
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Computer and System Sciences 78 (2012) 707–719

Contents lists available at SciVerse ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Local search: Is brute-force avoidable? ✩

Michael R. Fellows a, Fedor V. Fomin b,∗, Daniel Lokshtanov c, Frances Rosamond a,
Saket Saurabh d, Yngve Villanger b

a Charles Darwin University, Darwin, Australia
b Department of Informatics, University of Bergen, Bergen, Norway
c Department of Computer Science and Engineering, University of California, USA
d The Institute of Mathematical Sciences, Chennai, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 January 2011
Received in revised form 8 September 2011
Accepted 11 October 2011
Available online 20 October 2011

Keywords:
Parameterized complexity
Local search
Local treewidth

Many local search algorithms are based on searching in the k-exchange neighborhood. This
is the set of solutions that can be obtained from the current solution by exchanging at
most k elements. As a rule of thumb, the larger k is, the better are the chances of finding
an improved solution. However, for inputs of size n, a naïve brute-force search of the
k-exchange neighborhood requires nO(k) time, which is not practical even for very small
values of k. We show that for several classes of sparse graphs, including planar graphs,
graphs of bounded vertex degree and graphs excluding some fixed graph as a minor,
an improved solution in the k-exchange neighborhood for many problems can be found
much more efficiently. Our algorithms run in time O(τ (k) · nc), where τ is a function
depending only on k and c is a constant independent of k and n. We demonstrate the
applicability of this approach on a variety of problems including r-Center, Vertex Cover,
Odd Cycle Transversal, Max-Cut, and Min-Bisection. In particular, on planar graphs, all
our algorithms searching for a k-local improvement run in time O(2O(k) · n2), which is
polynomial for k = O(log n). We complement these fixed-parameter tractable algorithms
for k-local search with parameterized intractability results indicating that brute-force
search is unavoidable in more general classes of graphs.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Local search is one of the most common approaches applied in practice to solve hard optimization problems. It is used
as a subroutine in several kinds of heuristics, such as evolutionary algorithms and hybrid heuristics that combine local
search and genetic algorithms. The history of employing local search in combinatorial optimization and operations research
dates back to the 1950s with the first edge-exchange algorithms for the Traveling Salesman problem [3,6]. The idea of local
search is to improve a solution by searching for a better solution in a neighborhood of the current solution, that is defined
in a problem specific way. For example, for the classic Traveling Salesman problem, the neighborhood of a tour can be
defined as the set of all tours that differ from it in at most k edges, the so-called k-exchange neighborhood [27,32]. Another
classic example is the Min-Bisection problem [21], where for a given graph with 2n vertices and weights on the edges, the
task is to partition the vertices into two sets of n vertices such that the sum of the weights of the edges between the sets
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is minimized. A natural k-exchange neighborhood for this problem would be the set of partitions that can be obtained by
swapping at most k pairs of vertices.

The issue we explore has very great generality, as k-exchange neighborhoods can be easily described for virtually any
problem amenable to local search heuristics (perhaps in a variety of ways), including collapsing k steps of local search into
a single “giant step”.

Most of the literature on local search is devoted to experimental studies of different heuristics. The theoretical study of
local search has so far mainly progressed in three directions:

• The study of performance guarantees concerning the quality of solutions that can be found by local search [19,22,33].
• The study of the asymptotic convergence of local search in probabilistic settings, such as simulated annealing [1,2,13].
• The study of the time required to reach a local optimum. An illustrative example here is the simplex method, which

can be seen as a local search algorithm with feasible solutions corresponding to “vertices” of a polytope. The neighbors
of a solution are the solutions that can be reached from it by a single “pivot”. There can be different rules of choosing
a pivot when several neighbors improve a solution. However, for each of the known rules there are examples requiring
an exponential number of iterations for reaching the local optimum. Motivated by the fact that many local search
algorithms are based on neighborhood structures for which locally optimal solutions are not known to be computable
in polynomial time, Johnson, Papadimitriou and Yannakakis [21] defined a complexity class PLS which can be seen as
an analogue of the class NP for local search problems. Many natural local search problems appear to be PLS-complete.
We refer to the books [2,30] for more information on different aspects of local search.

In this paper we explore a different, very general direction in the study of local search. We endeavor to answer the following
natural question.

Is there a faster way of searching the k-exchange neighborhood than brute-force?

This question is important because the running time of a brute-force algorithm for k-local search is nO(k) , where n is
the input length; this is infeasible in practical terms even for relatively small values of k. It has been generally assumed,
perhaps because of the typical algorithmic structure of local search algorithms: “Look at all solutions in the neighborhood
of the current solution . . . ” that finding an improved solution (if there is one) in a k-exchange neighborhood, necessarily
requires brute-force search of the neighborhood; therefore, verifying optimality in a k-exchange neighborhood requires
Ω(nk) time (see, e.g. [2, p. 339] or [25, p. 680]). But are there mathematical evidences for this common belief? Or might it
be possible for some problems to qualitatively increase the power of local search by exploring k-exchange neighborhoods in
time O(τ (k)nc)?

An appropriate tool to answer these questions is parameterized complexity. In the parameterized framework, for decision
problems with input size n, and a parameter k, the goal is to design algorithms with runtime τ (k) · nO(1) , where τ is a
function of k alone. Problems having such algorithms are said to be fixed-parameter tractable (FPT). There is also a theory
of hardness to identify parameterized problems that are probably not amenable to FPT algorithms, based on a complexity
hypothesis similar to P �= NP. For an introduction to the field, and more recent developments, see the books [11,16,31].

1.1. Related work

The parameterized complexity of k-local search remains so far largely unexplored, with a few exceptions. Daniel Marx,
in a recent survey of the subject [28] wrote:

“So far, there are only a handful of parameterized complexity results in the literature, but they show that this is a fruitful research
direction. The fixed-parameter tractability results are somewhat unexpected and this suggests that there are many other such results
waiting to be discovered”.

The first breakthrough in the area is due to Marx [29] who proved that determining whether there is an improved
solution in the k-exchange neighborhood for TSP is W [1]-hard, even if the triangle inequality is assumed. For a contrasting
example, Khuller, Bhatia and Pless [24] investigated the NP-hard problem of finding a feedback edge set that is incident to
the minimum number of vertices. One of the results obtained in [24] is that checking whether it is possible to improve a
solution by replacing at most k edges can be done in time O(n2 + nτ (k)), i.e., it is FPT parameterized by k. Very recently,
Krokhin and Marx [26] investigated the k-local search complexity of finding a minimum weight assignment for a Boolean
constraint satisfaction instance. Szeider [37] studied the parameterized complexity of k-exchange problems for SAT. Fomin
et al. [17] studied the complexity of local search for feedback arc set in tournaments.

