
COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/112/$6.00 c©2012 János Bolyai Mathematical Society and Springer-Verlag

Combinatorica 32 (3) (2012) 289–308

DOI: 10.1007/s00493-012-2536-z

TREEWIDTH COMPUTATION AND EXTREMAL
COMBINATORICS*

FEDOR V. FOMIN, YNGVE VILLANGER

Received September 10, 2008

For a given graph G and integers b,f ≥ 0, let S be a subset of vertices of G of size b+1
such that the subgraph of G induced by S is connected and S can be separated from other
vertices of G by removing f vertices. We prove that every graph on n vertices contains at
most n

(
b+f

b

)
such vertex subsets. This result from extremal combinatorics appears to be

very useful in the design of several enumeration and exact algorithms. In particular, we
use it to provide algorithms that for a given n-vertex graph G

• compute the treewidth of G in time O(1.7549n) by making use of exponential space
and in time O(2.6151n) and polynomial space;

• decide in time O(n5 ·(�(2n+k+8)/3�
k+2

)
) if the treewidth of G is at most k;

• list all minimal separators of G in time O(1.6181n) and all potential maximal cliques
of G in time O(1.7549n).

This significantly improves previous algorithms for these problems.

1. Introduction

The aim of exact algorithms is to optimally solve hard problems exponen-
tially faster than brute-force search. The first papers in the area date back
to the sixties and seventies [25,36]. For the last two decades the amount of
literature devoted to this topic has been tremendous and it is impossible to
give here a list of representative references without missing significant re-
sults. Recent surveys [18,27,34,38] and book [19] provide a comprehensive
information on exact algorithms. It is very natural to assume the existence

Mathematics Subject Classification (2000): 05C85, 68R05
∗ This research was partially supported by the Research Council of Norway. Extended

abstract of this paper was presented in [22].

http://dx.doi.org/10.1007/s00493-012-2536-z

290 FEDOR V. FOMIN, YNGVE VILLANGER

of strong links between the area of exact algorithms and some areas of ex-
tremal combinatorics, especially the part of extremal combinatorics which
studies the maximum (minimum) cardinalities of a system of subsets of some
set satisfying certain properties. For example, very recently Björklund, Hus-
feldt, Kaski, Koivisto [4,5] discovered a nice application of Shearer’s Lemma
in the design of exact algorithms for the travelling salesman problem and
coloring on graphs of bounded degrees. Strangely enough, there are not so
many examples of such links in the literature, and the majority of exact algo-
rithms are based on the so-called branching (backtracking) technique which
traces back to the works of Davis, Putnam, Logemann, and Loveland [14,15].

In this paper, we prove a combinatorial lemma which appears to be very
useful in the analysis of certain enumeration and exact algorithms. For a
vertex v of a graph G and integers b,f ≥ 0, let t(b,f) be the maximum
number of connected induced subgraphs of G of size b + 1 such that the
intersection of all these subgraphs is nonempty and each such a subgraph
has exactly f neighbors (a neighbor of a subgraph H is a vertex of G\H
which is adjacent to a vertex of H). Then the combinatorial lemma states
that t(b,f)≤ (

b+f
b

)
(and it is easy to check that this bound is tight). This

can be seen as a variation of Bollobás’s Theorem [10], which is one of the
corner-stones in extremal set theory. (See Section 9.2.2 of [28] for detailed
discussions on Bollobás’s Theorem and its variants.)

We use this combinatorial result to obtain faster algorithms for a num-
ber of problems related to the treewidth of a graph. The treewidth is a
fundamental graph parameter from Graph Minors Theory by Robertson
and Seymour [32] and it has numerous algorithmic applications, see the sur-
veys [7,9]. The problems to compute the treewidth is known to be NP-hard
[1] and the best known approximation algorithm for treewidth has a factor
O(

√
logOPT) [17]. It is an old open question whether the treewidth can be

approximated within a constant factor. Treewidth is known to be fixed pa-
rameter tractable. Moreover, for any fixed k, there is a linear time algorithm
due to Bodlaender [6] computing the treewidth of graphs of treewidth at
most k. Unfortunately, huge hidden constants in the running time of Bod-
laender’s algorithm is a serious obstacle to its implementation. For small
values of k, the classical algorithm of Arnborg, Corneil and Proskurowski
[1] from 1987 which runs in time O(nk+3) can be used to decide if the
treewidth of a graph is at most k. The first exact algorithm computing the
treewidth of an n-vertex graph is due to Fomin et al. [20] and has running
time O(1.9601n). Later these results were improved in [37] to O(1.8899n).
Both algorithms use exponential space. The fastest polynomial space algo-

TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS 291

rithm for treewidth prior to this work is due to Bodlaender et al. [8] and
runs in time O(2.9512n).

1.1. Our results.

We introduce a new (exponential space) algorithm computing the treewidth
of a graph G on n vertices in time O(1.7549n) and a polynomial space al-
gorithm computing the treewidth in time O(2.6151n). We also show that
if the treewidth of G is at most k, then it can be computed in time
O(n5 ·(�(2n+k+8)/3�

k+2

)
). This is a refinement of the classical result of Arnborg

et al. Running times of all these algorithms strongly depend on possibilities
of fast enumeration of specific structures in a graph, namely, potential max-
imal cliques, and minimal separators [8,11,12,21]. The new combinatorial
lemma is crucial in obtaining new combinatorial bounds and enumeration
algorithms for minimal separators and potential maximal cliques, which, in
turn, provides faster algorithms for treewidth.

