n.

It remains to define the strategy for the case when the robber moves to a vertex of
{C1, . . . ,Cm}. Now we can assume that the variables x1, . . . , xn have values for which
F = false. Hence, there is a clause Cj = false. The vertex Cj cannot be occupied by
the cops. The robber moves to this vertex and stays there. It remains to observe that
no cop can reach Cj . Therefore the robber wins. �

By Lemmata 2 and 3, we have that COPS AND ROBBER is PSPACE-hard for
f ≥ 2.



Theory Comput Syst (2012) 50:611–620 619

3.2 Inclusion in PSPACE

To complete the proof of the theorem, it remains to show that our problem is
in PSPACE.

Lemma 4 For every integers f, k ≥ 1 and an n-vertex graph G, it is possible to
decide whether cf (G) ≤ k by making use of space O(k · f · nO(1)).

Proof The proof is constructive. We describe a recursive algorithm which solves the
problem. Note that we can consider only strategies of the cop-player such that at
least one cop is moved to an adjacent vertex. Otherwise, if all cops are staying in old
positions, the robber can only improve his position.

Our algorithm uses a recursive procedure W(P,u, l), which for a non negative
integer l, position of the cops P = ((v1, s1), . . . , (vk, sk)) such that l = s1 + · · · + sk ,
and a vertex u ∈ V (G), returns true if k cops can win starting from the position P

against the robber which starts from the vertex u, and the procedure returns false
otherwise. Clearly, k cops can capture the robber on G if and only if there is an initial
position P0 such that for any u ∈ V (G), W(P0, u, l) = true for l = kf .

If l = 0 then W(P,u, l) = true if and only if u = vi for some 1 ≤ i ≤ k. Suppose
that l > 0. Then W(P,u, l) = true in the following cases:

• u = vi for some 1 ≤ i ≤ k,
• u ∈ NG(vi) and si > 0 for some 1 ≤ i ≤ k,
• there is a position P ′ = ((v′

1, s
′
1), . . . , (v

′
k, s

′
k)) such that the cops can go from P to

P ′ in one step, and for any u′ ∈ NG[u], W(P ′, u′, l′) = true where l′ = s′
1 + · · · +

s′
k < l.

Observe that all positions of the cops can be listed (without storing them) by using
polynomial space, and the number of possible moves of the robber is at most n. When
the procedure W(P,u, l) is called recursively, we should keep the previous positions
of the players which were used to reach the current position. Since the depth of the
recursion is at most kf , it can be done in space O(kf nO(1)). We conclude that the
algorithm uses space O(kf nO(1)). �

Observe that our proof shows that the problem is in PSPACE only for f = nO(1).
Hence, for the case when f is a part of the input, we can claim only PSPACE-
hardness of the problem.

4 Conclusion

In this paper we introduced the variant of the Cops & Robber game with restricted
resources and have shown that the problem is PSPACE-complete for every f > 1.
In fact, our proof also shows that the problem is PSPACE-complete even when f

is at most some polynomial of the number of cops. One of the long standing open
questions in Cops & Robber games, is the computational complexity of the classical
variant of the game on undirected graphs without restrictions on the power of cops.
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In 1995, Goldstein and Reingold [9] conjectured that this problem is EXPTIME-
complete. On the other hand, we do not know any example, where to win cops are
required to make exponential number of steps (or fuel). This lead to a very natural
question: How many steps along edges each cop needs in the Cops & Robber game
without fuel restrictions?
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