
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. DISCRETE MATH. c© 2012 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 695–717

COUNTING SUBGRAPHS VIA HOMOMORPHISMS∗

OMID AMINI† , FEDOR V. FOMIN‡ , AND SAKET SAURABH§

Abstract. We introduce a generic approach for counting subgraphs in a graph. The main
idea is to relate counting subgraphs to counting graph homomorphisms. This approach provides
new algorithms and unifies several well-known results in algorithms and combinatorics, including
the recent algorithm of Björklund, Husfeldt, and Koivisto for computing the chromatic polynomial,
the classical algorithm of Kohn et al. for counting Hamiltonian cycles, Ryser’s formula for counting
perfect matchings of a bipartite graph, and color-coding-based algorithms of Alon, Yuster, and Zwick.
By combining our method with known combinatorial bounds, ideas from succinct data structures,
partition functions, and the color coding technique, we obtain the following new results. The number
of optimal bandwidth permutations of a graph on n vertices excluding a fixed graph as a minor can be
computed in time 2n+o(n), in particular, in time O(2nn3) for trees and in time 2n+O(

√
n) for planar

graphs. Counting all maximum planar subgraphs, subgraphs of bounded genus, or more generally
subgraphs excluding a fixed graph M as a minor can be done in 2O(n) time. Counting all subtrees
with a given maximum degree (a generalization of counting Hamiltonian paths) of a given graph can
be done in time 2O(n). A generalization of Ryser’s formula is, Let G be a graph with an independent
set of size �. Then the number of perfect matchings in G can be found in time O(2n−�n3). Let H be
a graph class excluding a fixed graph M as a minor. Then the maximum number of vertex disjoint
subgraphs from H in a graph G on n vertices can be found in time 2O(n). In order to show this, we
prove that there exists a constant cM depending only on M such that the number of nonisomorphic
n-vertex graphs in H is at most cnM . Let F be a k-vertex graph of treewidth t and let G be an

n-vertex graph. A subgraph of G isomorphic to F (if one exists) can be found in O(4.32k ·k · t ·nt+1)
expected time using O(log k · nt+1) space.
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1. Introduction. Given two undirected graphs F and G, a homomorphism from
F to G is a mapping from the vertex set of F to that of G such that the image of
every edge of F is an edge of G. Different important combinatorial properties of F ,
such as being k-colourable, may be viewed as graph homomorphisms to a particular
graph G, see the book of Hell and Nešetřil [38] for a thorough introduction to the
topic. Counting homomorphisms between graphs has applications in a variety of areas,
including extremal graph theory, properties of graph products, partition functions in
statistical physics and property testing of large graphs. We refer to the excellent
survey of Borgs et al. [18] for references on counting homomorphisms.

There is an extensive literature on the computational complexity of graph ho-
momorphism and counting homomorphisms. Hell and Nešetřil showed that for any
fixed simple graph G, the problem whether there exists a homomorphism from F
to G is solvable in polynomial time if G is bipartite, and NP-complete if G is not
bipartite [37]. Dyer and Greenhill [26] completely characterized the dichotomy be-
tween P and #P-complete for counting homomorphisms from F to G. It appears that
polynomial-time solvable cases arise only when G is an isolated vertex, a complete
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graph with all loops present, a complete bipartite graph without loops, or a disjoint
union of these graphs. Extending a result of Grohe [35], Dalmau and Jonsson [21]
proved that counting homomorphisms from a graph F in a given family F to an arbi-
trary graph G is in P if and only if all graphs in the family F have bounded treewidth
(up to the assumption from parameterized complexity that FPT �= #W[1]).

In this paper we design exact and parameterized algorithms for counting the
number of (not necessarily induced) subgraphs isomorphic to a given graph F in a
general graph. We refer to the book [32] for an introduction to exact algorithms
and to the book of Downey and Fellows [24] for an introduction to parameterized
complexity. The number of isomorphic subgraphs can be found in polynomial time
when the size of the pattern graph F is constant [60] and in linear time when the
host graph G is planar [27]; see also [23, 28]. For any graph G with n vertices
and m edges, all subgraphs of G isomorphic to a given graph F can be counted by
trying all possible edge subsets of G and for each subset checking if the obtained
graph is isomorphic to F . This algorithm runs in time 2m+o(n) by making use of
an algorithm due to Babai [4] to check isomorphism in time subexponential in n.
Another approach is to try all the permutations of the vertices of G and F , and
for each of these permutations, to compare vertex neighborhoods. This will give us
running time O(n!n2) = 2O(n logn). While it is an open question whether subgraph
isomorphism can be solved in time 2O(n), there are many special cases, depending on
the structure of the graph F , for which 2O(n) algorithms are known. Many natural
problems such as Hamiltonian Cycle, Perfect Matching, Graph Coloring,
Bandwidth Minimization, Triangle Packing, and many others, can be seen as a
subgraph isomorphism problem, and for each of these problems, there are 2O(n) time
algorithms known in the literature. However, all known algorithms for these problems
are tailored to their specific properties.

The main idea behind our results is to reduce the problem of counting subgraphs of
a nonlabeled graphG isomorphic to a given graph F to counting homomorphisms from
F to G. Let sub(F,G) denote the number of distinct (not necessarily induced) copies
of a graph F contained in a graph G. Let also hom(F,G) and inj(F,G) be the number
of homomorphisms and injective homomorphisms from F to G, respectively. The idea
of relating hom(F,G) and inj(F,G) is not new in graph theory. Lovász [47, 18] gave
the following identities relating hom(F,G) and inj(F,G). For an equivalence relation
Θ on V (F ), or equivalently for a partition Θ of the vertex set V (F ), let F/Θ be the
graph obtained from G by identifying vertices that belong to the same equivalence
class of Θ. Thus two nodes x, y of F/Θ are adjacent if and only if there are u ∈ x
and v ∈ y, such that uv ∈ E(F ). Then

inj(F,G) =
∑
Θ

μ(Θ)hom(F/Θ, G),

where

μ(Θ) =
∏
A∈Θ

(
(−1)|A|−1(|A| − 1)!

)
,

with the product running over all the equivalence classes of Θ and the sum running
over all the equivalence relations (equivalently, over all partitions of V (F )). From an
algorithmic point of view the above formula is not efficient because the number of
equivalence relations is generally too large to be meaningful even for simple graphs
such as the graph containing n isolated vertices. We give an alternative formula which
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is helpful in counting “simple structures” in time exponential in the size of the target
graph G, i.e., |V (G)|. Let us denote by aut(F ) the number of automorphisms of F ,
that is bijective homomorphisms from F to itself. Also for a subset W ⊂ V (G), we
simply write G \W to denote the induced graph of G on V (G) \W .

Our first result shows that if |V (F )| = |V (G)|, then

sub(F,G) =
inj(F,G)

aut(F )
=

∑
W⊆V (G)(−1)|W | hom(F,G \W )

aut(F )
.(1)

This can be seen as a generalization of inclusion-exclusion-based formulas which were
used for some counting problems, including counting the number of perfect match-
ings in a graph [11, 55], counting Hamiltonian cycles [6, 41, 43], and computing the
chromatic polynomial of a graph [12, 44]. The main advantage of using graph homo-
morphisms is that despite their expressive power, graph homomorphisms from many
structures can be counted efficiently.

1.1. Our results and related work. We start by proving (1) and Theorem 1,
which is our main tool in the design of exact algorithms. We observe that a num-
ber of well-known classical and more recent results can be obtained as corollaries of
Theorem 1. We demonstrate its power by reproving the following results. Let G be
a graph on n vertices. Then the number of Hamiltonian cycles in G can be com-
puted in time 2nnO(1) and in polynomial space. (This result was rediscovered several
times [6, 41, 43].) In the recent breakthrough paper of Björklund [10], a Monte Carlo
algorithm detecting Hamiltonicity in time 1.657nnO(1) is given.

The chromatic polynomial of G can be computed in time 2n+O(
√
n) (this almost

matches the running time of the celebrated result of Björklund, Husfeldt, and Koivisto
[12, 14, 44]). The number of perfect matchings in a bipartite graph can be counted in
time 2n/2nO(1) (the classical result of Ryser [55]; see also Björklund and Husfeldt [12]).