Similar results can be obtained for a number of parameters related to
treewidth. Treelength is a graph parameter introduced by Dourisboure and
Gavoille [16] with a motivation from network routing. Graphs of treelength
k are the graphs with tree decompositions such that the distance (in G) be-
tween any two vertices in the same bag of the decomposition is at most k.
Lokshtanov [30] proved that computing the treelength of a graph is NP-hard
and also gave an O(1.8899n) time algorithm solving this problem. The same
running time was obtained by Lokshtanov [30] for the Chordal Sandwich
problem, where given graphs G1 and G2, one asks if there is a chordal graph
G such that G1⊆G⊆G2. As it was observed by Lokshtanov, both problems
can be solved in time up to polynomial factor proportional to the number
of potential maximal cliques and minimal separators in a graph. Thus our
technique allows to solve these problems in time O(1.7549n). Another appli-
cation of our results is the minimum fill-in problem (also known as minimum
chordal graph completion) which is to turn a given graph into a chordal by
adding the minimum number of edges. This problem has important applica-
tions in sparse matrix computations [31,33] and database management [2].
The fastest exact algorithm computing the fill-in of a graph known so far
runs in time O(1.8899n) [21]. Our techniques can be used to solve the prob-
lem in time O(1.7549n).

The remaining part of the paper is organized as follows. In the next sec-
tion we provide definitions and preliminary results. In Section 3, we prove
our main combinatorial tool. By making use of this tool, in Section 4, we
prove combinatorial bounds on the number of minimal separators and po-

292 FEDOR V. FOMIN, YNGVE VILLANGER

tential maximal cliques and obtain algorithm enumerating these structures.
These results form the basis for all our algorithms computing the treewidth
of a graph presented in Sections 5, 6, and 7.

2. Preliminaries

We denote by G=(V,E) a finite, undirected and simple graph with |V |=n
vertices and |E|=m edges. For any non-empty subset W ⊆V , the subgraph
of G induced by W is denoted by G[W]. We say that a vertex set S⊆V is
connected if G[S] is connected.

The neighborhood of a vertex v is N(v) = {u∈ V : {u,v} ∈E} and for a
vertex set S⊆V we set N(S)=

⋃
v∈S N(v)\S. A clique C of a graph G is a

subset of V such that all the vertices of C are pairwise adjacent.

Minimal separators. Let u and v be two non adjacent vertices of a graph
G=(V,E). A set of vertices S⊆V is an u,v-separator if u and v are in dif-
ferent connected components of the graph G[V \S]. A connected component
C of G[V \S] is a full component associated to S if N(C)=S. S is a minimal
u,v-separator of G if no proper subset of S is an u,v-separator. We say that
S is a minimal separator of G if there are two vertices u and v such that S
is a minimal u,v-separator. Notice that a minimal separator can be strictly
included in another one. We denote by ΔG the set of all minimal separators
of G.

We need the following result of Berry et al. [3] (see also Kloks et al. [29]).

Proposition 2.1 ([3]). There is an algorithm listing all minimal separators
of an input graph G in O(n3|ΔG|) time.

The following proposition is an exercise in [23].

Proposition 2.2 (Folklore). A set S of vertices of G is a minimal a,b-
separator if and only if a and b are in different full components associated
to S. In particular, S is a minimal separator if and only if there are at least
two distinct full components associated to S.

Potential maximal cliques. A graph H is chordal (or triangulated) if
every cycle of length at least four has a chord, i.e. an edge between two non-
consecutive vertices of the cycle. A triangulation of a graph G=(V,E) is a
chordal graph H = (V,E′) such that E ⊆E′. Triangulation H is a minimal
triangulation if for any set E′′ with E ⊆E′′ ⊂E′, the graph F = (V,E′′) is
not chordal.

TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS 293

A set of vertices Ω⊆V of a graph G is called a potential maximal clique
if there is a minimal triangulation H of G such that Ω is a maximal clique
of H. We denote by ΠG the set of all potential maximal cliques of G.

The following result on the structure of potential maximal cliques is due
to Bouchitté and Todinca.

Proposition 2.3 ([11]). Let K ⊆ V be a set of vertices of the graph
G = (V,E). Let C(K) = {C1(K), . . . ,Cp(K)} be the set of the connected
components of G[V \K] and let S(K) = {S1(K), S2(K), . . . ,Sp(K)} where
Si(K), i∈{1,2, . . . ,p}, is the set of those vertices of K which are adjacent to
at least one vertex of the component Ci(K). Then K is a potential maximal
clique of G if and only if:

1. G[V \K] has no full component associated to K, and
2. the graph on the vertex set K obtained from G[K] by completing each

Si∈S(K) into a clique, is a complete graph.

The following result is also due to Bouchitté and Todinca.

Proposition 2.4 ([11]). There is an algorithm that, given a graph G =
(V,E) and a set of vertices K⊆V , verifies if K is a potential maximal clique
of G. The time complexity of the algorithm is O(km), where k= |K|.
Proof. The proof used in [11], states that this verification can be done in
O(n3) time. We can make this bound more precise by checking if there are
any full components in O(m) time, and then check if every vertex of K
can reach any other vertex of K, by a direct edge or by a path where all
intermediate vertices are in V \K.

Treewidth. A tree decomposition of a graph G=(V,E) is a pair (χ,T) in
which T =(VT ,ET) is a tree and χ={χi|i∈VT } is a family of subsets of V
such that:

• ⋃
i∈VT

χi =V ;
• for each edge e={u,v}∈E there exists an i∈VT such that both u and v

belong to χi;
• for all v∈V , the set of nodes {i∈VT |v∈χi} forms a connected subtree of T .

To distinguish between vertices of the original graph G and vertices of T ,
we call vertices of T nodes and their corresponding χi’s bags. The maximum
size of a bag minus one is called the width of the tree decomposition. The
treewidth of a graph G, tw(G), is the minimum width over all possible tree
decompositions of G.

