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SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR
MINIMUM FILL-IN∗

FEDOR V. FOMIN† AND YNGVE VILLANGER†

Abstract. The Minimum Fill-in problem is used to decide if a graph can be triangulated
by adding at most k edges. In 1994, Kaplan, Shamir, and Tarjan showed that the problem is
solvable in time O(2O(k)+k2nm) on graphs with n vertices and m edges and thus is fixed parameter
tractable. Here, we give the first subexponential parameterized algorithm solving Minimum Fill-in

in time O(2O(
√

k log k)+k2nm). This substantially lowers the complexity of the problem. Techniques
developed for Minimum Fill-in can be used to obtain subexponential parameterized algorithms for
several related problems, including Minimum Chain Completion, Chordal Graph Sandwich, and
Triangulating Colored Graph.

Key words. chordal graph, parameterized complexity, subexponential algorithm

AMS subject classifications. 68Q17, 68Q25, 68W40

DOI. 10.1137/11085390X

1. Introduction. A graph is chordal (or triangulated) if every cycle of length at
least four contains a chord, i.e., an edge between nonadjacent vertices of the cycle. The
Minimum Fill-in problem (also known as Minimum Triangulation and Chordal

Graph Completion) is as follows:

Minimum Fill-in

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is there F ⊆ [V ]2, |F | ≤ k, such that graph H = (V,E ∪ F ) is chordal?

The name “fill-in” is due to the fundamental problem arising in sparse matrix
computations which was studied intensively in the past. During Gaussian elimina-
tions of large sparse matrices new nonzero elements called fill can replace original
zeros, thus increasing storage requirements and running time needed to solve the sys-
tem. The problem of finding the right elimination ordering minimizing the number of
fill elements can be expressed as the Minimum Fill-in problem on graphs [47, 49].
See also [15, Chapter 7] for a more recent overview of related problems and techniques.
Besides sparse matrix computations, applications of Minimum Fill-in can be found
in database management [2], artificial intelligence, and the theory of Bayesian statis-
tics [13, 28, 41, 53]. The survey of Heggernes [31] gives an overview of techniques and
applications of minimum and minimal triangulations.

Minimum Fill-in (under the name Chordal Graph Completion) was one of
the 12 open problems presented at the end of the first edition of Garey and Johnson’s
book [27] and it was proved to be NP-complete by Yannakakis [54]. Kaplan, Shamir,
and Tarjan proved that Minimum Fill-in is fixed parameter tractable by giving
an algorithm of running time O(m16k) in [37] and improved the running time to
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O(k616k + k2mn) in [38], where m is the number of edges and n is the number of
vertices of the input graph. There was a chain of algorithmic improvements resulting
in decreasing the constant in the base of the exponents. In 1996, Cai [11], reduced the

running time to O((n + m) 4k

k+1 ). The fastest parameterized algorithm known prior
to our work is the recent algorithm of Bodlaender, Heggernes, and Villanger with
running time O(2.36k + k2mn) [4].

In this paper we give the first subexponential parameterized algorithm for Mini-

mum Fill-in. The last chapter of Flum and Grohe’s book [21, Chapter 16] concerns
subexponential fixed parameter tractability (FPT), the complexity class SUBEPT,
which, loosely speaking—we skip here some technical conditions—is the class of prob-
lems solvable in time 2o(k)nO(1), where n is the input length and k is the parameter.
Subexponential FPT is intimately linked with the theory of exact exponential algo-
rithms for hard problems, which are better than the trivial exhaustive search, though
still exponential [22]. Based on the fundamental results of Impagliazzo, Paturi, and
Zane [34], Flum and Grohe established that most of the natural parameterized prob-
lems are not in SUBEPT unless the Exponential Time Hypothesis (ETH) fails. Until
recently, the only notable exceptions of problems in SUBEPT were problems on pla-
nar graphs and, more generally, on graphs excluding some fixed graph as a minor
[16]. In 2009, Alon, Lokshtanov, and Saurabh et al. [1] used a novel application of
color coding to show that parameterized Feedback Arc Set in Tournaments is
in SUBEPT. Minimum Fill-in is the first problem on general graphs which appeared
to be in SUBEPT.

General overview of our approach. The important tools in obtaining our
subexponential algorithm are the techniques based on the properties of minimal trian-
gulations and potential maximal cliques of Bouchitté and Todinca [8]. These technics
were deployed in the context of computing the treewidth of special graph classes and
were used later in exact exponential algorithms [23, 24, 25]. The novel application of
potential maximal cliques in subexponential algorithms is based on new algorithmic
and combinatorial results about these objects.

A set of vertices Ω of a graph G is a potential maximal clique if there is a minimal
triangulation such that Ω is a maximal clique in this triangulation. Let Π be the set
of all potential maximal cliques in graph G. The importance of potential maximal
cliques is that if we are given the set Π, then by using the machinery from [8, 23],
it is possible to compute an optimum triangulation in time up to polynomial factor
proportional to |Π|. Let G be an n-vertex graph and k be the parameter. If (G, k)
is a YES instance of the Minimum Fill-in problem, then every maximal clique of
every optimum triangulation is obtained from some potential maximal clique of G by
adding at most k fill edges. We call potential maximal cliques missing at most k edges
vital. To give a general overview of our algorithm, we start with an approach that
does not work directly, and then explain what has to be changed to succeed. The
algorithm consists of three main steps:

Step A. Apply a kernelization algorithm that in time nO(1) reduces the problem
instance to an instance of size polynomial in k.

