
1 23

Algorithmica

ISSN 0178-4617

Algorithmica
DOI 10.1007/s00453-011-9555-9

Sharp Separation and Applications to
Exact and Parameterized Algorithms

Fedor V. Fomin, Fabrizio Grandoni,
Daniel Lokshtanov & Saket Saurabh

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

Algorithmica
DOI 10.1007/s00453-011-9555-9

Sharp Separation and Applications to Exact
and Parameterized Algorithms

Fedor V. Fomin · Fabrizio Grandoni ·
Daniel Lokshtanov · Saket Saurabh

Received: 18 August 2010 / Accepted: 19 July 2011
© Springer Science+Business Media, LLC 2011

Abstract Many divide-and-conquer algorithms employ the fact that the vertex set
of a graph of bounded treewidth can be separated in two roughly balanced subsets
by removing a small subset of vertices, referred to as a separator. In this paper we
prove a trade-off between the size of the separator and the sharpness with which we
can fix the size of the two sides of the partition. Our result appears to be a handy
and powerful tool for the design of exact and parameterized algorithms for NP-hard
problems. We illustrate that by presenting two applications.

Our first application is a O(2n+o(n))-time algorithm for the DEGREE CON-
STRAINED SPANNING TREE problem: find a spanning tree of a graph with the maxi-
mum number of nodes satisfying given degree constraints. This problem generalizes
some well-studied problems, among them Hamiltonian Path, Full Degree Spanning
Tree, Bounded Degree Spanning Tree, and Maximum Internal Spanning Tree.

The second application is a parameterized algorithm with running time
O(16k+o(k) + nO(1)) for the k-INTERNAL OUT-BRANCHING problem: here the goal
is to compute an out-branching of a digraph with at least k internal nodes. This is

A preliminary version of this paper appeared in the proceedings of LATIN 2010 [20].

F.V. Fomin · D. Lokshtanov
Department of Informatics, University of Bergen, Bergen, Norway

F.V. Fomin
e-mail: fedor.fomin@ii.uib.no

D. Lokshtanov
e-mail: daniello@ii.uib.no

F. Grandoni
Computer Science Department, University of Rome Tor Vergata, Roma, Italy
e-mail: grandoni@disp.uniroma2.it

S. Saurabh (�)
The Institute of Mathematical Sciences, Chennai, India
e-mail: saket@imsc.res.in

Author's personal copy

mailto:fedor.fomin@ii.uib.no
mailto:daniello@ii.uib.no
mailto:grandoni@disp.uniroma2.it
mailto:saket@imsc.res.in

Algorithmica

a significant improvement over the best previously known parameterized algorithm
for the problem by Cohen et al. (J. Comput. Syst. Sci. 76:650–662, 2010), running in
time O(49.4k + nO(1)).

1 Introduction

The aim of parameterized and exact algorithms is to solve NP-hard problems exactly,
with the smallest possible (exponential) worst-case running time. While exact algo-
rithms are designed to minimize the running time as a function of the input size, pa-
rameterized algorithms seek to perform better when the instance considered has more
structure than a general instance to the problem. (For an introduction to the topic, see
e.g. [13, 40]). Exact and parameterized algorithms have an old history [9, 27, 33],
but they have been at the forefront in the last decade. In the last few years, many
new techniques have been developed to design and analyze exact algorithms, among
them Inclusion-Exclusion [4], Subset Convolution [5], Measure & Conquer [16], and
Iterative Compression [43]. Among the best-studied problems, let us recall Indepen-
dent Set [7, 16, 44, 46], (Connected) Dominating Set [14, 16, 17, 25, 47], Steiner
Tree [5, 15, 21, 39], Feedback Vertex Set [18, 42], Coloring [2, 4, 33], Satisfiability
[32, 37], Traveling Salesman and Hamiltonian Path [3, 27, 28, 31, 36, 48], and many
others.

A classical approach to solve combinatorial problems is divide-and-conquer: de-
compose the problem in two or more sub-problems, solve them independently and
merge the obtained solutions. Several divide-and-conquer algorithms rely on the ex-
istence of a small separator, which is defined as follows. Let G be an n-vertex graph
with vertex set V = V (G) and edge set E = E(G). A set of vertices S is called an
α-separator of G, 0 < α ≤ 1, if the vertex set V \ S can be partitioned into sets VL

and VR of size at most α n such that no vertex of VL is adjacent to any vertex of VR .
For example, the classical result of Lipton and Tarjan [34] that every planar graph has
a 2

3 -separator of size O(
√

n) can be used to solve many NP-hard problems in planar

graphs in time O(2O(
√

n)) [35]. Alon, Seymour and Thomas [1] generalized the re-
sult of Lipton and Tarjan [34] and proved that every graph excluding a fixed graph
H as a minor has a 2

3 -separator of size O(|V (H)|3/2√n). It is well known that every
tree has a 2

3 -separator of size 1. This result was generalized to graphs of bounded
treewidth in [6], where it is shown that every graph of treewidth t has a 2

3 -separator
of size at most t + 1.

1.1 Our Results

In this paper (see Sect. 2) we prove a trade-off between the size of the separator S

and the sharpness with which we can fix the size of VL and VR in the partition, for
graphs of treewidth t (see Sect. 1.2 for the definition of treewidth). Given a function
w : X → R, we define w(Y) = ∑

y∈Y w(y) for any Y ⊆ X.