294 FEDOR V. FOMIN, YNGVE VILLANGER

An alternative definition of treewidth is via minimal triangulations. The
treewidth of a graph G is the minimum of ω(H)−1 taken over all triangula-
tions H of G. (By ω(H) we denote the maximum clique-size of a graph H.)

Our algorithm for treewidth is based on the following result.

Proposition 2.5 ([20]). There is an algorithm that, given a graph G to-
gether with the list of its minimal separators ΔG and the list of its potential
maximal cliques ΠG, computes the treewidth of G in O(n3 (|ΠG|+ |ΔG|))
time. Moreover, the algorithm constructs a triangulation H of G where the
treewidth of H is the same as the treewidth of G.

3. Combinatorial Lemma

The following lemma is our main combinatorial tool.

Lemma 3.1 (Main Lemma). Let G=(V,E) be a graph. For every v∈V ,
and b,f ≥0, the number of connected vertex subsets B⊆V such that

(i) v∈B,
(ii) |B|=b+1, and

(iii) |N(B)|=f

is at most
(
b+f

b

)
.

Proof. Let v be a vertex of a graph G=(V,E). For b+f =0 Lemma trivially
holds. We proceed by induction assuming that for some k > 0 and every b
and f such that b+f ≤k−1, Lemma holds. For b and f such that b+f =k,
we define B as the set of sets B satisfying (i),(ii),(iii). We claim that

|B| ≤
(

b + f

b

)
.

Since the claim always holds for b=0, let us assume that b>0.
Let N(v) = {v1,v2, . . . ,vp}. For 1 ≤ i ≤ p, we define Bi as the set of all

connected subsets B such that
• Vertices v,vi∈B,
• For every j <i, vj �∈B,
• |B|=b+1,
• |N(B)|=f .

Let us note, that every set B satisfying the conditions of the lemma is in
some set Bi for some i, and that for i �=j, Bi∩Bj =∅. Therefore,

(1) |B| =
p∑

i=1

|Bi|.

TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS 295

For every i>f +b−1, |Bi|=0. This is because for every B∈Bi, the set
N(B) contains vertices v1, . . . ,vi−1 and thus is of size at least f+b>f . Thus,
(1) can be rewritten as follows

(2) |B| =
f+b−1∑

i=1

|Bi|.

Let Gi be the graph obtained from G by contracting edge {v,vi} (re-
moving the loop, reducing double edges to single edges, and calling the new
vertex by v) and removing vertices v1, . . . ,vi−1. Then the cardinality of Bi is
equal to the number of the connected vertex subsets B of Gi such that

• v∈B,
• |B|=b,
• |N(B)|=f − i+1.

By the induction assumption, this number is at most
(f+b−i

b−1

)
. Then (2) and

the well known identity

(3)
p∑

i=0

(
p − i

k

)
=

(
p + 1
k + 1

)

with p=f +b−1 and k=b−1, yield that

|B| =
f+b−1∑

i=1

|Bi| ≤
f+b−1∑

i=1

(
f + b − i

b − 1

)

≤
f+b−1∑

i=0

(
f + b − 1 − i

b − 1

)
=

(
b + f

b

)
.

The inductive proof of Main Lemma can be easily turned into a recursive
polynomial space enumeration algorithm. Equation (2) corresponds to a
recursive or branching procedure that is called for each i ≤ f + b− 1 on
graphs obtained from the original graph by deleting the first i neighbors of
v and contracting edge between v and its (i+1)th neighbor. The proof of
Main Lemma yields that the number of leaves in the branching tree is at
most

(b+f
b

)
, and as b is decreased with each call, there are at most b

(b+f
b

)

recursive calls.
Because the degree of v is at most f + b, with the corresponding data

structure, each recursive call can be implemented to run in time O(n(b+f)).
All the sets can now be enumerated in polynomial space by starting a search
from each vertex of the graph using a DFS exploration of the branching tree.

296 FEDOR V. FOMIN, YNGVE VILLANGER

We obtain the following lemma. We run the recursive procedure for every
vertex of a graph, so in total the running time will be O(n2 ·b·(b+f)·(b+f

b

)
).

Lemma 3.2. All connected vertex sets of size b+1 with f neighbors of an
n-vertex graph G can be enumerated in time O(n2·b·(b+f)·(b+f

b

)
) by making

use of polynomial space.

4. Combinatorial bounds

In this section we provide combinatorial bounds on the number of mini-
mal separators and potential maximal cliques in a graph. Both bounds are
obtained by making use of Main Lemma.

4.1. Minimal separators

Theorem 4.1. Let ΔG be the set of all minimal separators in a graph G
on n vertices. Then |ΔG|=O(1.6181n).

Proof. For 1≤ i≤n, let s(i) be the number of all minimal separators in G
of size i. Then

(4) |ΔG| =
n∑

i=1

s(i).

Let S be a minimal separator of size �αn�, where 0<α<1. By Proposi-
tion 2.2, there exists two full components C1 and C2 associated to S. Let us
assume that |C1|≤ |C2|. Then |C1|≤ �(1−α)n/2�. From the definition of a
full component C1 associated to S, we have that N(C1)=S. Thus, s(�αn�)
is at most the number of connected vertex sets C of size at most �(1−α)n/2�
with neighborhoods of size |N(C)|=�αn�. Hence, to bound s(�αn�) we can
use Main Lemma for every vertex of G.

By Main Lemma, we have that for every vertex v, the number of full
components of size b+1=�(1−α)n/2� containing v and with neighborhoods
of size �αn� is at most

(
b + �αn�

b

)
≤

(�(1 + α)n/2�
b

)
.

