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The k-LEAF OUT-BRANCHING problem is to find an out-branching, that is a rooted oriented spanning tree, with
at least k leaves in a given digraph. The problem has recently received much attention from the viewpoint
of parameterized algorithms. Here, we take a kernelization based approach to the k-LEAF-OUT-BRANCHING

problem. We give the first polynomial kernel for ROOTED k-LEAF-OUT-BRANCHING, a variant of k-LEAF-OUT-
BRANCHING where the root of the tree searched for is also a part of the input. Our kernel with O(k3) vertices
is obtained using extremal combinatorics.

For the k-LEAF-OUT-BRANCHING problem, we show that no polynomial-sized kernel is possible unless coNP
is in NP/poly. However, our positive results for ROOTED k-LEAF-OUT-BRANCHING immediately imply that the
seemingly intractable k-LEAF-OUT-BRANCHING problem admits a data reduction to n independent polynomial-
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1. INTRODUCTION

Parameterized decision problems are defined by specifying the input (I), the parameter
(k), and the question to be answered. A parameterized problem that can be solved in
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38:2 D. Binkele-Raible et al.

time f (k)|I|O(1) where f is a function of k alone is said to be fixed parameter tractable
(FPT). Kernelization is a powerful and natural technique in the design of parameterized
algorithms. In fact, kernelization characterizes fixed parameter tractability, that is, a
problem is fixed parameter tractable if and only if there exists a polynomial time Karp
reduction that maps a given instance to an instance of size effectively bounded in terms
of the parameter.

The main idea of kernelization is to replace a given parameterized instance (I, k) of
a problem � by a simpler instance (I′, k′) of � in polynomial time, such that (I, k) is a
YES-instance if and only if (I′, k′) is a YES-instance and the size of I′ is bounded by a
function of kalone. The reduced instance I′ is called the kernel for the problem. Typically
kernelization algorithms work by applying reduction rules, which iteratively reduce the
instance to an equivalent “smaller” instance. From this point of view, kernelization can
be seen as pre-processing with an explicit performance guarantee, “a humble strategy
for coping with hard problems, almost universally employed” [Fellows 2006].

A parameterized problem is said to have a polynomial kernel if we have a polynomial-
time kernelization algorithm that reduces the size of the input instance down to a
polynomial in the parameter. There are many parameterized problems for which poly-
nomial, and even linear (vertex) kernels are known [Bodlaender 2009; Bodlaender et al.
2009b; Chen et al. 2007; Chen et al. 2001; Estivill-Castro et al. 2005; Fomin et al. 2010;
Guo and Niedermeier 2007; Thomassé 2010]. Notable examples include a 2k-vertex
kernel for k-VERTEX COVER [Chen et al. 2001], an O(k2) kernel for k-FEEDBACK VERTEX

SET [Thomassé 2010] and a 67k kernel for k-PLANAR-DOMINATING SET [Chen et al. 2007],
among many others. Notice that all the (bounds on) kernel sizes of graph problems men-
tioned in this article are considering the number of vertices as reflecting the size of the
instance. While positive kernelization results have been around for quite a while, the
first results ruling out polynomial kernels for parameterized problems have appeared
only recently. In a seminal paper, Bodlaender et al. [2009a] have shown that a variety of
important FPT problems cannot have polynomial kernels unless coNP is in NP/poly,
a well known complexity theory hypothesis. Examples of such problems are k-PATH,
k-MINOR ORDER TEST, k-PLANAR GRAPH SUBGRAPH TEST, and many others. However, while
this negative result rules out the existence of a polynomial kernel for these problems,
it does not rule out the possibility of a kernelization algorithm reducing the instance
to |I|O(1) independent polynomial kernels. This raises the question of the relationship
between Karp kernelization and Turing kernelization, a question raised in Bodlaender
et al. [2008], Estivill-Castro et al. [2005], and Guo and Niedermeier [2007]. That is, can
we have a natural parameterized problem for which there is no polynomial kernel but
we can “cheat” this lower bound by providing |I|O(1) independent polynomial kernels.
Besides being of theoretical interest, this type of results would be very desirable from a
practical point of view as well. In this paper, we address the issue of Karp kernelization
versus Turing kernelization through k-LEAF OUT-BRANCHING.

The MAXIMUM LEAF SPANNING TREE problem on connected undirected graphs is to
find a spanning tree with the maximum number of leaves in a given input graph G.
The problem is well studied both from an algorithmic [Binkele-Raible and Fernau
2012; Galbiati et al. 1994; Lu and Ravi 1998; Solis-Oba 1998; Fomin et al. 2008] and
combinatorial [Ding et al. 2001; Griggs et al. 1989; Griggs and Wu 1992; Kleitman
and West 1991] point of view. The problem has been studied from the parameterized
complexity perspective as well [Bonsma et al. 2003; Estivill-Castro et al. 2005; Fellows
et al. 2000; Raible and Fernau 2012]. An extension of MAXIMUM LEAF SPANNING TREE to
directed graphs is defined as follows. We say that a subdigraph T of a digraph D is
an out-tree if T is an oriented tree with only one vertex r of in-degree zero (called the
root). The vertices of T of out-degree zero are called leaves. If T is a spanning out-tree,
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Table I. Our Results

k-LEAF OUT-TREE k-LEAF OUT-BRANCHING

Rooted O(k3)-vertex kernel O(k3)-vertex kernel

Unrooted No poly(k) kernel No poly(k) kernel
n kernels on O(k3) vertices n kernels on O(k3) vertices

that is, V (T ) = V (D), then T is called an out-branching of D. The DIRECTED MAXIMUM

LEAF OUT-BRANCHING problem is to find an out-branching in a given digraph with the
maximum number of leaves. The parameterized version of the DIRECTED MAXIMUM LEAF

OUT-BRANCHING problem is k-LEAF OUT-BRANCHING, where for a given digraph D and
integer k, it is asked to decide whether D has an out-branching with at least k leaves.
If we replace “out-branching” with “out-tree” in the definition of k-LEAF OUT-BRANCHING,
we get a problem called k-LEAF OUT-TREE.

Unlike its undirected counterpart, the study of k-LEAF OUT-BRANCHING has begun only
recently. Alon et al. [2007, 2009] proved that the problem is fixed parameter tractable
(FPT) by providing an algorithm deciding in time O( f (k)n) whether a strongly con-
nected digraph has an out-branching with at least k leaves. Bonsma and Dorn [2008]
extended this result to connected digraphs, and improved the running time of the al-
gorithm. Recently, Kneis et al. [2008] provided a parameterized algorithm solving the
problem in time O(4knO(1)). This result was further improved by Daligault et al. [2010].
In a related work, Drescher and Vetta [2010] described an

√
OPT -approximation al-

gorithm for the DIRECTED MAXIMUM LEAF OUT-BRANCHING problem. Let us remark that,
despite similarities between directed and undirected variants of MAXIMUM LEAF SPAN-
NING TREE, the directed case requires a totally different approach (except from Kneis
et al. [2008]). However, the existence of a polynomial kernel for k-LEAF OUT-BRANCHING

has not been addressed until now. After the appearance of the conference version of
this article, Daligault et al. [2010] exhibited a vertex-linear kernel for ROOTED k-LEAF

OUT-BRANCHING, restricted to directed acyclic graphs. Recently, Daligault and Thomassé
[2009] improve our bound on the number of vertices in the kernel for ROOTED k-LEAF

OUT-BRANCHING on general graphs from O(k3) to O(k2).

Our Contribution. We prove that ROOTED k-LEAF OUT-BRANCHING, where for a given
vertex r one asks for a k-leaf out-branching rooted at r, admits a polynomial kernel. In
particular, we show how to obtain a kernel of O(k3) vertices. A similar result also holds
for ROOTED k-LEAF OUT-TREE, where we are looking for a rooted (not necessary spanning)
tree with k leaves. While many polynomial kernels are known for undirected graphs,
this is the first known nontrivial parameterized problem on digraphs admitting a poly-
nomial kernel. To obtain the kernel we establish a number of results on the structure
of digraphs not having a k-leaf out-branching. These results may be of independent
interest.