1.2. Organization of the paper

In this work, we initiate the systematic study of the parameterized complexity of local search for graph problems. In
Section 2 we review the necessary technical definitions. In Section 3 we formally define the parameterized version of
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the local search problem and set up the framework for our study. In Section 4 we give a generic hardness proof, which
shows that local search versions of most graph problems are W [1]- or W [2]-hard on general graphs. Thus, in the general
graph situation, brute-force is unavoidable. This motivates exploring the issue for classes of sparse graphs. In Section 5 we
investigate local search for problems on graphs of bounded local treewidth, a wide class of graphs containing planar graphs,
graphs embeddable on a surface of bounded genus and graphs of bounded vertex degree. We show that many local search
problems become FPT when the input graph is of bounded local treewidth. In particular, we show that finding a k-local
improvement on graphs of bounded local treewidth is FPT for many natural problems including Vertex Cover, Odd Cycle

Transversal, Dominating Set, and r-Center. With a modification of this technique (Section 6) we also show that finding
k-local improvement for Max-Cut, and Min-Bisection is FPT for apex-minor-free graphs. All these results are based on the
idea of reducing the search in the k-exchange neighborhood to searching for an improvement in a ball of small diameter
around some vertex of the input graph. For planar graphs, this approach leads to algorithms with running time O(2O(k) ·n2)

for many of the problems mentioned above. In Section 7 we extend these results to more general classes of sparse graphs,
namely, graphs excluding a fixed graph as a minor. Here we make essential use of the Structure Theorem of Robertson and
Seymour from the theory of graph minors. In Section 8 we prove that these local search problems are unlikely to be FPT
for the larger classes of sparse graphs that are d-degenerated, showing W [1]-hardness on 3-degenerated graphs. The paper
concludes with a discussion of open problems and further research directions.

2. Preliminaries

Let G = (V , E) be an undirected graph where V is the set of vertices and E is the set of edges. We denote the number
of vertices by n and the number of edges by m. We also use |G| to denote the number of vertices in G . For a subset V ′ ⊆ V ,
by G[V ′] we mean the subgraph of G induced by V ′ . By N(u) we denote (open) neighborhood of u, that is, the set of all
vertices adjacent to u and by N[u] denote the closed neighborhood, N[u] = N(u) ∪ {u}. For a subset D ⊆ V , we define

N[D] =
⋃
v∈D

N[v].

The distance dG(u, v) between two vertices u and v of G is the length of a shortest path in G from u to v . The diameter
of a connected graph G , denoted by diam(G), is defined to be the maximum length of a shortest path between any pair
of vertices of V (G). The diameter of a disconnected graph is the maximum of the diameters of its connected components.
For r � 0, the r-neighborhood of a vertex v ∈ V is defined as Nr

G [v] = {u | dG(v, u) � r}. We also for convenience use the
notation B(v, r) = Nr

G [v] and call it a ball of radius r around v . Define

B(A, r) =
⋃
v∈A

Nr
G [v]

for A ⊆ V . Given a weight function w : V → R and A ⊆ V , w(A) = ∑
u∈A w(u). Given two sets S1 and S2, the symmetric

difference between S1 and S2 is defined as S1 	 S2 = (S1 \ S2) ∪ (S2 \ S1).

2.1. Classes of sparse graphs

A graph class C is termed sparse if there is a constant c such that any n-vertex graph in C has at most cn edges. We
describe the sparse graph classes that concern us in this paper.

The genus of a graph G is the minimum integer g � 0 such that G can be properly embedded in a surface of genus g . In
particular, a planar graph has genus 0. Graphs of bounded genus are among the classes of graphs that can be characterized
by a finite set of graphs that they do not contain as a minor.

For an edge e = (u, v) of a graph G , the graph G/e is obtained by contracting (u, v); that is, G/e is obtained from G
by identifying the vertices u and v and removing all the loops and duplicate edges. A minor of a graph G is a graph H
that can be obtained from a subgraph of G by contracting edges. A graph class C is minor closed if any minor of any graph
in C is also a member of C . A minor closed graph class C is H-minor-free or simply H-free if H /∈ C . A graph H is called
an apex graph if for some vertex v of H the removal of v turns H into a planar graph. A minor closed graph class C is
apex-minor-free if there is an apex graph H such that H /∈ C .

Graphs of bounded local treewidth form another important class of sparse graphs. A tree decomposition of a graph G =
(V , E) is a pair (X, T ) where T = (V T , ET ) is a tree whose vertices we will call nodes and X = ({Xi | i ∈ V T }) is a collection
of subsets of V such that

1.
⋃

i∈V T
Xi = V ,

2. for each edge (v, w) ∈ E , there is an i ∈ V T such that v, w ∈ Xi , and
3. for each v ∈ V the set of nodes {i | v ∈ Xi} forms a subtree of T .

The width of a tree decomposition ({Xi | i ∈ V T }, T ) is maxi∈V T {|Xi| − 1}. The treewidth of a graph G is the minimum width
over all tree decompositions of G . We use notation tw(G) to denote the treewidth of a graph G . The definition of treewidth
can be generalized to take into account local properties of G [12].
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Fig. 1. Classes of sparse graphs. Arrows represent inclusion.

Definition 1 (Local treewidth). The local treewidth of a graph G is a function ltwG : N → N which associates to every integer
r ∈ N the maximum treewidth of an r-neighborhood of vertices of G , i.e. ltwG(r) = maxv∈V {tw(G[Nr

G(v)])}.

For a function h : N → N we define the graph class Gh to be all those graphs G such that for each integer r ∈ N, we have
ltwG(r) � h(r). We say that a class of graphs G is of bounded local treewidth if G ⊆ Gh for some h : N → N. Equivalently,
a graph class C has bounded local treewidth if there exists a function h : N → N such that for each graph G ∈ C , and for
each integer r ∈ N, we have ltwG(r) � h(r). Well-known graph classes of bounded local treewidth are planar graphs, graphs
of bounded genus, and graphs of bounded maximum vertex degree (see [12] and [18] for more details and algorithmic
properties of these graphs). By the result of Robertson and Seymour [34] (see also [4]), h(r) can be chosen as 3r for planar
graphs. Similarly, Eppstein showed in [12] that h(r) can be chosen as cg g(Σ)r for graphs embeddable in a surface Σ , where
g(Σ) is the genus of the surface Σ and cg is a constant depending only on g(Σ). Demaine and Hajiaghayi [9] extended
this result and showed that for minor closed families of graphs that do not contain some fixed apex graph as a minor,
h(r) = O(r).

A graph G is d-degenerated if every induced subgraph of G has a vertex of degree at most d. It is well known, for example
that planar graphs are 5-degenerated and that H-minor-free graphs are h-degenerated for some constant h. See Fig. 1 for
the relationship between these classes.

2.2. Parameterized complexity

We briefly review the relevant concepts of parameterized complexity theory that we employ. For deeper background on
the subject see the books by Downey and Fellows [11], Flum and Grohe [16], and Niedermeier [31].

In the classical framework of P vs NP, there is only one measurement (the overall input size) that frames the distinction
between efficient and inefficient algorithms, and between tractable and intractable problems. Parameterized complexity
is essentially a two-dimensional sequel, where in addition to the overall input size n, a secondary measurement k (the
parameter) is introduced, with the aim of capturing the contributions to problem complexity due to such things as typical
input structure, sizes of solutions, goodness of approximation, etc. Here, the parameter is deployed as a measurement of the
amount of current solution modification allowed in a local search step. The parameter can also represent an aggregate of
such bounds.