We then use Theorem 1 and its variants to obtain improvements on the following.
Number of optimal permutations for bandwidth. The Bandwidth problem is a

famous combinatorial problem where given an undirected graph G on n vertices, we
wish to embed its vertices onto an integer line such that the maximum stretch of any
edge, bw(G), of G is minimized. The parameter bw(G) is called bandwidth of G.
The best known approximation algorithm for this problem is an O(log3 n 4

√
log logn)-

approximation algorithm due to Lee [46], which is a slight improvement of the earlier
algorithm of Dungan and Vempala [25]. Saxe has shown that the bandwidth of a
graph G, bw(G), can be computed in time O(nbw(G)+1) [56]. When parameterized
by bandwidth bw, the Bandwidth problem is also known to be W[t]-hard for all
t ≥ 1 [16].

Feige and Kilian [29] provided an exact algorithm computing the optimal band-
width in time 10nnO(1). Recently, several improvements were obtained by Cygan
and Pilipczuk, resulting in an algorithm of running time 4.383nnO(1) [20]. Feige and
Talwar [31] showed that the bandwidth of a graph of treewidth at most t can be

(1 + ε)-approximated in time 2O(logn(t+
√

n
ε )). Vassilevska, Williams, and Woo [58]

gave a hybrid algorithm which after a polynomial time test either computes the band-
width of a graph in time 4n+o(n) or provides a γ(n) log2 n log logn-approximation in
polynomial time for any unbounded function γ.

The Bandwidth problem can be seen as a subgraph isomorphism problem, and
by combining Theorem 1 with the techniques of counting homomorphisms on graphs
of bounded treewidth, we obtain the following. The number of optimal bandwidth
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permutations of a graph of treewidth at most t on n vertices can be counted in time
2nnt+O(1) and space nt+O(1). When t is a constant, the algorithm uses polynomial
space and runs in time 2nnO(1). Independently, Cygan and Pilipczuk [20] announced
a 2nnO(1) algorithm that computes an optimal bandwidth layout in graphs of constant
treewidth. However, their algorithm uses exponential space. Our result also yields a
hybrid algorithm which after a polynomial time test either computes the minimum
bandwidth of the graph in time 4nnO(1) or provides an O(log3/2 n)-approximation in
polynomial time, improving the algorithm presented in [58].

Counting perfect matchings. While a perfect matching in a graph can be found
in polynomial time, the problem of counting the number of perfect matchings is #P-
complete [57]. For bipartite graphs on n vertices, the best known exact algorithm
for counting perfect matchings is to apply Ryser’s formula for the permanent [55],
which runs in time O(1.414n) . Björklund and Husfeldt [11] showed how to com-
pute the number of perfect matchings of a graph in time 2nnO(1) and polynomial
space. Koivisto [45] showed how to count perfect matchings in time O(1.6181n) and
exponential space.

We generalize the classical result of Ryser by showing that if G contains an in-
dependent set of size k, then the number of perfect matchings in G can be found in
time O(2n−kn3). Let us remark that the case of bipartite graphs is a special case as
k ≥ �n/2�. In their recent work, Vassilevska and Williams [59] gave algorithms to
count subgraphs with running time depending on the size of an independent set in
pattern graph F .

Counting maximum subgraphs with a given property. Combining algorithms for
counting homomorphisms with ideas from data structures, we give algorithms running
in time 2O(n) for various problems asking to count the number of subgraphs with
specific properties in an n-vertex graph. For example, it is possible to count maximum
planar subgraphs, subgraphs of bounded genus, or, even more generally, subgraphs
excluding a fixed graph M as a minor in time 2O(n). The last result requires a new
combinatorial bound on the number of nonisomorphic unlabeled M -minor-free graphs
which implies as a corollary the main theorem of Norine et al. [52] on minor-closed
families. This answers affirmatively an open problem of Bernardi, Noy, and Welsh
in [9], where they ask whether the number of unlabeled graphs of size n in a given
minor-closed class of graphs F can be bounded above by dn for some constant d
(Problem 5 of section 4 in [9]). We also obtain a number of algorithms for counting
spanning trees with different degree conditions. These structures can be seen as
generalizations of Hamiltonian paths. Prior to our work, the only known algorithm
for many of the problems above was to try all possible permutations of vertex sets,
which takes time n!nO(1).

Packing problems. Given a graph class H, the packing problem asks for the
maximum number of vertex disjoint subgraphs of G, all of which belong to H. (See
section 5.6 for a more precise definition.) We also show how to answer in time 2O(n)

the packing problem from a certain class H, where H is a subclass of the class of all
graphs excluding a fixed graph M as a minor. In particular the Maximum Vertex

Disjoint Cycles problem can be solved in time 2n+O(
√
n). For these problems, no

2O(n) time algorithms were previously known.
Parameterized algorithms. By applying the inclusion-exclusion idea, it is possible

to refine the celebrated color coding technique of Alon, Yuster, and Zwick [2]. Their
probabilistic algorithm determines whether a given graph G contains a fixed graph
F as a subgraph and works in two stages. First, one colors the vertices of G at
random, and then one performs dynamic programming on the colored graph in order
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to find an isomorphic subgraph of F whose vertices have distinct colors. In [2],
the authors provide an algorithm for the case when F is a forest, and then they
mention that this algorithm can be generalized to an algorithm that finds a k-vertex
graph F of treewidth t in an n-vertex graph G (if such a copy exists) in expected
time 2O(k)nt+1. One of the significant disadvantages of using dynamic programming
with color coding is that it requires exponential space. By combining ideas based
on inclusion-exclusion and graph homomorphisms with color coding, we provide a
polynomial space algorithm that in expected time O((2e)k ·k · t ·nt+1) finds a k-vertex
graph F of treewidth t in an n-vertex graph G (if such a copy exists). This algorithm
can be derandomized resulting in a deterministic algorithm which solves the problem
in time O((2e)k+o(k) · k · t · nt+1) and space O(log k · nt+1). Finally, by extending
the approach of Hüffner, Wernicke, and Zichner [40] that was used to speed up the
algorithm of [2] for paths, we prove that a k-vertex graph F of treewidth t in an n-
vertex graph G can be found in O(4.32k ·k ·t ·nt+1) expected time using O(log k ·nt+1)
space.

The rest of the paper is organized as follows. In sections 2 and 3, we provide
necessary definitions and some preliminary results. In section 4, we show that several
classical results form the area of exact algorithms can be obtained by making use of
graph homomorphisms. Section 5 provides new applications of our approach men-
tioned above. In section 6, we revisit the color coding approach of Alon, Yuster, and
Zwick [2].

2. Preliminaries. Let G be a simple undirected graph without self loops and
multiple edges. The set of vertices and the set of edges of G are denoted by V (G)
and E(G), respectively. For a subset W ⊆ V (G), the subgraph of G induced by W is
denoted by G[W ]. To simplify the notation, for a subset W ⊂ V , we write G \W to
denote G[V \W ]. For a given vertex v ∈ V (G) and a subset W ⊆ V (G), we denote
by degW (v) the number of vertices in W which are adjacent to v.

A tree decomposition of a graph G is a pair (X,U), where U is a tree whose
vertices are called nodes, and X = ({Xi | i ∈ V (U)}) is a collection of subsets of
V (G) such that

1.
⋃

i∈V (U) Xi = V (G);

2. for each edge vw ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi; and
3. for each v ∈ V (G), the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi| − 1}.
The treewidth of a graph G is the minimum width over all the tree decompositions of
G and is denoted by tw(G).

Given an edge e = uv of a graph G, the graph G/e is obtained by contracting
the edge uv, that is, we get G/e by identifying the vertices u and v and by removing
all the loops and duplicate edges. A minor of a graph G is a graph M that can be
obtained from a subgraph of G by contracting edges. A graph class G is minor closed
if any minor of any graph in G is also an element of G . A minor closed graph class G
is M -minor-free or simply M -free if M /∈ G .

Given two graphs F and G, a graph homomorphism from F to G is a map f
from V (F ) to V (G), that is, f : V (F ) → V (G), such that if uv ∈ E(F ), then
f(u)f(v) ∈ E(G). Furthermore, when the map f is injective, f is called an injective
homomorphism. Given two graphs F andG, the problem of Subgraph Isomorphism

asks whether there exists an injective homomorphism from F to G. We also recall that
hom(F,G), inj(F,G), and sub(F,G) denote the number of homomorphisms from F to
G, the number of injective homomorphisms from F to G, and the number of distinct
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(non necessarily induced) copies of F in G, respectively. We need the following result
relating sub(F,G) and inj(F,G). This result is folklore and we omit its proof here.

Proposition 1. sub(F,G) = inj(F,G)/aut(F ).

Since one can compute aut(F ) for a graph F on nF vertices in time 2O(
√
nF log nF )

[5],1 which is subexponential in nF , this proposition allows us to focus on computing
the value of inj(F,G).