Therefore

(5) s(�αn�) ≤ n ·
�(1−α)n/2�∑

i=1

(
i + �αn�

i

)
< n ·

�(1−α)n/2�∑

i=1

(�(1 + α)n/2�
i

)
.

TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS 297

For α≤1/3, we have

�(1−α)n/2�∑

i=1

(�(1 + α)n/2�
i

)
< 2�(1+α)n/2� < 2�2n/3� < 1.59n,

and thus

(6)
�n/3�∑

i=1

s(i) = O(1.59n).

For α≥1/3, we use the well known fact, see e.g. [24] or [19, Lemma 3.23]
that

�j/2�∑

k=0

(
j − k

k

)
= F (j + 1),

where

F (j + 1) =
⌊

ϕj+1

√
5

+
1
2

⌋

is the (j +1)-st Fibonacci number and ϕ=(1+
√

5)/2 is the Golden Ratio.
Then

�(1−α)n/2�∑

i=1

(�(1 + α)n/2�
i

)
≤

�(1−α)n/2�∑

i=1

(
n − i

i

)

≤
�n/2�∑

i=1

(
n − i

i

)
< ϕn+1 < 1.6181n.

Therefore,

(7)
n∑

i=�n/3�
s(i) = O(1.6181n).

Finally, the theorem follows from (4),(6) and (7).

4.2. Potential maximal cliques

A clique contains exactly one potential maximal clique, so for the rest of this
paper we will consider the problem of listing potential maximal cliques on
non-complete graphs. To estimate the number of potential maximal cliques,
we start with establishing bounds on specific types of potential maximal
cliques.

298 FEDOR V. FOMIN, YNGVE VILLANGER

Definition 4.2 ([11]). Let Ω be a potential maximal clique of a graph G
and let S⊂Ω be a minimal separator of G. We say that S is an active sepa-
rator for Ω, if Ω is not a clique in the graph obtained from G by completing
all the minimal separators contained in Ω, except S. A potential maximal
clique Ω containing an active separator (for Ω) is called a nice potential
maximal clique.

We need the following result by Bouchitté and Todinca.

Proposition 4.3 ([12]). Let Ω be a potential maximal clique of G=(V,E),
let u be a vertex of G, and let G′ = G[V \{u}]. Then one of the following
holds:

1. Either Ω, or Ω\{u} is a potential maximal clique of G′;
2. Ω=S∪{u}, where S is a minimal separator of G;
3. Ω is a nice potential maximal clique.

Let Πn be the maximum number of nice potential maximal cliques that
can be contained in a graph on n vertices. Proposition 4.3 is useful to bound
the number of potential maximal cliques in a graph by the number of mini-
mal separators ΔG and Πn. The following was proved in [21].

Proposition 4.4 ([21]). For any graph G=(V,E), |ΠG|≤n(n|ΔG|+Πn).

Definition 4.5. Let Ω∈ΠG, v∈Ω, and Cv be the connected component of
G[V \(Ω\{v})] containing v. We call the pair (Cv,v) by vertex representation
of Ω.

The following proposition was proved in [21].

Proposition 4.6 ([21]). Let (Cv,v) be a vertex representation of Ω. Then
Ω=N(Cv)∪{v}.
Proof. By Proposition 2.3, every vertex u∈Ω\{v}, is either adjacent to v,
or there exists a connected component C of G[V \Ω] such that u,v∈N(C).
Since C ⊂ Cv, we have that Ω \{v} ⊆ N(Cv). Every connected component
C of G[V \Ω] that contains v∈N(C) is contained in Cv and N(C)⊂Ω for
every C, therefore Ω\{v}=N(Cv).

We need also the following result from [21].

Proposition 4.7 ([21]). Let Ω be a nice potential maximal clique of size
�αn� for 0<α<1 in a graph G. There exists a vertex representation (Cv,v)
of Ω such that

|Cv| ≤
⌈

2(1 − α)n
3

⌉
.

TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS 299

Now everything is settled to apply Main Lemma.

Lemma 4.8. The number of nice potential maximal cliques in graph G is
O(1.7549n).

Proof. By Proposition 4.7, for every nice potential maximal clique Ω of
cardinality �αn�, 0<α≤1, there exists a vertex representation (Cv,v) of Ω
such that |Cv|≤�2n(1−α)/3�. Let b+1 be the number of vertices in Cv and
f be |N(Cv)|= |Ω\{v}|≤�αn�−1. By Main Lemma, for every vertex v, the
number of such pairs (Cv,v) is at most

⌈
2(1−α)n

3

⌉
∑

i=1

(�(2 + α)n/3�
i

)
.

As in the proof of Theorem 4.1, for α≤2/5 the above sum is O(1.7549n).
For α ≥ 2/5, by making use of the fact that

∑�j/2�
k=1

(
j−k
2k

)
is equal to the

(j +1)-st number of the sequence {ai}∞i=0 such that ai =2ai−1−ai−2 +ai−3,
with a0 = 0, a1 = 1, and a2 = 2, it is possible to show that the value of
the above sum, and thus the number of nice potential maximal cliques, is
O(1.7549n).

By combining Proposition 4.4, Lemma 4.8 and Theorem 4.1 we arrive at
the main result of this subsection.

Theorem 4.9. For any graph G, |ΠG|=O(1.7549n).

5. Exact algorithm for treewidth

Our algorithm computing the treewidth of a graph is based on Proposi-
tion 2.5. In order to use Proposition 2.5, we need algorithms enumerating
minimal separators and potential maximal cliques. By Proposition 2.1 and
Theorem 4.1, all minimal separators can be listed in time O(1.6181n).

In the following lemma we show how to list all potential maximal cliques.

Lemma 5.1. For any graph G on n vertices, the set of potential maximal
cliques can be listed in O(1.7549n) time.

