
16

Distortion is Fixed Parameter Tractable

MICHAEL FELLOWS, Charles Darwin University
FEDOR V. FOMIN and DANIEL LOKSHTANOV, University of Bergen
ELENA LOSIEVSKAJA, University of Iceland
FRANCES ROSAMOND, Charles Darwin University
SAKET SAURABH, The Institute of Mathematical Sciences

We study low-distortion embedding of metric spaces into the line, and more generally, into the shortest
path metric of trees, from the parameterized complexity perspective. Let M = M(G) be the shortest path
metric of an edge-weighted graph G, with the vertex set V(G) and the edge set E(G), on n vertices. We give
the first fixed parameter tractable algorithm that for an unweighted graph metric M and integer d either
constructs an embedding of M into the line with distortion at most d, or concludes that no such embedding
exists. Our algorithm requires O(nd4(2d + 1)2d) time which is a significant improvement over the best
previous algorithm that runs in time O(n4d+2dO(1)). Because of its apparent similarity to the notoriously
hard BANDWIDTH MINIMIZATION problem, we find it surprising that this problem turns out to be fixed
parameter tractable.

We extend our results on embedding unweighted graph metric into the line in two ways. First, we give
an algorithm to construct small-distortion embeddings of weighted graph metrics. The running time of our
algorithm is O(n(dW)4(2d + 1)2dW), where W is the largest edge weight of the input graph. To complement
this result, we show that the exponential dependence on the maximum edge weight is unavoidable. In
particular, we show that deciding whether a weighted graph metric M(G) with maximum weight W < |V(G)|
can be embedded into the line with distortion at most d is NP-complete for every fixed rational d ≥ 2. This
rules out any possibility of an algorithm with running time O((nW)h(d)) where h is a function of d alone.
Second, we consider more general host metrics for which analogous results hold. In particular, we prove that
for any tree T with maximum degree �, embedding M into a shortest path metric of T is fixed parameter
tractable, parameterized by (�, d).

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Computations on discrete structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Embedding, distortion, tree, parameterized algorithms

ACM Reference Format:
Fellows, M., Fomin, F. V., Lokshtanov, D., Losievskaja, E., Rosamond, F., and Saurabh, S. 2013. Distortion is
fixed parameter tractable. ACM Trans. Comput. Theory 5, 4, Article 16 (November 2013), 20 pages.
DOI:http://dx.doi.org/10.1145/2489789

An extended abstract of this article appeared in Fellows et al. [2009].
Authors’ addresses: M. Fellows, Charles Darwin University, Darwin, Australia; F. V. Fomin (corresponding
author) and D. Lokshtanov, Department of Informatics, University of Bergen, Bergen, Norway; email:
fomin@ii.uib.no; E. Losievskaja, Department of Computer Science, University of Iceland, Iceland;
F. Rosamond, Charles Darwin University, Darwin, Australia; S. Saurabh, The Institute of Mathematical
Sciences, Chennai, India.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1942-3462/2013/11-ART16 $15.00
DOI:http://dx.doi.org/10.1145/2489789

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:2 M. Fellows et al.

1. INTRODUCTION

Given an undirected graph G with the vertex set V(G) and the edge set E(G) together
with a weight function w that assigns a positive weight w(uv) to every edge uv ∈ E(G),
a natural metric associated with G is M(G) = (V(G), DG) where the distance function
DG is the weighted shortest path distance between u and v for each pair of vertices
u, v ∈ V(G). We also denote the distance function DG by D if the graph in consideration
is clear from the context. We call M(G) as the (weighted) graph metric of G. If w(uv) = 1
for every edge uv ∈ E(G), we say that M(G) = (V(G), DG) is an unweighted graph met-
ric. For a subset S of V(G), we say that M[S] = (S, D′′) (where D′′ is D restricted to S2)
is the submetric of M(G) induced by S. Given a graph metric M and another metric
space M′ with distance functions D and D′, a mapping f : M → M′ is called an embed-
ding of M into M′. The mapping f has contraction cf and expansion ef if for every pair
of points p, q in M, D(p, q) ≤ D′(f (p), f (q)) · cf and D(p, q) · ef ≥ D′(f (p), f (q)) respec-
tively. We say that f is noncontracting if cf is at most 1. A noncontracting mapping f
has distortion d if ef is at most d.

Embedding a graph metric into a simple metric space like the real line has proved
a useful tool in designing algorithms in various fields. A long list of applications given
in Gupta et al. [2004] includes approximation algorithms for graph and network prob-
lems, such as sparsest cut, minimum bandwidth, low-diameter decomposition and op-
timal group steiner trees, and online algorithms for metrical task systems and file
migration problems. These applications often require algorithms for finding low dis-
tortion embeddings, and the study of the algorithmic issues of metric embeddings has
recently begun to develop [Bădoiu et al. 2005a, 2005b, 2007; Kenyon et al. 2004]. For
example, Bădoiu et al. [2005a, 2007] describe approximation algorithms and hard-
ness results for embedding general metrics into the line and tree metrics respectively.
In particular they show that the minimum distortion for a line embedding is hard
to approximate up to a factor polynomial in n even for weighted trees with polyno-
mial spread (the ratio of maximum/minimum weights). Hall and Papadimitriou [2005]
studied the hardness of approximation for bijective embeddings. Independently from
the algorithmic viewpoint, the problem of finding a low-distortion embedding between
metric spaces is a fundamental mathematical problem [Indyk 2001; Linial 2002] that
has been studied intensively.

In many applications one needs the distortion of the required embedding to be rel-
atively small. Hence it is natural to study the algorithmic issues related to small-
distortion embeddings within the framework of parameterized complexity [Downey
and Fellows 1999; Flum and Grohe 2006; Niedermeier 2006]. This paradigm associates
a natural secondary measurement to the problem and studies the algorithmic behavior
of the problem in terms of the associated measurement, called the parameter. In this
article we consider a natural parameter, the distortion d, and consider the feasibility
of having an algorithm of time complexity g(d) · nO(1) for the problem of embedding
weighted graph metrics into the line with distortion at most d.

What would one expect about the complexity of embedding an unweighted graph
metric into the line, parameterized by the distortion d? At a glance, the problem
seems to closely resemble the BANDWIDTH MINIMIZATION problem. In the BAND-
WIDTH MINIMIZATION problem one is given a graph G and asked to find a bi-
jective mapping f : V(G) → {1, . . . , n}, for which the bandwidth, that is, b =
maxuv∈E(G) |f (u) − f (v)|, is minimized. This problem is known to be W[t]-hard for all
t ≥ 1 [Bodlaender et al. 1994, 2000], when parameterized by b. Unless an unlikely col-
lapse of parameterized complexity classes occurs, this rules out any possibility of hav-
ing an algorithm with running time g(b) · nO(1) for BANDWIDTH MINIMIZATION and
thus the algorithm of Saxe [1980] running in time O(4bnb+1) is essentially the best

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

Distortion is Fixed Parameter Tractable 16:3

possible. Bădoiu et al. [2005b] gave the first exact algorithm deciding whether an un-
weighted graph metric can be embedded into the line with distortion at most d. The
algorithm of Bădoiu et al. is based on the analogous result for the bandwidth problem
by Saxe [1980] and is of running time O(n4d+2 · dO(1)). Because of the apparent similar-
ity to the notoriously hard bandwidth problem, the problem of embedding unweighted
graph metrics into the line was not expected to be Fixed Parameter Tractable (FPT).
Our first result is the following theorem, which we find a bit surprising.

THEOREM 1.1. Given an unweighted n-vertex graph G and a positive integer d, it is
possible in time O(nd4(2d+1)2d) either to embed M(G) into the real line with distortion
at most d, or to conclude correctly that no such embedding exists.

The running time of the algorithm is linear for every fixed d and drastically im-
proves the running time of the previously known algorithm. In fact, one can apply
Theorem 1.1 in order to check whether the unweighted graph metric can be embedded
into the line with distortion at most lg n/ lg lg n in time polynomial in n. As was shown
by Lokshtanov et al. [2011], the problem of embedding into the line cannot be solved
in time 2o(d log d)nO(1) unless the Exponential-Time Hypothesis (ETH) fails. Thus the
running time of Theorem 1.1 is asymptotically tight.

We provide the proof of Theorem 1.1 in Section 2.1.
Having coped with the unweighted case, we return to the study of low-distortion

embeddings of weighted graph metrics into the line. We show that if the maximum
weight of any edge is bounded by W, then we can modify the algorithm presented
in Theorem 1.1 to give an algorithm to decide whether M(G) can be embedded into
the line with distortion at most d in time O(n(dW)4(2d + 1)2dW). This is proved in
Theorem 2.12, Section 2.2. However, the weights in a graph metric do not need to be
small, and hence this algorithm is not sufficient to give a g(d) ·nO(1)-time algorithm for
the problem of embedding weighted graph metrics into the line. Can such an algorithm
exist? Unfortunately, it turns out that our O(n(dW)4(2d+1)2dW) algorithm essentially
is the best one can hope for. In fact, our next result rules out not only any possibility of
having an algorithm with running time of the form g(d) · nO(1), but also any algorithm
with running time (nW)h(d), where h only depends on d. More precisely, in Section 3
we prove the following theorem.

THEOREM 1.2. Deciding whether a weighted graph G metric M(G) can be embed-
ded into the line with distortion at most d is NP-complete for every fixed rational d ≥ 2.
The problem remains NP-complete even when the maximum weight of an edge in G is
at most |V(G)|.