The central concept in parameterized complexity theory is the concept of fixed-parameter tractability (FPT), that is solv-
ability of the parameterized problem in time f (k) · nO (1) . The importance is that such a running time isolates all the
exponential costs to a function of only the parameter.

The main hierarchy of parameterized complexity classes is

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP.

Hundreds of natural problems are known to be complete for these classes, and W [1] is considered as the parameterized
analog of NP, because the k-Step Halting Problem for nondeterministic Turing machines of unlimited nondeterminism
(trivially solvable by brute-force in time O (nk)) is complete for W [1]. Independent Set, parameterized by solution size, is
complete for W [1]. Dominating Set, parameterized by solution size, is complete for W [2]. These two problems (or variants)
are common sources of reductions to demonstrate likely parameterized intractability.

Given two parameterized problems Π and Π ′ , an FPT reduction from Π to Π ′ maps an instance (I,k) of Π to an
instance (I ′,k′) of Π ′ such that
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(1) k′ = h(k) for some computable function h,
(2) (I,k) is a YES instance of Π if and only if (I ′,k′) is a YES instance of Π ′ , and
(3) the mapping can be computed in FPT time.

3. Framework of study

We begin our study of local search variants of optimization problems by introducing notations and concepts that will be
used throughout the paper.

A combinatorial optimization problem is specified by a set of problem instances and it is either a minimization or maxi-
mization problem.

Definition 2. An instance of a combinatorial optimization problem P is a pair (S , c), where the solution set S is the set
of feasible solutions and the cost function c is a mapping c : S → R. The problem is to find a globally optimal solution
S∗ ∈ S such that c(S∗) � c(S) (c(S∗) � c(S)) for all S ∈ S if P is minimization (maximization) problem.

Definition 3. Let (S , f ) be an instance of a combinatorial optimization problem P . A neighborhood function is a mapping
N : S → 2S , that defines for each solution S ∈ S , a set N (S) ⊆ S of solutions. The set N (S) is the neighborhood of
solution S and each S ′ ∈ N (S) is a neighbor of S .

In general a local search algorithm starts off with an initial solution and then tries to find better solutions by searching
solution neighborhoods. The most commonly used and simplest form of a local search algorithm iteratively improves the
solution by replacing the current solution with one of improved cost, so long as this is possible. If the algorithm cannot
improve the current solution then the current solution is locally optimal.

Definition 4. Let (S , c) be an instance of a combinatorial optimization problem P and let N be a neighborhood function.
A solution Ŝ is locally optimal (minimal/maximal) with respect to N if c(̂S) � c(S) (c(̂S) � c(S)) for all S ∈ N (̂S) if P is a
minimization (maximization) problem.

There are various neighborhood functions considered in the literature for different problems. For many optimization
problems defined on graphs, the solution is a subset of vertices or edges of the graph. This is the case for the problems
Vertex Cover, Independent Set, Dominating Set, Edge Dominating Set, and Minimum Maximal Matching, to name a few
that we explore in this paper. A problem P is a vertex subset problem (or an edge subset problem) if a feasible solution to P
is V ′ ⊆ V (E ′ ⊆ E). We use S to denote the set of feasible solutions to a problem P .

For vertex subset (or edge subset) problems, a natural neighborhood function is obtained by exchanging k elements of
the current solution. The neighborhood function in which we are interested is called k-exchange neighborhoods (k-ExN). We
elaborate this further for minimization vertex subset problems. Let w : V → R+ be a weight function. Then the cost function
c : S → R+ is defined as

∑
v∈S w(v) for all S ∈ S . For a pair of elements S1, S2 ∈ S , let H(S1, S2) denote the Hamming

distance that is the size of the set |S1 	 S2|. We say that S ′ is a neighbor of S with respect to k-ExN if H(S, S ′) � k. Let N en
k (S)

denote the set of neighbors of S with respect to k-ExN. Then the generic problem of local search for a vertex subset graph
optimization problem P with respect to k-ExN is defined as follows.

k-Local Search P (k-LS-P )

Instance: A graph G = (V , E), a weight function w : V → R+,
a solution S , and an integer k > 0

Parameter: k.
Problem: Decide whether there is a solution T ∈ N en

k (S) such that
c(T ) < c(S) if P is a minimization problem, and
c(T ) > c(S) if P is a maximization problem.

For example, if P is Vertex Cover or Odd Cycle Transversal, we use k-LS-Vertex Cover and k-LS-Odd Cycle Transversal,
respectively, to denote the local search versions of these problems.

In general, an input of the parameterized local search version of a graph optimization problem P is a 4-tuple (G =
(V , E), w, S,k), where S is an initial solution, w : V → R+ , and k ∈ N is a positive integer. If w is a unit weight function
then we ignore w and then input becomes 3-tuple (G = (V , E), S,k).

4. Hardness results for local search in general graphs

In this section we prove a general result showing that local search variants of many vertex subset problems in general
graphs are hard for different levels of the parameterized complexity hierarchy. To do this we need to introduce some
notation.



Author's personal copy

712 M.R. Fellows et al. / Journal of Computer and System Sciences 78 (2012) 707–719

A graph property Π is a collection of graphs. The property Π is said to be hereditary if G ∈ Π implies that every induced
subgraph of G is also in Π . For a property Π , we define the Π -subset problem and its parametric dual, the Π -deletion

problem as follows.

Π -subset: Given a graph G = (V , E) and a positive integer t , determine whether there exists a set of t vertices V ′ ⊆ V such
that G[V ′] is in Π .

Π -deletion: Given a graph G = (V , E) and a positive integer t , determine whether there exists a set of t vertices V ′ ⊆ V
such that G[V \ V ′] is in Π .

Khot and Raman [23] studied the parameterized complexity of Π -subset problems and showed the following result.

Theorem 1. (See Khot and Raman [23].) Let Π be a hereditary property that includes all independent sets but not all cliques (or vice
versa). Then Π -subset is W [1]-hard, parameterized by t, the size of the subsets.

We study the local search variants of Π -subset and Π -deletion, that we term k-LS-Π -subset and k-LS-Π -deletion.
An instance to k-LS-Π -subset is a tuple (G = (V , E), S,k) with S a subset of V satisfying that G[S] ∈ Π . The question is
whether there is another set S ′ ⊆ V such that |S ′ \ S| � k and |S ′| > |S|. The k-LS-Π -deletion problem is derived from the
Π -deletion problem in a similar fashion.

Theorem 2. Let Π be a hereditary property. For a graph class G , the k-LS-Π -subset problem is FPT on G if and only if the k-LS-Π -

deletion problem is FPT on G . Furthermore, if the Π -subset problem or the Π -deletion problem is W [1]-hard then so is both the
k-LS-Π -subset problem and the k-LS-Π -deletion problem.

Proof. For a subset S of V , (G, S,k) is a YES instance to k-LS-Π -subset if and only if (G, V \ S,k) is a YES instance to the
k-LS-Π -deletion problem. This shows the equivalence of the two local search problems on the graph class G .