In the light of our positive results, it is natural to suggest that k-LEAF OUT-BRANCHING

admits a polynomial kernel, as well. We find it a bit striking that this is not the
case – k-LEAF OUT-BRANCHING and k-LEAF OUT-TREE do not admit polynomial kernels
unless coNP ⊆ NP/poly. While the main idea of our proof is based on the framework
of Bodlaender et al. [2009a], our adaptation is non-trivial. In particular, we use the
polynomial kernel obtained for ROOTED k-LEAF OUT-BRANCHING to prove the lower bound.
Our contributions are summarized in Table I.

Finally, let us remark that the polynomial kernels for the rooted versions of our
problems provide a “cheat” solution for the poly-kernel-intractable problems k-LEAF

OUT-BRANCHING and k-LEAF OUT-TREE. Indeed, let D be a digraph on n vertices. By
running the kernelization for the rooted version of the problem for every vertex of D
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38:4 D. Binkele-Raible et al.

as a root, we obtain n graphs where each of them has O(k3) vertices, such that at least
one of them has a k-leaf out-branching if and only if D does.

2. PRELIMINARIES

Graphs and Digraphs. Let D be a directed graph or digraph for short. By V (D)
and A(D), we represent the vertex set and arc set, respectively, of D. Given a subset
V ′ ⊆ V (D) of a digraph D, by D[V ′] we denote the digraph induced on V ′. A vertex
y of D is an in-neighbor (out-neighbor) of a vertex x if yx ∈ A (xy ∈ A). The in-degree
(out-degree) of a vertex x is the number of its in-neighbors (out-neighbors) in D. Let
P = p1 p2 . . . pl be a given path. Then by P[pi pj] we denote a subpath of P starting at
vertex pi and ending at vertex pj . For a given vertex q ∈ V (D), by q-out-branching (or
q-out-tree) we denote an out-branching (out-tree) of D rooted at vertex q.

We say that the removal of an arc uv (or a vertex set S) disconnects a vertex w from
the root r if every path from r to w in D contains arc uv (or one of the vertices in S).
An arc uv is contracted as follows: add a new vertex u′, and for each arc wv or wu
add the arc wu′ and for an arc vw or uw add the arc u′w, remove all arcs incident to
u and v and the vertices u and v. We say that a reduction rule is safe for a value k if
whenever the rule is applied to an instance (D, k) to obtain an instance (D′, k′), D has
an r-out-branching with at least k leaves if and only if D′ has an r-out-branching with
at least k′ leaves. We also need the following.

PROPOSITION 2.1 [KNEIS ET AL. 2008]. Let D be a digraph and r be a vertex from which
every vertex in V (D) is reachable. Then, if we have an out-tree rooted at r with k leaves,
then we also have an out-branching rooted at r with k leaves.

Let T be an out-tree of a digraph D. We say that u is a parent of v and v is a child of
u if uv ∈ A(T ). We say that u is an ancestor of v if there is a directed path from u to v in
T . An arc uv in A(D) \ A(T ) is called a forward arc if u is an ancestor of v, a backward
arc if v is an ancestor of u and a cross arc, otherwise.

Kernelization and Turing Kernelization. A parameterized problem � is a subset of
�∗ × N for some finite alphabet �. An instance of a parameterized problem consists of
(x, k), where k is called the parameter. We assume that k is given in unary and hence
k ≤ |x|. A central notion in parameterized complexity is fixed parameter tractability
(FPT) which means, for a given instance (x, k), solvability in time f (k) · p(|x|), where
f is an arbitrary function of k and p is a polynomial in the input size. We refer to the
monographs [Downey and Fellows 1999; Flum and Grohe 2006; Niedermeier 2006] for
more information on parameterized complexity.

The notion of kernelization is formally defined as follows.

Definition 2.2. A kernelization algorithm, or in short, a kernelization, for a param-
eterized problem � ⊆ �∗ × N is an algorithm that given (I, k) ∈ �∗ × N outputs in time
polynomial in |I| + k a pair (I′, k′) ∈ �∗ × N such that

(a) (I, k) ∈ � if and only if (I′, k′) ∈ �, and
(b) max{|I′|, k′} ≤ g(k),

where g is some computable function. The reduced problem (I′, k′) is referred to as the
kernel and the function g is referred to as the size of the kernel.

If g(k) = kO(1) or g(k) = O(k), then we say that � admits a polynomial kernel and linear
kernel, respectively. As we are mostly dealing with graph problems, we try to be more
specific when stating kernelization results by explicitly mentioning how we measure
the size |I′| of a reduced instance. For example, when we speak of 2k-vertex kernel, we
mean that I′ refers to a graph with at most 2k vertices.
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We also define the notion of Turing kernelization. In order to do this, we first define
the notion of t-oracle.

Definition 2.3. A t-oracle for a parameterized problem � is an oracle that takes as
input (I, k) with |I| ≤ t, k ≤ t, and decides whether (I, k) ∈ � in constant time.

Definition 2.4. A parameterized problem � is said to have g(k)-sized Turing kernel
if there is an algorithm that, given an input (I, k) together with a g(k)-oracle for �,
decides whether (I, k) ∈ � in time polynomial in |I| and k: the mentioned algorithm is
also termed Turing kernelization.

Observe that the standard notion of kernelization (Karp kernelization) can be viewed
as a special case of Turing kernelization given in Definition 2.2. More specifically,
Karp kernelizations are equivalent to Turing kernelizations where the kernelization
algorithm is only allowed to make one oracle call at the very end and must return the
same answer as the oracle.

3. REDUCTION RULES FOR ROOTED K-LEAF OUT-BRANCHING

In this section, we give all the data reduction rules we apply on the given instance of
ROOTED k-LEAF OUT-BRANCHING to shrink its size.

Reduction Rule 1 [Reachability Rule]. If there exists a vertex u that is discon-
nected from the root r, then return NO.

For the ROOTED k-LEAF OUT-TREE problem, Rule 1 translates into the following one:
If a vertex u is disconnected from the root r, then remove u and all in-arcs to u and
out-arcs from u.

Reduction Rule 2 [Useless Arc Rule]. If vertex u disconnects a vertex v from the
root r, then remove the arc vu.

LEMMA 3.1. Reduction Rules 1 and 2 are safe.

PROOF. If there exists a vertex that can not be reached from the root r, then a digraph
cannot have any r-out-branching. For Reduction Rule 2, all paths from r to v contain
the vertex u and thus the arc vu is a backward arc in any r-out-branching of D.

Reduction Rule 3 [Bridge Rule]. If an arc uv disconnects at least two vertices from
the root r, contract arc uv.

LEMMA 3.2. Reduction Rule 3 is safe.

PROOF. Let the arc uv disconnect at least two vertices v and w from r and let D′ be
the digraph obtained from D by contracting the arc uv. Let T be an r-out-branching of
D with at least k leaves. Since every path from r to w contains the arc uv, T contains
uv as well and neither u nor v are leaves of T . Let T ′ be the tree obtained from T by
contracting uv. T ′ is an r-out-branching of D′ with at least k leaves.

In the opposite direction, let T ′ be an r-out-branching of D′ with at least k leaves.
Let u′ be the vertex in D′ obtained by contracting the arc uv, and let x be the parent
of u′ in T ′. Notice that the arc xu′ in T ′ was initially the arc xu before the contraction
of uv, since there is no path from r to v avoiding u in D. We make an r-out-branching
T of D from T ′ by replacing the vertex u′ by the vertices u and v and adding the arcs
xu, uv and arc sets {vy : u′y ∈ A(T ′) ∧ vy ∈ A(D)} and {uy : u′y ∈ A(T ′) ∧ vy /∈ A(D)}. All
these arcs belong to A(D), because all out-neighbors of u′ in D′ are out-neighbors either
of u or of v in D. Finally, u′ must be an inner vertex of T ′ since u′ disconnects w from r.
Hence, T has at least as many leaves as T ′.
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x2x1

v

r

w x2x1

v

r

Fig. 1. Illustration of Reduction Rule 4. Vertices x1, x2 are the vertices contained in S. Every path from r to
v passes through x1 or x2.