3. Relating counting subgraphs to counting homomorphisms. We first
give a formula expressing the number of injective homomorphisms from F to G in
terms of the number of homomorphisms from F to G, using the principle of inclusion-
exclusion.

Theorem 1. Let F and G be two graphs with |V (G)| = |V (F )|. Then

inj(F,G) =
∑

W⊆V (G)

(−1)|W | hom(F,G \W ),

and this is also equal to
∑

W⊆V (G)(−1)|V |−|W | hom(F,G[W ]).
Proof. We only prove the first part; the last claim is easily obtained by a change

of variable W to W ′ = V \W . To prove the theorem, we first show that if there is an
injective homomorphism f from F to G, then its contribution to the sum is exactly
one. Notice that since |V (G)| = |V (F )|, an injective homomorphism only contributes
when W = ∅. From this we conclude that injective homomorphisms are counted only
once in the right-hand side. Since we are counting homomorphisms, we also count
maps which are not injective in the right-hand-side sum. Next we show that if a map
h is not an injective homomorphism, then its total contribution to the sum is zero,
which will conclude the proof of the theorem. Observe that since h is not an injective
homomorphism and |V (F )| = |V (G)|, it misses some vertices of V (G). Let Ṽ = im(h)

be the image of h in V (G) and X = V (G) \ Ṽ �= ∅. We now observe that h is counted
only when we are counting homomorphisms from F to G \W such that W ⊆ X . The
total contribution of h in the sum, taking into account the signs, is

|X|∑
i=0

(
|X |
i

)
(−1)i = (1 − 1)|X| = 0,

and the theorem follows.
Let us assume that we can count the number of graph homomorphisms from F

to all the graphs G[W ] in time t(n), where |F | ≤ |G| = n and W ⊆ V (G). Then, as a
consequence of Theorem 1, we can compute the value of inj(F,G) in time O(2n · t(n))
when the size of V (F ) and V (G) is n. A natural question arising here is to extend
this to the case when the size of V (F ), say, nF , is less than n = |V (G)|. The easiest
solution will be to enumerate all subsets V ′ of size nF of V (G) and then to compute
inj(F,G[V ′]). However, this will take time O(

(
n
nF

)
2nF t(n)), which in the worst case

could be equal to O(3n · t(n)). In the rest of this section we show how to extend
Theorem 1 to the case when |V (F )| < |G|.

Theorem 2. Let F and G be two graphs with |V (F )| = nF ≤ |V (G)| = n. Then

inj(F,G) =
∑

Y⊆V (G),|Y |≤nF

(−1)nF−|Y |
(

n− |Y |
nF − |Y |

)
hom(F,G[Y ]).

1In fact, for a given graph F , Babai, Kantor, and Luks [5] solve the harder problem of computing
the automorphism group of F and a set of generators for aut(F). We refer to section 7 of [7] for
further discussion.
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Proof. We have that

inj(F,G) =
∑

W⊆V (G),|W |=nF

inj(F,G[W ])

by Theorem 1
=

∑
W⊆V (G),|W |=nF

⎛⎝∑
Y ⊆W

(−1)|W |−|Y | hom(F,G[Y ])

⎞⎠
=

∑
W⊆V (G),|W |=nF

⎛⎝∑
Y ⊆W

(−1)nF−|Y | hom(F,G[Y ])

⎞⎠
=

∑
Y⊆V (G),|Y |≤nF

(−1)nF−|Y |
(

n− |Y |
nF − |Y |

)
hom(F,G[Y ]).

The last equality follows from the fact that for any subset Y with |Y | ≤ nF , the
value of hom(F,G[Y ]) is counted precisely for all those subsets W for which Y ⊆ W
and |W | = nF . On the other hand, for every fixed Y , hom(F,G[Y ]) is counted
once in the above sum for every superset W of Y of size nF . The number of such
sets W is precisely

( n−|Y |
nF−|Y |

)
. Furthermore, for all such sets, we have the same sign

corresponding to Y , that is, (−1)nF−|Y |. This completes the proof.

4. Classical results. In this section we give alternative algorithms for a few
classical algorithms through the method of counting homomorphisms.

4.1. Counting Hamiltonian cycles: Kohn–Gottlieb–Kohn–Karp algo-
rithm. Let #Ham(G) denote the number of Hamiltonian cycles in a graph G and
let Cn be the cycle of length n; then sub(Cn, G) = #Ham(G). It is easy to see
that aut(Cn)= 2n, and thus for any graph H , hom(Cn, H) = tr(An

H) =
∑n

i=1 λ
n
i ,

where AH is the adjacency matrix of H and λ1, . . . , λn are its eigenvalues (see, for
example, [18]). Using these results and Theorem 1, we compute #Ham(G). We run
through all vertex subsets of G, and for each subset W we compute the number of
homomorphisms from Cn to G[W ] in polynomial time. Up to polynomial factor, the
running time of this algorithm is proportional to the amount of vertex subsets of G,
and we conclude that the algorithm runs in time 2nnO(1) and uses polynomial space.

4.2. Chromatic polynomial: Björklund–Husfeldt–Koivisto algorithm.
A proper k-coloring of a graph G is a function f : V (G) → {1, . . . , k} such that
for every edge uv ∈ E(G), f(u) �= f(v). A well-known polynomial associated with a
graph G is its Chromatic Polynomial. The rank of the graph G is r(G) = |V (G)|−
η(G), where η(G) is the number of connected components of G. The Chromatic

Polynomial of G is defined as χ(G;x) =
∑

E′⊆E(G)(−1)|E
′|x|V (G)|−r(E′), where

r(E′) is equal to the rank of the subgraph of G with vertex set V (G) and the edge
set E′. The polynomial derives its name due to the fact that for every fixed integer
k ≥ 1, χ(G; k) is the number of proper k-colorings of G. Also, χ(G; k) = hom(G,Kk),
where Kk is a complete graph of size k. (Recall that the chromatic number of G is the
smallest integer k > 0 for which χ(G; k) > 0.) To compute the chromatic polynomial
of a graph, we also use homomorphisms. However, instead of homomorphisms into
cliques, we look at homomorphisms with domains of specific structure.

A k-coloring of a graph G can also be viewed as a partition of the vertex set of
the given graph into k independent sets, that is, a partition (V1, . . . , Vk) of V (G) such
that for every i ∈ {1, . . . , k}, G[Vi] has no edges. For our purpose, we reformulate
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the problem of coloring as a problem of partitioning into k cliques in the complement
graph. The complement of a graph G, denoted by G, is the graph with the same
vertex set as G, i.e., V (G) = V (G), and with uv ∈ E(G) if and only if uv /∈ E(G).
Then G can be partitioned into k independent sets if and only if G can be partitioned
into k cliques. We model this as a problem of subgraph isomorphism as follows.
We guess the sizes t1, t2, . . . , tk of these cliques, where

∑
i ti = n. Then G can be

partitioned into cliques of sizes t1, t2, . . . , tk, respectively, if and only if there is a
subgraph isomorphic to F = 
k

i=1 Kti in G. Thus as long as we know the correct
sizes of cliques, the problem of coloring G is a subgraph isomorphism problem for the
complement of G.

To find the right sizes of the cliques, we can try all the possible combinations. Let
Pk(n) be the set of all unordered partitions of an integer n into k parts. For every
partition ζ = {t1, t2, . . . , tk} ∈ Pk(n), let F (ζ) = 
k

i=1 Kti . Then

χ(G; k) =
∑

ζ∈Pk(n)

k! · sub(F (ζ), G).(2)

In order to estimate the size of Pk(n), we need a classical result from number theory
giving an upper bound on the number of unordered partitions of n into k parts. Let
p(n) be the partition function which for every n is the number of partitions of n. The
asymptotic behavior of p(n) was given by Hardy and Ramanujan [36]:

(3) p(n) ∼ eπ
√

2n
3 /4n

√
3, as n → ∞.

Furthermore, one can give an enumeration algorithm listing all partitions of n into k
parts in time, up to polynomial factor, proportional to p(n) [51]. This brings us to the
following algorithm for computing χ(G; k). For every partition ζ = (t1, t2, . . . , tk) ∈
Pk(n), we want to compute the inner sum in (2). To compute (2), we have to know
the value of sub(F (ζ), G), and to compute this value we use Theorem 1. To implement
Theorem 1, we have to compute the values of aut(F (ζ)), and hom(F (ζ), G\W ), where
W ⊆ V (G). The computation of aut(F (ζ)) is easy—the number of automorphisms of
a complete graph on t vertices is t!. If F (ζ) consists of several connected components,
then every automorphism maps a component (complete graph) either into itself or to
a component of the same size. Let n(x) be the number of components of size x in F (ζ)
and let x1, x2, . . . , xp, p ≤ k, be the sizes of the components in F (ζ). Note that xi is
not necessarily equal to ti because it is possible in the partition ζ that for some i �= j,
ti = tj . Then aut(F (ζ)) =

∏
x∈{x1,x2,...,xp} n(x)!x!, and this value is computable in

polynomial time for each ζ.
To compute hom(F (ζ), G \ W ), we observe that it is sufficient to count homo-

morphisms from every component of F (ζ). The following result for a graph F with
several connected components is well known; see, e.g., [18].