Another direction for generalizing Theorem 1.1 is to look for other simple topolo-
gies or host metrics for which an analogous result to Theorem 1.1 holds. Kenyon et al.
[2004] provided FPT algorithms for the bijective embedding of unweighted graph met-
rics into the metric of a tree with bounded maximum degree �. The running time of

their algorithm is n2 · 2�α3
where α is the maximum of cf and ef . An important point,

observed in Bădoiu et al. [2005b], is that constraining the embedding to be bijective
(not just injective, as in our case) is crucial for the correctness of the algorithms from
Kenyon et al. [2004]. In Section 4, we complement the FPT result of Kenyon et al.
[2004] by extending our techniques to give an algorithm for the problem of embedding
of unweighted graph metrics into a metric generated by a tree with maximum degree
bounded by �, parameterized by distortion d and �.

THEOREM 1.3. Given an unweighted n-vertex graph G, a tree T with maximum
degree �, and an integer d > 0, it is possible to embed M(G) into M(T) with distortion at

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:4 M. Fellows et al.

most d in time n2 · |V(T)| ·2O((5d)�
d+1 ·�), or to conclude correctly that no such embedding

exists.

Why stop at bounded degree trees? Can our results be extended to yield FPT al-
gorithms for low-distortion embeddings into other, more complicated topologies? At a
first glance, this seems to be the case. However, even a simple change in the topology
of the host metric can change the behavior of the problem, or even make the problem
completely intractable. For embedding into the line it is enough to control the local
properties of the embedding whereas this is not sufficient for embedding into bounded
degree trees. The techniques we use to cope with these difficulties do not look extend-
able to the problem of finding low-distortion embeddings into cycles, an interesting
open problem that seems to exhibit even more nonlocality than that of embedding into
bounded degree trees. A more dramatic example is that of low-distortion embeddings
of unweighted graph metrics into wheels (cycle with one additional vertex adjacent to
all the vertices of a cycle). In fact, it turns out that deciding whether one can embed
an unweighted graph metric into a wheel with distortion at most 2 is NP-complete,
by a simple reduction from the HAMILTONIAN CYCLE problem. Thus, the problems
of embedding an unweighted graph metric into cycles and trees of unbounded degree
remain interesting open problems.

2. ALGORITHMS FOR EMBEDDING GRAPH METRICS INTO THE LINE

2.1. Unweighted Graph Metrics into the Line

In this section we give an algorithm for embedding unweighted graph metrics into the
line. We slightly abuse the terminology here by saying embedding of a graph G instead
of embedding of the unweighted graph metric M(G) of G. Before we proceed to the
details of the algorithm we need a few observations that allow us to only consider a
specific kind of embeddings. For a noncontracting embedding f of a graph G into the
line, we say that vertex u pushes vertex v if D(u, v) = |f (u) − f (v)|.

OBSERVATION 2.1. If f (u) < f (v) < f (w) and u pushes w, then u pushes v and v
pushes w.

PROOF. By the triangle inequality, D(u, w) ≤ D(u, v) + D(v, w). Since u pushes w
and because f is noncontracting, we have that D(u, w) = f (w) − f (u) = (f (w) − f (v)) +
(f (v) − f (u)) ≥ D(u, v) + D(v, w) ≥ D(u, w). Since f is a noncontracting embedding we
have that f (w) − f (v) ≥ D(v, w) and f (v) − f (u) ≥ D(u, v). This implies that f (w) −
f (v) = D(v, w) and f (v) − f (u) = D(u, v), otherwise it will contradict the fact that
D(u, w) ≤ D(u, v) + D(v, w).

For an embedding f , let v1, v2, . . . , vn be an ordering of the vertices such that f (v1) <
f (v2) < · · · < f (vn). We say that f is pushing if vi pushes vi+1, for each 1 ≤ i ≤ n − 1.

OBSERVATION 2.2. If G can be embedded into the line with distortion d, then there
is a pushing embedding of G into the line with distortion d. Furthermore, every pushing
embedding of G into the line is noncontracting.

PROOF. Among all embeddings of G into the line with distortion d, let us choose f
such that ∑

2≤i≤n

|f (vi) − f (vi−1)| is minimized.

We claim that f is pushing. Indeed, if f is not pushing, then there is a minimum integer
q ≥ 1 such that vq does not push vq+1. By Observation 2.1, for every p ≤ q and r ≥
q + 1, D(vp, vr) > f (vr) − f (vp). But then embedding f ′, f ′(vi) = f (vi) for i ≤ q and

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

Distortion is Fixed Parameter Tractable 16:5

f ′(vi) = f (vi) − ε for i > q and ε such that D(vp, vr) ≥ f (vr) − f (vp) + ε for all p ≤ q and
r ≥ q+1, is a noncontracting embedding of distortion d, which is a contradiction to the
choice of f .

To prove that every pushing embedding of G into the line is noncontracting,
we observe that for each b > a ≥ 1, f (vb) − f (va) = ∑b

i=a+1 f (vi) − f (vi−1) =∑b
i=a+1 D(vi, vi−1) ≥ D(va, vb).

OBSERVATION 2.3. Let f be a pushing embedding of a connected graph G into the
line with distortion at most d. Then D(vi−1, vi) ≤ d for every 1 ≤ i ≤ n.

PROOF. Suppose for contradiction that D(vi−1, vi) > d for some i. As the endpoints
of any edge can be mapped at most d apart, this implies that G is disconnected.

By Observation 2.2, it is sufficient to work only with pushing embeddings. Our algo-
rithm is based on dynamic programming over small intervals of the line. The intuition
behind the algorithm is as follows. Let us consider a distortion d embedding of G into
the line and an interval of length 2d+1 of the line. First, observe that no edge can have
one endpoint to the left of this interval and one endpoint to the right. This means that
if there is a vertex u embedded to the left of this interval and another vertex v that has
been embedded to the right, then the set of vertices embedded into the interval form an
u, v-separator. Moreover, for each edge, its endpoints can be mapped at most d apart,
and hence there is no edge with one endpoint to the left of this interval and the other
endpoint in the rightmost part of this interval. Thus just by looking at the vertices
mapped into an interval of length 2d + 1, we deduce which of the remaining vertices
of G were mapped to the left and which were mapped to the right of this interval. This
is a natural division of the problem into independent subproblems and the solutions
to these subproblems can be used to find an embedding of G. Next we formalize this
intuition by defining partial embeddings and showing how they are glued onto each
other to form a distortion d embedding of the input graph.

It is well known (and it follows from Observation 2.2) that there always exists an
optimal embedding with all the vertices embedded into integer coordinates of the line.
Without loss of generality, in the rest of this section we only consider pushing embed-
dings of this type.

In the remaining part of the article we always assume that our input graph G is
connected, otherwise the problem has no solution.

Definition 2.4. For a graph G and a subset S ⊆ V(G), a partial embedding of S is
a function f : S → {−(d + 1), . . . , d + 1}. We define S[a,b]

f , −(d + 1) ≤ a ≤ b ≤ d + 1,
to be the set of all vertices of S which are mapped into {a, . . . , b} by f (let us remark
that this can be ∅). We also define SL

f = S[−(d+1),−1]
f and SR

f = S[1,d+1]
f . For an integer x,

−(d + 1) ≤ x ≤ d + 1, we put Sx
f = S[x,x]

f . Finally, we put L(f) (R(f)) to denote the union

of the vertex sets of all connected components of G \ S that have neighbors in SL
f (SR

f).

Definition 2.5. A partial embedding f of a subset S ⊆ V(G) is called feasible if:

(1) f is a noncontracting distortion d embedding of S;
(2) L(f) ∩ R(f) = ∅;
(3) every neighbor of S0

f is in S;

(4) if R(f) = ∅, then Sd+1
f is nonempty;

(5) if L(f) = ∅, then S−(d+1)

f is nonempty;

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:6 M. Fellows et al.

(6) for every u, v ∈ S, if f (u) + 1 < f (v) and S[f (u)+1, f (v)−1]
f = ∅, then f (v) − f (u) =

D(u, v). (In other words, u pushes v.)

The properties 1, 2, and 3 of this definition will be used to show that every distortion d
embedding of G into the line can be described as a sequence of feasible partial embed-
dings that have been glued onto each other. Properties 4, 5, and 6 are helpful to bound
the number of feasible partial embeddings.

Definition 2.6. Let f and g be feasible partial embeddings of a graph G, with do-
mains Sf and Sg, respectively. We say that g succeeds f if:

(1) S[−d,d+1]
f = S[−(d+1),d]

g = Sf ∩ Sg;
(2) for every u ∈ Sf ∩ Sg, f (u) = g(u) + 1;
(3) Sd+1

g ⊆ R(f);

(4) S−(d+1)

f ⊆ L(g).

The properties 1 and 2 describe how one can glue a partial embedding g that has
been shifted one to the right onto another partial embedding f . Properties 3 and 4 are
employed to enforce “intuitive” behavior of the sets L(f), R(f), L(g), and R(g). That is,
since g is glued on the right side of f , everything to the right of g should appear in the
right side of f . Similarly, everything to the left of f should be to the left of g.

LEMMA 2.7. For every pair of feasible partial embeddings f and g of subsets Sf and

Sg of V(G) such that g succeeds f , we have R(f) = R(g)∪Sd+1
g and L(g) = L(f)∪S−(d+1)

f .