Lemma 1 (Sharp Separation) Let G = (V ,E) be a graph of treewidth t and
w : V → {0,1}. Then for any integer p ≥ 0 and 0 ≤ x ≤ w(V), there is a parti-
tion (VL,S,VR) of V such that |S| ≤ t · p, w(VL) ≤ x + �w(V)

2p 	, w(VR) ≤ w(V) −

Author's personal copy

Algorithmica

x +�w(V)
2p 	, and there is no edge in G with one endpoint in VL and the other endpoint

in VR , that is, S separates VL from VR . Given a tree-decomposition of G of width t ,
S can be computed in polynomial time.

Here the weight function w is used to model a subset W ⊆ V of vertices that we
wish to separate. Lemma 1 implies for example that, with a separator of logarithmic
size (for bounded treewidth graphs), we can obtain a perfectly balanced partition with
max{|VL|, |VR|} ≤ n/2. In this paper we will always choose p = log2−ε n, for a small
constant ε > 0, so that the additive term �w(V)

2p 	 disappears. The base of the logarithm
will be omitted, in order to lighten the notation.

Let us remark that, in the applications considered in this paper, we will use a
restricted version of the above lemma where the considered graph is a tree (hence
t = 1), and all node weights are one. Furthermore, we will never need to compute
a tree-decomposition (since for our algorithms the only thing we need is the sepa-
rator and that will be guessed). However, we decided to present the lemma in the
above form since it captures other applications which are not discussed here. For
example, w can be used to model Steiner-tree-like problems. Furthermore, our ba-
sic approach (differently from other techniques in the literature) allows one to find
graphs of bounded treewidth (with given properties) rather than trees.

Our Sharp Separation Lemma is a handy tool in the design of parameterized and
exact algorithms based on the divide-and-conquer paradigm. We illustrate that by
presenting two applications.

Degree Constrained Spanning Tree For a given graph G = (V ,E), let dG(v) denote
the degree of v ∈ V in G. Our first result is an algorithm for the following problem:

DEGREE CONSTRAINED SPANNING TREE (DCST). Given a graph G = (V ,E) and
a function D : V → 2{1,...,n}. Find a spanning tree T of G maximizing |{v ∈ V :
dT (v) ∈ D(v)}|.

Intuitively, D(v) can be seen as a set of desirable degrees for a vertex v in the span-
ning tree. We have a hit each time dT (v) ∈ D(v) for some v. The goal is maximizing
the number of hits.

DCST naturally generalizes many NP-hard spanning tree and path problems stud-
ied in the literature. For instance we can code the famous HAMILTONIAN PATH

problem, find a spanning path of a given graph, by letting D(v) = {1,2} for all ver-
tices; A spanning tree with n hits is a Hamiltonian path. Another example is the
FULL DEGREE SPANNING TREE problem, where we search for a spanning tree
which maximizes the number of vertices having the same degree in the graph as
in the tree [29]. To code this problem we set D(v) = {dG(v)} for every vertex v.
Another well-studied spanning tree problem is the BOUNDED DEGREE SPANNING

TREE problem [22, 24, 45]. Here we search for a spanning tree such that the degree
of each vertex v in the spanning tree is bounded by an integer Bv ≤ n − 1 given
as input. Clearly setting D(v) = {1, . . . ,Bv} yields an encoding of this problem as
well. Finally, to code the MAXIMUM INTERNAL SPANNING TREE problem, where
the aim is to find a spanning tree maximizing the number of internal vertices, we set
D(v) = {2, . . . , dG(v)} for every vertex v.

Author's personal copy

Algorithmica

One of the earliest results in the field of exact algorithms [27, 28, 31] is a
O(2nnO(1)) time algorithm for HAMILTONIAN PATH. In a very recent, breakthrough
paper, Björklund [3] improved the running time to O(1.66n). Gaspers et al. [23] give
a O(1.92n) time algorithm for FULL DEGREE SPANNING TREE. Fernau et al. [12]
give a O(3nnO(1)) time algorithm for MAXIMUM INTERNAL SPANNING TREE [12].

Here we present an algorithm which solves DCST in O(2n+o(n)) time and space,
where n is the number of nodes in the graph. Recently and independently, Ned-
erlof [39] gave an Inclusion-Exclusion based algorithm running in time O(2nnO(1))

and polynomial space for DCST. Though his technique gives better results for DCST,
our approach seems to be more flexible. In particular, our method works for the
weighted version of the problem (with arbitrarily large weights).

k-Internal Out-Branching The second application of the Sharp Separation Lemma
is a parameterized algorithm for the following problem.

k-INTERNAL OUT-BRANCHING: Given a digraph G = (V ,E) and a positive inte-
ger k, check whether there exists an out-branching with at least k internal vertices.

The undirected counterpart to this problem, namely k-INTERNAL SPANNING TREE,
was first studied by Prieto and Sloper [41], who gave an algorithm with running time
24k log knO(1) and a kernel of size O(k2) for the problem. Recently, Fomin et al. [19]
gave an improved algorithm with running time 8knO(1) and a kernel with at most 3k

vertices. For k-INTERNAL OUT-BRANCHING, Gutin et al. [26] obtained an algorithm
of running time 2O(k log k)nO(1) and gave a kernel of size O(k2). A faster algorithm,
running in time O(49.4knO(1)) was subsequently developed by Cohen et al. [10]. In
this paper we use the Sharp Separation Lemma to obtain an algorithm with running
time O(16k+o(k) + nO(1)). The space complexity is exponential (in k). However, it
can be made polynomial by means of randomization.