We now show that the existence of an FPT algorithm for k-LS-Π -subset implies that Π -subset is FPT. Let (G = (V , E),k),
k = t , be an instance of Π -subset and A be an FPT algorithm for k-LS-Π -subset. Since ∅ ∈ Π , we have that ∅ is a feasible
solution for Π -subset. Also, any two sets of size at most k have hamming distance at most 2k between each other. Running
A at most k times (with parameter 2k) we can either find a subset U ⊂ V of size at least k such that G[U ] is in Π , or
conclude that no such subset exists. Hence if the running time of A is f (k) · |V |O(1) , for some function f , then Π -subset is
solvable in time kf (2k) · |V |O(1) , making the Π -subset problem FPT and thus proving k-LS-Π -subset W [1]-hard. A similar
reduction can be obtained from the Π -deletion problem to the k-LS-Π -deletion problem. This concludes the proof. �

Theorems 1 and 2 together yield hardness results for the local search variants of many Π -subset problems. Examples
include local search variants of Independent Set (whose dual is Vertex Cover), Induced Forest (its dual is Feedback Vertex

Set), and Induced Bipartite Subgraph (with dual Odd Cycle Transversal). Similarly to Theorem 2, one can show the W [2]-
hardness of local search variants of W [2]-hard problems such as Dominating Set and Independent Dominating Set.

5. FPT algorithms for k-LS in graphs of bounded local treewidth

In this section we show that many local search problems become fixed-parameter tractable in graphs of bounded local
treewidth.

5.1. Domination problems

In this section we give an algorithm for the local search variant of a generalization of Dominating Set, called the r-Center

problem. A subset S ⊆ V is called an r-center if V ⊆ B(r, S).
In k-LS-r-Center, we are given an undirected graph G = (V , E), with weight function w : V → R+ , an r-center S ⊆ V and

integers k, r. The problem asks whether there exists an S ′ ∈ Nen
k (S) such that c(S ′) < c(S). Here the (aggregate) parameter

considered is (k, r). When all the vertices have weight 1 and r = 1 this is the k-LS-Dominating Set problem.
Our result is based on a combinatorial characterization of changed solutions. We prove that if there is an improved

solution that is close to the current solution in the solution space, then there is another improved solution close to the
current one in the solution space with the additional property that all changes are concentrated locally in the input graph.

Lemma 1. Let S1 and S2 be r-centers of a weighted graph G = (V , E) with weight function w : V → R+ , such that |S1 	 S2| � p and
c(S1) > c(S2). Then there are sets F1, F2 ⊆ V such that

(a) the set S = (S1 \ F1) ∪ F2 is an r-center of G and c(S) < c(S1);
(b) |F1 ∪ F2| � p; and
(c) there is a vertex z ∈ V such that F1 ∪ F2 ⊆ B(z,2pr).
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Proof. Let X = S1 \ S2 and Y = S2 \ S1. Furthermore, X ∩ Y = ∅ and S1 \ X = S2 \ Y = S1 ∩ S2. This implies that c(S1) =
w(S1 \ X) + w(X) > c(S2) = w(S2 \ Y ) + w(Y ), and hence w(X) > w(Y ). Consider the auxiliary graph G∗ = (X ∪ Y =
S1 	 S2, E ′), where two vertices u, v ∈ (X ∪ Y ) are adjacent if the shortest path distance in G between u and v is at most 2r.
Let C1, . . . , C� be the connected components of G∗ . For every connected component Ci , we assign a tuple μ(Ci) = (x, y)

where x = w(X ∩ Ci) and y = w(Y ∩ Ci). Since w(X) > w(Y ), we have that there is a connected component C j such that
x > y in μ(C j). We put F1 = X ∩ C j and F2 = Y ∩ C j and claim that these sets satisfy the conditions of the lemma.

Indeed, S = (S1 \ F1) ∪ F2 = S1 \ (X ∩ C j) ∪ (Y ∩ C j). Since x > y, we have that c(S) = w(S1) − w(X ∩ C j) + w(Y ∩ C j) <

c(S1). We show first that S is an r-center of G . We know that S1 is an r-center of G and hence the only vertices which could
be at distance more than r from the vertices of S are those which were at distance at most r from the vertices in (X ∩ C j).
Let u be a vertex which is at distance more than r from any vertex in S . Then there exists a vertex, say u1 ∈ (X ∩ C j),
such that d(u, u1) � r. Furthermore, S2 is an r-center not containing any of the vertices of (X ∩ C j). Hence, there exists
v ∈ Y such that d(u, v) � r. But this implies that d(u1, v) � 2r and hence v ∈ (Y ∩ C j). This proves that S is an r-center
of G . We can select any vertex in X ∩ C j for z. The size of C j is at most p and any pair of adjacent (in this component)
vertices is at distance at most 2r in G . Hence, the ball around z of radius 2pr contains all the vertices of F1 ∪ F2; that is,
(F1 ∪ F2) ⊆ B(z,2pr). �

We define a generalized form of k-LS-r-Center which we call k-LS-Generalized r-Center where apart from S , we are
also given a subset T ⊆ S , and we need to find a solution S ′ ∈ N en

k (S) such that c(S ′) < c(S) and T ⊆ S ′ . So an instance of
k-LS-Generalized r-Center looks like (G, w, S, T ,k).

Lemma 2. Let G be a class of graphs that is closed under taking induced subgraphs and for which we can solve k-LS-Generalized

r-Center in time f (�) · |G|O(1) whenever G ∈ G and the diameter of G is at most �. Then k-LS-r-Center is FPT for G .

Proof. Let (G, w, S,k) be an instance of k-LS-r-Center, where G ∈ G . By Lemma 1, we know that if there is a local improve-
ment in the k-exchange neighborhood of S , then there exists a solution S ′ ∈ N en

k (S) with c(S ′) < c(S) and z ∈ S \ S ′ such
that S 	 S ′ ⊆ B(z,4rk).

For every vertex v ∈ S we try assigning v the role of the desired vertex z and do as follows. We do BFS starting at v .
Let the layers created by doing BFS from v be Lv

0 , Lv
1 , . . . , Lv

t . We have two cases: either (a) t � 4rk + r or (b) t > 4rk + r. In
case (a) we set T v = ∅ and obtain (G, w, S, T v ,k) as an instance for k-LS-Generalized r-Center. In the other case, we first
take 4rk + r layers; that is,

B(v,4rk + r) =
4rk+r⋃

j=0

Lv
j .

We know that all the changed vertices, those that go out and those that will come in (that is, vertices in the set S 	 S ′) are
in B(v,4rk). Let

T v := S ∩
4rk+r⋃

j=4rk+1

Lv
j .