Reduction Rule 4 [Avoidable Arc Rule]. If a vertex set S, |S| ≤ 2, disconnects a
vertex v from the root r, vw ∈ A(D) and xw ∈ A(D) for all x ∈ S, then delete the arc vw.

Figure 1 gives an example of an application of Reduction Rule 4.

LEMMA 3.3. Reduction Rule 4 is safe.

PROOF. Let D′ be the graph obtained by removing the arc vw from D and let T be an
r-out-branching of D. If vw /∈ A(T ), T is an r-out-branching of D′, so suppose vw ∈ A(T ).
Any r-out-branching of D contains the vertex v, and since all paths from r to v contain
some vertex x ∈ S, some vertex u ∈ S is an ancestor of v in T . Let T ′ = (T ∪ uw) \ vw.
T ′ is an out-branching of D′. Furthermore, since u is an ancestor of v in T , T ′ has at
least as many leaves as T . For the opposite direction, observe that any r-out-branching
of D′ is also an r-out-branching of D.

Reduction Rule 5 [Two Directional Path Rule]. If there is a path P = p1 p2 . . .
pl−1 pl with l = 7 or l = 8 such that

—p1 and pin ∈ {pl−1, pl} are the only vertices with in-arcs from the outside of P.
—pl and pout ∈ {p1, p2} are the only vertices with out-arcs to the outside of P.
—The path P is the unique out-branching of D[V (P)] rooted at p1.
—There is a path Q that is the unique out-branching of D[V (P)] rooted at pin and

ending in pout.
—The vertex after pout on P is not the same as the vertex after pl on Q.

Then, delete R = P \ {p1, pin, pout, pl} and all arcs incident to these vertices from D.
Add two vertices u and v and the arc set {poutu, uv, vpin, plv, vu, up1} to D.

The unique out-branchings of D[V (P)] rooted at p1 and pin are paths, and as a
consequence there are no forward arcs on the paths P and Q, as this will generate
more than one out-branching. Another consequence of this is that every vertex on P
has in-degree at most 2 and out-degree at most 2. Figure 2 gives an example of an
application of Reduction Rule 5.

LEMMA 3.4. Reduction Rule 5 is safe.

PROOF. Let D′ be the graph obtained by performing Reduction Rule 5 to a path P
in D. Let Pu be the path p1 poutuvpin pl and Qv be the path pin plvup1 pout. Notice that
Pu is the unique out-branching of D′[V (Pu)] rooted at p1 and that Qv is the unique
out-branching of D′[V (Pu)] rooted at pin.

Let T be an r-out-branching of D with at least k leaves. Notice that since P is the
unique out-branching of D[V (P)] rooted at p1, Q is the unique out-branching of D[V (P)]
rooted at pin and p1 and pin are the only vertices with in-arcs from the outside of P,
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p1 u v p8pin

p1 p4 p5 p8

pout

p2 p3 p6 p7

Fig. 2. Illustration of Reduction Rule 5.

T [V (P)] is either a path or the union of two vertex disjoint paths. Thus, T has at most
two leaves in V (P) and at least one of the following three cases must apply.

(1) T [V (P)] is the path P from p1 to pl.
(2) T [V (P)] is the path Q from pin to pout.
(3) T [V (P)] is the vertex disjoint union of a path P̃ that is a subpath of P rooted at p1,

and a path Q̃ that is a subpath of Q rooted at pin.

In the first case, we can replace the path P in T by the path Pu to get an r-out-
branching of D′ with at least k leaves. Similarly, in the second case, we can replace the
path Q in T by the path Qv to get an r-out-branching of D′ with at least k leaves. For
the third case, observe that P̃ must contain pout since pout = p1 or p1 appears before
pout on Q and thus, pout can only be reached from p1. Similarly, Q̃ must contain pl. Thus,
T \ R is an r-out-branching of D \ R. We build an r-out-branching T ′ of D′ by taking
T \ R and letting u be the child of pout and v be the child of pl. In this case T and T ′
have the same number of leaves outside of V (P) and T has at most two leaves in V (P)
while both u and v are leaves in T ′. Hence, T ′ has at least k leaves.

To show the other direction, let T ′ be an r-out-branching of D′ with at least k leaves.
Notice that since Pu is the unique out-branching of D′[V (Pu)] rooted at p1, Qv is the
unique out-branching of D′[V (Pu)] rooted at pin and p1 and pin are the only vertices
with in-arcs from the outside of V (Pu), T ′[V (Pu)] is either a path or the union of two
vertex disjoint paths. Thus, T ′ has at most two leaves in V (Pu) and at least one of the
following three cases must apply.

(1) T ′[V (Pu)] is the path Pu from p1 to pl.
(2) T ′[V (Pu)] is the path Qv from pin to pout.
(3) T ′[V (Pu)] is the vertex disjoint union of a path P̃u that is a subpath of Pu rooted at

p1, and a path Q̃v that is a subpath of Qv rooted at pin.

In the first case, path Pu in T ′ can be replaced by the path P, resulting in an r-
out-branching of D with at least k leaves. In the second case, an r-out-branching of
D′ with at least k leaves is obtained by replacing the path Qv in T ′ by path Q. In the
third case, we have that pout = p1 or p1 appears before pout on Qv and thus, pout can
only be reached from p1, hence, P̃u must contain pout. By the same arguments, Q̃v must
contain pl. Thus, T ′ \ {u, v} is an r-out-branching of D′ \ {u, v}. Let x be the vertex after
pout on P, and let y be the vertex after pl on Q. The vertices x and y must be distinct
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vertices in R and thus there must be two vertex disjoint paths Px and Qy rooted at x
and y, respectively, so that V (Px) ∪ V (Qy) = R. We build an r-out-branching T from
(T ′ \ {u, v}) ∪ Px ∪ Qy by letting x be the child of pout and y be the child of pin. In this
case, T ′ and T have the same number of leaves outside of V (P) and T ′ has at most two
leaves in V (Pu), while both the leaf of Pu and the leaf of Qv are leaves in T . Hence, T
has at least k leaves.

We say that a digraph D is a reduced instance of ROOTED k-LEAF OUT-BRANCHING if
none of the reduction rules (Rules 1–5) can be applied to D. It is easy to observe from the
description of the reduction rules that we can apply them in polynomial time, resulting
in the following lemma.

LEMMA 3.5. For a digraph D on n vertices, we can obtain a reduced instance D′ in
polynomial time.

4. POLYNOMIAL KERNEL: BOUNDING A REDUCED NO-INSTANCE

In this section, we show that any reduced NO-instance of ROOTED k-LEAF OUT-BRANCHING

must have at most O(k3) vertices. In order to do so, we start with T , a breadth-first
search-tree (or BFS-tree for short) rooted at r, of a reduced instance D and look at a
path P of T such that every vertex on P has out-degree one in T .

We bound the number of endpoints of arcs with one endpoint in P and one endpoint
outside of P (Section 4.1). We then use these results to bound the size of any maximal
path with every vertex having out-degree one in T (Section 4.2). Finally, we combine
these results to bound the size of any reduced NO-instance of ROOTED k-LEAF OUT-
BRANCHING by O(k3).

4.1. Bounding the Number of Entry and Exit Points of a Path

Let D be a reduced NO-instance, and let T be a BFS-tree rooted at r. The BFS-tree T
has at most k−1 leaves and hence at most k−2 vertices with out-degree at least 2 in T .
Now, let P = p1 p2 . . . pl be a path in T such that all vertices in V (P) have out-degree 1
in T (P does not need to be a maximal path of T ). Let T1 be the subtree of T induced
by the vertices reachable from r in T without using vertices in P and let T2 be the
subtree of T rooted at the child r2 of pl in T . Since T is a BFS-tree, it does not have
any forward arcs, and thus plr2 is the only arc from P to T2. Thus, all arcs originating
in P and ending outside of P must have their endpoint in T1.