1.2 Preliminaries

For basic graph terminology we refer the reader, e.g., to [11]. Let G = (V ,E) be an
undirected graph, V ′ ⊆ V and E′ ⊆ E. The degree of node v is denoted by dG(v). By
G[V ′] we denote the subgraph of G induced by V ′. We use G − V ′ as a shortcut for
G[V − V ′]. We also use the shortcut G − E′ = (V ,E − E′). We sometimes confuse
E′ with the corresponding subgraph. For a subgraph G′, V (G′) and E(G′) denote
the node and edge set of G′, respectively. For two subgraphs G′ and G′′, G′ ∪ G′′ =
(V (G′) ∪ V (G′′),E(G′) ∪ E(G′′)). We use G′ � G′′ = (V (G′) ∪ V (G′′),E(G′) �
E(G′′)) to denote the corresponding multi-graph, where edges are counted with their
multiplicity. By contracting an undirected edge {u,v}, we mean replacing u and v

with a new node z, which inherits all the edges incident to u and v. Symmetrically,
by splitting {u,v}, we mean replacing it with two edges {u, z} and {z, v}, where z is
a newly created node.

Consider now a digraph G = (V ,E). We use the same notation as above, with
analogous meaning. Let us remark that, when splitting (u, v), the two new edges are
(u, z) and (z, v). Furthermore, we let d+(v) be the out-degree of node v. An r-out-
tree in a digraph G is a subtree T of G rooted at r , such that all arcs of T are oriented
away from r . If T contains all vertices of G, T is said to be an r-out-branching.

Author's personal copy

Algorithmica

A tree decomposition of a (undirected) graph G = (V ,E) is a pair (X,U) where
U = (W,F) is a tree, and X = ({Xi | i ∈ W }) is a collection of subsets of V such that:
(i)

⋃
i∈W Xi = V , (ii) for each edge {v,u} ∈ E, there is an i ∈ W such that v,u ∈ Xi ,

and (iii) for each v ∈ V the set of vertices {i | v ∈ Xi} forms a subtree of U . The
width of (X,U) is maxi∈W {|Xi | − 1}. The treewidth tw(G) of G is the minimum
width over all the tree decompositions of G. We recall that the treewidth of a tree
is 1.

We will exploit the following definition and theorem.

Definition 2 (See [38]) An (n, t)-universal set F is a set of functions from {1, . . . , n}
to {0,1}, such that for every subset S ⊆ {1, . . . , n}, |S| = t , the set F |S = {f |S | f ∈
F } is equal to the set 2S of all the functions from S to {0,1}.

Theorem 3 (See [38]) There is a deterministic algorithm with running time
O(2t tO(log t)n logn) that constructs an (n, t)-universal set F such that |F | =
2t tO(log t) logn.

2 Sharp Separation in Graphs of Bounded Treewidth

In this section we prove our Sharp Separation Lemma, which is at the heart of the
algorithms described in the following sections. In order to prove that, we need the
following well-known result.

Lemma 4 (See [6]) Given a n-vertex graph G = (V ,E) of treewidth t and w : V →
{0,1}. There is a set T of vertices of size at most t + 1 such that for any connected
component G[C] of G \ T , w(C) ≤ w(V)/2. Given a tree-decomposition of G of
width t , T can be computed in polynomial time.

Now we are ready to prove Lemma 1.

Proof of Lemma 1 We construct VL, VR and S iteratively, starting from empty sets,
as follows. By Lemma 4 there is a set T of size at most t such that for any connected
component G[C] of G \T , w(C) ≤ w(V)/2. We add T to S and for each component
G[C] of G \ T , add C to VL or VR if this does not violate w(VL) ≤ x or w(VR) ≤
w(V) − x, respectively.

Let us show that at the end of the process there is at most one component G[C]
left. Suppose by contradiction that there are at least 2 such components, say G[C1]
and G[C2]. Without loss of generality assume w(C1) ≤ w(C2). This implies that
w(VL) + w(C1) > x and w(VR) + w(C1) > w(V) − x. Consequently,

w(VL) + w(VR) + 2w(C1) > w(V).

However, this contradicts the fact that

w(VL) + w(VR) + 2w(C1) ≤ w(VL) + w(VR) + w(C1) + w(C2) ≤ w(V).

Author's personal copy

Algorithmica

Now we iteratively reapply the construction above for p − 1 times, each time
considering the component G[C] left from previous step. Eventually we add C to
either VL or VR .

At each iteration the weight of the considered component C halves, so at the end
of the process w(C) ≤ �w(V)/2p	. The upper bound on the weight of VL and VR

follows. Since at each step we add to S a set of size at most t , we eventually ob-
tain |S| ≤ t · p. The running time claim follows immediately from Lemma 4. This
concludes the proof. �

3 Degree Constrained Spanning Tree

In this section we present our O(2n+o(n))-time algorithm for the DEGREE CON-
STRAINED SPANNING TREE problem (DCST). Indeed, we rather consider a
weighted generalization of the problem. Here we are given an undirected graph
G = (V ,E), with node weights w : V → R≥0, and a list of desirable degrees D(v)

for each vertex v. The hits hit(G′) of a subgraph G′ is the set of nodes v such
that dG′(v) ∈ D(v). Our goal is to find a spanning tree T of maximum weight
w(hit(T)) := ∑

v∈hit(T) w(v).
Our recursive algorithm is described in Fig. 1. The base case of the recursion is

given in Step (1). If there is no solution, the algorithm returns the empty graph ∅.
Here the algorithm exploits an (initially empty) memoization table, where it stores
the solutions to each solved subproblem. This prevents the algorithm from solving
the same subproblem twice. There is a technical detail which is worth discussing.
Due to the creation of new nodes, the subgraphs created by the algorithm are not
induced subgraphs of the initial graph. This creates some troubles when one needs to
search for a subproblem in the memoization table. One way to solve this issue is to
guarantee that original nodes maintain the same labels in the subproblems as in the

dcst(G,w, D)

(1) If G is disconnected, return ∅. If M = 0, return any spanning tree. If n ≤ a, solve the problem by brute
force and return the obtained solution. If the problem solution is present in the memoization table,
return it.

(2) For any subset of nodes S ⊆ V (G), with |S| ≤ logn, for any two disjoint subsets EL,ER ⊆ S2(=
S ×S) such that EL ∪ER is a spanning tree of (S,S2), for any bipartion (VL,VR) of V −S such that
|VL| ≤ n/ log2 n and |VR | ≤ n − n/ log2 n, for any two degree assignments dL : S → {1, . . . , n − 1}
and dR : S → {1, . . . , n − 1}:
(2.a) Construct a graph GL from G, by removing nodes VR , adding edges ER , and splitting those

edges. Let DR and FR be the new nodes and edges, respectively, created by the splittings.
(2.b) Define a node weight function wL on GL , with wL(v) = M ′ := M · (n + 1) for v ∈ DR ∪ S,

and wL(v) = w(v) otherwise.
(2.c) Define degree constraints DL on GL, with DL(v) = {dL(v)} for v ∈ S, DL(v) = {2} for v ∈

DR , and DL(v) = D(v) otherwise.
(2.d) Compute SOL′

L
:= dcst(GL,wL, DL), and let SOLL := SOL′

L
− DR .

(2.e) Compute SOLR symmetrically. Let SOL := SOLL ∪ SOLR .
(3) Among the subgraphs SOL computed above, return a feasible solution of maximum weight, if any.

Otherwise, return ∅.

Fig. 1 Algorithm for DCST. Here a is a sufficiently large constant, M is the largest input node weight,
and n is the number of nodes

Author's personal copy

Algorithmica

input problem, while new nodes take different labels. As we will discuss, the number
of new nodes at any time is bounded by a poly-logarithm in the initial number of
nodes: hence one can find the desired entry in the table in sub-exponential time 2o(n).

In Step (2) the algorithm creates a set of pairs of DCST instances (GL,wL, DL)

and (GR,wR, DR), and solves them recursively. The reasons behind the choice of
those pairs will be clearer from the correctness analysis. In the subproblems we set
the weight of some nodes to a very large value, and restrict their degree set to a
unique value. Intuitively, this forces the corresponding solutions to set the degree of
those nodes to the mentioned values.

Lemma 5 (Correctness) If there exists a feasible solution, algorithm dcst returns
one such solution of maximum weight.

Proof By definition, if the algorithm returns a solution, it is feasible. Let us prove
by induction on n that, if there exists a feasible solution, the algorithm returns one
such solution of maximum weight. The claim is trivially true if the algorithm halts at
Step (1).

Otherwise, consider the following choice for the tuple (S,EL,ER,VL,VR,dL, dR)

(see also Fig. 2a), with the corresponding graphs SOL, SOLL etc. Let OPT be the op-
timal solution. We let S be a minimum-cardinality separator of OPT which partitions
V − S into (VL,VR) as required. By the Sharp Separation Lemma, |S| ≤ logn as
needed. Define OPTL := OPT[VL ∪ S] and OPTR := OPT[VR ∪ S] − E(OPT[S]).
Observe that OPTL and OPTR bipartition the edges of OPT .

We next define ER and dL, the definition of EL and dR being symmetric. Let us
iteratively contract the edges of OPTR which contain at least one node outside S (the
new node inherits the label of the endpoint in S, if any). The resulting set of edges in
S2 defines ER . Let us remark that EL ∪ER defines a spanning tree on node set S. For

Fig. 2 (a) Example of construction of (EL,ER,dL,dR) for DCST. On the left, the optimum solution
OPT (dashed edges belong to OPTR). Black nodes belong to S. On the right, the edges EL (full) and ER

(dashed). The degrees dL and dR are indicated at the left and right of each node, respectively. (b) Example
of construction of (EL,ER,d+

L
,d+

R
) for DCOT, with an analogous notation

Author's personal copy

Algorithmica

any s ∈ S, we set dL(s) := dOPTL
(s) + dER

(s) (i.e., the degree of s in OPTL ∪ ER ,
since OPTL and ER are edge-disjoint).

Let us first show that SOL = SOLL ∪ SOLR is a spanning tree, i.e. for any two
distinct nodes s′ and s′′, there exists exactly one (simple) path among them in SOL.
We prove the stronger claim that SOL′ := SOLL � SOLR satisfies that property. By
construction, it is sufficient to prove the claim for s′, s′′ ∈ S. Both SOL′

L = SOLL ∪
FR = SOLL � FR and SOL′

R = SOLR ∪ FL = SOLR � FL contain exactly one path
between s′ and s′′. Hence SOL′

L � SOL′
R = (SOLL � SOLR) � (FL � FR) = SOL′ �

(FL ∪ FR) contains exactly two edge disjoint paths between s′ and s′′. Since (FL ∪
FR) contains exactly one such path (being EL ∪ ER a tree), the same must hold for
SOL′.