Proposition 2. If F has connected components F1, . . . , F�, then hom(F,G) =∏�
i=1 hom(Fi, G).
However, every component of F (ζ) is a complete graph, and by Proposition 2, all

we need are the values of hom(Kt, G \W ). For every homomorphism f from Kt to
G \W , the image of the complete graph Kt is a clique of size t in G \W . Therefore,
hom(Kt, G \W ) = T [V (G) \W ][t]t!, where T [V (G) \W ][t] is the number of cliques
of size t in G \W .

Thus to finish all these computations, we have to find the number of cliques
of size t in a graph. By making use of dynamic programming over vertex subsets
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W ⊆ V (G), we compute the numbers T [W ][i], which is the number of cliques of
size i in G[W ]. Dynamic programming is based on the observation that for i > 0,
T [W ][i] = T [W \{v}][i]+T [N(v)∩W ][i−1] for some vertex v. By making use of this
observation, one can compute the values T [W ][i] for all W ⊆ V (G) and 0 ≤ i ≤ n in
time O(2nn2) and by making use of 2n × (n+ 1) space.

Putting all pieces together, we conclude with the following algorithm. We com-
pute all the values T [W ][i], W ⊆ V (G), 0 ≤ i ≤ n, and keep them in a table T of size
2n×(n+1). As mentioned, this table is computable in time 2n ·nO(1) and it uses space
2n · (n + 1). Then we loop through every partition ζ = (t1, t2, . . . , tk) ∈ Pk(n) and
compute the inner sum in (2). Once the table T is computed, the computations of
hom(F (ζ), G\W ) in (2) for every W ⊆ V take polynomial time. Thus for every parti-
tion ζ, it takes time 2n ·nO(1) to compute sub(F (ζ), G). The number of partitions we
need to loop is at most 2O(

√
n) and thus the running time of the algorithm computing

chromatic polynomial is 2n+O√
n. The space used by the algorithm is 2n · (n+ 1).

4.3. Number of perfect matchings in bipartite graphs: Ryser’s formula.
Let G be a bipartite graph on an even number of vertices, say, n, with V (G) being
partitioned into L and R of the same size. Then Ryser’s formula [55] says that

# PM(G) =
∑
X⊆R

(−1)|X| ∏
u∈L

(∑
v/∈X

1[uv∈E(G)]

)
,

where #PM(G) is the number of perfect matchings in G. The sum
∑

v/∈X 1[uv∈E(G)]

counts the number of neighbors of u not in X . Thus, we can count the number of
perfect matchings in a bipartite graph in time O(2n/2n2). If we take F as n/2 disjoint
copies of an edge, then # PM(G)=sub(F,G). By using Theorem 1, it is easy to obtain
an algorithm to compute the value of # PM(G) in time 2nnO(1). We will use the
notion of saturating homomorphism in section 5.1 to faster compute #PM(G); this
in particular means in time O(2n/2n2) for bipartite graphs.

5. New applications. In this section we give new applications of Theorems 1
and 2 and show their wider applicability.

5.1. Set saturating homomorphisms and Ryser’s formula. In this subsec-
tion we give a faster poly-space algorithm for counting perfect matchings in graphs
with large independent sets. To do so, we first generalize the notion of graph homo-
morphism and prove a generalization of Theorem 1. Let S be a given subset of V (G);
then a homomorphism f from F to G is called S-saturating if

(a) S ⊆ f(V (F )), and
(b) for all v ∈ S, |f−1(v)| = 1.

By S-hom(F,G) we denote the number of S-saturating homomorphisms. Observe
that for S = ∅ an S-saturating homomorphism is simply a homomorphism. The
following theorem is obtained similarly as in the proof of Theorem 1.

Theorem 3. Let F and G be two graphs with |V (G)| = |V (F )| and S ⊆ V (G).
Then

inj(F,G) =
∑

W⊆V (G)\S
(−1)|W |S-hom(F,G \W ).

Proof. To prove the theorem, it will be enough to show that if there is an injective
homomorphism f from F to G, then its total contribution to the sum on the right-
hand side of the above equation is exactly one, while the total contribution to this
sum of any noninjective S-saturating homomorphism from F to G is zero.
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To show this, first we note that since |V (G)| = |V (F )|, all injective homomor-
phisms are S-saturating and they contribute only when W = ∅. From this we con-
clude that any injective homomorphism is counted exactly once in the above sum.
This proves half the above claim. To show the other half, let h be a noninjective
homomorphism from F to G. We show that its total contribution to the sum is zero,
which will conclude the proof of the theorem. All the terms appearing in the sum
concern only S-saturating homomorphisms, so we can assume that h is S-saturating.
Since h is not an injective homomorphism and |V (F )| − |V (G)|, h has to miss some
vertices of V (G) in its image. In addition, h being S-saturating, it contains S in its

image. Let Ṽ = im(h) be the image of h in V (G). We thus infer that Ṽ = V (G) \X
for some nonempty subset X ⊂ V (G) \ S. The only contribution of h are to those
terms in the sum which count S-saturating homomorphisms from F to G[V (G) \W ]
for a subset W ⊆ X . The total contribution of h in the sum, taking into account the
signs, is then

|X|∑
i=0

(
|X |
i

)
(−1)i = (1 − 1)|X| = 0,

which concludes the proof.
We can now prove the next theorem.
Theorem 4. Let G be an n-vertex graph and S ⊆ V (G) be an independent set of

G. There is an algorithm which counts the number of perfect matchings of G in time
2n−|S| · nO(1).

Proof. Let F be a matching of n/2 edges. Then sub(F,G)=#PM(G). By Theo-
rem 3, we have that

inj(F,G) =
∑

W⊆V (G)\S
(−1)|W | S-hom(F,G \W ).

To prove the theorem, we show how to compute the value of S-hom(F,G \W ). Let
S = {v1, . . . , va}; then

S-hom(F,G \W ) =

(n
2

a

)
a!

(
a∏

i=1

(
2 · degV (G)\W (vi)

))
·
(
2 · |E(G \ (W ∪ S))|

) n
2 −a

.

To see this, first observe that S is an independent set in G. Hence, every S-saturating
homomorphism from F to G[V (G) \W ] has the property that for every vertex x ∈ S,
it maps a unique edge of F to an edge incident to x. So we first choose a edges from
n/2 edges of F , say, {f1, f2, . . . , fa}, and then map them to the edges incident to the
vertices in S. Having selected these edges, we can assign them to the vertices in S
in a! ways. Fix an edge fi; then it can be mapped to the edges incident on a vertex,
vj ∈ S, in 2 · degV (G)\W (vj) ways. This follows from the fact that an edge fi can map
to any of the degV (G)\W (vj) edges incident to vj in V (G) \W and each edge can be
mapped to another edge in two ways. The remaining n

2 −a edges are mapped to edges
in G \ (W ∪S). Proposition 2 combined with the fact that an edge can be mapped to

another edge in two ways give the factor of
(
2 · |E(G \ (W ∪ S))|

)n
2 −a

in the formula.

Furthermore, aut(F ) is equal to 2n/2(n/2)!.
It is well known that the chromatic number of a graph is always at most its average

degree (or degeneracy) plus one. Also, by Brooks’ theorem, the chromatic number of
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a graph is at most the maximum vertex degree, unless the graph is complete or an
odd cycle. Thus, by Theorem 4, we obtain the following result.

Corollary 1. Let G be an n-vertex graph and let d and Δ be its average and
maximum degrees. Then #PM(G) is computable in time min{2n− n

d+1 , 2n−
n
Δ } ·nO(1).

In particular, if G is a bipartite graph, then one can find #PM(G) in time 2n/2·nO(1).

5.2. Subgraph isomorphism when F has bounded treewidth. The tree-
width of a graph is one of the most fundamental notions in graph theory and graph
algorithms. Here, we give an algorithm for counting subgraphs isomorphic to F in G,
when F is given together with a tree decomposition of width t. We first mention an
algorithm to compute hom(F,G), when F is a graph of bounded treewidth.