Proof. The algorithm listing potential maximal cliques has two phases. First
it generates all nice potential maximal cliques (and here again we use Main
Lemma). In the second phase by making use of Proposition 4.3, we generate
potential maximal cliques from minimal separators and the nice ones.

300 FEDOR V. FOMIN, YNGVE VILLANGER

Generating nice potential maximal cliques. For every vertex v and 0<α<1
we generate all nice potential maximal cliques of size �αn� containing ver-
tex v. By Proposition 4.6, to generate all such potential maximal cliques it is
sufficient to generate all their vertex representations. By Proposition 4.7, we
can restrict our search to vertex representations of size at most �2n(1−α)/3�.
For every vertex representation C, we have that |N(C)∪{v}|=�αn� (the set
N(C)∪{v} should form a potential maximal clique). For each such subset
we use Proposition 2.4 to check if N(C)∪{v} is a potential maximal clique.

So finally, the problem of generating all nice potential maximal cliques
boils down to the following problem: List all connected sets B such that

|B| ≤
⌈

2n(1 − α)
3

⌉
and |N(B) ∪ {v}| ≤ �αn�.

By plugging into algorithmic version of Main Lemma (Lemma 3.2)
b≤�2n(1−α)/3�−1 and f = �αn�, we obtain that for each 0<α<1 all
nice potential maximal cliques of size �αn� can be listed in time

(8) O(n4

⌈
2n(1−α)

3

⌉
∑

i=1

(�(2 + α)n/3�
i

)
)

By using Main Lemma for each value of α (where αn = �αn�) and by
bounding the sum as in the proof of Lemma 4.8, we end up with an algorithm
that lists all nice potential maximal cliques in time O(1.7549n).

Generating potential maximal cliques. First we generate all minimal sepa-
rators and all potential maximal cliques that can be obtained from a min-
imal separator by adding one vertex. Then we list all nice potential maxi-
mal cliques. As we already have shown, all these sets can be listed in time
O(1.7549n).

Let v1,v2, . . . ,vn be an ordering of V and let Vi =
⋃i

j=1 vj . By Proposi-
tion 4.3, every potential maximal clique Ω in G[Vi+1] that is not yet listed
(i.e. is not obtained by adding a vertex to a minimal separator or which is
not nice) is either also a potential maximal clique in G[Vi] or is obtained
from a potential maximal clique in G[Vi] by adding vi+1. Thus by performing
dynamic programming one can list all remaining potential maximal cliques
in time O(1.7549n).

As an immediate corollary of Proposition 2.1 and Lemma 5.1, we have
the following result.

Theorem 5.2. The treewidth of a graph on n vertices can be computed in
time O(1.7549n).

TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS 301

6. Computing treewidth at most k

In this section we show how the lemma bounding the number of connected
components can be used to refine the classical result of Arnborg et al. [1].

By Proposition 2.5, the treewidth of a graph can be computed in O(n3 ·
(|ΠG|+ |ΔG|)) time if the list of all minimal separators ΔG and the list of
all potential maximal cliques ΠG of G are given. Actually, the results of
Proposition 2.5 can be refined (with exactly the same proof as in [21]) as
follows. Let Δk

G be the set of minimal separators and let Πk
G be the set of

potential maximal cliques of size at most k.

Lemma 6.1. Given a graph G with sets Δk
G and Πk+1

G , it can be decided

in time O(n3 (|Πk+1
G |+ |Δk

G|)) if the treewidth of G is at most k. Moreover,
if the treewidth of G is at most k, a tree decomposition of minimum width
can be constructed within the same time.

We first bound the number of minimal separators of size k in an n-vertex
graph.

Lemma 6.2. For every graph G on n vertices,

|Δk
G| ≤ n ·

(�(n + k + 4)/2�
k + 1

)
.

Proof. By Main Lemma, (5), and (3), we have

|Δk
G| ≤ n ·

�(n−k)/2�∑

i=1

k∑

j=1

(
i + j

i

)

≤ n ·
�(n−k)/2�∑

i=1

(
i + k + 1

i + 1

)
= n ·

�(n−k)/2�∑

i=1

(
i + k + 1

k

)

≤ n ·
(�(n + k + 4)/2�

k + 1

)
.(9)

For each connected vertex set with at most k neighbors, with a help of
Proposition 2.2, we can check in time O(m) if it is a minimal separator or
not, here m is the number of edges in the input graph. In addition to this we
can use the fact that m≤kn for a graph of treewidth k. Thus by Lemma 3.2,
all minimal separators of size k can be listed in time O(n4 ·(�(n+k+4)/2�

k+1

)
).

Let Πk
n be the maximum number of nice potential maximal cliques of

size at most k that can be in a graph on n vertices.

302 FEDOR V. FOMIN, YNGVE VILLANGER

By Proposition 4.7,

Πk
n ≤ n ·

�(n−k)2/3�∑

i=1

k∑

j=1

(
i + j

i

)

≤ n ·
�(n−k)2/3�∑

i=1

(
i + k + 1

i + 1

)
= n ·

�(n−k)2/3�∑

i=1

(
i + k + 1

k

)

≤ n ·
(�(2n + k + 6)/3�

k + 1

)
.(10)

Then by Lemma 3.2 and Proposition 2.4 all nice potential maximal
cliques of size at most k can be listed in time O(n4 ·(�(2n+k+6)/3�

k+1

)
).

Finally, we use nice potential maximal cliques and minimal separators of
size k to generate all potential maximal cliques of size at most k.

Lemma 6.3. For every graph G on n vertices, |Πk
G| ≤ n(|Δk

G|+ Πk
n) and

all potential maximal cliques of G of size at most k can be listed in time

O(n5 ·(�(2n+k+6)/3�
k+1

)
).