PROOF. Let us prove that R(f) = R(g) ∪ Sd+1
g . (The proof of L(g) = L(f) ∪ S−(d+1)

f

is similar.) Because g succeeds f , we have that Sd+1
g ⊆ R(f). Let C be the vertex set

of a connected component of G \ Sg such that C ⊆ R(g). Because S−(d+1)

f ⊆ L(g), the
subgraph G[C] induced by C is a connected component of G \ (Sf ∪ Sg). If C contains a
neighbor of Sd+1

g , then C ⊆ R(f) (this is because Sd+1
g ⊆ R(f) and C and Sd+1

g are in the
same connected component of G \ Sf). On the other hand, if C contains no neighbor of

S(d+1)
g , then, as C ⊆ R(g), C has a neighbor in S(1,d)

g ⊆ SR
f . Therefore C ⊆ R(f), which

in turn implies that R(g) ⊆ R(f). Thus, we have proved that R(g) ∪ Sd+1
g ⊆ R(f).

Let us now show that R(f) ⊆ R(g) ∪ Sd+1
g . Let C be the vertex set of a connected

component of G \ Sf such that C ⊆ R(f). C contains no neighbors of S−(d+1)

f thus C is a

connected component of G\S(−(d+1),d)
g . If C does not contain Sd+1

g , then C is a connected

component of G \ Sg. Furthermore, as C ⊆ R(f), C has a neighbor in S(1,d+1)

f ⊆ S(0,d)
g .

As S0
g has no neighbors outside of Sg, C has a neighbor in SR

g implying C ⊆ R(g). On
the other hand, if C contains Sd+1

g , then every connected component C′ of G[C] \Sd+1
g

is a connected component of G \ Sg that has a neighbor in Sd+1
g ⊆ SR

g . This concludes
the proof that R(f) ⊆ R(g) ∪ Sd+1

g , implying R(f) = R(g) ∪ Sd+1
g .

LEMMA 2.8. For every integer d, a graph G has an embedding of distortion at most
d if and only if there exists a sequence of feasible partial embeddings f0, f1, f2, . . . , ft such
that for each 0 ≤ i ≤ t − 1, fi+1 succeeds fi, and L(f0) = R(ft) = ∅.

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

Distortion is Fixed Parameter Tractable 16:7

PROOF. Let f be a pushing embedding of G with distortion d which maps all vertices
to integers greater than or equal to −(d + 1) and maps one vertex to −(d + 1). Let
t be the smallest integer such that f (v) ≤ t + d + 1 for every v ∈ V(G). For every
0 ≤ i ≤ t, let Si be the set of vertices that f maps to {i − (d + 1), . . . , i + d + 1}. We define
fi : Si → {−(d + 1), . . . , d + 1} to be fi(v) = f (v) − i, v ∈ Si. Then for every i ≤ t − 1, fi is
a feasible partial embedding, fi+1 succeeds fi, and L(f0) = R(ft) = ∅.

In the other direction, let f0, f1, f2, . . . , ft be a sequence of feasible partial embeddings
such that for each i, fi+1 succeeds fi and L(f0) = R(ft) = ∅. Let Si be the domain of fi.
First we show that for every vertex v there is an index i such that v ∈ Si. If v /∈ S0,
then v ∈ R(f0). Let k be the largest integer such that v ∈ R(fk). Because R(ft) = ∅, we
have that k < t. Thus, v ∈ R(fk) \ R(fk+1). By Lemma 2.7, R(fk) \ R(fk+1) ⊆ Sd+1

fk+1
which

implies that v ∈ Sk+1.
We claim that for every v ∈ Si ∩ Sj, fi(v) + i = fj(v) + j. Indeed, let k be the smallest

integer such that v ∈ Sk. Let k′ = min{t, fk(v) + k + d + 1}. For every i and j, such that
k ≤ i, j ≤ k′, we have fi(v) + i = fj(v) + j. Furthermore, if k′ < t, then v ∈ L(fk′+1) and
thus by Lemma 2.7, v ∈ L(fk′′) for every k′ < k′′ ≤ t. Since k is the smallest integer such
that v ∈ Sk, we have that if v ∈ Si ∩ Sj, then fi(v) + i = fj(v) + j.

From the previous two paragraphs, we conclude that there is a function f such that
for every v ∈ Si, f (v) = fi(v) + i. It remains to prove that f is a distortion d embedding
of G into the line. We say that a pair of vertices u and v are in conflict if either |f (u) −
f (v)| < D(u, v), or if |f (u) − f (v)| > d · D(u, v). Let us note that if no pair of vertices
are in conflict, then f is a distortion d embedding of G. We prove that no two vertices
in Si ∪ L(fi) are in conflict by induction on i. For i = 0 this is true as f0 is a feasible
partial embedding. Assume now that the statement is true for every i < k.

If Sd+1
fk

is empty, then the statement trivially holds for k. Otherwise, for some vertex

v, Sd+1
fk

= {v}. To complete the proof, it is sufficient to show that v is not in conflict with
any other vertex u in Sk ∪ L(fk). If u is in Sk, u and v are not in conflict because fk
is a feasible partial embedding. If u is not in Sk, then u is in L(fk) and every shortest
path from u to v in G must contain a vertex w ∈ SL

k . Since f (u) ≤ f (w) ≤ f (v), we have
that |f (v) − f (u)| = f (v) − f (w) + f (w) − f (u) ≥ D(v, w) + D(w, u) = D(v, u). Therefore,
|f (v) − f (u)| = f (v) − f (w) + f (w) − f (u) ≤ d · D(v, w) + d · D(w, u) = d · D(v, u).
Thus no pair of vertices in Si ∪ L(fi) are in conflict for every i ≤ t. However, for i = t,
Si ∪ L(fi) = V(G) and we conclude that no pair of vertices are in conflict.

For a vertex v of a graph G and integer r ≥ 0, we denote the ball of radius r centered
at v, which is the set of vertices at distance at most r in G, by B(v, r). The local density
of a graph G is δ = maxv∈V(G),r > 0

|B(v,r)−1|
2r . We will apply the following well-known

lower bound on distortion.

LEMMA 2.9. [BĂDOIU ET AL. 2005A]. [Local Density] Let G be a graph that can be
embedded into the line with distortion d. Then d is at least the local density δ of G.

Applying Lemma 2.9 we can bound the number of possible feasible partial embed-
dings. Observe that each feasible partial embedding f can be represented as a number
1 ≤ t ≤ d and a sequence of vertices v0v1 . . . vq such that t + ∑q

i=1 D(vi−1, vi) ≤ 2d + 1
and D(vi−1, vi) ≤ d for every i ≥ 1. This is done by simply saying that the domain
S of f is the set {v0, v1, . . . , vq} and that f (va) = −(d + 1) + t + ∑a

i=1 D(vi−1, vi). For
x ≥ 0 and v0 ∈ V(G), let N (x, v0) be the number of sequences v0v1 . . . vq such that∑q

i=1 D(vi−1, vi) = x. We define N (x) as the maximum over all numbers N (x, v0),
v0 ∈ V(G). For any negative number x, N (x) = 0.

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:8 M. Fellows et al.

LEMMA 2.10. For x ∈ Z, N (x) ≤ (2d + 1)x.

PROOF. We prove the lemma by induction on x. For x ≤ 0, the statement is triv-
ially true. Suppose that the inequality holds for every x′ < x. For a vertex v0, let
S be the set of all vertex sequences v0v1 . . . vq starting with v0 with the property
that

∑q
i=1 D(vi−1, vi) = x. For i ∈ {1, . . . , x}, let Si be the set of sequences in S

such that D(v0, v1) = i. Let C(v0, i) = |B(v0, i) \ B(v0, i − 1)|. Then |Si| ≤ C(v0, i) ·
N (x − i) and |S| = ∑x

i=1 |Si| ≤ ∑x
i=1 C(v0, i) · N (x − i). By the induction assump-

tion,
∑x

i=1 C(v0, i) · N (x − i) ≤ ∑x
i=1 C(v0, i) · (2d + 1)x−i. Furthermore, by Lemma 2.9,

we have that
∑i

j=1 C(v0, i) ≤ 2di for every i. Because (2d + 1)y is a convex func-
tion of y, it follows that the sum

∑x
i=1 C(v0, i) · (2d + 1)x−i subject to the constraints∑i

j=1 C(v0, j) ≤ 2di, 1 ≤ i ≤ x, is maximized when each of C(v0, i) = 2d. In this case∑x
i=1 C(v0, i) · (2d + 1)x−i ≤ 2d · ∑x

i=1(2d + 1)x−i which is a geometric sequence with
sum upper bounded by 2d · (2d + 1)x · ∑∞

i=1(2d + 1)−i = (2d + 1)x. Since this holds for
each choice of v0, the inequality holds also for x.

COROLLARY 2.11. For a graph G with local density at most d the number of possible
feasible partial embeddings of subsets of V(G) is at most O(n(2d + 1)2d).

PROOF. By discussions preceding Lemma 2.10, for each fixed first vertex v0 and
each value of t, there are at most N (2d + 1 − t) feasible partial embeddings that
map v0 to −(d + 1) + t. Thus the number of feasible partial embeddings is at most∑d

t=1 nN (2d + 1 − t). By Lemma 2.10, this is at most n · ∑d
t=1(2d + 1)2d+1−t ≤

3
2n(2d + 1)2d.

Now we are in the position to prove Theorem 1.1.