Proposition 3 (see [22]). Let F and G be two graphs on nF and n vertices,
respectively, given together with a tree decomposition of width t of F . Then hom(F,G)
is computable in time O(nF · nt+1 min{t, n}) and space O(lognF · nt+1).

Theorem 5. Let F and G be two graphs on nF ≤ n vertices, respectively, given
together with a tree decomposition of width t of F . Then sub(F,G) is computable in
time

O
(

nF∑
i=0

(
n

i

)
· nF

t+2 · t
)

and space O(lognF · nt+1).
Proof. By Theorem 2, we have

inj(F,G) =
∑

Y⊆V (G),|Y |≤nF

(−1)nF−|Y |
(

n− |Y |
nF − |Y |

)
hom(F,G[Y ]).

Hence, to compute inj(F,G), it is sufficient to go through all vertex subsets Y of
G of size at most nF and for each such subset to count homomorphisms from F
to the subgraph induced by Y . By Proposition 3, each term hom(F,G[Y ]) in the
above sum can be computed in time O(nF ·nF

t+1t) (since t = min{t, nF }) and space
O(log nF · nF

t+1). Thus, one can compute the value of inj(F,G) in time

O
(

nF∑
i=0

(
n

i

)
· nF · nF

t+1 · t
)

and space O(log nF · nF
t+1). By Proposition 1, we know that sub(F,G)=inj(F,G)/

aut(F ). Note that aut(F )=inj(F, F ). Using Theorem 1 together with Proposition 3,
we can compute aut(F ) in time O(2nF · nF

t+2 · t) and space O(lognF · nF
t+1). This

concludes the proof of the theorem.

5.3. Bandwidth. The Bandwidth problem is the well-studied graph layout
problem. A layout of a graph G on n vertices is a map f : V (G) → {1, . . . , n}. In the
Bandwidth problem, the objective is to find a layout function for a given graph G
such that maxuv∈E(G) |f(u)− f(v)| is minimized.

The following lemma formulates the Bandwidth problem as an instance of the
Subgraph Isomorphism problem. By Pn we denote a path on n vertices. For a
graph G, the rth power of the graph is denoted by Gr. This graph is on the same
vertex set V (G), but we add an edge between two distinct vertices u and v if there
is a path of length at most r between them in G. The following result is well known;
see, e.g., [19].
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Proposition 4. Let G be a graph on n vertices. Then G has a layout of band-
width b if and only if there is an injective homomorphism from G to P b

n.
Using Proposition 4 together with Theorem 5, we obtain the following theorem.
Theorem 6. Given a graph G on n vertices together with a tree decomposition

of width t, it is possible to find the number of optimum bandwidth layouts in time
O(2n · nt+2 · t) and space O(log n · nt+1).

In particular, when G is a tree, then we can compute the number of optimum
bandwidth layouts in time O(2n · n3).

By the result of Alon, Seymour, and Thomas [1], every graph on n vertices that
does not contain a graph M as a minor has treewidth at most |V (M)|3/2

√
n.

Theorem 7 (Alon, Seymour, and Thomas [1]). Let h be an integer and let G be
a graph with n vertices and with treewidth at least h3/2

√
n. Then G has the complete

graph Kh as a minor.
By Theorem 6, we have the following.
Corollary 2. The number of optimum bandwidth layouts of an n-vertex graph

which excludes some fixed graph M as a minor is computable in time 2n+O(
√
n).

Theorem 6 can be used to improve a hybrid algorithm given in [58], which af-
ter a polynomial time test either computes the optimum bandwidth of a graph in
time 4n+o(n) or provides γ(n) log2 n log logn-approximation in polynomial time for
any unbounded function γ

Corollary 3. The Bandwidth problem admits an algorithm that given an n-
vertex graph, G always produces after a polynomial time test, either a layout achieving
the minimum bandwidth in 4n · nO(1) time or an O(log3/2 n)-approximation in poly-
nomial time.

Proof. Feige, Hajiaghayi, and Lee [30] gave a polynomial time algorithm which
for any graph of treewidth k finds a tree decomposition of width at most ck

√
log k.

We run this algorithm first and find a tree decomposition of width ω(G). If ω(G) ≥
n/ logn, then the treewidth of the graphG is at least n

c(log3/2 n)
and hence the optimum

bandwidth of the graph G is at least n
c(log3/2 n)

. Now we output any layout function

f for the input graph G. This gives us a factor c(log3/2 n) approximation algorithm
for the Bandwidth problem. Else, ω(G) < n/ logn, and now we use Theorem 6 to
find the number of optimum bandwidth layouts of graph G in time 4n · nO(1).

5.4. Degree constrained spanning tree problem. The Hamiltonian Path

is one of the earliest known problems for which an exact algorithm with time com-
plexity 2nnO(1) was known. This problem can also be seen as a special case of
finding a spanning tree with certain degree constrains on the vertices. More pre-
cisely, the Degree Constrained Spanning Tree problem is defined as follows:
Given a connected undirected graph G and a vector of size n, â = (a1, a2, . . . , an),
find a spanning tree T of G (if one exists) such that there is a bijective mapping
g : V (G) → {a1, a2, . . . , an} with the property that degT (v) = g(v). A variation of
the Degree Constrained Spanning Tree called the Modified Degree Con-

strained Spanning Tree is defined by replacing the condition of degT (v) = g(v)
with degT (v) ≤ g(v) in the Degree Constrained Spanning Tree.

The Hamiltonian Path is an instance of the degree constraint spanning tree
problem with the vector (1, 2, . . . , 2, 1). Other well-known problems which can be
formulated as an instance of either the Degree Constrained Spanning Tree or
the Modified Degree Constrained Spanning Tree include the Full Degree

Spanning Tree (a spanning tree which maximizes the number of vertices having the
same degree in the graph and the tree) [42] and the Minimum Degree Spanning
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Tree (a spanning tree for which the maximum degree is minimized) [33, 34] problems.
To solve the Degree Constrained Spanning Tree and the Modified Degree

Constrained Spanning Tree problems we need the following classical result of
Otter from 1948 [53].

Proposition 5 (Otter [53]). The number of unlabeled trees on n vertices T (n) ∼
Cαnn−5/2 as n → ∞, where C = 0.53495 . . . and α = 2.95576 . . . .

Moreover, by the result of Beyer and Hedetniemi [8], it is possible to enumerate
all nonisomorphic (unlabeled) trees in time O(T (n)).

Theorem 8 (Beyer and Hedetniemi [8]). There is a total ordering on the set
of (unlabeled) rooted trees of size n and an algorithm to generate all the (unlabeled)
rooted trees of size n by starting from the first element in the order and by following
the ordering such that in addition the average time per step is bounded by a constant
independent of n. As a consequence, it is possible to generate all the rooted trees of
size n in time O(T (n)).

We can now state the main result of this section.
Theorem 9. Let G be a graph on n vertices and â = (a1, . . . , an) be a vector of

length n. Then we can count the number of feasible solutions to the Degree Con-

strained Spanning Tree and the Modified Degree Constrained Spanning

Tree in time O(5.912n).
Proof. We start with an algorithm that finds a feasible solution to the Degree

Constrained Spanning Tree (or the Modified Degree Constrained Span-

ning Tree) problem on a graph G on n vertices.
Step 1: Enumerate all nonisomorphic unordered trees T on n vertices and for the

given tree T proceed as follows:
Step 2: Check whether T is feasible with respect to the vector â;
Step 3: Count the number sub(T,G) of subgraphs of G isomorphic to T ;

Step 5: Output the sum of sub(T,G) taken over all enumerated trees T .
The first step of the algorithm is done using the result of Beyer and Hedetniemi [8,

Proposition 8], which gives an algorithm to enumerate all nonisomorphic (unlabeled)
trees in time T (n)nO(1). By Proposition 5, we know that the number of unordered
trees enumerated in Step 1 is at most 2.9558n. Checking for the feasibility can be done
by writing the degree sequence of T and the vector â in increasing order and checking
whether the corresponding vectors are equal. Finally, the last step of the algorithm
can be done using Theorem 5 in time O(2nn3) and space polynomial in n. Hence the
running time of the algorithm is bounded by O(2.9558n · 2nn3) = O(5.912n).

We solve theMinimum Degree Spanning Tree problem by finding the smallest
2 ≤ i ≤ n − 1 for which the Modified Degree Constrained Spanning Tree

problem returns yes with â = (i, i, . . . , i), resulting in the following.
Corollary 4. The Minimum Degree Spanning Tree on a graph on n ver-

tices can be solved in time O(5.912n).