Furthermore, for v ∈ S , let S v = S ∩ B(v,4rk + r). For every v ∈ S , we have the instance (B(v,4rk + r), w, S v , T v ,k) for
k-LS-Generalized r-Center. An instance (G, w, S,k) is a YES instance for k-LS-r-Center if and only if there exists v ∈ S
for which (B(v,4rk + r), w, S v , T v ,k) is a YES instance for k-LS-Generalized r-Center. Since k-LS-Generalized r-Center is
solvable in time f (4rk + r) · |B(v,4rk + r)|O(1) for G[B(v,4rk + r)] for v ∈ S , we have that k-LS-r-Center for G is solvable
in time f (4rk + r) · |G|O(1) . �

Theorem 4.1 in [7] describes an algorithm that takes a graph G with m edges, a branch decomposition of G of width �,

and integers k, r as input, and determines in time O(2k(2r + 1)
3
2 � · m) the existence of a (k, r)-center in G . This result is

obtained by dynamic programming over the branch decomposition, using 2r + 1 different colors. The proof of the following
lemma is based on an extension of the argument for Theorem 4.1 in [7].

Lemma 3. Let G be the class of graphs of treewidth at most t, then k-LS-Generalized r-Center can be solved in time O((2k(2r +
1))

3
2 t+1 · |G|O(1)) for graphs G ∈ G , when a tree decomposition of width t is provided.

Proof. By [35] we know that any graph of treewidth t has branchwidth at most t +1, and we can use the tree decomposition
of width t , to obtain a branch decomposition of width t +1. Let (G, w, S, T ,k) be an instance of k-LS-Generalized r-Center.

By the algorithm of [7] the problem can be solved to optimality in O((2r + 1)
3
2 t+1 · |G|O(1)) time by dynamic programming.
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In our case we would like to find the optimal solution having at most k changes compared to S . We use the same dynamic
programming and the same 2r + 1 colors

{0,↑ 1,↑ 2, . . . ,↑ r,↓ 1,↓ 2,↓ r}
as used in the algorithm of Theorem 4.1 in [7]. In addition we also associate two numbers keeping track of how many
elements from the current solution we have moved out and how many new vertices have been selected from the bags
below it to the current solution. The rest of the update is done in the same way as in the proof of Theorem 4.1 in [7]. �
Theorem 3. Let h : N → N be a given function. Then k-LS-r-Center can be solved in time (2r + 1)h(2k) · |G|O(1) for graphs G ∈ Gh.

Proof. Let (G, w, S,k) be an instance of k-LS-r-Center. Since G ∈ Gh , we have that the treewidth tw(G[B(v,4rk + r)]) �
h(4rk + r) for all v ∈ S . By [14], a tree decomposition of width OPT

√
log OPT � h(4rk + r) can be obtained in polynomial

time. By Lemma 3, we can solve k-LS-Generalized r-Center for instances (B(v,4rk + r), S v , T v ,k) for every v ∈ S in time
(2k(2r + 1))h(4rk+r) · |B(v,4rk + r)|O(1) . In combination with Lemma 2 this completes the proof. �

Let us remark that by Theorem 3, k-LS-r-Center is FPT for planar graphs, graphs of bounded genus and graphs of
bounded maximum degree.

In the Vertex Cover problem one seeks for a vertex subset of minimum weight such that every edge has at least one
endpoint in this set. The classical k-Vertex Cover problem is one of the well studied, prototype problems in the area of
parameterized complexity, and it is solvable in time O(1.2738k + kn) on general graphs [5].

Almost directly, Theorem 3 yields an FPT algorithm for k-LS-Vertex Cover on graphs of bounded local treewidth.

Corollary 1. Let h : N → N be a given function such that h(i) � 2 for every i. Then k-LS-Vertex Cover can be solved in time 3h(2k) ·
|G|O(1) for graphs G ∈ Gh. In particular k-LS-Vertex Cover is FPT for planar graphs, graphs of bounded genus and graphs of bounded
maximum degree.

Proof. We reduce k-LS-Vertex Cover to k-LS-Dominating Set. From an instance (G, S, w,k) of k-LS-Vertex Cover we con-
struct an instance (G ′, S, w ′,k) of k-LS-Dominating Set. The graph G ′ is obtained from G by adding a subdivided edge
between every pair of adjacent vertices. The weight function w ′ is equal to w on the vertices of G . For each vertex v on
one of the newly subdivided edges we let w ′(v) be the maximum weight of any vertex in G . From the construction, it
follows that a set S ⊆ V (G) is a vertex cover of G if and only if it is a dominating set in G ′ . Furthermore, if a dominating
set contains a vertex v on one of the newly subdivided edges then v can be replaced by either of its neighbors. Thus
(G, S, w,k) is a YES instance of k-LS-Vertex Cover if and only if (G ′, S, w ′,k) is a YES instance of k-LS-Dominating Set.
Now notice that adding subdivided edges between adjacent vertices does not increase the treewidth of a graph (unless the
graph is a tree, in which case the treewidth will become at most 2, giving the condition that h(i) � 2). Also observe that
adding a subdivided edge between two adjacent vertices does not change the distance between any two vertices. Thus if
G ∈ Gh , then G ′ ∈ Gh . By Theorem 3, the instance (G ′, S, w ′,k) can be resolved in time 3(h(2k)) · |G ′|O(1) = 3(h(2k)) · |G|O(1) ,
concluding the proof. �

Planar graphs, and more generally, graphs of bounded genus and apex-minor-free graphs, are in Gh for some linear
function h, and Theorem 3 yields the following.

Corollary 2. On apex-minor-free graphs k-LS-r-Center is solvable in time rO(k) · |G|O(1) and k-LS-Vertex Cover is solvable in time
2O(k) · |G|O(1) .

We mention that it is also possible (with a bit more trouble) to take a direct approach and improve the running time to
2h(k) · |G|O(1) .

5.2. Odd cycle transversal

All the problems we considered so far have a certain “locality” in regard to what any vertex of a solution vertex set
“accomplishes” in a solution. In the Odd Cycle Transversal problem one seeks for a vertex subset S of minimum weight
in a graph, such that every cycle of odd length in the graph contains at least one vertex from S . In other words, after
removal of S , the remaining vertices induce a bipartite graph. At first glance Odd Cycle Transversal and its parameterized
dual — the Induced Bipartite Subgraph problem, which is to find a vertex subset S of maximum weight such the induced
graph G[S] is bipartite — do not look like “local” problems. It does not seem that we can limit all the local changes in
these problems to changes inside a small ball around some of the vertices. However, by making use of some combinatorial
observations, it is possible to construct a local-search-preserving parameterized reduction to the local search version of the
Maximum Independent Set problem.
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For ease of presentation we deal only with the unweighted case, noting that the weighted case can be handled in a
similar manner. For a given a graph G = (V , E), we define a new graph G̃ = (Ṽ , Ẽ) as follows. Let V i = {ui | u ∈ V }, i ∈ {1,2}.
The vertex set Ṽ consists of two copies of V , i.e. Ṽ = V 1 ∪ V 2 and Ẽ = {u1u2 | u ∈ V } ∪ {ui vi | uv ∈ E, i ∈ {1,2}}. In other
words, G̃ is obtained by taking two disjoint copies of G and by adding a perfect matching such that the endpoints of every
matching edge are the copies of the same vertex. For a set T ⊆ V such that G[T ] is a bipartite graph with bipartition T1

and T2, we denote by T̃ the set T̃1 = {u1 | u ∈ T1} ∪ T̃2 = {u2 | u ∈ T2} in Ṽ . The graph G̃ has some interesting properties
which we make use of when designing the local search algorithm for Odd Cycle Transversal.