PROOF OF THEOREM 1.1. The algorithm proceeds as follows. First, check whether
G has local density δ bounded by d. Checking the local density of G can be done in time
linear in n because if |E(G)| ≥ nd we can immediately answer “no”. If δ > d, answer
“no”. Otherwise, we can test whether the conditions of Lemma 2.8 apply. That is, we
construct a directed graph D where the vertices are feasible partial embeddings and
there is an edge from a partial embedding fx to a partial embedding fy if fy succeeds
fx. Checking the conditions of Lemma 2.8 reduces to checking for the existence of a
directed path starting in a feasible partial embedding f0 with L(f0) = ∅ and ending in
a feasible partial embedding ft with R(ft) = ∅. This can be done in linear time in the
size of D by running a depth-first search in D. The number of vertices in D is at most
O(n(2d + 1)2d). Every vertex of D has at most O(d2) edges going out of it, as a feasible
partial embedding fy succeeding another feasible partial embedding fx is completely
determined by fx together with the vertex that fy maps to d + 1 (or the fact that fy does
not map anything there). Using prefix-tree-like data structures one can test whether
a given partial embedding fx succeeds another in O(d2) time. The total running time
is then bounded by O(nd4(2d + 1)2d).

2.2. Weighted Graph Metrics into the Line Parameterized by d and W

In this section we show how the algorithm of Theorem 1.1 can be generalized to handle
metrics generated by weighted graphs. More precisely, let G be a graph with weight
function w : E(G) → Z

+ \ {0} and M = (V(G), D) be the weighted shortest path
distance metric of G. Now we give an outline of an algorithm for embedding M into

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

Distortion is Fixed Parameter Tractable 16:9

the line, parameterized by the distortion d and the maximum edge weight W, that
is, W = maxe∈E(G){w(e)}. The definition of a pushing embedding and Observations
2.1 and 2.2 work out even when G is a weighted graph. Once we define the notion
of partial embeddings, other notions like feasibility and succession are adapted in an
obvious way. Given a graph G and a subset S ⊆ V(G), a partial embedding of S is
a function f : S → {−(dW + 1), . . . , (dW + 1)}. We can prove results analogous to
Lemma 2.7 and Lemma 2.8 with the new definitions of partial embeddings, feasibility
and succession. Thus, we can give an algorithm for this problem similar to the algo-
rithm presented in Theorem 1.1. The runtime of this algorithm is dominated by the
number of different feasible partial embeddings. Let Bw(v, r) denote the set of vertices
at weighted distance at most r from v and δw be the analogous notion of weighted local
density of a graph G. It is easy to see that if M can be embedded into the line with
distortion at most d then d ≥ δw. This result immediately upper bounds the number
of feasible partial embeddings by n · (dW)O(dW). In what follows next we show that
the number of feasible partial embeddings actually is bounded by n · (2d + 1)2dW .
Let N (x) be as in Lemma 2.10. For each fixed first vertex v0 in the partial embed-
ding, and each value of 1 ≤ t ≤ (2dW + 1), there are at most N (2dW + 1 − t) feasible
partial embeddings that map v0 to −(dW + 1) + t. Thus the number of feasible par-
tial embeddings is at most

∑dW
t=1 n · N (2dW + 1 − t). By Lemma 2.10, this is at most

n · ∑dW
t=1(2d + 1)2dW + 1−t ≤ 3

2n(2d + 1)2dW .

THEOREM 2.12. Given a weighted graph G with maximum edge weight W, it is
possible in time O(n(dW)4(2d + 1)2dW) to embed M(G) into the real line with distortion
at most d, or to conclude correctly that no such embedding exists.

3. GRAPH METRICS INTO THE LINE IS HARD FOR FIXED RATIONAL D ≥ 2

We complement Theorem 2.12 by proving that deciding whether a given weighted
graph metric can be embedded into the line with distortion at most d is NP-complete
for every fixed rational d ≥ 2. Our reduction is from 3-COLORING, one of the classi-
cal NP-complete problems. For input G to 3-COLORING we construct an edge-weighted
graph G′. For an edge uv ∈ E(G′), w(uv) will be the weight of the edge uv. The weighted
shortest path metric M(G′) will then be the input to our embedding problem. Let
n = |V(G)|, m = |E(G)| and d = a

b ≥ 2 for some integers a and b. Let e1, e2, . . . , em be an
ordering of the edges of G, and choose the integers g = 5a − 1, r = 10b, q = m(2n + 1),
L = 10qb and t = abL+1. We start constructing G′ by making two cliques C1 and C2 of
size t. Let C1 = {c1, c2, . . . , ct} and C2 = {c′

1, c′
2, . . . , c′

t}. Let w(cicj) = w(c′
ic

′
j) = |i− j|/d�.

Now, we make q − 1 separator vertices and label them s1, . . . , sq−1. We make q gadgets
T1, . . . , Tq encoding the edges of G. For every edge ei = uv there are 2n + 1 gadgets,
namely Ti+mp for every 0 ≤ p < 2n + 1. Each such gadget, say Ti+mp, consists of three
vertices, one vertex corresponding to u, one vertex corresponding to v, and one vertex
corresponding to ei. These three vertices form a triangle with edges of weight 1. For
every j between 1 and q we connect all vertices of Tj to sj−1 and sj with edges of weight
g. Whenever this implies that we need to connect something to the nonexisting vertices
s0 and sq we connect to ct and c′

1 respectively. Now, for every pair of vertices x ∈ Ti and
y ∈ Tj that correspond to the same vertex or edge of G we add an edge of weight r|i − j|
between x and y. Finally, we add an edge with weight L between ct and c′

1. This con-
cludes the construction of G′. Figure 1 shows the general structure of the construction.
The next lemma essentially shows that if there is an edge uv ∈ E(G′) then that is the
shortest weight path between u and v in G′.

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:10 M. Fellows et al.

Fig. 1. The figure shows the overall structure of the construction. The numbers appearing between C1 and
C2 indicate edge weights.

LEMMA 3.1. For every edge uv in E(G′), DG′(u, v) = w(uv).

PROOF. Clearly, DG′(u, v) ≤ w(uv) for every edge uv, so it is sufficient to prove
DG′(u, v) ≥ w(uv). If w(uv) = 1 then DG′(u, v) ≥ w(uv), so suppose w(uv) > 1. In
this case uv either has:

— both endpoints in C1 or C2, or
— is the edge ctc′

1, or
— is an edge from ct to a vertex in T1, or
— an edge from c′

1 to a vertex in Tq, or
— an edge incident to a separator vertex, or
— an edge between a vertex in a gadget Ti and a vertex in a gadget Tj.

If both u and v lie inside C1 every shortest u − v path lies entirely within C1. For every
w in C1 we have that w(u, v) ≤ w(u, w)+ w(w, v) so w(uv) ≤ DG′(u, v). Similarly, if both
u and v lie inside C2 then w(uv) ≤ DG′(u, v). If uv is incident to a separator vertex then
w(uv) = g and DG′(uv) ≥ g because every separator vertex is only incident to edges
with weight g. If uv is an edge from ct to a vertex in T1 or an edge from c′

1 to a vertex
in Tq then w(uv) = g and DG′(uv) ≥ g because every edge with one endpoint inside
C1 ∪ C2 and one endpoint outside of C1 ∪ C2 has weight exactly g.

Now, if uv is an edge between a vertex in a gadget Ti and a vertex in a gadget Tj,
w(uv) = r|i − j|. Observe that a path from u to v with length smaller than r|i − j|
can never use the edge ctc′

1 and thus will never visit the set C1 ∪ C2. We prove that
the distance between u and v is at least r|i − j| by induction on |i − j|. If |i − j| = 1
then any path containing an edge with one endpoint in Ti′ and another in Tj′ with
i′ �= j′ will have length at least r. Any path from u to v that does not contain any such
edges must contain at least one separator vertex as an in intermediate vertex and
thus have length at least 2g = 20a − 2 > 10b = r. We now suppose that the induction
hypothesis is true whenever |i − j| < z and show that it also must hold when |i − j| = z.
If a path P from u to v contains a vertex u′ from a gadget Ti′ with i′ �= i, i′ �= j and
|i′ − i| + | j − i′| = |i − j| then the induction hypothesis implies that the length of P is at
least |i′ − i|r + | j − i′|r = |i − j|r. If P contains no such vertices as intermediate vertices
then P must contain at least one edge with one endpoint in Ti′ and another in Tj′ such
that |i′ − j′| ≥ |i − j|. In this case the length of P is at least |i′ − j′|r ≥ |i − j|r, concluding
the proof that the distance between a vertex u in a gadget Ti and a vertex v in a gadget
Tj is at least r|i − j|.

It remains to show that DG′(ctc′
1) > L. If a shortest path P from ct to c′

1 avoids the
edge ctc′

1, the first vertex in P after ct must be a vertex u in T1, and the last vertex in P
before c′

1 must be a vertex v in Tq. Thus, by the discussion in the previous paragraph,
the length of P is at least 2g + (q − 1)r ≥ qr = 10qb = L, concluding the proof.

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

Distortion is Fixed Parameter Tractable 16:11

LEMMA 3.2. If G is 3-colorable then there is an embedding f of M(G′) into the line
with distortion at most d.

PROOF. Let ψ : V(G) → {1, 2, 3} be a proper 3-coloring of the vertices of G. We
extend ψ to also color the edges, by defining ψ(uv) = {1, 2, 3} \ {ψ(u), ψ(v)} for ev-
ery edge uv ∈ E(G), that is every edge gets a color different from its two endpoints.
We give an ordering of the vertices of G′, and the embedding f of G′ into the line is
the pushing embedding imposed by this ordering. We order the vertices of G′ as fol-
lows: C1, T1, s1, T2, s2, . . . , Tq, C2. Here, the vertices inside C1 and C2 are ordered like
{c1, . . . , ct} and {c′

1, . . . , c′
t} respectively and the vertices inside each gadget Ti are or-

dered by color. That is, if Ti corresponds to an edge e = uv and contains the vertices u′,
v′, and e′ corresponding to u, v and e respectively, we sort u, v and e in increasing order
by ψ and use the corresponding order imposed by this for the vertices in Ti.