5.5. Counting graphs excluding a fixed minor. In this section we apply
our results to count planar subgraphs of maximum size or more generally maximum
sized subgraphs that do not contain some fixed graph M as a minor. More precisely,
we consider the Maximum Planar Subgraph and the Maximum M -minor Free

Subgraph problems. Here given a graphG the objective is to find a subset E′ ⊆ E(G)
of maximum size such that the graph GE′ on the vertex set V (G) and the edge set
E′ is planar and M -minor-free, respectively.

A näıve algorithm for the above problems is to enumerate all edge subsets of the
given graph for each subset test whether the subgraph induced by the edge set has
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the desired properties and output the feasible subgraph with the maximum number
of edges. For a graph G on n vertices and m edges this algorithm will take 2m · nO(1)

time. Let us remark that even for the decision version of these problems, no vertex
exponential cnnO(1) time algorithms were known. The basic ideas used here are similar
to the ones used for trees, namely, to prove that all unlabeled graphs on n vertices in
the considered class can be enumerated in time O(cn) for some constant c, and then
for each element of the enumerated class, applying Theorem 5 to count the number
of subgraphs of G isomorphic to it.

Let M be a fixed graph. Norine et al. [52] proved that the number of labeled
n-vertex graphs of size n in a family of graphs excluding M as a minor is at most n!cn

for some constant c (depending on M). We prove a more general result here, namely,
that the number of unlabeled M -minor-free n-vertex graphs is at most cn for some
constant c depending only on M . Let us remark that since the number of labelings is
at most n!, our result immediately yields the main theorem from [52].

Theorem 10. Let G be a family of unlabeled n-vertex graphs that do not contain
some fixed graph M as a minor. Then there exists a constant cM such that the
number of nonisomorphic graphs in G is at most cnM . Moreover, the elements of G
can be enumerated in time O(cnM ).

We prove the theorem by using results about geometric representation of minor-
free graphs. Book embedding is a generalization of planar embedding to nonplanar
surfaces in the form of a book, a collection of pages (half planes) joined together at the
spine of the book (the shared boundary of all the half planes). The spine is identified
with the real line and the vertices of the graph are embedded on the spine on integers
1 to n. The edges are distributed on the pages, so that edges residing on the same
page do not intersect (forms a planar embedding of a subgraph of G). The minimum
number of pages in which a graph can be embedded is its page-number. Malitz proved
in [48] that any graph of genus g has page-number O(

√
g). This result has been

extended to minor free classes of graph by Blankenship and Oporowski [15].
Theorem 11 (Blankenship and Oporowski [15]). Let M be a fixed graph and C

be the class of graphs excluding M as a minor. Then there is a constant h = h(M)
such that the page-number of every graph in C is at most h.

Using these results, we can now present the proof of Theorem 10.
Proof of Theorem 10. This follows by combining the above theorem with a result

of Munro and Raman [49] which encodes h-page graphs in 4hn + o(hn) bits with
constant time adjacency queries.2 Nevertheless, we provide a simple direct proof here
without referring to the results of [49].

We prove the following claim by induction on the number of pages. The number
of unlabeled n-vertex graphs that can be embedded in p pages is at most 29pn. For
p = 0, i.e., when graphs have no edges, the claim follows trivially. Let us assume
that the claim holds for some p ≥ 0. Every graph embeddable into p + 1 pages can
be formed from a graph with page-number p by adding one more page. Thus, the
number of graphs with page-number p+ 1 is at most the number of graphs that can
be embedded into one page times the number of graphs of page-number at most p.
Hence, it will be enough to obtain an upper bound on the number of graphs which
can be embedded on one page.

But before proceeding, we first show that for all n ≥ 2, the number of edges in a
page is bounded by 2n−3 and this is tight. To see this, one can proceed by induction
on n: the base cases n = 2, 3 are trivial. So suppose that n ≥ 4. Assuming that the

2Special thanks to the referees for pointing us to this reference.
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bound holds for all integers m ≤ n− 1, we show that it also holds for n. Either there
is an edge between two vertices i < j such that 2 ≤ j − i ≤ n− 2, or no such exists.
If there is such an edge, between i < j with 2 ≤ j − i ≤ n − 2 , there is no edge
from vertices inside the interval (i, j) to the vertices in [1, i)∪ (j, n]. By induction, the
number of edges between vertices in the interval [i, j] is bounded by 2(j − i+ 1)− 3.
Similarly, removing all the vertices in (i, j) (which is nonempty) from the graph, by
induction the number of edges between vertices in [1, i] ∪ [j, n] can be bounded by
2(n− j + i+ 1)− 3. The edge ij is counted twice; thus the total number of edges is
bounded by 2(j− i+1)−3+2(n− j− i+1)−3−1 = 2n−3. This bound is obviously
tight by the inductive argument.

Otherwise, if there is no edge between vertices i < j with 2 ≤ j − i ≤ n− 2, the
total number of edges will be bounded by n which is smaller than 2n− 3, since n ≥ 4.

We can now derive an upper bound on the number of graphs embeddable in one
page. It is straightforward to see that each of these graphs can be obtained by the
following procedure:

1. Take a parenthesis string consisting of k ≤ 2n − 3 pairs “( , ).” Note that
k here corresponds to the number of edges of the graph embedded on one
page. The total number of parenthesis strings is the Catalan number of order
k which is bounded by 4k ≤ 24n.

2. For each parenthesis string, let I1, J1, I2, J2, . . . , Il, Jl be the maximal intervals
formed by consecutive half-parentheses of the same kind. In other words, I1 is
the first interval of all the consecutive half-parentheses of the form “(,” J1 is
the first interval of all the consecutive half-parentheses of the form “)” which
come after I1, I2 is the interval of all the consecutive half-parentheses of the
form “(” which come after J1, and so on. More precisely, Is is the the interval
of all the consecutive half-parentheses of the form “(” which come after Js−1,
and Js is the the interval of all the consecutive half-parentheses of the form
“)” which come after Is. Partition each interval Is and Js into (potentially)
smaller subintervals Its and Ju

s . The total number of ways the partitioning is
done can be bounded by the product of the number of ways a given interval Is
(resp., Js) is partitioned, and this is bounded by 2

∑
s |Is|×2

∑
s |Js| = 4k ≤ 24n.

3. Form all the pairs (parenthesis string, partition) consisting of a parenthesis
system of step 1 and a partition of the intervals of step 2. The total number
of these pairs is at most 24n × 24n = 28n. For each pair (S, P ) consisting
of a parenthesis string and a partitioning, form a graph G(S, T ) as follows.
First from S form a graph Γ consisting of k different edges on the vertex set
1, . . . , 2k respecting the parenthesis string. Namely, for a pair of parentheses
“( , ),” if “(” appears on the ith place and “)” appears on the jth place
in the string (evidently i ≤ j), then i is connected to j. Now identify all
the vertices which are within the same interval of the partitioning P . More
precisely, form the graph Γ/P where each interval Its is contracted to one
vertex (similarly, each interval Ju

s is contracted to one vertex). Note that the
vertices of G(S, T ) have a natural total ordering induced by the ordering of
natural numbers 1, . . . , 2k.

4. Let G(S, T ) be the graph obtained from step 3 for a pair (S, T ). If the
number of vertices of G(S, T ), denoted by nS,T , is not larger than n, then
choose nS,T numbers from 1, . . . , n and identify the vertices of G(S, T ) in an
order preserving way with these numbers. For each sequence I ⊂ {1, . . . , n},
one obtains in this way a graph G(S, T, I) embedded in one page. Note that
there are ≤ 2n ways to choose a subset I of {1, . . . , n}
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It follows from the above description of the graphs embeddable in one page that
the total number of these graphs is at most 28n × 2n = 29n. By the induction
assumption, the number of graphs embeddable in p pages is at most 29pn and the
claim follows.

By Theorem 11, all graphs from G have page-number bounded by a constant hM

depending only on M . Thus, the total number of unlabeled graphs of the class G on
n vertices is bounded by 29hMn = cnM .

Finally, let us remark that an algorithm enumerating all the graphs of size n from
G , and running in time O(cnM ), can be easily constructed following the steps of the
proof. We enumerate all graphs with page-number at most hM and for each graph
check if it contains M as a minor. By the seminal work of Robertson and Seymour
[54], this last step can be done in polynomial time, namely, testing if a graph G has
a given graph M as minor can be done in polynomial time.