Proof. Let v1,v2, . . . ,vn be an ordering of V and let Vi =
⋃i

j=1 vj . By Propo-
sitions 4.3 and 4.4, every potential maximal clique of G[Vi] is either a nice
potential maximal clique of G[Vi], or a potential maximal clique of G[Vi−1],
or is obtained by adding vi to a minimal separator or a potential maxi-
mal clique of G[Vi−1]. This yields that |Πk

G| ≤ n(|Δk
G|+ Πk

n). To list all
potential maximal cliques, for each i, 1 ≤ i ≤ n, we list all minimal sep-
arators and nice potential maximal cliques in G[Vi]. This can be done in
time O(n4 · (�(2n+k+6)/3�

k+1

)
). The total number of all such structures is at

most 2n · (�(2n+k+6)/3�
k+1

)
. By making use of dynamic programming, one can

check if adding vi to a minimal separator or potential maximal clique of
G[Vi−1] creates a potential maximal clique in G[Vi], which by Proposition 2.4
can be done in time O(km). Thus, dynamic programming can be done in
O(n5 ·(�(2n+k+6)/3

k+1

)�) steps, since m≤kn if the treewidth is at most k.

Now putting Lemmata 6.1, 6.3, and Equation (9) together, we obtain the
main result of this section.

Theorem 6.4. There exists an algorithm that for a given graph G and
integer k ≥ 0, either computes a tree decomposition of G of the minimum
width, or correctly concludes that the treewidth of G is at least k+1. The

running time of this algorithm is O(n5 ·(�(2n+k+8)/3�
k+2

)
).

TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS 303

Proof. By Lemma 6.3, graph G contains at most 2n2·(�(2n+k+8)/3�
k+2

)
minimal

separators and potential maximal cliques of size at most k+1 and these can
be enumerated in O(n5 · (�(2n+k+8)/3�

k+2

)
) time. Now the proof follows from

Lemma 6.1.

7. Polynomial space algorithm for treewidth

The algorithm used in Proposition 2.1 requires exponential space because
it is based on dynamic programming which keeps a table with all poten-
tial maximal cliques. As a consequence our O(1.7549n) time algorithm for
computing the treewidth also uses O(1.7549n) space.

When restricting to polynomial space, we cannot store all the minimal
separators and all the potential maximal cliques. The idea used to avoid this
is to search for a “central” potential maximal clique or a minimal separator
in the graph which can safely be completed into a clique. A similar idea is
used in [8], however, the improvement in the running time of our algorithm,
is due to the following lemma and the technique used for listing minimal
separators. Both results are, again, based on Main Lemma.

Lemma 7.1. For a given graph G = (V,E) and 0 < α < 1, one can list in
time O(n4 ·2n(1−α)) and polynomial space all potential maximal cliques of
G such that for every potential maximal clique Ω from this list, there is a
connected component of G[V \Ω] of size at least αn.

Proof. Let Ω be a potential maximal clique satisfying the conditions of
the lemma, and let C be the connected component of size at least �αn�.
By Proposition 2.3, N(C) is a minimal separator contained in Ω and
Ω\N(C) �=∅. Let (Cu,u) be a vertex representation of Ω, where u∈Ω\N(C).
Since no vertex of C is adjacent to u, we have that Cu∩C = ∅. To find Ω,
we try to find its vertex representation by a connected vertex set such that
the closed neighborhood of this set is of size at most �n(1−α)�. By Main
Lemma, the number of such sets is at most

n ·
�n(1−α)�∑

i=1

(�n(1 − α)�
i

)
≤ n · 2n(1−α),

and by Lemma 3.2, all these sets can be listed in O(n4 ·2n(1−α)) steps and
within polynomial space. Finally, for each set we use Propositions 4.6 and
2.4 to check in time O(mn) if the set is a potential maximal clique.

We also use the following result which is a slight modification of the result
from [8], where it is stated in terms of elimination orderings.

304 FEDOR V. FOMIN, YNGVE VILLANGER

Proposition 7.2 ([8]). For a given graph G=(V,E) and a clique K ⊂V ,
there exists a polynomial space algorithm, that computes the optimum tree
decomposition (χ,T) of G, subject to the condition that the vertices of K
form a bag which is a leaf of T . This algorithm runs in time O∗(4n−|K|).

Theorem 7.3. The treewidth of a graph G = (V,E) can be computed in
O(2.6151n) time and polynomial space.

Proof. It is well known (and follows from the properties of clique trees
of chordal graphs), that there is an optimal tree decomposition (χ,T),
{χi : i∈VT }, T = (VT ,ET), of G, where every bag is a potential maximal
clique [11,13,26]. Among all the bags of χ, let χi be a bag such that the
largest connected component of G[V \χi] is of minimum size, i.e. χi is a bag
with the minimum value of

max{|C| : C is a connected component of G[V \ χi]},
where minimum is taken over all bags of χ. Let Ci be the connected com-
ponent of G−χi of maximum size.

Our further strategy depends on the size of |Ci|. Let us assume first that
|Ci| < 0.38685n. In this case, by Lemma 7.1, the set of potential maximal
cliques S such that for every Ω ∈ S the maximum size of a component of
G[V \Ω] is |Ci|, can be listed in time O(n4 ·2n−|Ci|) and polynomial space.
Since χi ∈ S, we have that there is a potential maximal clique Ω∈ S such
that tw(GΩ) = tw(G), where GΩ is obtained from G by turning Ω into a
clique. The treewidth of GΩ is equal to the maximum of minimum width
of decompositions of GΩ[C ∪Ω] with Ω forming a leaf bag, where C is a
connected component of GΩ[V \Ω]. Let us remind that the size of each such
component is at most |Ci|.