Observation 2.2 implies that the pushing embedding f is noncontracting. Thus, it
suffices to show that the expansion of f is at most d. Because of Lemma 3.1 it suffices
to show that |f (u)−f (v)| ≤ w(uv)d for every edge uv ∈ E′. For edges with both endpoints
in C1 or both endpoints in C2 this inequality holds. For an edge uv between a separator
vertex and a vertex in a gadget Ti we have |f (u) − f (v)| ≤ g + 2 ≤ dg = dw(uv). For an
edge uv between two vertices in the same gadget Ti we have |f (u)− f (v)| ≤ 2 ≤ dw(uv).
Now, for the edge ctc′

1, |f (c′
1) − f (ct)| = (2g + 2)q = 10aq = 10qba/b = Ld = w(ctc′

1)d.
Similarly, any edge uv with one endpoint in Ti and the other in Tj for i �= j has the
property that u and v correspond to the same vertex (or edge) of G and thus are given
the same color by ψ . Hence |f (c′

1) − f (ct)| = (2g + 2)|i − j| = 10a|i − j| = 10b|i − j|a/b =
r|i − j|d = w(uv)d. As all edges of G′ now are accounted for, this means that the
expansion of f is at most d.

LEMMA 3.3. If there is an embedding f of M(G′) into the line with distortion at
most d then G is 3-colorable.

PROOF. Without loss of generality, we assume that f is a pushing embedding (Ob-
servation 2.2). Let σ be the ordering of the vertices of G imposed by f . Now we describe
the structure of the ordering σ . Towards this, we first prove that σ orders the vertices
of the clique C1 consecutively. That is, if u and v are the leftmost and the rightmost
vertex of C1 with respect to the ordering σ , then there is no vertex w in V(G′) \ C1
such that f (u) < f (w) < f (v). We know that |f (u) − f (v)| ≥ |C1| − 1. However, c1ct is
the only edge in C1 satisfying |f (u) − f (v)| ≤ w(uv)d. Furthermore w(c1ct)d = |C1| − 1
and hence σ must order the vertices of C1 consecutively with c1 and ct as its endpoints.
Similarly σ must order the vertices of C2 consecutively with c′

1 and c′
t as its endpoints.

Also, without loss of generality we can assume that C1 appears before C2 in our order-
ing, because if C2 appears first we can reverse our ordering. Now, if ct is the leftmost
vertex of C1 or c′

1 is the rightmost vertex of C2 then the edge ctc′
1 is stretched by a

factor more than d, as t > Ld. Thus, ct is the rightmost endpoint of C1 and c′
1 is the

leftmost endpoint of C2. Now, every vertex not in C1 or C2 has to appear in between C1
and C2 because no edge with at least one endpoint outside of C1 ∪ C2 is long enough to
stretch over the entire expanse of C1 or C2.

Next, we prove that σ orders the vertices as follows: C1, T1, s1, T2, s2, T3, . . . , Tq, C2.
To show this, we introduce the notion of gaps. A gap between two vertices u and v
appearing consecutively in σ is simply the interval [f (u), f (v)] on the real line. We say
that a gap is incident to a vertex u if the vertex u is one of the endpoints of the gap.
The size of the gap is |f (u) − f (v)|. In the layout, there are 4q − 1 vertices and 4q gaps
that appear between ct and c′

1. In the following discussion we will treat ct and c′
1 as

separator vertices. Each gap that is incident to two separator vertices, one separator

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:12 M. Fellows et al.

vertex, and no separator vertex has size at least 2g, g, and 1 respectively. Let x0, x1, and
x2 be the number of gaps incident to 0, 1, and 2 separator vertices respectively. Then
|f (ct)−f (c′

1)| ≥ 2gx2 +gx1 +x0 and x0 = 4q−x2 −x1. Furthermore each separator vertex
(except ct and c′

1) is incident to exactly two gaps, while ct and c′
1 are incident to exactly

one gap each among the gaps between ct and c′
1. Therefore we have that x1 + 2x2 = 2q.

Substituting x1 = 2q − 2x2, we get x0 = 2q + x2 and |f (ct) − f (c′
1)| ≥ 2gq + x0. Hence,

if x2 > 0 we have |f (ct) − f (c′
1)| > 2gq + 2q = 2(5a − 1)q + 2q = 10aq = 10aqb/b =

10qbd = 10Ld = w(ctc′
1)d, contradicting that the expansion of f is at most d. Thus,

x2 = 0, x1 = x0 = 2q and hence |f (ct)− f (c′
1)| ≥ 2gq+2q = w(ctc′

1)d. Also, if any gap not
incident to any separator vertices has size more than 1, or if any of the gaps incident
to a separator vertex have size more than g then |f (ct) − f (c′

1)| > 2gq + 2q = w(ctc′
1)d,

again contradicting that the expansion of f is at most d. Finally note that g > d and
hence no edge with weight one can ever be stretched over a gap of size g. Since the only
edges of weight 1 in G′ are within a gadget Ti and every edge incident to a separator
vertex has weight g, we have that σ must order the vertices in the aforementioned
order C1, T1, s1, T2, s2, T3, . . . , Tq, C2. This concludes the description of ordering σ .

For a vertex v in V(G), if there is a vertex v′ in a gadget Ti corresponding to v, we
look at the position that v′ is assigned by σ compared to the other vertices of Ti. If
the relative position of v′ given by σ with respect to other vertices of Ti is k ∈ {1, 2, 3},
then we say that the color of v in the gadget Ti is k and denote it by χ(v, i). In all of
these cases we say that v has a color in Tj. We prove that for any i, j with i < j and
vertex v ∈ V(G) such that v has a color in both Ti and Tj then χ(v, j) ≤ χ(v, i). Suppose
this is not the case, and let u′ and v′ be the vertices corresponding to v in gadgets Ti
and Tj such that χ(v, j) > χ(v, i). Then we know that |f (v′) − f (u′)| > (2g + 2)| j − i| =
(2(5a − 1) + 2)| j − i| = 10a| j − i|b/b = 10b| j − i|d = r| j − i|d. However, since both
u′ and v′ correspond to v there is an edge of weight r| j − i| between u and v which is
stretched more than d by the embedding. Thus we obtain a contradiction which allows
us to conclude that χ(v, j) ≤ χ(v, i). Notice that since a vertex (in a gadget) can have
one of three different colors this implies that as we scan the gadgets from T1 to Tq the
color of a vertex can change at most twice. Thus, there must be some 0 ≤ p < 2n + 1
such that every vertex of G has the same color in all the gadgets it appears in among
T1+mp to Tm(p+1). Notice that every vertex and every edge of G has a color in at least
one of these gadgets. We can now make a coloring ψ of the vertices of G. For every
vertex v ∈ V(G), we look at the gadget Ti, 1 + mp ≤ i ≤ m(p + 1), such that there is a
vertex corresponding to v ∈ Ti and assign ψ(v) = χ(v, i). All that remains to prove is
that ψ is a proper coloring. For every edge uv ∈ E(G) there is an i between 1 + mp and
m(p + 1) such that the edge uv has a color in Ti. Then both u and v have colors in Ti
and their colors in Ti must be different. Since ψ(u) is equal to u’s color in Ti and ψ(v)
is equal to v’s color in Ti this implies ψ(u) �= ψ(v) concluding the proof.

Together with the construction of G′ from G, Lemmata 3.2 and 3.3 imply
Theorem 1.2.

4. EMBEDDING GRAPHS INTO TREES OF BOUNDED DEGREE

In this section we give a fixed parameter tractable algorithm for embedding
unweighted graph metrics into trees of bounded degree. More precisely, given a graph
G with shortest path metric DG and a tree T with maximum degree �, having shortest
path metric DT, we give an algorithm that decides whether G can be embedded into T

with distortion at most d in time n2 · |V(T)| · 2O((5d)�
d+1 · d). We assume that the tree T

is rooted, and we will refer to the root of T as r(T). For a vertex v in the tree, Tv is the
subtree of T rooted at v, and C(v) is the set of v’s children. Finally, for an edge uv of T,

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

Distortion is Fixed Parameter Tractable 16:13

let Tu(uv) and Tv(uv) be the tree of T \ uv that contains u and v respectively. Notice
that if u is the parent of v in the tree, then Tv(uv) = Tv and Tu(uv) = T \ V(Tv). As
in the previous section, we need to define feasible partial embeddings together with
the notion of succession. For a vertex u ∈ V(T) and a subset S of V(G), a u-partial
embedding is a function fu : S → B(u, d + 1).

To proceed with the proof of Theorem 1.3, we need a number of auxiliary results and
definitions.

Definition 4.1. For a u-partial embedding fu of a subset S ⊆ V(G) and a vertex
v ∈ N(u) we define S[v, fu] = {x ∈ S : fu(x) ∈ V(Tv(uv))}. Given two integers i and j,
0 ≤ i ≤ j ≤ k, let S[i, j][fu] = {x ∈ S : i ≤ DT(fu(x), u) ≤ j}. Finally, let S[i, j][v, fu] =
S[i, j][fu] ∩ S[v, fu], Sk[v, fu] = S[k,k][v, fu] for k ≥ 1 and S0[fu] = S[0,0][fu].

Definition 4.2. For a u-partial embedding fu of a subset S ⊆ V(G) and a vertex v ∈
N(u) we define M[v, fu] to be the union of the vertex sets of all connected components
of G \ S that have neighbors in S[v, fu].