Lemma 4. The following are equivalent

(i) (G, S,k) is a YES instance of k-LS-Induced Bipartite Subgraph,
(ii) (G̃, S̃,k) is a YES instance of k-LS-Independent Set.

Proof. (i) �⇒ (ii). Since (G, S,k) is a YES instance of k-LS-Induced Bipartite Subgraph, there is S ′ ∈ N en
k (S) such that

c(S) < c(S ′). Then S̃ ′
1 and S̃ ′

2 are independent sets. Furthermore, the only edges between two copies of the graph G are
matching edges between two copies of the same vertex. This implies that S̃ ′ is an independent set of G̃ , S̃ ′ ∈ N en

k (̃S) and
c(̃S) < c(̃S ′). In other words, (G̃, S̃,k) is a YES instance of k-LS-Independent Set.

(ii) �⇒ (i). For the other direction, consider S̃ ′ ∈ N en
k (̃S) such that c(̃S) < c(̃S ′) for k-LS-Independent Set. Notice that

because S̃ ′ is an independent set in G̃ , it does not contain both copies of the same vertex v ∈ V . Now, if S̃ ′
1 = S̃ ′ ∩ V 1

and S̃ ′
2 = S̃ ′ ∩ V 2 then S ′ = S ′

1 ∪ S ′
2 induces a bipartite subgraph of the same size in G . The fact that S ′ ∈ N en

k (S) follows
easily. �
Lemma 5. Let h : N → N and g = 2h + 1. If G ∈ Gh, then G̃ ∈ Gg .

Proof. To prove the lemma we need to show that for every vi ∈ V ′ , i ∈ {1,2}, and for every r ∈ N,

tw
(
G̃
[
Nr

G̃
(vi)

])
� g(r).

We observe that

Nr
G̃
(vi) = Nr

G̃[V i ](vi) ∪ Nr−1
G̃[V 3−i ](v3−i).

We know that Nr
G̃[V i ](vi) is isomorphic to Nr

G(v) and hence tw(G[Nr
G(v))] � h(r). Given a tree decomposition of width h(r)

for G[Nr
G(v))] we obtain a tree decomposition of width h(r) for Nr

G̃[V i ](vi). Let (T , {Bi}i∈T V ) be such a decomposition.

We construct a tree decomposition for G̃[Nr
G̃
(vi)] with the same tree T but for every bag Bi containing ui such that

u3−i ∈ Nr−1
G̃[V 3−i ](v3−i), we add u3−i to Bi . It is easy to check that this forms a valid tree decomposition. The upper bound on

the width follows from the fact that every bag contains at most 2h(r) + 2 vertices. �
By Corollary 1, we have that k-LS-Vertex Cover is FPT on graphs of bounded local treewidth. Since a set S is a vertex

cover of a graph G = (V , E) if and only if V \ S is an independent set, we have that the same also holds for k-LS-Independent

Set. Combining Corollary 1 with Lemmata 4 and 5, we arrive at the following.

Theorem 4. Let h : N → N be a given function. Then k-LS-Odd Cycle Transversal and k-LS-Induced Bipartite Subgraph can be
solved in time 3g(2k) · |G|O(1) for graphs G ∈ Gh where g = 2h + 1.

As in the case with k-LS-r-Center, we can conclude with the following.

Corollary 3. On apex-minor-free graphs k-LS-Odd Cycle Transversal is solvable in time 2O(k) · |G|O(1) .

6. Graph partitioning problems

In this section we look at local search algorithms for graph partitioning problems such as Max-Cut and Min-

(Max-)Bisection.
Let G = (V , E) be a given graph and w : E → R+ be a weight function. Then Max-Cut asks for a partition of V into

V 1 and V 2 such that the total weight of edges (u, v) with u ∈ V 1 and v ∈ V 2 is maximized. In Max- (Min-)Bisection the
objective is to find a partition of V into sets V 1 and V 2 such that

• �|V |/2� � |V 1| � |V 2| � �|V |/2�, and
• the total weight of edges (u, v) with u ∈ V 1 and v ∈ V 2 is maximized (minimized).
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We describe an FPT algorithm for a local search variant of Min-Bisection. Others follow along similar lines. Given a par-
tition (V 1, V 2) let E(V 1, V 2) be the edges with one endpoint in V 1 and other in V 2, and let c((V 1, V 2)) = ∑

e∈E(V 1,V 2) w(e).
We now define the notion of N en

k (V 1, V 2) for this problem. A partition (V ′
1, V ′

2) ∈ Nk(V 1, V 2) if there exist subsets X ⊆ V 1
and Y ⊆ V 2 such that (a) |X | = |Y | = r, r � k, and (b) V ′

1 = (V 1 \ X) ∪ Y and V ′
2 = (V 2 \ Y ) ∪ X .

Theorem 5. Let h : N → N be a given function and G be a minor closed subclass of Gh. Then k-LS-Minimum-Bisection, k-LS-

Maximum-Bisection and k-LS-Maximum-Cut can be solved in time 2h(ck) · |G|O(1) for graphs G ∈ G .

Proof. We give the proof for k-LS-Minimum-Bisection, and the proofs for the other problems follow by similar arguments.
Let (G, w, (V 1, V 2),k) be the input to k-LS-Minimum-Bisection. In the first part of the proof we show that we can solve
k-LS-Minimum-Bisection by solving an equivalent problem on graphs of bounded diameter (or bounded treewidth).

Reducing to graphs of bounded treewidth: We start with a BFS starting at a vertex v ∈ V . Let the layers created by
doing BFS on v be

Lv
0 , Lv

1 , . . . , Lv
t .

If t � 6k + 10, we move to the second phase of the algorithm. Assume that t > 6k + 3. We create thick layers from the above
layers:

W v
i =

3i+2⋃
j=3i

Lv
j ,

where i ∈ {0, . . . , s = � t+1
3 �}. The last thick layer may contain less than 3 layers. We partition V into the sets Tq , q ∈

{0, . . . ,2k + 1}, defined:

Tq =
⋃

Wq+i(2k+2), i ∈
{

0, . . . ,

⌊
s + 1

2k + 2

⌋}
.

If (G, w, (V 1, V 2),k) is a YES instance, then there exists a partition (V ′
1, V ′

2) ∈ Nk(V 1, V 2) such that the total number of
vertices participating in the exchange is at most 2k. By the pigeonhole principle, there is Ta that does not contain any of
these changed vertices and does not contain W s . We can find the desired Ta by trying all Tq ’s.