For simpler classes of graphs, such as planar graphs, one can obtain faster algo-
rithms. For planar graphs we do not need to use heavy Robertson–Seymour machinery
to check if a given graph is planar. There is a linear time algorithm of Hopcroft and
Tarjan for checking if the input graph is planar [39]. Also to bound the number
of nonisomorphic planar graphs, we can use the following result from the theory of
succinct data structures.

Proposition 6 (Bonichon et al. [17]). Every connected planar graph with n
vertices and m edges can be encoded in linear time with at most 4.91n+ o(n) bits or
2.82m+ o(m) bits.

Combining our Theorem 10 and Proposition 6 with what we proved in Theorem 5
and the result of Alon, Seymour, and Thomas,3 Theorem 7, we obtain the main result
of this section.

Theorem 12. Given a graph G on n vertices, the counting version of the Max-

imum M -minor Free Subgraph problem can be solved in time O(cn) = 2O(n) for
some constant c = cM . In particular, for the counting version of Maximum Pla-

nar Subgraph we can obtain an algorithm running in time 24.91n+o(n). All these
algorithms use nO(

√
n) space.

5.6. H-packing and some of its variants. Let H and G be two graph classes.
By H-subgraph of G we mean any subgraph of G that belongs to H. Given a graph
G ∈ G, the Covering (or Hitting) problem asks for finding a subset W of V (G) of
minimum size which covers all the H-subgraphs of G. Thus for any H-subgraph H
of G, W ∩ V (H) �= ∅.

On the other hand, the Packing problem asks for finding a maximum number
of vertex disjoint copies of H-subgraphs in G. In other words, the packing number of
G with respect to the class H is defined as

packH(G) = max {k | ∃ a partition{V1, . . . , Vk} of V (G) such that
∀i ∈ {1, . . . , k}, ∃H∈HH ⊆ G[Vi]}.

Let M be a fixed graph. In this section we show that if H is a graph class excluding M
as a minor (that is, no H ∈ H containing M as a minor), then there exists a constant
c depending only on M such that it is possible to compute the value of packH(G)
in time cnnO(1) and space nO(

√
n) for any graph G on n vertices.

Theorem 13. Let G be a graph on n vertices, M be a fixed graph, and H
be a subclass of M -minor-free graphs such that testing if a graph H ∈ H can be

3Note that this theorem in particular says that the treewidth of an n-vertex graph excluding a
fixed graph as a minor is O(

√
n).
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performed in time |V (H)|O(1). Then the value of packH(G) can be computed in time
cnnO(1) = 2O(n) and space nO(

√
n), where c is a constant depending only on M .

Proof. Given a graph class H and the input graph G, to compute the value of
packH(G), we proceed as follows:

(i) For every pair (l, p), 0 ≤ l ≤ p ≤ n, proceed as follows.
(ii) Enumerate the unordered partitions of p into l parts.
(iii) For a fixed partition ζ = (p1, p2, . . . , pl), enumerate all the elements (H1, . . . ,

Hl) of the product Hp1 ×Hp2 × · · ·Hpl
, where Hpi is the set of all elements

of H of size pi.
(iv) Let F be the disjoint union of H1, . . . , Hl. Compute sub(F,G).
(v) Return the maximum l for which there exists a p such that in step (iv) the

value of sub(F,G) is nonzero.
The correctness of the algorithm is easy to see. To see the time complexity,

observe that the time taken in step (i) is bounded by n2 and step (ii) takes 2O(
√
n)

using the asymptotic formula (3). Step (iii) of the algorithm depends of the size of
HP . Hence if the number of graphs on x vertices in H is bounded by dx for d a
constant, then |HP | ≤ dp. Since H is a graph class excluding a fixed graph M as a
minor, by Theorem 10 there exists a constant cM such that |Hx| ≤ cxM for all x ∈ N.
We enumerate all M -minor-free graphs by making use of Theorem 10, and for each
graph we check in polynomial time if it belongs to H. This estimates the time taken
in this enumeration step of the algorithm. Because F excludes some fixed graph as
a minor, its treewidth is O(

√
n). Then step (iv) of the algorithm can be done in

time 2n+O(
√
n) and space nO(

√
n) using Theorem 5. Choosing c = 2cM completes the

theorem.
In what follows we give a few corollaries of Theorem 13 when H is some specific

graph class. Let Hc = {Cq | simple cycle of length q, q ∈ N, q ≥ 3}. It is easy
to see that for a simple undirected graph G, the value of packHc(G) is equal to
the maximum number of vertex disjoint cycles in G. For every fixed partition ζ =
(p1, . . . , pl) of p into l integers with

∑l
i=1 pi = p and pi ≥ 3 we have |Hc

P | = 1. In
this case step (iv) of the algorithm takes O(2nn5) time by Theorem 5. Similarly if
we replace Hc with Ho, which contains all odd cycles of length at least 3, we get the
problem of computing the maximum number of vertex disjoint odd cycles in G. If
we want to find the maximum number of vertex disjoint triangles or the maximum
number of vertex disjoint cycles of fixed length l, then we do not need the partition
based enumeration. In this case we just guess the number of copies of the l-length
cycle in the input graph. The problem of finding the maximum number of vertex
disjoint cycles of length l is called Maximum l-Cycle Packing. The other problems
corresponding to finding a maximum number of vertex disjoint cycles or finding the
maximum number of odd cycles are similarly defined. Let us remark that if all graphs
in class H from Theorem 13 are of treewidth at most t, then the space nO(

√
n) claimed

in Theorem 13 can be improved to nO(t). Because the treewidth of a cycle is two, this
brings us to the following corollary.

Corollary 5. Given a graph G on n vertices, the Maximum Vertex Disjoint

Cycles and Maximum Odd Sized Vertex Disjoint Cycles problems can be
solved in time 2n+O(

√
n), whereas the Maximum l-Cycle Packing problem can be

solved in time O(n6 · 2n). All these algorithms take polynomial space.

6. Poly-space color coding. In this section we show how the ideas of counting
homomorphisms and inclusion-exclusion combined with the color coding technique of
Alon, Yuster, and Zwick [2] provide polynomial space parameterized algorithms.
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6.1. Deterministic algorithm. Let c : V (G) → {1, 2, . . . , k} be a coloring (not
necessarily proper) of the vertex set of a graph G in k colors. Thus Vi = c−1(i) is not
necessarily an independent set. For a graph F on k vertices, we say that an injective
homomorphism f from F to G is colorful if each vertex of the image of F is colored
by a distinct color. We denote the number of colorful injective homomorphisms from
a graph F to a colored graph G by col-inj(F,G). Let us remark that the number
of colorful copies of F in G is equal to col-inj(F,G)/aut(F ). Let G∗ be the graph
obtained from G by deleting the monochromatic edges, that is, by turning each color
class Vi into an independent set. The following simple relation between the number
of colorful copies of F in G and in G∗ follows directly from the definition of colorful
homomorphisms.

Lemma 1. Let c : V (G) → {1, 2, . . . , k} be a coloring of G. Then col-inj(F,G) =
col-inj(F,G∗).

The following theorem is the main reason why the dynamic programming algo-
rithm in the color coding technique of Alon, Yuster, and Zwick can be replaced by a
polynomial space algorithm.

Theorem 14. Let c : V (G) → {1, 2, . . . , k} be a coloring of G and Vi = c−1(i).
Then

col-inj(F,G) = col-inj(F,G∗) =
∑

I⊆{1,2,...,k}
(−1)|I|hom(F,G∗ \ ∪i∈IVi)

=
∑

I⊆{1,2,...,k}
(−1)k−|I|hom(F,G∗[∪i∈IVi]).

Proof. The proof of this theorem is almost identical to the proof of Theorem 1.
To prove the theorem, we first show that if there is a colorful injective homomorphism
f from F to G, then its contribution to the sum is exactly one. Notice that since
|V (F )| = k, all colorful injective homomorphisms contribute only when I = ∅. From
this we conclude that colorful injective homomorphisms are counted only once in the
right-hand side.

Next we show that if a map h is not a colorful injective homomorphism, then its
total contribution to the sum is zero, which will conclude the proof of the theorem.
Let χ(h(F )) be the set of colors on the vertices of h(F ). Observe that since h is not
a colorful injective homomorphism, it misses vertices from some color classes. Hence
X = {1, . . . , k} \ χ(h(F )) is nonempty. We now observe that h is counted only when
we are counting homomorphisms from V (F ) to G∗ \ ∪i∈I′Vi such that I ′ ⊆ X . The
total contribution of h in the sum, taking into account the signs, is

|X|∑
i=0

(
|X |
i

)
(−1)i = (1 − 1)|X| = 0.