Definition 4.3. A u-partial embedding fu of a subset S of V(G) is called
feasible if:

(1) fu is a noncontracting distortion d embedding of S into B(u, d + 1);
(2) for any distinct pair v, w ∈ N(u), M[v, fu] ∩ M[w, fu] = ∅;
(3) N(S0[fu]) ⊆ S, where N(S0[fu]) is the set of neighbors of S0[fu] in G.

Definition 4.4. For a feasible u-partial embedding fu of a subset Su of V(G) and a
feasible v-partial embedding fv of a subset Sv of V(G) with v ∈ C(u) we say that fv
succeeds fu if:

(1) Su ∩ Sv = (S[0,d][fu] ∪ Sd+1[v, fu]) = (S[0,d][fv] ∪ Sd+1[u, fv]);
(2) for every x ∈ Su ∩ Sv, fu(x) = fv(x);
(3) M[v, fu] = ⋃

x∈N(v)\u(M[x, fv] � Sd+1[x, fv]);
(4) M[u, fv] = ⋃

x∈N(u)\v(M[x, fu] � Sd+1[x, fu]).

Suppose we have picked out a subtree Tv for a vertex v ∈ V(T) and found a
noncontracting embedding f ′ with distortion at most d of a subset Z of V(G) into
T′ = T[

⋃
u∈V(Tv) B(u, d + 1)]. We wish to find a noncontracting distortion d embed-

ding of G into T such that for every vertex u with f (u) ∈ V(T′), we have that u ∈ Z
and such that if u ∈ Z then f (u) = f ′(u). At this point, a natural question arises. Can
we impose constraints on the restriction of f to V(T) \ V(Tv) such that f restricted to
V(T) \ V(Tv) satisfies these conditions if and only if f is a noncontracting distortion d
embedding of G into T? One necessary condition is that f restricted to V(T) \ V(Tv)
must be a noncontracting distortion d embedding of {w ∈ V(G) : f (w) ∈ V(T) \ V(Tv)}.
We can obtain another condition by applying the definition of feasible u-partial em-
beddings. For each vertex u, we can use arguments similar to the ones in Section 2 in
order to determine which connected components of T \ V(Tv) f must map u to in order
to be a noncontracting distortion d embedding of G into T.

For the line, these two conditions are both necessary and sufficient. Unfortunately,
for the case of bounded degree trees, this is not the case. The reason the conditions
are sufficient when we restrict ourselves to the line is that every embedding of a graph
metric into the line that is locally noncontracting and locally expanding by a factor at
most d also is globally noncontracting and expanding by a factor at most d. When we
embed into trees of bounded degree, every embedding that is locally expanding by a
factor at most d also has this property globally. However, every locally noncontracting
embedding need not be globally noncontracting. To cope with this issue, we introduce

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:14 M. Fellows et al.

the concept of vertex types. Intuitively, vertices of the same type in Tv are indistin-
guishable when viewed from T \ V(Tv). We show that the set of possible vertex types
can be bounded by a function of d and �. Then, to complete f from f ′ we only need to
know the restriction of f ′ to B(v, d + 1) and which vertex types appear in Tv. Then the
amount of information we need to pass on from f ′ to f is bounded by n · h(d, �). We
exploit this fact to give an algorithm for the problem. In the rest of this section, we
formalize this intuition.

For a vertex u ∈ V(T), a neighbor v of u, and a feasible u-partial embedding fu of a
subset S of V(G) we define a [v, fu]-type to be a function t : S[v, fu] → {∞, 3d + 2, 3d +
1, . . . , −d, −(d + 1)} and a [v, fu]-typelist to be a set of [v, fu]-types. For an integer k let
β(k) = k if k ≤ 3d + 2 and β(k) = ∞ otherwise.

Definition 4.5. For a vertex u ∈ V(T) with two neighbors v and w, and a feasible
u-partial embedding fu of a subset S of V(G) together with a [v, fu]-typelist L1 and a
[w, fu]-typelist L2 we say that L1 and L2 agree if for every type t1 ∈ L1 and t2 ∈ L2
there is a vertex x ∈ S[v, fu] and a vertex y ∈ S[w, fu] such that t1(x) + t2(y) ≥ DG(x, y).

Definition 4.6. For a vertex u ∈ V(T), a neighbor v of u, a feasible u-partial em-
bedding fu of a subset S of V(G) and a [v, fu]-typelist L we say that L is compatible
with S[v, fu] if for every vertex x in S[v, fu] there is a type t ∈ L such that for every
y ∈ S[v, fu], DT(fu(x), u) − DG(x, y) = t(y).

Definition 4.7. A feasible u-state is a feasible partial embedding fu of a subset S of
V(G) together with a [v, fu]-typelist L[v, fu] for every v ∈ N(u) such that the following
conditions are satisfied: (1) L[v, fu] is compatible with S[v, fu] for every v ∈ N(u); and
(2) for every pair of distinct vertices x and y in N(u), L[x, fu] agrees with L[y, fu].

Definition 4.8. Let u ∈ V(T), v ∈ C(u). Let Xu be a feasible u-state and Xv be a
feasible v-state. We say that Xv succeeds Xu if:

(1) fv succeeds fu;
(2) for every w ∈ (N(v) \ u) and a type t1 ∈ L[w, fv] there is a type t2 ∈ L[v, fu] such

that:
(a) for every node x ∈ S[v, fu] ∩ S[w, fv], t2(x) = β(t1(x) + 1);
(b) for every node x ∈ (S[v, fu] \ S[w, fv]), t2(x) = β(maxy∈S[w,fv](t1(y)+1−DG(x, y)));

(3) for every w ∈ (N(u) \ v) and a type t1 ∈ L[w, fu] there is a type t2 ∈ L[u, fv] such
that:
(a) for every node x ∈ S[u, fv] ∩ S[w, fu], t2(x) = β(t1(x) + 1);
(b) for every node x ∈ (S[u, fv] \ S[w, fu]), t2(x) = β(maxy∈S[w,fu](t1(y)+1−DG(x, y))).

The main result of this section relies on the next two lemmas.

LEMMA 4.9. If there is a distortion d embedding F of G into T then, for every vertex
u of V(T) there is a feasible u-state Xu such that for every vertex v ∈ V(T), w ∈ C(v), Xw
succeeds Xv.

PROOF. We start by giving a feasible u-partial embedding fu for each vertex of the
tree. Recall that a feasible u-state contains a feasible u-partial embedding fu of a subset
Su of V(G). For a vertex u ∈ V(T) we define fu to be the restriction of F to B(u, d + 1).
It is easy to see that fu indeed is a feasible partial embedding for every u and that for
every vertex v ∈ V(T), w ∈ C(v), fw succeeds fv.

Now, for every vertex u ∈ V(T) and v ∈ N(u) we give a typelist L[v, fu]. For every
vertex x ∈ (S[v, fu] ∪ M[v, fu]) we add a [v, fu]-type tx[v, fu] to L[v, fu]. For a vertex
y ∈ S[v, fu], let tx[v, fu] (y) = β(DT(F(x), u) − DG(x, y)). Notice that since y ∈ B(u, d + 1)
and F is noncontracting, by the triangle inequality it follows that tx(y) ≥ −(d + 1) and
thus tx is a [v, fu]-type. Furthermore, for every u ∈ V(T), L[v, fu] is compatible with

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

Distortion is Fixed Parameter Tractable 16:15

S[v, fu] because for every x and y in S[v, fu] we have that tx[v, fu] (y) = β(DT(F(x), u) −
DG(x, y)). In order to show that each state Xu is a feasible u-state it remains to show
that for every vertex u ∈ V(T) and every pair of distinct vertices v and w in N(u),
L[v, fu] agrees with L[w, fu]. Assume for contradiction that there is a type ta[v, fu] ∈
L[v, fu] and a type tb[w, fu] ∈ L[w, fu] such that ta[v, fu] (x) + tb[w, fu] (y) < DG(x, y) for
every x ∈ S[v, fu] and y ∈ S[w, fu]. Let x′ ∈ S[v, fu] and y′ ∈ S[w, fu] be the pair of
vertices that maximizes ta[v, fu] (x′) + tb[w, fu] (y′) − DG(x′, y′). There is a vertex a ∈
(S[v, fu] ∪ M[v, fu]) and a vertex b ∈ (S[w, fu] ∪ M[w, fu]) such that β(DT(f (a), u) −
DG(a, x)) = ta[v, fu] (x) for every x ∈ S[v, fu] and β(DT(F(b), u) − DG(b, y)) = tb[w, fu] (y)
for every y ∈ S[w, fu]. This yields DT(F(a), u) − DG(a, x′) + DT(F(b), u) − DG(b, y′) =
(DT(F(a), u) + DT(F(b), u)) − (DG(a, x′) + DG(b, y′)) < DG(x′, y′). Now, (DT(F(a), u) +
DT(F(b), u)) = DT(F(a), F(b)) since u lies on the unique f (a)-f (b) path in T. Also, since
x′ and y′ are the pair that maximize ta[v, fu] (x′) + tb[w, fu] (y′) − DG(x′, y′) and every
shortest x′-y′ path in G must pass both through S[v, fu] and S[w, fu], we conclude that
DG(a, x′) + DG(b, y′) + DG(x′, y′) = DG(a, b). However, this implies DT(F(a), F(b)) <
DG(a, b) contradicting that F is noncontracting.