It remains to show that w(hit(SOL)) ≥ w(hit(OPT)). Observe that OPT ′
L :=

OPTL ∪ FR is a feasible solution to subproblem (GL,wL, DL). By construction

hit(OPT ′
L) = (hit(OPT ′

L) ∩ VL) ∪ (DR ∪ S) = (hit(OPTL) ∩ VL) ∪ (DR ∪ S),

which implies wL(hit(OPT ′
L)) ≥ M ′|DR ∪ S|. As a consequence,

hit(SOL′
L) = (hit(SOL′

L) ∩ VL) ∪ (DR ∪ S) = (hit(SOLL) ∩ VL) ∪ (DR ∪ S).

In fact, any solution not satisfying this property would have weight at most M ′(|DR ∪
S| − 1) + Mn = M ′|DR ∪ S| − M < wL(hit(OPT ′

L)). We can conclude that

w(hit(SOLL) ∩ VL) = wL(hit(SOLL) ∩ VL) = wL(hit(SOL′
L)) − wL(DR ∪ S)

≥ wL(hit(OPT ′
L)) − wL(DR ∪ S) = wL(hit(OPTL) ∩ VL)

= w(hit(OPTL) ∩ VL). (1)

A symmetric argument yields

w(hit(SOLR) ∩ VR) ≥ w(hit(OPTR) ∩ VR). (2)

Observe that FR is contained in both SOL′
L and OPT ′

L. Hence any node v ∈ S has
the same degree in SOLL and OPTL. Similarly for SOLR and OPTR . Consequently:

H := hit(OPT) ∩ S = hit(SOL) ∩ S. (3)

Putting everything together:

w(hit(SOL)) = w(hit(SOL) ∩ VL) + w(hit(SOL) ∩ VR) + w(hit(SOL) ∩ S)

(3)= w(hit(SOLL) ∩ VL) + w(hit(SOLR) ∩ VR) + w(H)

(1)+(2)≥ w(hit(OPTL) ∩ VL) + w(hit(OPTR) ∩ VR) + w(H)

(3)= w(hit(OPT)). �

Lemma 6 (Running time) The running time and space complexity of algorithm dcst
is O(2n+o(n)).

Author's personal copy

Algorithmica

Proof The space complexity of the algorithm is upper bounded by the overall cost of
constructing the memoization table, and hence by the running time of the algorithm.
Thus it is sufficient to bound the running time.

This time is bounded, modulo a sub-exponential factor 2o(n), by the number
of possible entries in the memoization table, times the number of possible tuples
(S,EL,ER,VL,VR,dL, dR). The latter quantity is at most:

2

(
n

logn

)

·
(

log2 n

logn − 1

)

2logn−1 · 2

(
n

n/ log2 n

)

· nlogn · nlogn = 2o(n).

In order to bound the number of table entries, observe that at each recursive call
the number of nodes in each subproblem decreases by a factor (1 − 1/ log2 n) or
more. Consequently, the depth of the recursion tree is O(log3 n). Since the new nodes
created at each recursive call are O(logn), the number of new nodes with respect
to the initial problem is O(log4 n) in any subproblem. By the same argument, the
overall number of nodes involved in some set S (including ancestor subproblems)
is O(log4 n) in any subproblem. Hence any graph in some subproblem can be ob-
tained via the following procedure: take the subgraph induced by a subset of nodes
V ′ ⊆ V , add O(log4 n) new nodes W , and add arbitrary edges {u,v} with at least one
endpoint in W . The number of graphs which can be obtained with this procedure is
2n · O(log8 n) · O(n · log4 n) = 2n+o(n).

Node weights are either original weights or weights of the type (M · (n+1))i , with
i = O(log3 n) and M the largest weight in the initial instance. The latter case can
happen only for O(log4 n) nodes. As a consequence, the possible weight functions
for a given graph are at most

(
n

O(log4 n)

)

O((log3 n)O(log4 n)) = 2o(n).

By a similar argument, the possible degree constraint functions on a given graph are

(
n

O(log4 n)

)

O(nO(log4 n)) = 2o(n).

Hence the memoization table has size 2n+o(n). The claim follows. �

Lemmas 5 and 6 together imply the following theorem.

Theorem 7 There is a 2n+o(n) time and space algorithm for (node weighted) DCST.

Remark The approach above can be adapted (at the cost of a more technical algo-
rithm and analysis) to find degree constrained spanning subgraphs of treewidth t in
time O(2n+o(n)) for every fixed constant t . The basic idea is exploiting separators of
size O(t logn), whose existence is guaranteed by the Sharp Separation Lemma.

Author's personal copy

Algorithmica

4 k-Internal Out-Branching

In this section we give a parameterized algorithm with running time O(16k+o(k) +
nO(1)) for the k-INTERNAL OUT-BRANCHING problem. Our approach combines
the Sharp Separation Lemma with the divide-and-color paradigm in [8, 30], and a
polynomial-size kernel for the problem [26]. One important difference with respect
to the algorithm in previous section is that the Sharp Separation Lemma is used to
divide the problem into balanced (rather than very unbalanced) subproblems.