LEMMA 4.1. Let D be a reduced instance, T be a BFS-tree rooted at r, and P =
p1 p2 . . . pl be a path in T such that all vertices in V (P) have out-degree 1 in T . Let
upi ∈ A(D), for some i between 1 and l, be an arc with u /∈ P. There is a path Pupi from r
to pi using the arc upi, such that V (Pupi ) ∩ V (P) ⊆ {pi, pl}.

PROOF. Let T1 be the subtree of T induced by the vertices reachable from r in T
without using vertices in P and let T2 be the subtree of T rooted at the child r2 of pl
in T . If u ∈ V (T1) there is a path from r to u avoiding P. Appending the arc upi to this
path yields the desired path Pupi , so assume u ∈ V (T2). If all paths from r to u use the
arc pl−1 pl then pl−1 pl is an arc disconnecting pl and r2 from r, contradicting the fact
that Reduction Rule 3 can not be applied. Let P ′ be a path from r to u not using the arc
pl−1 pl. Let x be the last vertex from T1 visited by P ′. Since P ′ avoids pl−1 pl we know
that P ′ does not visit any vertices of P \ {pl} after x. We obtain the desired path Pupi by
taking the path from r to x in T1 followed by the subpath of P ′ from x to u appended
by the arc upi.
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COROLLARY 4.2. Let D be a reduced NO-instance, T be a BFS-tree rooted at r and
P = p1 p2 . . . pl be a path in T such that all vertices in V (P) have out-degree 1 in T .
There are at most k vertices in P that are endpoints of arcs originating outside of P.

PROOF. Let S be the set of vertices in P \ {pl} that are endpoints of arcs originating
outside of P. For the sake of contradiction suppose that there are at least k+ 1 vertices
in P that are endpoints of arcs originating outside of P. Then, |S| ≥ k. By Lemma 4.1,
there exists a path from the root r to every vertex in S, that avoids vertices of P \ {pl}
as an intermediate vertex. Using these paths we can build an r-out-tree with every
vertex in S as a leaf. This r-out-tree can be extended to a r-out-branching with at least
k leaves by Proposition 2.1, contradicting the fact that D is a NO-instance.

LEMMA 4.3. Let D be a reduced NO-instance, T be a BFS-tree rooted at r and P =
p1 p2 . . . pl be a path in T such that all vertices in V (P) have out-degree 1 in T . There
are at most 7(k − 1) vertices outside of P that are endpoints of arcs originating in P.

PROOF. Let X be the set of vertices outside P that are out-neighbors of the vertices
on P. Let P ′ be the path from r to p1 in T and r2 be the unique child of pl in T . First,
observe that since there are no forward arcs, r2 is the only out-neighbor of vertices in
V (P) in the subtree of T rooted at r2. In order to bound the size of X, we differentiate
between two kinds of out-neighbors of vertices on P.

—Out-neighbors of P that are not in V (P ′).
—Out-neighbors of P in V (P ′).

First, observe that |X \ V (P ′)| ≤ k − 1. Otherwise we could have made an r-out-tree
with at least k leaves by taking the path P ′ P and adding X \ V (P ′) as leaves with
parents in V (P).

In the rest of the proof, we bound |X ∩ V (P ′)|. Let Y be the set of vertices on P ′ with
out-degree at least 2 in T and let P1, P2, . . . , Pt be the remaining subpaths of P ′ when
vertices in Y are removed. For every i ≤ t, Pi = vi1vi2 . . . viq. We define the vertex set
Z containing vi1 if |Pi| = 1 and otherwise the two last vertices of each path Pi. The
number of vertices with out-degree at least 2 in T is at most k − 2 as T has at most
k − 1 leaves. Hence, |Y | ≤ k − 2, t ≤ k − 1 and |Z| ≤ 2(k − 1).

CLAIM 1. For every path Pi = vi1vi2 . . . viq, 1 ≤ i ≤ t,3 ≤ q, there is either an arc
uiviq−1 or an arc uiviq, where ui /∈ V (Pi).

The claim holds, because the removal of arc viq−2viq−1 does not disconnect the root r
from both viq−1 and viq—otherwise, Rule 3 would have been applicable to our reduced
instance. Without loss of generality, let us assume that viq−1 is reachable from r after
the removal of arc viq−2viq−1. Hence, there exists a path from r to viq. Let uiviq be the
last arc of this path. The fact that the BFS-tree T does not have any forward arcs
implies that ui /∈ V (Pi).

To every path Pi = vi1vi2 . . . viq, 1 ≤ i ≤ t, we associate an interval Ii = vi1vi2 . . . viq−2
and an arc uiviq′ , q′ ∈ {q − 1, q}. This arc exists by Claim 1. Claim 1 and Lemma 4.1
together imply that for every path Pi there is a path Pri from the root r to viq′ that
does not use any vertex in V (Pi)\ {viq−1, viq} as an intermediate vertex. That is, V (Pri ∩
(V (Pi) \ {viq−1, viq}) = ∅.

Let P ′
ri be a subpath of Pri starting at a vertex xi before vi1 on P ′ and ending in a

vertex yi after viq−2 on P ′. We say that a path P ′
ri covers a vertex x if x is on the subpath

of P ′ between xi and yi and we say that it covers an interval Ij if xi appears before v j1
on the path P ′ and yi appears after v jq−2 on P ′. Observe that the path P ′

ri covers the
interval Ii.
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Let P = {P ′
1, P ′

2, . . . , P ′
l } ⊆ {P ′

r1, . . . , P ′
rt} be a minimum collection of paths, such that

every interval Ii, 1 ≤ i ≤ t, is covered by at least one of the paths in P. Furthermore,
let the paths of P be numbered by the appearance of their first vertex on P ′. The
minimality of P implies that for every P ′

i ∈ P there is an interval I′
i ∈ {I1, . . . , It} such

that P ′
i is the only path in P that covers I′

i .

CLAIM 2. For every 1 ≤ i ≤ l, no vertex of P ′ is covered by both P ′
i and P ′

i+3.

The path P ′
i+1 is the only path in P that covers the interval I′

i+1 and hence P ′
i does

not cover the last vertex of I′
i+1. Similarly P ′

i+2 is the only path in P that covers the
interval I′

i+2 and hence P ′
i+3 does not cover the first vertex of I′

i+2. Thus, the set of
vertices covered by both P ′

i and P ′
i+3 is empty.

Since paths P ′
i and P ′

i+3 do not cover a common vertex, we conclude that the end
vertex of P ′

i appears before the start vertex of P ′
i+3 on P ′ or is the same as the start

vertex of P ′
i+3. Partition the paths ofP into three setsP0,P1,P2, where path P ′

i ∈ Pi mod3.
Also let Ii be the set of intervals covered by Pi. Observe that every interval Ij , 1 ≤ j ≤ t,
is part of some Ii for i ∈ {0, 1, 2}.

Let i ≤ 3 and consider an interval Ij ∈ Ii. There is a path Pj ′ ∈ Pi that covers Ij such
that both endpoints of Pj ′ and none of the inner vertices of Pj ′ lie on P ′. Furthermore
for any pair of paths Pa, Pb ∈ Pi such that a < b, there is a subpath in P ′ from the
endpoint of Pa to the starting point of Pb. Thus for every i ≤ 3 there is a path P∗

i from
the root r to p1, which does not use any vertex of the intervals covered by the paths
in Pi.

We now claim that the total number of vertices on intervals Ij , 1 ≤ j ≤ t, which
are out-neighbors of vertices on V (P) is bounded by 3(k − 1). If not, then for some i,
the number of out-neighbors in Ii is at least k. Now we can make an r-out-tree with
k leaves by taking any r-out-tree in D[V (P∗

i ) ∪ V (P)] and adding the out-neighbors of
the vertices on V (P) in Ii as leaves with parents in V (P).

Summing up the obtained upper bounds yields |X| ≤ (k−1)+|{r2}|+|Y |+|Z|+3(k−1)
≤ (k − 1) + 1 + (k − 2) + 2(k − 1) + 3(k − 1) = 7(k − 1), concluding the proof.