By Proposition 7.2, the optimum width of GΩ[C∪Ω] for every connected
component C of GΩ[V ∪Ω] (and with Ω forming a leaf bag) can be computed
in O∗(4|C|) = O∗(4|Ci|), time and thus the treewidth of G can be found in
time

O∗(2n−|Ci| · 4|Ci|) = O∗(2(1−0.38685)n · 40.38685n) = O(2.6151n).

Thus if |Ci| < 0.38685n, we compute the treewidth of G, and the running
time of this polynomial space procedure is O(2.6151n).

Let us consider the case |Ci|≥0.38685n. For each connected component
C of G[V \χi], there exists a bag χi′ ⊂N(C)∪C and a minimal separator
S =χi∩χi′ in χi that separates C from the rest of the graph. Let S =χi∩χj

be the separator in χi that separates Ci from the rest of the graph. Let GS

TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS 305

be the graph obtained from G by turning S into a clique. Then tw(GS) =
tw(G). To compute the treewidth of GS we compute the minimum width
of decompositions of GS [C ∪ S] with S forming a leaf bag, where C is a
connected component of GS [V \S], and then take the maximum of these
values.

By the definition of χi, there exists a connected component Cj of G[V\χj],
such that |Cj |≥|Ci|. By Proposition 2.3, χj �⊆χi. Thus χj\χi �=∅, and the size
of every connected component in G[Ci\χj] is at most |Ci|−1. Furthermore,
since S = χi ∩χj, we have that every connected component of G[Ci \χj] is
also a connected component of G[V \χj]. This yields that Cj ∩Ci = ∅ and
that both Ci and Cj are full connected components associated to S. Thus
|Cj |+ |Ci| ≤ n−|S|. Every connected component of G[V \S], except Ci, is
a connected component of G[V \χj]. Because |Ci| ≤ |Cj|, this implies that
Cj is the largest component of G[V \S]. Both Ci and Cj contain at least
0.38685n vertices, thus the size of S is at most n(1−2 ·0.38685)=0.2263n.
By the algorithmic version of Main Lemma, all sets of such size (and which
form the neighborhood of a set of size |Ci|) can be listed in polynomial space
and time

O(n4 ·
0.2263n∑

p=1

(|Ci| + p

p

)
).

By Proposition 7.2, we can compute the minimum width of decompositions
of GS [C∪S] with S forming a leaf bag, where C is a connected component
of GS [V \S], in time

O∗(4|C|) = O∗(4|Cj |)

and polynomial space. Because |Cj |≤n−|S|−|Ci|, we have that for |S|=p,

O∗(4|Cj |) = O∗(4n−|Ci|−p).

Thus to compute the treewidth of GS (and the treewidth of G), we list all
sets S and for each such set we use Proposition 7.2 for all graphs GS [C∪S].
The running time of this procedure is

O∗

⎛

⎝
0.2263n∑

p=1

(|Ci| + p

p

)
· 4n−|Ci|−p

⎞

⎠ .

306 FEDOR V. FOMIN, YNGVE VILLANGER

By Vandermonde’s identity, we have that
(|Ci| + p

p

)
=

p∑

k=0

(
0.38685n + p

k

)(|Ci| − 0.38685n
p − k

)

<

p∑

k=0

(
0.38685n + p

k

)
2|Ci|−0.38685n.

Thus
0.2263n∑

p=1

(|Ci| + p

p

)
4n−|Ci|−p

<
0.2263n∑

p=1

p∑

k=0

(
0.38685n + p

k

)
2|Ci|−0.38685n4n−|Ci|−p

≤
0.2263n∑

p=1

p

(
0.38685n + p

p

)
· 22((1−0.38685)n−p)

= O(2.6151n).

To conclude, if |Ci|≥0.38685n, we compute the treewidth of G in poly-
nomial space within O(2.6151n) steps.

Acknowledgement. We are grateful to Saket Saurabh for many useful
comments, and to the anonymous referee pointing out that one of the bounds
matched the golden ratio.

References

[1] S. Arnborg, D. G. Corneil and A. Proskurowski: Complexity of finding em-
beddings in a k-tree, SIAM J. Algebraic Discrete Methods 8 (1987), 277–284.

[2] C. Beeri, R. Fagin, D. Maier and M. Yannakakis: On the desirability of acyclic
database schemes, J. ACM 30 (1983), 479–513.

[3] A. Berry, J. P. Bordat and O. Cogis: Generating all the minimal separators of
a graph., Int. J. Found. Comput. Sci. 11 (2000), 397–403.

[4] A. Björklund, T. Husfeldt, P. Kaski and M. Koivisto: The travelling sales-
man problem in bounded degree graphs, in: Proceedings of the 35th International
Colloquium on Automata, Languages and Programming (ICALP 2008), vol. 5125 of
Lecture Notes in Comput. Sci., Springer, 2008, 198–209.

[5] A. Björklund, T. Husfeldt, P. Kaski and M. Koivisto: Trimmed Moebius
inversion and graphs of bounded degree, Theory Comput. Syst. 47 (2010), 637–654.

[6] H. L. Bodlaender: A linear-time algorithm for finding tree-decompositions of small
treewidth, SIAM J. Comput. 25 (1996), 1305–1317.

TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS 307

[7] H. L. Bodlaender: A partial k-arboretum of graphs with bounded treewidth, Theor.
Comp. Sci. 209 (1998), 1–45.

[8] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch and D. M.

Thilikos: On exact algorithms for treewidth, in: Proceedings of the 14th Annual Eu-
ropean Symposium on Algorithms (ESA 2006), vol. 4168 of Lecture Notes in Comput.
Sci., Springer, 2006, 672–683.