4.1 Some Reductions

The first step of our algorithm is to apply the kernelization algorithm of Gutin et
al. [26]. Given an instance (G, k) of k-INTERNAL OUT-BRANCHING, that algorithm
produces a new instance (G′, k′) with |V (G′)| = O(k2) and k′ ≤ k such that G′ has an
out-branching with at least k′ internal vertices if and only if G has an out-branching
with at least k internal vertices. After this step we can assume that the number n of
vertices in the input digraph G is O(k2).

Now, the algorithm guesses the root r of the out-branching (by trying all the n

possible values), and verifies that there indeed is some out-branching of G rooted at
r . This guessing step, together with the following observation, allows us to search for
r-out-trees instead of r-out-branchings of G.

Lemma 8 (See [10]) Let G be a digraph and r be a node of G such that there is an
r-out-branching of G. Then, for any r-out-tree T with at least k internal nodes there
is an r-out-branching T ′ with at least k internal nodes containing T as a subtree.
Moreover such a T ′ can be found in polynomial time.

When looking for r-out-trees with at least k internal nodes, it is sufficient to restrict
ourselves to r-out-trees with at most 2k nodes. The reason for this is that if some
internal node sees at least two leaves of the r-out-tree, then one of the leaves can
be removed without changing any internal node into a leaf. We formalize this as an
observation.

Lemma 9 (See [10]) Let G be a digraph and r be a node of G. If there is an
r-out-tree T with at least k internal nodes then there is an r-out-tree T ′ on at most
2k nodes with at least k internal nodes.

At this point it is convenient to turn the original problem into a weighted maxi-
mization problem, with degree constraints. This way, we can re-use most of the ma-
chinery developed for DCST. In more detail, let us consider the following DEGREE-
CONSTRAINED OUT-TREE problem (DCOT). We are given a directed graph G =
(V ,E), with node weights w : V → R≥0 and out-degree sets D+(v) ⊆ {0, . . . , n− 1}
for every v ∈ V . For a subgraph G′, the hits hit(G′) of G′ is the set of nodes v such
that d+

G′(v) ∈ D+(v). The goal is finding an r-out-tree T on at most t nodes which
maximizes w(hit(T)) := ∑

v∈hit(T) w(v).
The original problem can be encoded in a DCOT instance by setting all node

weights to 1, letting D+(v) = {1, . . . , n−1}, and setting t = 2k′ ≤ 2k. In next section
we show how to solve DCOT.

Author's personal copy

Algorithmica

dcot(G,w, D+, r, t)

(1) If t ≤ a, solve the problem by brute force and return the obtained solution. If M = 0, return ({r}, {}).
(2) Compute a (n, t)-universal set F with the algorithm in [38].
(3) For any subset of nodes S ⊆ V (G), with r ∈ S and |S| ≤ log t + 1, for any two out-degree assignments

d+
L

: S → {0, . . . , n − 1} and d+
R

: S → {0, . . . , n − 1}, for any two disjoint subsets EL,ER ⊆ S × S

such that EL ∪ ER is an r-out-branching of (S,S × S), for any f ∈ F :
(3.a) Consider the partition (VL,VR) of V − S induced by f .
(3.b) Construct a graph GL from G, by removing nodes VR , adding edges ER , and splitting those

edges. Let DR and FR be the new nodes and edges, respectively, created by the splittings.
(3.c) Define a node weight function wL on GL , with wL(v) = M ′ := M · (n + 1) for v ∈ DR ∪ S,

and wL(v) = w(v) otherwise.
(3.d) Define degree constraints D+

L
on GL , with D+

L
(v) = {d+

L
(v)} for v ∈ S, D+

L
(v) = {2} for v ∈

DR , and D+
L

(v) = D+(v) otherwise.

(3.e) Compute SOL′
L

:= dcot(GL,wL, D+
L

, r, tL), tL = (t +|S|)/2+|DR |, and set SOLL := SOL′
L

−
DR .

(3.f) Construct SOLR symmetrically. Let SOL := SOLL ∪ SOLR .
(4) Among the subgraphs SOL of G computed above, return a feasible solution of largest weight.

Fig. 3 Algorithm for DCOT. Here a is a sufficiently large constant, M denotes the largest node weight,
and n the number of nodes

4.2 An Algorithm for DCOT

Our algorithm for DCOT is described in Fig. 3. If t is sufficiently small, the problem
is solved by brute force (in polynomial time).

Otherwise the algorithm computes, using the algorithm in [38], an (n, t)-
universal set F . Then it generates a proper set of pairs of DCOT subproblems
(GL,wL, D+

L , r, tL) and (GR,wR, D+
R , r, tR), and solved them recursively. The rea-

sons behind the choice of the pairs will be clearer from the correctness analysis. One
obtains a bipartition (VL,VR) of V −S from f ∈ F by placing v ∈ V −S in set VL if
f (v) = 0, and in set VR otherwise. Like for DCST, we set the weight of some nodes
to a large value, and restrict the associated desirable degrees to a unique degree: this
will force the solution to set the degree of those nodes accordingly.

Lemma 10 (Correctness) Algorithm dcot returns a feasible solution of maximum
weight.

Proof If the algorithm returns a solution, it is feasible. Let us show by induction
on t that the algorithm returns a feasible solution of maximum weight. The claim is
trivially true if the algorithm halts at Step (1).