Remark. Observe that the path P used in Lemmas 4.1 and 4.3 and Corollary 4.2
need not be a maximal path in T with its vertices having out-degree one in T .

4.2. Bounding the Length of a Path: On Paths Through Nice Forests

For a reduced instance D and a BFS-tree T of D rooted at r, let P = p1 p2 . . . pl be a
path in T such that all vertices in V (P) have out-degree 1 in T , and let S be the set of
vertices in V (P) \ {pl} with an in-arc from the outside of P \ {pl}.

Definition 4.4. A subforest F = (V (P) \ {pl}, A(F)) of D[V (P)] is said to be a nice
forest of P if the following three properties are satisfied:

(a) F is a forest of directed trees rooted at vertices in S;
(b) If pi pj ∈ A(F) and i < j, then pi has out-degree at least 2 in F or pj has in-degree

1 in D; and
(c) If pi pj ∈ A(F) and i > j, then for all l > q > i, pq pj /∈ A(D).

In order to bound the size of a reduced NO-instance D we are going to consider a nice
forest with the maximum number of leaves. However, in order to do this, we first have
to prove that a nice forest always exists.

LEMMA 4.5. There is a nice forest in P \ {pl}.
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PROOF. We define a subgraph F of D[V (P) \ {pl}] as follows: The vertex set of F is
V (P) \ {pl} and an arc pt ps is in A(F) if ps ∈ S and 1 ≤ t < l is the largest index such
that pt ps ∈ A(D).

Let us argue that F satisfies all three conditions from the definition of the nice forest.
Graph F satisfies condition (c) because selection of t as the largest number such that

pt ps ∈ A(D) ensures that pq ps ∈ A(D) for all t < q < l. Condition (b) is ensured by the
fact that, for each arc pt ps in F, we have ps ∈ S, this ensures that there is no in-arc
from the outside of P \{pl} ending in ps. If t < s then t = s−1 and pt ps is the only in-arc
to ps as 1 ≤ t < l is the maximum number such that pt ps ∈ A(D), P do not have any
forward arcs, and there are no arcs from the outside of P \ {pl} ending in ps. Finally, to
prove (a), we have to show that F is a forest. Suppose for a contradiction that there is
a cycle C in F. By definition of F, every vertex has in-degree at most 1, so C must be
a directed cycle. Since every vertex of S has in-degree 0 in F, we have that C ∩ S = ∅.
Consider the highest numbered vertex pi of C. Since P has no forward arcs, we have
that pi−1 is the predecessor of pi in C. The construction of F implies that there are no
arcs pq pi in A(D), where l > q > i. Also, pi does not have any in-arcs from outside of
P \ {pl}. Thus, pi−1 disconnects pi from the root. Hence, by Rule 2 pi pi−1 ∈ A(D). Let
pj be the predecessor of pi−1 in C. Since pi pi−1 ∈ A(D) and pi is the highest numbered
vertex in C, we have that j < i − 1. Hence j = i − 2. Path P does not have forward
arcs, i − 2 is the highest number such that pi−2 pi−1 ∈ A(D), and there are no in-arcs
from outside of P \ {pl} to pi−2. As a consequence pi−2 pi−1 is the only in-arc to pi−1. This
contradicts the fact that D is a reduced instance because the arc pi−2 pi−1 disconnects
pi−1 and pi from the root r implying that Rule 3 can be applied. Thus F is a forest and
since every vertex in this forest except for vertices in S have in-degree 1, we have that
every tree of F is rooted in some vertex of S. This completes the proof that F satisfies
properties (a)–(c), and thus is a nice forest.

For a nice forest F of P, we define the set of key vertices of F to be the set of vertices
in S, the leaves of F, the vertices of F with out-degree at least 2 and the set of vertices
whose parent in F has out-degree at least 2.

LEMMA 4.6. Let F be a nice forest of P. There are at most 5(k − 1) key vertices of F.

PROOF. By the proof of Corollary 4.2, there is an r-out-tree TS with (V (TS) ∩ V (P)) ⊆
(S ∪ {pl}) and (A(TS) ∩ A(P)) = ∅, such that all vertices in S are leaves of TS. We build
an r-out-tree TF = (V (TS) ∪ V (P), A(TS) ∪ A(F)). Notice that every leaf of F is a leaf
of TF . Since D is a NO-instance, we have that TF has at most k − 1 leaves and k − 2
vertices with out-degree at least 2. Thus, F has at most k − 1 leaves and at most k − 2
vertices with out-degree at least 2. Hence, the number of vertices in F whose parent in
F has out-degree at least 2 is at most 2k − 2. Finally, by Corollary 4.2, |S| ≤ k. Adding
up these upper bounds yields that there are at most k− 1 + k− 2 + 2k− 2 + k = 5(k− 1)
key vertices of F.

We can now turn our attention to a nice forest F of P with the maximum number
of leaves. Our goal is to show that, if the key vertices of F are too spaced out on
P, then some of our reduction rules must apply. First, however, we need some more
observations about the interplay between P and F.

OBSERVATION 1 [UNIQUE PATH]. For any two vertices pi, pj in V (P) such that i < j,
pi pi+1 . . . pj is the only path from pi to pj in D[V (P)].

PROOF. As T is a BFS-tree, it has no forward arcs. So, any vertex set X =
{p1, p2, . . . , pq} with q < |V (P)|, the arc pq pq+1 is the only arc in D from a vertex
in X to a vertex in V (P) \ X.
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COROLLARY 4.7. No arc pi pi+1 is a forward arc of F.

PROOF. If pi pi+1 is a forward arc of F, then there is a path from pi to pi+1 in F. By
Observation 1, pi pi+1 is the unique path from pi to pi+1 in D[V (P)]. Hence, pi pi+1 ∈ A(F)
contradicting the fact that it is a forward arc.

OBSERVATION 2. Let pt pj be an arc in A(F) such that neither pt nor pj are key vertices,
and t ∈ { j − 1, j + 1, . . . , l}. Then for all q > t, pq pj ∈ A(D).

Observation 2 follows directly from the definitions of a nice forest and key vertices.

OBSERVATION 3. If neither pi nor pi+1 are key vertices, then either pi pi+1 /∈ A(F) or
pi+1 pi+2 /∈ A(F).

PROOF. Assume for contradiction that pi pi+1 ∈ A(F) and pi+1 pi+2 ∈ A(F). Since
neither pi nor pi+1 are key vertices, both pi+1 and pi+2 must have in-degree 1 in D.
Then, the arc pi pi+1 disconnects both pi+1 and pi+2 from the root r and Rule 3 can be
applied, contradicting the fact that D is a reduced instance.

In the following discussion, let F be a nice forest of P with the maximum number
of leaves and let P ′ = px px+1 . . . py be a subpath of P containing no key vertices, and
additionally having the property that px−1 px /∈ A(F) and py py+1 /∈ A(F).

LEMMA 4.8. V (P ′) induces a directed path in F.

PROOF. We first prove that for any arc pi pi+1 ∈ A(P ′) such that pi pi+1 /∈ A(F), there
is a path from pi+1 to pi in F. Suppose for contradiction that there is no path from pi+1
to pi in F, and let x be the parent of pi+1 in F. Then, pi pi+1 is not a backward arc of F
and hence, F ′ = (F \xpi+1)∪{pi pi+1} is a forest of out-trees rooted at vertices in S. Also,
since pi+1 is not a key vertex, x has out-degree 1 in F and thus x is a leaf in F ′. Since
pi is not a leaf in F, F ′ has one more leaf than F. Now, every vertex with out-degree
at least 2 in F has out-degree at least 2 in F ′. Additionally, pi has out-degree 2 in F ′.
Hence F ′ is a nice forest of P with more leaves than F, contradicting the choice of F.

Now, notice that by Observation 1, any path in D[V (P)] from a vertex u ∈ V (P ′)
to a vertex v ∈ V (P ′) that contains a vertex w /∈ V (P ′) must contain either the arc
px−1 px or the arc py py+1. Since neither of those two arcs are arcs of F, it follows that
for any arc pi pi+1 ∈ A(P ′) such that pi pi+1 /∈ A(F), there is a path from pi+1 to pi
in F[V (P ′)]. Hence F[V (P ′)] is weakly connected, that is, the underlying undirected
graph is connected. Since every vertex in V (P ′) has in-degree 1 and out-degree 1 in F,
we conclude that F[V (P ′)] is a directed path.