It remains to prove that for every vertex u ∈ T, v ∈ N(u), w ∈ (N(v) \ u) and type
t1 ∈ L[w, fv] there is a type t2 ∈ L[v, fu] such that:

(1) for every node x in S[v, fu] ∩ S[w, fv], t2(x) = β(t1(x) + 1);
(2) for every node x in S[v, fu] \ S[w, fv], t2(x) = β(maxy∈S[w,fv](t1(y) + 1 − DG(x, y))).

Let ta[w, fv] ∈ L[w, fv], and let a be the vertex of S[w, fv] ∪ M[w, fv] such that for
every x in S[w, fv], ta[w, fv] (x) = β(DT(F(a), v) − DG(a, x)). Now, S[w, fv] ∪ M[w, fv] ⊆
S[v, fu] ∪ M[v, fu] so a ∈ (S[v, fu] ∪ M[v, fu]). Let t′a[v, fu] be the type in L[v, fu] so that
for every x′ in S[v, fu], t′a[v, fu] (x′) = β(DT(F(a), u) − DG(a, x′)). As β(DT(F(a), u)) =
β(DT(F(a), v) + 1) it is easy to see that for every node x ∈ (S[v, fu] ∩ S[w, fv]),
t′a[v, fu] (x) = β(ta[w, fv] (x)+1). Finally, observe that for a vertex x ∈ (S[v, fu] \ S[w, fv])
every a-x path in G must pass through S[w, fv]. Thus DG(a, x) = miny∈S[w,fv] DG(a, y) +
DG(x, y) and so t′a[v, fu] (x) = β(maxy∈S[w,fv](ta[w, fv] (y) + 1 − DG(x, y))). This concludes
the proof.

LEMMA 4.10. If there is a feasible u-state Xu for every vertex u of V(T) such that for
every vertex v ∈ V(T), w ∈ C(v), Xw succeeds Xv then there is a distortion d embedding
F of G into T.

PROOF. For every vertex u, let fu be the feasible u-partial embedding of the subset
Su ⊆ V(G) in Xu. We prove the lemma by proving a series of claims.

CLAIM 4.11. For every vertex x ∈ V(G) there is a u ∈ V(T) such that x ∈ Su.

PROOF. If x ∈ Sr(T) we are done, so assume that x /∈ Sr(T). This means that the
vertex x ∈ ⋃

v∈C(r(T)) M[v, fr(T)]. Let v1 ∈ C(r(T)) be a vertex such that x ∈ M[v1, fr(T)].
Observe that the choice of v1 implies that x /∈ M[r(T), fv1]. Now, if x ∈ Sv1 we are done,
otherwise x ∈ ⋃

v∈C(v1) M[v, fv1]. Let v2 be the vertex in C(v1) so that x ∈ M[v2, fv1].
Again, the choice of v1 implies that x /∈ M[v1, fv2]. If x ∈ Sv2 we are done, otherwise
we can select v3, v4 and so on until we select a leaf vq. The choice of vq implies that
x ∈ Svq ∪ ⋃

v∈C(vq) M[v, fvq] = Svq .

CLAIM 4.12. For every vertex x ∈ V(G), the set {u ∈ V(T) : x ∈ Su} induces a
connected subtree of T.

PROOF. Suppose for contradiction that this is not the case. Then there is a pair
of vertices u, v ∈ V(T) such that x ∈ Su, x ∈ Sv, uv /∈ E(T) and for every internal
vertex w of the u-v-path in T, x /∈ Sw. Let w′ and w′′ be the predecessor and successor

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:16 M. Fellows et al.

of w on the u-v path respectively. By the properties of succession of feasible u-partial
embeddings both M[w′, fw] and M[w′′, fw] must contain x. This contradicts that fw is a
feasible partial embedding.

From Claim 4.12 together with property 2 of succession feasible u-partial embed-
dings it is clear that for every pair of vertices u and v in V(T) such that x ∈ Su and
x ∈ Sv, fu(x) = fv(x). We can therefore define a function F : V(G) → V(T) such that for
every x ∈ V(G) and u ∈ V(T) it holds that if x ∈ Su then F(x) = fu(x). This property
also guarantees F maps distinct vertices of G onto distinct vertices of T. In the rest of
the proof of Lemma 4.10 we will prove that the expansion of F is at most d and that F
is noncontracting.

CLAIM 4.13. The expansion of F is at most d.

PROOF. It suffices to prove that F expands every edge of G by at most a factor
of d. Let xy ∈ E(G). Let u = F(x). By the property 3 of feasible u-partial embed-
dings y ∈ Su. Furthermore, since fu is a feasible u-partial embedding, DT(F(x), F(y)) =
DT(fu(x), fu(y)) ≤ d which completes the proof.

We now proceed to prove that F is noncontracting.

CLAIM 4.14. For every path P = v1v2...vk in T, with v1 = u and vk = w the following
must apply.

(1) F restricted to
⋃

vi∈P Svi is noncontracting.
(2) For every vertex x ∈ Sw one of the following two conditions must hold:

(2a) either there is a vj ∈ P, y ∈ Svj such that DT(F(x), vj) − DG(x, y) > 3d + 2,
(2b) or there is a type tx[v2, fu] ∈ L[v2, fu] such that for every y ∈ S[v2, fu],

tx[v2, fu] (y) = DT(F(x), u) − DG(x, y).

PROOF. We prove the claim by induction on k. If k = 1 then (1) is true because fu is
a feasible partial embedding and (2b) holds because of the compatibility constraints of
feasible u-states.

For k = 2, we first prove that (2b) holds for every x ∈ Sw. If x ∈ Su then (2b)
holds because of the compatibility constraints of feasible u-states. Therefore, consider
a vertex x ∈ Sw \ Su. Then x ∈ Sd+1

w [w′, fw] for a w′ ∈ (N(w) \ u). By compatibility, there
is a type t1[w′, fw] ∈ L[w′, fw] such that for every y in Sw, t1[w′, fw] (y) = DT(F(x), w) −
DG(x, y). By the properties of succession of feasible u-states, there is a type t2[w, fu] ∈
L[w, fu] such that:

(1) for every node y in S[w, fu] ∩ S[w′, fw],
t2[w, fu] (y) = β(t1[w′, fw] (y) + 1)

= t1[w′, fw] (y) + 1
= DT(F(x), w) − DG(x, y) + 1
= DT(F(x), u) − DG(x, y);

(2) for every node y in S[w, fu] \ S[w′, fw],

t2[w, fu] (y) = β

(
max

z∈S[w′, fw]
(t1[w′, fw] (z) + 1 − DG(z, y))

)
= max

z∈S[w′, fw]

(
t1[w′, fw] (z) + 1 − DG(z, y)

)
= max

z∈S[w′, fw]
(DT(F(x), w) − DG(x, z) + 1 − DG(z, y))

= DT(F(x), u) − DG(x, y).

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

Distortion is Fixed Parameter Tractable 16:17

Thus (2b) holds for every x in Sw. Using this fact we can now prove (1). Observe that it
is sufficient to prove that F does not contract any vertex y ∈ (Su \Sw) and x ∈ (Sw \Su).
Let u′ be the neighbor of u such that y ∈ S[u′, fu]. By (2b) there is a type tx[w, fu] such
that for every z ∈ S[w, fu], tx[w, fu] (z) = DT(F(x), u) − DG(x, z). By the properties of
feasible u-states there is a type ty[u′, fu] such that for every z ∈ S[u′, fu], ty[u′, fu] (z) =
DT(F(y), u) − DG(y, z). Since tx[w, fu] and ty[u′, fu] must agree, it follows that there is
a vertex x′ ∈ S[w, fu], and a vertex y′ ∈ S[u′, fu] such that tx[w, fu] (x′) + ty[u′, fu] (y′) ≥
DG(x′, y′). By substituting for tx[w, fu] (x′) and ty[u′, fu] (y′), we obtain

DT(F(x), F(y)) − DG(x, y) ≥ DT(F(x), u) − DG(x, x′)
+ (

DT(F(y), u) − DG(y, y′)
) − DG(x′, y′)

≥ 0.

Finally, suppose the statement of the claim holds for every k′ < k for some k > 2.
We prove that the statement also must hold for k. We start by showing (2). Consider a
vertex x ∈ Sw such that for every vj, j ≥ 1 and every y ∈ Svj we have that DT(F(x), vj)−
DG(x, y) ≤ 3d + 2, that is, (2a) does not hold for x. We need to show that (2b) must hold
for x. By the inductive hypothesis there is a type tx[v3, fv2] ∈ L[v3, fv2] so that for every
y ∈ S[v3, fv2], tx[v3, fv2] (y) = DT(F(x), v2) − DG(x, y). Furthermore, by the assumption
that (2a) does not hold for x, tx[v3, fv2] ≤ 3d + 2. By the properties of succession of
feasible u-states there must be a type t′x[v2, fu] ∈ L[v2, fu] such that:

(1) for every node y in S[v2, fu] ∩ S[v3, fv2]:

t′x[v2, fu] (y) = β(tx[v3, fv2] (y) + 1)

= β (DT(F(x), v2) − DG(x, y) + 1)

= β (DT(F(x), u) − DG(x, y)) .

Observe that if β(DT(F(x), u) − DG(x, y)) = ∞ then DT(F(x), u) − DG(x, y) >
3d + 2 which implies that (2a) holds for x which is a contradiction. Therefore,
β(DT(F(x), u) − DG(x, y)) �= ∞ so β(DT(F(x), u) − DG(x, y)) = DT(F(x), u) − DG(x, y).

(2) For every node y in S[v2, fu] \ S[v3, fv2],

t′x[v2, fu] (y) = β

(
max

z∈S[v3,fv2]
(tx[v3, fv2] (z) + 1 − DG(z, y))

)
.