Otherwise, consider the following choice for the tuple (S, d+
L ,d+

R ,EL,ER,f)

(see also Fig. 2.b), with the corresponding digraphs SOL, SOLL etc. Let OPT be
the optimum solution. We let S be a minimum-cardinality perfectly balanced sepa-
rator of OPT , with r ∈ S. The Sharp Separation Lemma guarantees the existence of
such S, with |S| ≤ log t + 1 (the +1 coming from r). Let WL and WR be the partition
of OPT induced by S. We choose a function f such that WL ⊆ VL and WR ⊆ VR .
Note that, since |WR ∪WL| ≤ t , there must be an f ∈ F which satisfies this property.
Let OPTL := OPT[WL ∪ S] and OPTR := OPT[WR ∪ S] − E(OPT[S]). Observe
that OPTL and OPTR bipartition the edges of OPT .

Author's personal copy

Algorithmica

We next define ER and d+
L , the definition of EL and d+

R being symmetric. Let us
iteratively contract the edges of OPTR which contain at least one node outside S (the
new node inherits the label of the endpoint in S, if any). The resulting set of edges in
S ×S defines ER . Let us remark that EL ∪ER defines an r-out-branching on node set
S, as required. For any s ∈ S, we set d+

L (s) := d+
OPTL

(s)+d+
ER

(s) (i.e., the out-degree
of s in OPTL ∪ ER , since OPTL and ER are edge-disjoint).

Let us first show that SOL is a feasible solution. By construction, SOL contains
at most (t − |S|)/2 + (t − |S|)/2 + |S| = t nodes. In order to show that SOL is an
r-out-tree, it is sufficient to show that, for any s ∈ S −{r}, there is exactly one simple
path from r to s. This can be proved exactly in the same manner as in the proof of
Lemma 5, where pair (r, s) plays the role of pair {s′, s′′}, and directed paths replace
undirected paths.

Observe that OPT ′
L := OPTL ∪ FR is a feasible solution for the subproblem

(GL,wL, D+
L , r, tL). In fact, it is an r-out-tree of GL. Furthermore, it contains at

most (t − |S|)/2 + |S| nodes from OPTL, and |DR| extra nodes from FR . By
the same approach as in Lemma 5, it is not hard to derive w(hit(SOLL) ∩ VL) ≥
w(hit(OPTL) ∩ VL). Symmetrically, w(hit(SOLR) ∩ VR) ≥ w(hit(OPTR) ∩ VR).
Also in this case, each s ∈ S has exactly the same degree in OPTL and SOLL (resp.,
OPTR and SOLR), which implies H := hit(OPT)∩S = hit(SOL)∩S. One can derive
w(hit(SOL)) ≥ w(hit(OPT)) by the same chain of inequalities as in Lemma 5. �

Lemma 11 (Running time) The running time of dcot is O(4t nO(log2 t)), and its space
complexity is O(2t tO(log t)n logn).

Proof Assume n ≥ 2. We prove by induction on t that the running time T (n, t) of the
algorithm satisfies

T (n, t) ≤ 4t nb log2 t ,

for a proper constant b. The claim is trivially true when the algorithm halts at Step
(1).

Next assume n ≥ t � 1, and consider an instance where the algorithm branches.
The number of possible choices for the tuple (S, d+

L ,d+
R ,EL,ER,f) is at most:

2

(
n

log t + 1

)

· nlog t+1 · nlog t+1 ·
(

(log t + 1)2

log t

)

2log t · 2t tO(log t) logn.

This is at most 2t nc log t for a proper constant c, and it dominates the running time
to construct the universal set. Observe that tL, tR ≤ (t + log t + 1)/2 + log t ≤ t/2 +
2 log t ≤ 2t/3. The overall running time therefore satisfies, for a constant b large
enough,

T (n, t) ≤ 2t nc log t · (T (n, tL) + T (n, tR)) ≤ 2t nc log t · 2 · 4t/2+2 log t nb log2(2t/3)

≤ 4t nc log t+1+2 log t+b(log t−log(3/2))2 ≤ 4t nb log2 t .

Author's personal copy

Algorithmica

The space complexity is dominated by the space needed to store the universal sets
in a chain of O(log t) recursive calls, which is at most

∑

i≥1

2t/2i · tO(log t)n logn = O(2t tO(log t)n logn).
�

Theorem 12 There is a deterministic algorithm which solves k-INTERNAL OUT-
BRANCHING in O(16k+o(k) + nO(1)) time and O(4k+o(k) + nO(1)) space.

Proof Consider the algorithm which first applies the reductions from Sect. 4.1,
and then applies dcot. The reductions take polynomial time and space. The result-
ing DCOT instance contains n = O(k2) nodes and has t ≤ 2k. Hence the running
time is O(nO(1) + 42kkO(log2 k)) = O(16k+o(k) + nO(1)), and the space complexity is
O(nO(1) + 22kkO(log k)) = O(4k+o(k) + nO(1)). �

4.3 Saving Space via Randomization

The space complexity can be made polynomial, without increasing the running time,
by means of randomization. The resulting algorithm however might fail to find a fea-
sible solution. The idea is replacing the universal set with a sufficiently large number
N of random partitions of the node set. One can show that N = �(2t) is sufficient
to achieve a constant probability of success of the overall algorithm. We leave the
details to the interested reader.