In the following discussion, let Q′ be the directed path F[V (P ′)].

OBSERVATION 4. For any pair of vertices pi, pj ∈ V (P ′), if i ≤ j − 2, then pj appears
before pi in Q′.

PROOF. Suppose for contradiction that pi appears before pj in Q′. By Observation 1,
pi pi+1 pi+2 . . . pj is the unique path from pi to pj in D[V (P ′)]. This path contains both
the arc pi pi+1 and pi+1 pi+2 contradicting Observation 3.

LEMMA 4.9. All arcs of D[V (P ′)] are contained in A(P ′) ∪ A(F).

PROOF. Since P has no forward arcs, it is enough to prove that any arc pj pi ∈
A(D[V (P ′)]) with i < j is an arc of F. Suppose this is not the case and let pq be the
parent of pi in F. We know that pi has in-degree at least 2 in D and also since pi is
not a key vertex pq has in-degree one in F. Hence by definition of F being a nice forest,
we have that for every t > q, pt pi /∈ A(D). It follows that i < j < q. By Lemma 4.8,
F[V (P ′)] is a directed path Q′ containing both pi and pj . If pj appears after pi in
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Q′, Observation 4 implies that i = j − 1 and that pj has in-degree 1 in D since F is
a nice forest. Thus, pi separates pj from the root and Rule 2 can be applied to pj pi
contradicting the fact that D is a reduced instance. Hence, pj appears before pi in Q′.

Since pj is an ancestor of pi in F and pq is the parent of pi in F, pj is an ancestor
of pq in F and hence pq ∈ V (Q′) = V (P ′). Now, pj comes before pq in Q′ and j < q;
so, Observation 4 implies that q = j + 1 and that pq has in-degree 1 in D since F is a
nice forest. Thus, pj separates pq from the root r and both pj pi and pq pi are arcs of D.
Hence, Rule 4 can be applied to remove the arc pq pi, contradicting the fact that D is a
reduced instance.

LEMMA 4.10. If |P ′| ≥ 3, then there are exactly 2 vertices in P ′ that are endpoints of
arcs starting outside of P ′.

PROOF. By Observation 1, px−1 px is the only arc between {p1, p2, . . . , px−1} and P ′. By
Lemma 4.8, F[V (P ′)] is a directed path Q′. Let pq be the first vertex on Q′ and notice
that the parent of pq in F is outside of V (P ′). Observation 4 implies that q ≥ y − 1.
Hence pq and px are two distinct vertices that are endpoints of arcs starting outside
of P ′. It remains to prove that they are the only such vertices. Let pi be any vertex
in P ′ \ {px, pq}. By Lemma 4.8, V (P ′) induces a directed path Q′ in F, and since pq is
the first vertex of Q′, the parent of pi in F is in V (P ′). Observation 2 yields then that
pt pi ∈ A(D) for any t > y.

OBSERVATION 5. Let Q′ = F[V (P ′)]. For any pair of vertices u, v such that there is a
path Q′[uv] from u to v in Q′, Q′[uv] is the unique path from u to v in D[V (P ′)].

PROOF. By Lemma 4.8, Q′ is a directed path f1 f2 . . . f|P ′| and let Q′[ f1 fi] be the path
f1 f2 . . . fi. We prove that for any i < |Q′|, fi fi+1 is the only arc from V (Q′[ f1 fi]) to
V (Q′[ fi+1 f|P ′|]). By Lemma 4.9, all arcs of D[V (P ′)] are either arcs of P ′ or arcs of Q′.
Since Q′ is a path, fi fi+1 is the only arc from V (Q′[ f1 fi]) to V (Q′[ fi+1 f|P ′|]) in Q′. By
Corollary 4.7, there are no arcs from V (Q′[ f1 fi]) to V (Q′[ fi+1 f|P ′|]) in P ′, except possibly
for fi fi+1.

LEMMA 4.11. For any vertex x /∈ V (P ′), there are at most 2 vertices in P ′ with arcs
to x.

PROOF. Suppose there are 3 vertices pa, pb, pc in V (P ′) such that a < b < c and such
that pax, pbx, pcx ∈ A(D). By Lemma 4.8, Q′ = F[V (P ′)] is a directed path. If pa appears
before pb in Q′ then Observation 4 implies that a+ 1 = b and that pb has in-degree 1 in
D. Then, pa separates pb from the root and hence Rule 4 can be applied to remove the
arc pbx contradicting the fact that D is a reduced instance. Hence, pb appears before
pa in Q′. By an identical argument, pc appears before pb in Q′.

Let Pb be a path in D from the root to pb and let u be the last vertex in Pb outside
of V (P ′). Let v be the vertex in Pb after u. By Lemma 4.10, v is either px or the first
vertex pq of Q′. If v = px, then Observation 1 implies that Pb contains pa, whereas if
v = pq, by Observation 5, Pb contains pc. Thus the set {pa, pc} separates pb from the
root and hence Rule 4 can be applied to remove the arc pbx contradicting the fact that
D is a reduced instance.

COROLLARY 4.12. There are at most 14(k−1) vertices in P ′ with out-neighbors outside
of P ′.

PROOF. By Lemma 4.3, there are at most 7(k − 1) vertices that are endpoints of arcs
originating in P ′. By Lemma 4.11, each such vertex is the endpoint of at most two arcs
from vertices in P ′.

LEMMA 4.13. |P ′| ≤ 154(k − 1) + 10.
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PROOF. Assume for contradiction that |P ′| > 154(k − 1) + 10 and let X be the set of
vertices in P ′ with arcs to vertices outside of P ′. By Corollary 4.12, |X| ≤ 14(k − 1).
Removing vertex set X leave 14(k − 1) + 1 paths and the union of these paths contains
at least 154(k− 1) + 10 − 14(k− 1) vertices. Hence, one of these paths contains at least
11 vertices. By Observation 3, there is a subpath P ′′ = pa pa+1 . . . pb of P ′ on 7 or 8
vertices such that neither pa−1 pa nor pb pb+1 are arcs of F. By Lemma 4.8, F[V (P ′′)]
is a directed path Q′′. Let pq and pt be the first and last vertices of Q′′, respectively.
By Lemma 4.10, pa and pq are the only vertices with in-arcs from outside of P ′′. By
Observation 4, pq ∈ {pb−1, pb} and pt ∈ {pa, pa+1}. By the choice of P ′′, no vertex of P ′′
has an arc to a vertex outside of P ′. Furthermore, since P ′′ is a subpath of P ′ and Q′′
is a subpath of Q′ Lemma 4.9 implies that pb and pt are the only vertices of P ′ with
out-arcs to the outside of P ′′. By Lemma 1, the path P ′′ is the unique out-branching of
D[V (P ′′)] rooted at pa. By Observation 5, the path Q′′ is the unique out-branching of
D[V (P ′′)] rooted at pq and ending in pt. By Observation 4, pb−2 appears before pa+2 in
Q′′ and hence the vertex after pb in Q′′ and pt+1 is not the same vertex. Thus, Rule 5
can be applied on P ′′, contradicting the fact that D is a reduced instance.

LEMMA 4.14. Let D be a reduced NO-instance to ROOTED k-LEAF OUT-BRANCHING. Then
|V (D)| = O(k3). More specifically, |V (D)| ≤ 1540k3.