Thus, we have shown that if h is not a colorful injective homomorphism, then its
contribution to the sum is zero. The second equality could be proven similarly, and
we omit its proof.

By a classical result of Arnborg, Corneil, and Proskurowski [3], a tree decomposi-
tion of a k-vertex graph F of width t, if any, can be computed in O(kt+2) time. When
this running time is dominated by other steps of the algorithm considered, we will
just consider this decomposition as given. Therefore, a combination of Proposition 3
and Theorem 14 yields the following result.
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Corollary 6. Let F be a k-vertex graph of treewidth t. Then for any col-
oring c : V (G) → {1, 2, . . . , k} of an n-vertex graph G, the value of col-inj(F,G) is
computable in time O(2k · k · t · nt+1) and space O(log k · nt+1).

Theorem 15. Let F be a k-vertex graph of treewidth t and let G be an n-
vertex graph. A subgraph of G isomorphic to F (if one exists) can be found in either
O((2e)k · k · t · nt+1) expected time and O(log k · nt+1) space or deterministically in
time O((2e)k+o(k) · k · t ·nt+1) and space O(log k ·nt+1). Here, e is the base of natural
logarithm.

Proof. The proof of this theorem follows along the lines of [2]. We color the
vertices of V (G) uniformly at random from the set {1, . . . , k}. Then the probability
that a copy of F in V (G), if there is one, has become colorful is at least k!/kk >
e−k. Given this random coloring we can compute the value of col-inj(F,G) in time
O(2kknt+1 min{k, t}) using Corollary 6. If col-inj(F,G) > 0, we know that there
exists a subgraph of G isomorphic to F . Hence the expected running time to find a
subgraph of G isomorphic to F (if one exists) is O((2e)k · k · t · nt+1).

To obtain the deterministic algorithm we need to replace the first step of the
algorithm where we color the vertices of V (G) uniformly at random from the set
{1, . . . , k} with a deterministic one. This is done by making use of an (n, k, k)-perfect
hash family. A (n, k, k)-perfect hash family, H, is a set of functions from {1, . . . , n} to
{1, . . . , k} such that for every subset S ⊆ {1, . . . , n} of size k there exists a function
f ∈ H such that f is injective on S. That is, for all i, j ∈ S, f(i) �= f(j). There exists
a construction of an (n, k, k)-perfect hash family of size O(ek ·kO(log k) · logn) and one
can produce this family in time linear in the output size [50]. Using an (n, k, k)-perfect
hash family of size O(ek · kO(log k) · logn) rather than a random coloring, we get the
desired deterministic algorithm. To see this it is enough to observe that if there is a
subset S ⊆ V (G) such that G[S] contains F as a subgraph, then there exists a coloring
f ∈ H such that the vertices of S are distinctly colored. So in our enumeration of
colorings from H we will encounter the desired f . Hence for the given f , when we
compute the value of col-inj(F,G) using Corollary 6, we know that col-inj(F,G) > 0.
This concludes the proof.

6.2. Improved randomized version of color coding. The first step of al-
gorithms based on color coding is to color the vertices of V (G) uniformly at random
from the set {1, . . . , k}. Then the probability that a copy of F in V (G), if there is
one, has become colorful is at least k!/kk > e−k. It is known that we can increase the
probability of a copy of F being colorful in G by using more colors than k. Hüffner,
Wernicke, and Zichner [40] have shown that the probability that a copy of F in V (G),
if there is one, has become colorful is at least O(1.752−k) if we randomly color the
vertices of V (G) from the set {1, . . . , 1.3k}.

Theorem 16. Let c : V (G) → {1, 2, . . . , l} be a coloring of G, k ≤ l and Vi =
c−1(i). Then

col-inj(F,G) = col-inj(F,G∗) =
∑

I⊆{1,2,...,l},|I|≤k

(−1)k−|I|
(
l − |I|
k − |I|

)
hom(F,G∗[∪i∈IVi]).

Proof. We use the following formulation of Theorem 14 for our results. Let
c : V (G) → {1, 2, . . . , k} be a coloring of G and Vi = c−1(i); then

col-inj(F,G) = col-inj(F,G∗) =
∑

I⊆{1,2,...,k}
(−1)k−|I|hom(F,G∗[∪i∈IVi]).(4)
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To prove our theorem, observe that

col-inj(F,G) = col-inj(F,G∗)

=
∑

I′⊆{1,...,l},|I′|=k

col-inj(F,G∗[∪i∈I′Vi])

by (4)
=

∑
I′⊆{1,...,l},|I′|=k

⎛⎝∑
I⊆I′

(−1)k−|I|hom(F,G∗[∪i∈IVi])

⎞⎠
=

∑
I⊆{1,...,l},|I|≤k

(−1)k−|I|
(
l − |I|
k − |I|

)
hom(F,G∗[∪i∈IVi]).

The last inequality follows from the fact that for any subset I, |I| ≤ k, the value of
hom(F,G∗[∪i∈IVi]) is counted precisely for all those subsets I ′ for which I ⊆ I ′ and
|I ′| = k. After fixing I we have {1, . . . , l} \ I elements left and hence every subset of
size k − |I| from {1, . . . , l} \ I gives the desired I. The number of such I is precisely( l−|I|
k−|I|

)
. Furthermore, for all such sets we have the same sign corresponding to I, that

is, (−1)k−|I|. This completes the proof.
Using Theorem 16 we can obtain the following result.
Corollary 7. Let F be a k-vertex graph of treewidth t. Then for any col-

oring c : V (G) → {1, 2, . . . , l} of an n-vertex graph G, the value of col-inj(F,G) is
computable in time

O
(
k · t · nt+1 ·

k∑
i=0

(
l

i

))

and space O(log k · nt+1).
Theorem 17. Let F be a k-vertex graph of treewidth t and let G be an n-vertex

graph. A subgraph of G isomorphic to F (if one exists) can be found in O(4.32k · k ·
t · nt+1) expected time using O(log k · nt+1) space.

Proof. We color the vertices of V (G) uniformly at random from the set {1, . . . , 1.3k}.
Then the probability that a copy of F in V (G), if there is one, has been has become col-
orful is at least O(1.752−k) [40]. Given this random coloring we can compute the value
of col-inj(F,G) in time O(21.3kknt+1min{k, t}) using Corollary 7. If col-inj(F,G) > 0,
then we know that there exists a subgraph of G isomorphic to F . Hence the expected
running time to find a subgraph of G isomorphic to F (if one exists) is

O(21.3k · 1.752k · k · t · nt+1) = O(4.32k · k · t · nt+1).

This concludes the proof of the theorem.

7. Conclusion and discussions. In this paper we introduced an approach for
counting subgraphs in a graph via counting graph homomorphisms in the realm of
exact and parameterized algorithms. This approach yields various new algorithms for
many basic problems, such as counting the number of perfect matchings, optimum
bandwidth layouts, degree constrained spanning trees, maximum planar subgraphs,
and others. On the other hand, it also unified several well-known results in exact
algorithms, such as counting coloring and Hamiltonian cycles in general graphs and
perfect matchings in bipartite graphs. Most of our results can be easily extended to
weighted directed graphs. We believe that our method is generic and will find more
applications.
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The most important question which remains unanswered is, Can sub(F,G) be
computed in 2O(n) time? In particular, we do not know the answer to this question
even for the very special case, when the maximum degree of F is 3.

Recently, Wahlström [61] proved that if the cliquewidth of a graph F is at most
c, then hom(F,G) can be computed in time ((2c+1)nF + 2cn) · nO(1), where nF and
n is the number of vertices in F and G, correspondingly. By the results of this paper,
it implies that sub(F,G) can be computed in time 2O(n), when the clique-width of
F is constant. It is interesting to note that all the natural classes of graphs F we
know that have sub(F,G) computable in time 2O(n) for F ∈ F are either graphs of
constant cliquewidth or of sublinear treewidth.

Acknowledgment. Many thanks to László Lovász for answering our questions
on graph homomorphisms.
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[33] M. Fürer and B. Raghavachari, Approximating the minimum-degree Steiner tree to within
one of optimal, J. Algorithms, 17 (1994), pp. 409–423.

[34] M. X. Goemans, Minimum bounded degree spanning trees, in Proceedings of Foundations of
Computer Science, 2006, pp. 273–282.

[35] M. Grohe, The complexity of homomorphism and constraint satisfaction problems seen from
the other side, J. ACM, 54 (2007).

[36] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London
Math. Soc., 17 (1918), pp. 75–115.
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