5 Conclusions

In this paper we proved a new, simple separation theorem for graphs of bounded
treewidth, which turns out to be a useful tool in the design of divide-and-conquer
algorithms, both exact (exponential) and parameterized. We demonstrated the appli-
cability of our theorem by giving an algorithm for k-INTERNAL OUT-BRANCHING

running in O(16k+o(k) + nO(1)) time and an algorithm for DEGREE CONSTRAINED

SPANNING TREE running in time O(2n+o(n)). It would be interesting to find further
applications of our separation result in the fields of exact and parameterized algo-
rithms.

References

1. Alon, N., Seymour, P., Thomas, R.: A separator theorem for non-planar graphs. J. Am. Math. Soc. 3,
801–808 (1990)

2. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54(2), 168–204 (2005)
3. Björklund, A.: Determinant sums for undirected Hamiltonicity. In: IEEE Symposium on Foundations

of Computer Science (FOCS), pp. 173–182 (2010)
4. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput.

39(2), 546–563 (2009)
5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: Fast subset convolution.

In: ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2007)

Author's personal copy

Algorithmica

6. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci.
209(1–2), 1–45 (1998)

7. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: A bottom-up method and fast algo-
rithms for max independent set. In: Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT), pp. 62–73 (2010)

8. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and packing problems.
In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 298–307 (2007)

9. Christofides, N.: An algorithm for the chromatic number of a graph. Comput. J. 14(1), 38–39 (1971)
10. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding k-vertex

out-trees and its application to k-internal out-branching problem. J. Comput. Syst. Sci. 76(7), 650–
662 (2010)

11. Diestel, R.: Graph Theory. Springer, Berlin (2010)
12. Fernau, H., Gaspers, S., Raible, D.: Exact and parameterized algorithms for max internal spanning

tree. In: International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 100–
111 (2009)

13. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)
14. Fomin, F.V., Grandoni, F., Kratsch, D.: Faster Steiner tree computation in polynomial-space. In: Eu-

ropean Symposium on Algorithms (ESA), pp. 430–441 (2008)
15. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n . Algorithmica

52(2), 153–166 (2008)
16. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact

algorithms. Journal of the ACM 56(5) (2009)
17. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and

conquer: Bounding minimal dominating sets and applications. ACM Transactions on Algorithms 5(1)
(2008)

18. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem:
Exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)

19. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for maximum internal
spanning tree. In: International Symposium on Algorithms and Computation (ISAAC), pp. 275–282
(2009)

20. Fomin, F.V., Lokshtanov, D., Grandoni, F., Saurabh, S.: Sharp separation and applications to exact
and parameterized algorithms. In: Latin American Symposium on Theoretical Informatics (LATIN),
pp. 72–83 (2010)

21. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic programming for
minimum steiner trees. Theory Comput. Syst. 41(3), 493–500 (2007)

22. Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner tree to within one of opti-
mal. J. Algorithms 17(3), 409–423 (1994)

23. Gaspers, S., Saurabh, S., Stepanov, A.A.: A moderately exponential time algorithm for full degree
spanning tree. In: International Conference on Theory and Applications of Models of Computation
(TAMC), pp. 479–489 (2008)

24. Goemans, M.X.: Minimum bounded degree spanning trees. In: IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 273–282 (2006)

25. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete Algorithms 4(2),
209–214 (2006)

26. Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching and related problems. Theor. Comput.
Sci. 410(45), 4571–4579 (2009)

27. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. SIAM 10, 196–
210 (1962)

28. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett.
1, 49–51 (1982)

29. Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in networks. SIAM J.
Comput. 32(2), 470–487 (2003)

30. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: International Workshop on
Graph-Theoretic Concepts in Computer Science (WG), pp. 58–67 (2006)

31. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling salesman problem.
In: ACM Annual Conference, pp. 294–300 (1977)

32. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor. Comput. Sci. 223(1–
2), 1–72 (1999)

Author's personal copy

Algorithmica

33. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5(3),
66–67 (1976)

34. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189
(1979)

35. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627
(1980)

36. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: ACM Symposium on Theory of
Computing (STOC), pp. 321–330 (2010)

37. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete Appl. Math. 10(3),
287–295 (1985)

38. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 182–191 (1995)

39. Nederlof, J.: Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner tree and
related problems. In: International Colloquium on Automata, Languages and Programming (ICALP),
pp. 713–725 (2009)

40. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006)
41. Prieto, E., Sloper, C.: Reducing to independent set structure—the case of k-internal spanning tree.

Nord. J. Comput. 12(3), 308–318 (2005)
42. Razgon, I.: Exact computation of maximum induced forest. In: Scandinavian Symposium and Work-

shops on Algorithm Theory (SWAT), pp. 160–171 (2006)
43. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301

(2004)
44. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)
45. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of opti-

mal. In: ACM Symposium on Theory of Computing (STOC), pp. 661–670 (2007)
46. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Comput. 6(3), 537–

546 (1977)
47. van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer, a faster exact algorithm for

dominating set. In: Symposium on Theoretical Aspects of Computer Science (STACS), pp. 657–668
(2008)

48. Williams, R.: Finding paths of length k in O∗(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)

Author's personal copy

	Sharp Separation and Applications to Exact and Parameterized Algorithms
	Abstract
	Introduction
	Our Results
	Degree Constrained Spanning Tree
	k-Internal Out-Branching

	Preliminaries

	Sharp Separation in Graphs of Bounded Treewidth
	Degree Constrained Spanning Tree
	k-Internal Out-Branching
	Some Reductions
	An Algorithm for DCOT
	Saving Space via Randomization

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