PROOF. Let T be a BFS-tree of D. T has at most k− 1 leaves and at most k− 2 inner
vertices with out-degree at least 2. The remaining vertices can be partitioned into at
most 2k − 3 paths P1 . . . Pt with all vertices having out-degree 1 in T . We prove that
for every q ∈ {1, . . . , t}, |Pq| = O(k2). Let F be a nice forest of Pq with the maximum
number of leaves. Remember that the last vertex of the path is not included in the nice
forest definition. By Lemma 4.6, F has at most 5(k − 1) key vertices. Let pi and pj be
consecutive key vertices of F on Pq. By Observation 3, there is a path P ′ = px px+1 . . . py
containing no key vertices, with x ≤ i + 1 and y ≥ j − 1, such that neither px−1 px nor
py py+1 are arcs of F. By Lemma 4.13, |P ′| ≤ 154(k−1)+10 so |Pq| ≤ (5(k−1)+1)(154(k−
1) + 10) + 3(5(k− 1)). Hence, |V (D)| ≤ 2k(5k(154(k− 1) + 10 + 3)) ≤ 1540k3 = O(k3).

Lemma 4.14 results in a polynomial kernel for the problem ROOTED k-LEAF OUT-
BRANCHING as follows.

THEOREM 4.15. Both ROOTED k-LEAF OUT-BRANCHING and ROOTED k-LEAF OUT-TREE

admit a kernel with O(k3) vertices.

PROOF. Let D be the reduced instance of ROOTED k-LEAF OUT-BRANCHING obtained in
polynomial time using Lemma 3.5. If the number of vertices of D is more than 1540k3,
then return YES. Otherwise, we have an instance with O(k3) vertices. The correctness
of this step follows from Lemma 4.14 which shows that any reduced NO-instance to
ROOTED k-LEAF OUT-BRANCHING has O(k3) vertices. The result for ROOTED k-LEAF OUT-TREE

follows similarly.

Theorem 4.15 implies the following result about Turing kernelization.

COROLLARY 4.16. Both k-LEAF OUT-BRANCHING and k-LEAF OUT-TREE admit a Turing
kernel with O(k3) vertices.

PROOF. We only give the proof for k-LEAF OUT-BRANCHING. The proof for k-LEAF OUT-
TREE is similar. Let D be a digraph on n vertices. We apply the kernelization algorithm
for ROOTED k-LEAF OUT-BRANCHING described in Theorem 4.15 for every vertex of D as a
root, and obtain n graphs with O(k3) vertices, such that at least one of them has a k-leaf
out-branching if and only if D does. Clearly, this algorithm runs in time polynomial in
n. Now using the O(k3)-sized oracle for k-LEAF OUT-BRANCHING we can solve the problem
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in linear time. This shows that k-LEAF OUT-BRANCHING admits a Turing kernel with
O(k3) vertices, concluding the proof.

5. KERNELIZATION LOWER BOUNDS

In the last section, we gave a polynomial kernel for ROOTED k-LEAF OUT-BRANCHING. It
is natural to ask whether the closely related k-LEAF OUT-BRANCHING has a polynomial
kernel. The answer to this question, somewhat surprisingly, is no, unless an unlikely
collapse of complexity classes occurs. To show this, we utilize a recent result of Bod-
laender et al. [2009a] that states that any compositional parameterized problem does
not have a polynomial kernel unless coNP is in NP/poly.

Let us outline first the proof of the main result of this section that k-LEAF OUT-
BRANCHING has no polynomial kernel. The proof is done in several steps. We start from
using the framework of Bodlaender et al. [2009a] to establish that k-LEAF OUT-TREE

has no polynomial kernel unless coNP ⊆ NP/poly (Theorem 5.3). The second step is
to show that a polynomial kernel for k-LEAF OUT-BRANCHING would yield a polynomial-
sized kernel for k-LEAF OUT-TREE. To obtain this goal, we take n copies of the graph
corresponding to different guesses of roots, and for each such graph run the kerneliza-
tion algorithm from Theorem 4.15 for ROOTED k-LEAF OUT-TREE. Since decision versions
of both problems, k-LEAF OUT-BRANCHING and ROOTED k-LEAF OUT-TREE, are NP-complete
under Karp reduction, there is a kO(1)-time algorithm mapping each of the n instances of
ROOTED k-LEAF OUT-TREE to an instance of k-LEAF OUT-BRANCHING of size kO(1). We want
to compose these graphs in such a way that a k-leaf out-branching of the composition
can be computed from the maximum of out-branchings of its summands. To obtain such
composition, we have to work with graphs with specific properties. But then we must
prove that k-LEAF OUT-BRANCHING remains NP-complete under Karp reduction on this
special class of digraphs (Lemma 5.4).

Before we proceed with the proofs, we need the following definition.

Definition 5.1 Composition [Bodlaender et al. 2009a]. A composition algorithm for
a parameterized problem L ⊆ �∗ × N is an algorithm that

—receives as input a sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈ �∗ × N
+ for each 1 ≤

i ≤ t,
—uses time polynomial in

∑t
i=1 |xi| + k,

—and outputs (y, k′) ∈ �∗ × N
+ with

(1) (y, k′) ∈ L ⇐⇒ (xi, k) ∈ L for some 1 ≤ i ≤ t.
(2) k′ is polynomial in k.

A parameterized problem is compositional if there is a composition algorithm for it.

Now we state the main result of Bodlaender et al. [2009a], which we need for our
purpose.

THEOREM 5.2 [BODLAENDER ET AL. 2009a]. Let L be a compositional parameterized
language whose unparameterized version L̃ is NP-complete. Unless coNP ⊆ NP/poly,
there is no polynomial kernel for L.

THEOREM 5.3. k-LEAF OUT-TREE has no polynomial kernel unless coNP ⊆ NP/poly.

PROOF. The problem is NP-complete [Alon et al. 2007]. We prove that it is com-
positional and thus, Theorem 5.2 will imply the statement of the theorem. A simple
composition algorithm for this problem is as follows. On input (D1, k), (D2, k), . . . , (Dt, k)
output the instance (D, k) where D is the disjoint union of D1, . . . , Dt. Since an out-tree
must be completely contained in a connected component of the underlying undirected
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p4pn−3pn p2p3pn−2pn−1 p1

Fig. 3. Vertex p1 is the bottom and vertex pn is the top of the willows. The willow is nice because pn pn−1
and pn pn−2 are arcs of D, these arcs are the only arcs of A2 incident to pn−1 or pn−2, and arcs of A2 give an
out-branching of the graph.

graph of D, (D, k) is a YES-instance to k-LEAF OUT-TREE if and only if any out of (Di, k),
1 ≤ i ≤ t, is. This concludes the proof.

A willow graph [Drescher and Vetta 2010] D = (V, A1 ∪ A2) is a directed graph such
that D′ = (V, A1) is a directed path P = p1 p2 . . . pn on all vertices of D and D′′ = (V, A2)
is a directed acyclic graph with one vertex r of in-degree 0, such that every arc of A2 is
a backwards arc of P. p1 is called the bottom vertex of the willow, pn is called the top
of the willow and P is called the stem. A nice willow graph D = (V, A1 ∪ A2) is a willow
graph where pn pn−1 and pn pn−2 are arcs of D, neither pn−1 nor pn−2 are incident to any
other arcs of A2 and D′′ = (V, A2) has a pn-out-branching. See Figure 3 for an example
of a nice willow graph.

OBSERVATION 6. Let D = (V, A1 ∪ A2) be a nice willow graph. Every out-branching
of D with the maximum number of leaves is rooted at the top vertex pn.

PROOF. Let P = p1 p2 . . . pn be the stem of D and suppose for contradiction that there
is an out-branching T with the maximum number of leaves rooted at pi, i < n. Since
D is a nice willow, D′ = (V, A2) has a pn-out-branching T ′. Since every arc of A2 is a
backward arc of P, T ′[{v j : j ≥ i}] is a pn-out-branching of D[{v j : j ≥ i}]. Then,

T ′′ = (V, {vxvy ∈ A(T ′) : y ≥ i} ∪ {vxvy ∈ A(T ) : y < i})
is an out-branching of D. If i = n − 1, then pn is not a leaf of T , since the only arcs
going out of the set {pn, pn−1} start in pn. Thus, in this case, all leaves of T are leaves
of T ′′ and pn−1 is a leaf of T ′′ and not a leaf of T , contradicting the fact that T has the
maximum number of leaves.

LEMMA 5.4. k-LEAF OUT-TREE in nice willow graphs is NP-complete under Karp re-
ductions.