As before, t′x[v2, fu] (y) ≤ 3d + 2 because otherwise (2a) holds for x. Thus

t′x[v2, fu] (y) = β

(
max

z∈S[v3,fv2]
(tx[v3, fv2] (z) + 1 − DG(z, y))

)

= max
z∈S[v3,fv2]

(
tx[v3, fv2] (z) + 1 − DG(z, y)

)
.

Following this

t′x[v2, fu] (y) = max
z∈S[v3,fv2]

(DT(F(x), v2) − DG(x, z) + 1 − DG(z, y))

= DT(F(x), u) − DG(x, y).

Thus (2b) holds for x and (2) is true for |P| = k. It remains to prove that (1) is true for
|P| = k as well. It is sufficient to prove that F does not contract any x ∈ (Su \ Sv2) with
any y ∈ (Sw \ Svk−1). There are two cases, either (2a) holds for y or (2a) does not, and
in that case, (2b) holds for y. In the latter case let ty[v1, fu] be the type in L[v1, fu] such
that for every z in S[v2, fu], ty[v1, fu] (z) = DT(F(y), u)−DG(y, z). Also, let u′ ∈ (N(u)\v1)

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:18 M. Fellows et al.

be the neighbor of u such that x ∈ S[u′, fu]. As in the proof of (1) for k = 2, let tx[u′, fu] be
the type in L[u′, fu] such that for every z in S[u′, fu], tx[u′, fu] (z) = DT(F(x), u)−DG(x, z).
Again as in the proof of (1) for k = 2, tx[u′, fu] and ty[v1, fu] must agree which in turn
implies that F does not contract x and y.

To conclude, we consider the case when (2a) holds for y. Let vj be a vertex such that
there is a y′ ∈ Svj so that DT(F(y), vj)− DG(y, y′) > 3d + 2. By the induction hypothesis,
F does not contract x and y′. This gives us the following inequality for DT(F(x), F(y))
and DG(x, y):

dT(F(x), F(y)) = DT(F(x), vj) + DT(vj, F(y))

≥ (DT(F(x), F(y′)) − DT(vj, F(y′))) + DT(vj, F(y))

≥ DG(x, y′) + DG(y, y′) + 3d + 2 − DT(vj, F(y′))
≥ DG(x, y) + 2d + 1 ≥ DG(x, y).

This implies that the statement of the claim holds for every positive k.

The claims together prove the existence of a noncontracting embedding F of G into T
with distortion at most d.

Next we give the proof of Theorem 1.3.

PROOF OF THEOREM 1.3. The algorithm proceeds as follows. First, check that
�(G) ≤ �d (follows from local density argument). Now, we do bottom-up dynamic pro-
gramming on the tree T. For each vertex u of the tree we make a boolean table with
an entry for each possible feasible u-state. For every leaf of the tree all the entries are
set to true. For an inner node u and a feasible u-state Xu we set Xu’s entry to true if
for each child v of u there is a feasible v-state Xv that succeeds Xu and so that Xv’s en-
try is set to true. The algorithm returns “yes” if, at the termination of this procedure,
there is a feasible r(T)-state Xr(T) with its table entry set to true. The algorithm clearly
terminates, and correctness of this algorithm follows from Lemmas 4.10 and 4.9.

We now proceed to the running time analysis. In our bottom-up sweep of T, we
consider every edge and every vertex of T exactly once, which yields a factor of nt =
|V(T)|. For each vertex u we consider each feasible u-state Xu once, and for each such
state and every child v of u of the state we need to enumerate all feasible v-states that
succeed Xu. In fact, we enumerate a larger set of candidate feasible v-states and for
each such state Xv we check whether Xv succeeds Xu.

First we show that the number of feasible u-partial embeddings is at most n ·
�O(d2·�d+1). This follows from the fact that for any vertex u of the tree |B(u, d + 1)| ≤
�d+1 and that the domain of a any feasible u-partial embedding fu is contained in a
ball of radius at most 2d + 2 in G. Because the degree of G is bounded, a ball of radius
2d + 2 in G can contain at most �O(d2) vertices.

One can easily prove that if the feasible partial embedding fu is given, the number of
types and typelists that can appear in a feasible u-state together with fu is bounded by

(5d)�
d+1

and 2O((5d)�
d+1

) respectively. Thus, the number of feasible u-states is bounded

by 2O((5d)�
d+1 ·�). If the domain Sv of a feasible partial embedding fv for a child v of

u is nonempty then we can use the fact that Sv must have a nonempty intersection
with the domain of fu to bound the number of potential successors of a u-state by

2O((5d)�
d+1 ·�) · �d ≤ 2O((5d)�

d+1 ·�). One can check whether a particular u-feasible state

succeeds another in time n · 2O((5d)�
d+1 ·�), and hence the overall running time of the

algorithm is bounded by n2nt · 2O((5d)�
d+1 ·�).

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

Distortion is Fixed Parameter Tractable 16:19

5. CONCLUDING REMARKS AND OPEN PROBLEMS

We find it very natural to study low-distortion embeddings from a parameterized com-
plexity perspective. An explanation as to why these important problems have not
been studied systematically within parameterized settings can be a “psychological
barrier”—finding embeddings even into the simplest metrics like the line should be
at least as hard as one of the hardest problems in parameterized hierarchy, the BAND-
WIDTH MINIMIZATION problem. In this article we remove this barrier, by providing
FPT algorithms for embedding unweighted graph metrics into a tree metric for a tree
of maximum degree �, parameterized by (�, d) where d is the distortion. For the case
when the host metric is the line, we generalized our result and showed that embed-
ding weighted graph metrics into the line is FPT parameterized by distortion d and
maximum edge weight W. A similar generalization can also be obtained for embedding
weighted graph metrics into weighted bounded degree tree metrics, parameterized by
d, � and W, where W is the maximum edge weight in the input graph. The proof that
embedding a weighted metric into the line is NP-hard for every fixed distortion d ≥ 2
shows that our algorithms qualitatively are the best possible.

All this demonstrates that the parameterized complexity landscape of low-distortion
embeddings is very rich and worthy to be explored. We believe that our results will
lead to further investigation of the combinatorially challenging field of low-distortion
embeddings within the framework of parameterized algorithmics. We conclude with
two concrete interesting open problems.

— What is the parameterized complexity of embedding unweighted graph metrics into
(unbounded degree) trees parameterized by distortion d?

— What about embeddings into cycles?

REFERENCES

Mihai Bădoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropoulos. 2005a. Low-distortion embeddings
of general metrics into the line. In Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting (STOC’05). ACM Press, New York, 225–233.

Mihai Bădoiu, Kedar Dhamdhere, Anupam Gupta, Yuri Rabinovich, Harald Räcke, R. Ravi, and Anasta-
sios Sidiropoulos. 2005b. Approximation algorithms for low-distortion embeddings into low-dimensional
spaces. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05).
119–128.

Mihai Bădoiu, Piotr Indyk, and Anastasios Sidiropoulos. 2007. Approximation algorithms for embedding
general metrics into trees. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’07). 512–521.

Hans L. Bodlaender, Michael R. Fellows, and Michael T. Hallett. 1994. Beyond np-completeness for prob-
lems of bounded width: Hardness for the w hierarchy (extended abstract). In Proceedings of the ACM
Symposium on Theory of Computing. 449–458.

Hans L. Bodlaender, Michael R. Fellows, Michael T. Hallett, Todd Wareham, and Tandy Warnow. 2000. The
hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs.
Theor. Comput. Sci. 244, 1–2, 167–188.

Rodney G. Downey and Michael R. Fellows. 1999. Parameterized Complexity. Springer.
Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Elena Losievskaja, Frances A. Rosamond, and Saket

Saurabh. 2009. Distortion is fixed parameter tractable. In Proceedings of the 36th International Collo-
quium on Automata, Languages and Programming (ICALP’09). Lecture Notes in Computer Science,
vol. 5555, Springer, 463–474.

Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer.
Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. 2004. Cuts, trees and l1-embeddings

of graphs. Combinatorica 24, 2, 233–269.
Alexander Hall and Christos H. Papadimitriou. 2005. Approximating the distortion. In Proceedings of the 8th

International Workshop Approximation, Randomization and Combinatorial Optimization, Algorithms
and Techniques (APPROX-RANDOM’05). Lecture Notes in Computer Science, vol. 3624, Springer,
111–122.

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

16:20 M. Fellows et al.

Piotr Indyk. 2001. Algorithmic applications of low-distortion geometric embeddings. In Proceedings of the
42nd IEEE Symposium on Foundations of Computer Science (FOCS’01). 10–33.

Claire Kenyon, Yuval Rabani, and Alistair Sinclair. 2004. Low distortion maps between point sets. In Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04). ACM Press, New
York, 272–280.

Nathan Linial. 2002. Finite metric-spaces—Combinatorics, geometry and algorithms. In Proceedings of the
International Congress of Mathematicians. Vol. 3, Higher Education Press, 573–586.

Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2011. Slightly superexponential parameterized prob-
lems. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’11).
760–776.

Rolf Niedermeier. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics
and its Applications, vol. 31, Oxford University Press.

James B. Saxe. 1980. Dynamic programming algorithms for recognizing small bandwidth graphs in polyno-
mial time. SIAM J. Algebraic Discr. Methods 1, 4, 363–369.

Received September 2012; revised April 2013; accepted April 2013

ACM Transactions on Computation Theory, Vol. 5, No. 4, Article 16, Publication date: November 2013.