Now for every W v
i = ⋃3i+2

j=3i Lv
j contained in Ta , we remove the vertices of Lv

3i+1 (that is, the central layer). Let this set
of vertices be called V ′ and let the resulting graph be denoted G ′ , with connected components C1, . . . , Cr . We argue that
each connected component Ci of G ′ has bounded treewidth. Every connected component Ci of G ′ is a subset of at most
6k + 10 layers of the BFS. If we start with G , delete all BFS layers outside of these layers and contract all BFS layers inside
of these layers into v we obtain a minor H of G . H has diameter at most 6k + 11, and also H contains Ci as an induced
subgraph. Since every minor of G has bounded local treewidth, Ci has bounded treewidth, that is tw(Ci) � h(6k + 10) for
every i. The reason for removing central layers from each W v

i is that this retains all the edges which could participate in
improved cuts, as well as reduces the treewidth of the graph. In certain sense, the first and third layers of vertices in W v

i
shield the vertices of the middle layer by not participating in the exchange. Notice that since every connected component
of G ′ has bounded treewidth, G ′ itself also has bounded treewidth.

Finding appropriate solutions using dynamic programming: Let Ṽ 1 = V 1 \ V ′ and Ṽ 2 = V 2 \ V ′ . Furthermore T ′ = Ta \ V ′ .
Then there exists (V ′

1, V ′
2) ∈ N en

k (V 1, V 2) such that c(V 1, V 2) > c(V ′
1, V ′

2) if and only if there exists (Ṽ ′
1, Ṽ ′

2) ∈ N en
k (Ṽ 1, Ṽ 2)

such that c(Ṽ 1, Ṽ 2) > c(Ṽ ′
1, Ṽ ′

2) and T ′ ∩ (Ṽ ′
1 	 Ṽ 1) = ∅ (that is, changed vertices should not include any vertex from T ′).

Searching for (Ṽ ′
1, Ṽ ′

2) reduces to a problem in G ′ , a graph of bounded treewidth. We can solve this problem using standard
dynamic programming over graphs of bounded treewidth in time 2h(6k+11) · nO(1) . This step is almost identical to the
FPT algorithm solving Max/Min-Bisection in graphs of bounded treewidth (see, e.g. [20]). We can also keep appropriate
information during the dynamic programming in order to find the desired cut constructively. �

Note that planar graphs, and more generally, bounded genus graphs, and apex-minor-free graphs, are the minor-closed
classes of graphs of bounded local treewidth. By the result of Demaine and Hajiaghayi [9] h(r) is a linear function on
minor closed families of graphs which do not contain some fixed apex graph as a minor. Thus by Theorem 5, we have the
following.

Corollary 4. k-LS-Minimum-Bisection, k-LS-Maximum-Bisection and k-LS-Maximum-Cut can be solved in time 2O(k)) · |G|O(1)

on apex-minor-free graphs.

7. FPT local search algorithms for H -minor-free graphs

The results for k-LS variant for various problems considered in the previous sections can be extended to graphs excluding
a fixed graph H as a minor in a non-trivial manner. This extension is based on the main structural theorem of Robertson
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and Seymour [36], that provides a description of an H-minor-free graph in terms of clique-sum decomposition over almost
embeddable graphs with respect to a surface of bounded genus. By making use of this decomposition it is possible to replace
the dynamic programming algorithms employed in the previous section for graphs of bounded treewidth, by dynamic
programming over “clique-sum decomposition of H-minor graphs”. For all our algorithms for k-LS problems for H-minor
free graphs, we will eventually reach a stage where we need to solve an “appropriate” problem in graphs of bounded
diameter (previously at this step we applied a dynamic programming algorithm over graphs of bounded treewidth). We first
obtain a clique-sum decomposition for the input graph G and then do two-layer dynamic programming over clique-sum
decompositions as done in [8,18].

To make our presentation clear, we restrict ourselves to the k-LS-Dominating Set problem. Before describing the struc-
tural theorem of Robertson and Seymour which we use crucially we need some definitions.

Definition 5 (Clique-Sums). Let G1 = (V 1, E1) and G2 = (V 2, E2) be two disjoint graphs, and k � 0 an integer. For i = 1,2,
let W i ⊂ V i , form a clique of size h and let G ′

i be the graph obtained from Gi by removing a set of edges (possibly empty)
from the clique Gi[W i]. Let F : W1 → W2 be a bijection between W1 and W2. We define the h-clique-sum or the h-sum
of G1 and G2, denoted by G1 ⊕h,F G2, or simply G1 ⊕ G2 if there is no confusion, as the graph obtained by taking the union
of G ′

1 and G ′
2 by identifying w ∈ W1 with F (w) ∈ W2, and by removing all the multiple edges. The images of the vertices

of W1 and W2 in Gi ⊕ G2 are called the join of the sum.

We remark that ⊕ is not well defined; different choices of G ′
i and the bijection F could give different clique-sums.

A sequence of h-sums, not necessarily unique, which result in a graph G , is called a clique-sum decomposition of G .

Definition 6 (h-nearly embeddable graphs). Let Σ be a surface with boundary cycles C1, . . . , Ch . A graph G is h-nearly embed-
dable in Σ , if G has a subset X of size at most h, called apices, such that there are (possibly empty) subgraphs G0, . . . , Gh
of G \ X such that

• G \ X = G0 ∪ · · · ∪ Gh ,
• G0 is embeddable in Σ , we fix an embedding of G0,
• G1, . . . , Gh are pairwise disjoint,
• for 1 � · · · � h, let Ui := {ui1 , . . . , uimi

} = V (G0) ∩ V (Gi), Gi has a path decomposition (Bij), 1 � j � mi , of width at
most h such that
– for 1 � i � h and for 1 � j � mi we have u j ∈ Bij ,
– for 1 � i � h, we have V (G0)∩ Ci = {ui1 , . . . , uimi

} and the points ui1 , . . . , uimi
appear on Ci in this order (either if we

walk clockwise or anti-clockwise).

The class of graphs h-nearly embeddable in a fixed surface Σ has linear local treewidth after removing the set of apices.
The structural theorem we need, to obtain the clique-sum decomposition for H-minor graphs was given by Robertson

and Seymour and made algorithmic by Demaine et al. [10].

Theorem 6. (See Robertson and Seymour [36], Demaine et al. [10].) For every graph H there exists an integer h, depending only on the
size of H, such that every graph excluding H as a minor can be obtained by h-clique-sums from graphs that can be h-nearly embedded
in a surface Σ in which H cannot be embedded and such a clique-sum decomposition can be obtained in time nO(1) . The exponent in
the running time depends only on H.

We are ready to prove the main result of this section.

Theorem 7. k-LS-r-Center is FPT on the class of H-minor-free graphs.

Proof. Let (G, w, S,k) be an instance of k-LS-r-Center where G excludes a fixed graph H as a minor. Lemma 1 implies that
if the given instance is a YES instance then there exists a solution S ′ ∈ N en

k (S) with c(S ′) < c(S) and v ∈ S \ S ′ such that
S 	 S ′ ⊆ B(v,4rk). Hence we know that all the changed vertices, those that go out and those that will come in (that is,
vertices in the set S 	 S ′) are in B(v,4rk). Let T v := (S ∩ (

⋃4rk+r
j=4rk+1 Lv

j )). Furthermore, for v ∈ S , let S v = S ∩ B(v,4rk + r).
For every v ∈ S , we get the following instance (B(v,4rk+r), w, S v , T v ,k) for k-LS-r-Center. An instance (G, w, S,k) is a YES

instance for k-LS-r-Center if and only if there exists v ∈ S for which (B(v,4rk + r), w, S v , T v ,k) is a YES instance for k-LS-

Generalized r-Center. Now we solve k-LS-Generalized r-Center in time f (4rk + r) · |B(v,4rk + r)|O(1) for G[B(v,4rk + r)]
for v ∈ S which implies that we can solve k-LS-r-Center for G in time f (4rk + r) · |G|O(1) .