PROOF. We reduce from the well known NP-complete SET COVER problem [Karp 1972].
A set cover of a universe U is a family F ′ of sets over U such that every element of
u appears in some set in F ′. In the SET COVER problem, one is given a family F =
{S1, S2, . . . , Sm} of sets over a universe U , |U | = n, together with a number b ≤ m and
one is asked whether there is a set cover F ′ ⊂ F with |F ′| ≤ b of U . In our reduction.
we will assume that every element of U is contained in at least one set in F . We will
also assume that b ≤ m− 2. These assumptions are safe, because if either of them does
not hold, the SET COVER instance can be resolved in polynomial time. From an instance
of SET COVER, we build a digraph D = (V, A1 ∪ A2) as follows. The vertex set V of D is
comprised of (1) a root r, (2) vertices si for each 1 ≤ i ≤ m representing the sets in F ,
(3) vertices ei, 1 ≤ i ≤ n representing elements in U and (4) two vertices p and p′.

The arc set A2 is defined as follows. There is an arc from r to each vertex si, 1 ≤ i ≤ m
and there is an arc from a vertex si representing a set to a vertex e j representing an
element if e j ∈ Si. Furthermore, rp and rp′ are arcs in A2. Finally, we let

A1 = {ei+1ei : 1 ≤ i < n} ∪ {si+1si : 1 ≤ i < m} ∪ {e1sm, s1 p, pp′, p′r}.
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This concludes the description of D. We now proceed to prove that there is a set cover
F ′ ⊂ F with |F ′| ≤ b if and only if there is an out-branching in D with at least
n + m + 2 − b leaves.

Suppose that there is a set cover F ′ ⊂ F with |F ′| ≤ b. We build a directed tree
T rooted at r as follows. Every vertex si, 1 ≤ i ≤ m, p and p′ has r as their parent.
For every element e j , 1 ≤ i ≤ n, we choose the parent of e j to be si such that e j ∈ Si
and Si ∈ F ′ and for every i′ < i, either Si′ /∈ |F ′| or e j /∈ Si′ . Since the only inner
nodes of T except for the root r are vertices representing sets in the set cover, T is an
out-branching of D with at least n + m+ 2 − b leaves.

In the other direction, suppose that there is an out-branching T of D with at least
n+ m+ 2 − b leaves, and suppose that T has the most leaves out of all out-branchings
of D. Since D is a nice willow with r as top vertex, Observation 6 implies that T is an
r-out-branching of D. Now, if there is an arc ei+1ei ∈ A(T ) then let sj be a vertex such
that ei ∈ Sj . Then, T ′ = (T \ ei+1ei) ∪ sjei is an r-out-branching of D with as many
leaves as T . Hence, without loss of generality, for every i between 1 and n, the parent
of ei in T is some sj . Let F ′ = {Si : si is an inner vertex of T }. F ′ is a set cover of U with
size at most n + m+ 2 − (n + m+ 2 − b) = b, concluding the proof.

THEOREM 5.5. k-LEAF OUT-BRANCHING has no polynomial kernel unless coNP ⊆
NP/poly.

PROOF. We prove that if k-LEAF OUT-BRANCHING has a polynomial kernel, then so
does k-LEAF OUT-TREE. Let (D, k) be an instance of k-LEAF OUT-TREE. For every vertex
v ∈ V , we produce an instance (D, v, k) of ROOTED k-LEAF OUT-TREE. Clearly, (D, k) is
a YES-instance for k-LEAF OUT-TREE if and only if (D, v, k) is a YES-instance for ROOTED

k-LEAF OUT-TREE for some v ∈ V . By Theorem 4.15, ROOTED k-LEAF OUT-TREE has a
O(k3) kernel, so we can apply the kernelization algorithm for ROOTED k-LEAF OUT-TREE

separately to each of the n instances of ROOTED k-LEAF OUT-TREE to get n instances
(D1, v1, k), (D2, v2, k), . . ., (Dn, vn, k) with |V (Di)| = O(k3) for each i ≤ n. By Lemma 5.4,
k-LEAF OUT-BRANCHING in nice willow graphs is NP-complete under Karp reductions, so
we can reduce each instance (Di, vi, k) of ROOTED k-LEAF OUT-TREE to an instance (Wi, bi)
of k-LEAF OUT-BRANCHING in nice willow graphs in polynomial time in |Di|, and hence in
polynomial time in k. Thus, in each such instance, bi ≤ (k+1)c for some fixed constant c
independent of both n and k. Let bmax = maxi≤n bi. Without loss of generality, bi = bmax
for every i. This assumption is safe, because if it does not hold, we can modify the
instance (Wi, bi) by replacing bi with bmax, subdividing the last arc of the stem bmax − bi
times and adding an edge from ri to each subdivision vertex.

From the instances (W1, bmax), . . . , (Wn, bmax), we build an instance (D′, bmax + 1) of
k-LEAF OUT-BRANCHING. Let ri and si be the top and bottom vertices of Wi, respectively.
We build D′ simply by taking the disjoint union of the willows graphs W1, W2, . . . , Wn
and adding in an arc risi+1 for i < n and the arc rns1. Let C be the directed cycle in D
obtained by taking the stem of D′ and adding the arc rns1.

If for any i ≤ n, Wi has an out-branching with at least bmax leaves, then Wi has an out-
branching rooted at ri with at least bmax leaves. We can extend this to an out-branching
of D′ with at least bmax +1 leaves by following C from ri. In the other direction, suppose
D′ has an out-branching T with at least bmax + 1 leaves. Let i be the integer such that
the root r of T is in V (Wi). For any vertex v in V (D′) outside of V (Wi), the only path
from r to v in D′ is the directed path from r to v in C. Hence, T has at most one leaf
outside of V (Wi). Thus, T [V (W1)] contains an out-tree with at least bmax leaves.

By assumption, k-LEAF OUT-BRANCHING has a polynomial kernel. Hence, we can apply
a kernelization algorithm to get an instance (D′′, k′′) of k-LEAF OUT-BRANCHING with
|V (D′′)| ≤ (bmax + 1)c2 for a constant c2 independent of n and bmax such that (D′′, k′′) is a
YES-instance if and only if (D′, bmax) is. Finally, since k-LEAF OUT-TREE is NP-complete,
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we can reduce (D′′, k′′) to an instance (D∗, k∗) of k-LEAF OUT-TREE in polynomial time.
Hence, k∗ ≤ |V (D∗)| ≤ (|V (D′′)| + 1)c3 ≤ (k + 1)c4 for some fixed constants c3 and c4.
Hence, we conclude that if k-LEAF OUT-BRANCHING has a polynomial kernel, then so
does k-LEAF OUT-TREE. Thus, Theorem 5.3 implies that k-LEAF OUT-BRANCHING has no
polynomial kernel unless coNP ⊆ NP/poly.

6. CONCLUSION AND DISCUSSIONS

In this article, we demonstrated that Turing kernelization is a more powerful technique
than Karp kernelization. We showed that while k-LEAF OUT-BRANCHING and k-LEAF OUT-
TREE do not have a polynomial kernels, unless an unlikely collapse of complexity classes
occurs, they do have n independent polynomial kernels. Daligault and Thomassé [2009]
have recently improved on the bounds of our kernels. Our article raises far more
questions than it answers. We believe that there are many more problems waiting to
be addressed from the viewpoint of Turing kernelization. A few concrete open problems
in this direction are as follows.

—Which other problems admit a Turing kernelization like the cubic vertex kernels
for k-LEAF OUT-BRANCHING and k-LEAF OUT-TREE obtained here? Is there a framework
to rule out the possibility of |I|O(1) polynomial kernels similar to the framework
developed in Bodlaender et al. [2009b]?

—Does there exist a problem for which we do not have a linear Karp kernel, but which
does have linear kernels from the viewpoint of Turing kernelization?

—Can the recent results on lower bounds for kernels by Dell and van Melkebeek
[2010] be used to prove a lower bound on sizes of kernels for the rooted k-Leaf Out-
Branching?
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