[9] H. L. Bodlaender and A. M. C. A. Koster: Combinatorial Optimization on
Graphs of Bounded Treewidth, The Computer Journal 51 (3), 2008, 255–269.

[10] B. Bollobás: On generalized graphs, Acta Math. Acad. Sci. Hungar. (1965), 447–
452.

[11] V. Bouchitté and I. Todinca: Treewidth and minimum fill-in: Grouping the min-
imal separators, SIAM J. Comput. 31 (2001), 212–232.

[12] V. Bouchitté and I. Todinca: Listing all potential maximal cliques of a graph.,
Theor. Comput. Sci. 276 (2002), 17–32.

[13] P. Buneman: A characterization of rigid circuit graphs, Discrete Math. 9 (1974),
205–212.

[14] M. Davis, G. Logemann and D. Loveland: A machine program for theorem-
proving, Comm. ACM 5 (1962), 394–397.

[15] M. Davis and H. Putnam: A computing procedure for quantification theory, J.
ACM 7 (1960), 201–215.

[16] Y. Dourisboure and C. Gavoille: Tree-decompositions with bags of small diam-
eter Discrete Mathematics, 307 (2007), 2008–2029.

[17] U. Feige, M. Hajiaghayi and J. R. Lee: Improved approximation algorithms for
minimum weight vertex separators, SIAM J. Comput. 38 (2008), 629–657.

[18] F. Fomin, F. Grandoni and D. Kratsch: Some new techniques in design and
analysis of exact (exponential) algorithms, Bulletin of the European Association for
Theoretical Computer Science 87 (2005), 47–77.

[19] F. V. Fomin and D. Kratsch: Exact Exponential Algorithms, Springer, 2010.

[20] F. V. Fomin, D. Kratsch and I. Todinca: Exact algorithms for treewidth and
minimum fill-in, in: Proceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP 2004), vol. 3142 of Lecture Notes in Comput.
Sci., Springer, Berlin, 2004, 568–580.

[21] F. V. Fomin, D. Kratsch, I. Todinca and Y. Villanger: Exact algorithms for
treewidth and minimum fill-in, SIAM J. Comput. 38 (2008), 1058–1079.

[22] F. V. Fomin and Y. Villanger: Treewidth computation and extremal combi-
natorics, in: Proceedings of the 34th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2008), vol. 5125 of Lecture Notes in Comput. Sci.,
Springer, 2008, 210–221.

[23] M. C. Golumbic: Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, (1980).

[24] R. L. Graham, D. E. Knuth and O. Patashnik: Concrete mathematics: A foun-
dation for computer science, Addison-Wesley Publishing Company, Reading, MA,
second ed., 1994.

[25] M. Held and R. M. Karp: A dynamic programming approach to sequencing prob-
lems, Journal of SIAM 10 (1962), 196–210.

[26] C.-W. Ho and R. C. T. Lee: Counting clique trees and computing perfect elimina-
tion schemes in parallel, Inform. Process. Lett. 31 (1989), 61–68.

308 F. V. FOMIN, Y. VILLANGER: TREEWIDTH COMPUTATION

[27] K. Iwama: Worst-case upper bounds for k-SAT, Bulletin of the European Association
for Theoretical Computer Science 82 (2004), 61–71.

[28] S. Jukna: Extremal combinatorics with applications in computer science, Springer-
Verlag, Berlin, 2001.

[29] T. Kloks and D. Kratsch: Listing all minimal separators of a graph., SIAM J.
Comput. 27 (1998), 605–613.

[30] D. Lokshtanov: On the complexity of computing treelength, in: Proceedings of
the 32nd International Symposium Mathematical Foundations of Computer Science
(MFCS 2007), vol. 4708 of Lecture Notes in Comput. Sci., Springer, 2007, 276–287.

[31] S. Parter: The use of linear graphs in Gauss elimination, SIAM Review 3 (1961),
119–130.

[32] N. Robertson and P. D. Seymour: Graph minors. II. Algorithmic aspects of tree-
width, Journal of Algorithms 7 (1986), 309–322.

[33] D. J. Rose: A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations, in: Graph Theory and Computing, R. C. Read,
ed., Academic Press, New York, 1972, 183–217.

[34] U. Schöning: Algorithmics in exponential time, in: Proceedings of the 22nd In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS 2005),
vol. 3404 of Lecture Notes in Comput. Sci., Springer, 2005, 36–43.

[35] S. Seiden: Theoretical computer science cheat sheet, SIGACT News 27 (1996), 52–
61.

[36] R. E. Tarjan and A. E. Trojanowski: Finding a maximum independent set, SIAM
J. Computing 6 (1977), 537–546.

[37] Y. Villanger: Improved exponential-time algorithms for treewidth and minimum
fill-in, in: Proceedings of the 7th Latin American Theoretical Informatics Symposium
(LATIN 2006), vol. 3887 of Lecture Notes in Comput. Sci., Springer, 2006, 800–811.

[38] G. Woeginger: Exact algorithms for NP-hard problems: A survey, in: Combinatorial
Optimization – Eureka, You Shrink!, vol. 2570 of Lecture Notes in Comput. Sci.,
Springer, 2003, 185–207.

Fedor V. Fomin, Yngve Villanger

Department of Informatics

University of Bergen

N-5020 Bergen

{fedor.fomin,yngve.villanger}@ii.uib.no

	TREEWIDTH COMPUTATION AND EXTREMAL COMBINATORICS
	1 Introduction
	1.1 Our results.

	2 Preliminaries
	3 Combinatorial Lemma
	4 Combinatorial bounds
	4.1 Minimal separators
	4.2 Potential maximal cliques

	5 Exact algorithm for treewidth
	6 Computing treewidth at most k
	7 Polynomial space algorithm for treewidth

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [476.000 671.000]
>> setpagedevice