The main difference with graphs of local treewidth is that the treewidth of G[B(v,4rk + r)] cannot be bounded by a
function of k and r anymore. This is why we have to go through the structural decomposition of Robertson and Seymour.
However, every almost embeddable graph has at most h apex vertices, and after removing these vertices from the graph
we have a graph of bounded local treewidth. Unfortunately, it can happen that the ball B(v,4rk + r) can be spread through
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many summands of the clique-sum of G and we cannot argue that there are at most h vertices which removal makes
G[B(v,4rk + r)] of bounded local treewidth.

To resolve this problem, we do two levels of dynamic programming over clique-sum decomposition as done in [8]. The
idea of this programming is very much the same as in [8], and we give only a brief sketch of this algorithm here. Let
G = G[B(v,4rk + r)] for some vertex v ∈ S . We obtain a clique-sum decomposition (T ,B = {Ba}) for G using Theorem 6.
After we obtain a clique-sum decomposition (T ,B = {Ba}) for G , we do a dynamic programming starting from the leaf of
the tree and moving towards the root.

In the dynamic programming for a fixed bag p, we take the vertices of torso and apices (A p ∪ X p) and guess whether
they are going to be part of the changed solution or not. If we decide that a vertex is not going to be part of the ‘changed’
dominating set, then we guess a neighbor of this vertex which will be in the ‘changed’ dominating set. Here we make at
most nO(h) guesses. Furthermore for every guess we also keep track of how many vertices from S have been moved out and
how many new vertices have been added to the solution. For every fixed guess and pair (k1,k2), 0 � k1,k2 � k, we store 1
or 0 based on whether there exists a dominating set S ′ such that S \ S ′ � k1 and S ′ \ S � k2 of weight strictly less than c(S)

in Gp . This is done by making use of tables stored at its children and by observing the fact that (a) G is of bounded diameter
and (b) the graph induced on the vertices of bag p has bounded local treewidth after the removal of apices. Hence this step
can be carried out by the normal dynamic programming over graphs of bounded treewidth. An algorithm returns YES and a
changed solution if there exists a guess for the vertices in Ar = ∅ and Xr for which we have stored 1 corresponding to the
pair (k,k). �

Let us remark that a similar approach works for many other local search problems including k-LS-Vertex Cover and
k-LS-Odd Cycle Transversal.

8. Hardness results for local search in graphs of bounded degeneracy

Finally, we observe that, in some sense, H-minor-free graphs are the most general classes of graphs for which positive
results for these local search problems can be expected. We show that for more general classes of sparse graphs many local
search problems become W [1]-hard. Thus the existence of k-exchange FPT algorithms for these problems would contradict
the widely believed assumption from parameterized complexity, namely FPT �= W [1].

In this section we show that for many local search problems the k-LS version remains W [1]-hard even for graphs of
bounded degeneracy. This means that in some sense, H-minor-free graphs are the most general classes of graphs for which
positive results for these local search problems can be expected.

Theorem 8. k-LS-Odd Cycle Transversal is W [1]-hard even when restricted to 2-degenerate graphs. Furthermore, k-LS-

Independent Set and k-LS-Dominating Set are W [1]-hard when restricted to 3-degenerate graphs.

Proof. We first prove that k-LS-Odd Cycle Transversal is W [1]-hard in 2-degenerate graphs by reducing from k-LS-Odd

Cycle Transversal in general graphs. On input (G, S,k) to k-LS-Odd Cycle Transversal in general graphs we make a
2-degenerate graph G ′ by subdividing every edge of G twice. The graph (G ′, S,k) is an instance of k-LS-Odd Cycle Transver-

sal in 2-degenerate graphs. Now, cycles in G correspond to cycles in G ′ . Furthermore the length of a cycle in G and the
length of its corresponding cycle in G ′ have the same parity. Thus, if (G, S,k) is a YES instance of k-LS-Odd Cycle Transver-

sal then so is (G ′, S,k). In the other direction, suppose (G ′, S,k) is a YES instance of k-LS-Odd Cycle Transversal. Then
there is an odd cycle transversal S ′ of G ′ such that H(S, S ′) � k and |S ′| < |S|. Whenever an odd cycle transversal contains
a degree 2 vertex v , it can be replaced by any of its two neighbors. Therefore, without loss of generality S ′ ⊆ V (G) and thus
S ′ is an odd cycle transversal in G . Hence (G, S,k) is a YES instance of k-LS-Odd Cycle Transversal, implying that k-LS-Odd

Cycle Transversal is W [1]-hard in 2-degenerate graphs.
Since k-LS-Odd Cycle Transversal is W [1]-hard in 2-degenerate graphs, so is k-LS-Induced Bipartite Subgraph. To show

that k-LS-Independent Set is W [1]-hard in 3-degenerate graphs it is sufficient to observe that the reduction from k-LS-Odd

Cycle Transversal to k-LS-Independent Set presented in Section 5.2 takes graphs of degeneracy 2 to graphs of degeneracy 3.
Now, since k-LS-Independent Set is W [1]-hard in 3-degenerate graphs then so is k-LS-Vertex Cover. To reduce k-LS-Vertex

Cover in 3-degenerate graphs to k-LS-Dominating Set in 3-degenerate graphs it enough to observe that the reduction
from k-LS-Vertex Cover to k-LS-Dominating Set used in the proof of Theorem 1 takes unweighted 3-degenerate graphs to
unweighted 3-degenerate graphs. �
9. Conclusions and future directions

In this paper we initiate the study of the parameterized complexity of local search problems on graphs. We have shown
that one can search the k-exchange neighborhood of a solution qualitatively more efficiently than by brute-force for many
natural problems, for several classes of sparse graphs. We also have provided hardness demonstrations indicating that most
of our results cannot be further generalized. There are several open questions that need to be resolved and some significant
opportunities for further research.
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• All our algorithmic results either depend on an observation that allows us to consider small diameter graphs, or are
reducible to problems where such an approach is feasible. An important problem for which these techniques do not
seem to be applicable is the Travelling Salesman problem. For general graphs metric instances, the problem was shown
to be W [1]-hard by Marx [29]. The complexity of the planar graph metric remains open. Other local search problems
that seem to exhibit similar non-local properties include Feedback Vertex Set and Connected Dominating Set.

• The running times of our algorithms on planar graphs are of the form O(2O(k)n). Is such exponential dependence
optimal (up to some assumption from complexity theory) or are algorithms of running time O(2o(k)nc) possible?

• Given the huge significance of local search to practical computing — might FPT algorithms for the efficient exploration
of k-exchange neighborhoods, used as subroutines for local search-based heuristics for NP-hard optimization problems,
prove useful?
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