Step B. Enumerate all vital potential maximal cliques of an n-vertex graph in time
no(k/ log k). By Step A, n = kO(1). Thus the running time of the enumera-
tion algorithm and the number of vital potential maximal cliques is 2o(k).

Step C. Use dynamic programming to solve the problem in time proportional to
the number of vital potential maximal cliques, which is 2o(k).

Step A, kernelization for Minimum Fill-in, was known prior to our work. In
1994, Kaplan et al. gave a kernel with O(k5) vertices. Later the kernelization was
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improved toO(k3) in [38] and then to 2k2+4k in [45]. Step C, with somemodifications,
is similar to the algorithm from [8, 23]. Step B does not work directly or at least we do
not know how to make it work. Instead of enumerating vital potential maximal cliques
we make a “detour.” We use a branching (recursive) algorithm that in subexponential
time outputs a subexponential number of graphs avoiding a specific combinatorial
structure, the nonreducible graphs. (We postpone the definition of these graphs to
section 3.) In nonreducible graphs we are able to enumerate vital potential maximal
cliques. Thus Step B is replaced with the following:

Step B1. Apply a branching algorithm to generate nO(
√
k) nonreducible instances

such that the original instance is a YES instance if and only if at least
one of the generated nonreducible instances is a YES instance.

Step B2. Show that if G is nonreducible, then all vital potential maximal cliques

of G can be enumerated in time nO(
√
k).

Putting together Steps A, B1, B2, and C, we obtain the subexponential algorithm.

Our algorithmic techniques can be used to show that several other problems
belong to SUBEPT:

• A chain graph is a bipartite graph where the sets of neighbors of vertices form
an inclusion chain. In the Minimum Chain Completion problem, we are
asked if a bipartite graph can be turned into a chain graph by adding at most
k edges. The problem was introduced by Golumbic [29] and Yannakakis [54].
The concept of chain graph has surprising applications in ecology [43, 48].
Feder, Mannila, and Terzi in [20] gave approximation algorithms for this
problem. We show that Minimum Chain Completion is solvable within

time O(2O(
√
k log k) + k2nm).

• The Triangulating Colored Graph problem is a generalization of Min-

imum Fill-in. The instance is a graph with some of its vertices colored; the
task is to add at most k fill edges such that the resulting graph is chordal
and no fill edge is monochromatic. We postpone the formal definition of the
problem to section 7. The problem was studied intensively because of its
close relation to the Perfect Phylogeny Problem—a fundamental and
long-standing problem for numerical taxonomists [7, 10, 36]. The Trian-

gulating Colored Graph problem is NP -complete [6] and W [t]-hard for
any t when parameterized by the number of colors [5]. However, it is not
hard to see that a fixed parameter tractable algorithm when parameterized
by the number of fill edges can be obtained by adapting the minimum fill-in
algorithm of Cai [11]. By our results, Triangulating Colored Graph is

solvable in time O(2O(
√
k log k)+nO(1)).

• In Chordal Graph Sandwich we are given two graphs G1 and G2 on the
same vertex set, and the question is if there is a chordal graph G which is
a supergraph of G1 and a subgraph of G2. The problem is a generalization
of Triangulating Colored Graph. We refer to the paper of Golumbic,
Kaplan, and Shamir [30] for a general overview of graph sandwich problems.
We show that deciding if a sandwiched chordal graph G can be obtained from

G1 by adding at most k fill edges is possible in time O(2O(
√
k log k) + nO(1)).

The remaining part of the paper is organized as follows. Section 2 contains
definitions and preliminary results. In section 3, we provide a branching algorithm
simplifying the instance corresponding to Step B1 of the description above. Section 4
provides an algorithm enumerating vital potential maximal cliques in nonreducible
graphs, i.e., Step B2. This is the most important part of our algorithm. It is based
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on new insight into the combinatorial structure of potential maximal cliques. In
section 5, we show how to adapt the algorithm from [8, 23] to implement Step C.
The main algorithm is given in section 6. In section 7, we show how the ideas used
for Minimum Fill-in can be used to obtain subexponential algorithms for other
problems. We conclude with open problems in section 8.

2. Preliminaries. We denote by G = (V,E) a finite, undirected, and simple
graph with vertex set V (G) = V and edge set E(G) = E. We also use n to denote
the number of vertices and m the number of edges in G. For a nonempty subset
W ⊆ V , the subgraph of G induced by W is denoted by G[W ]. We say that a vertex
set W ⊆ V is connected if G[W ] is connected. The open neighborhood of a vertex v
is N(v) = {u ∈ V : uv ∈ E} and the closed neighborhood is N [v] = N(v) ∪ {v}. For
a vertex set W ⊆ V we put N(W ) =

⋃
v∈W N(v)\W and N [W ] = N(W ) ∪W . Also

for W ⊂ V we define fillG(W ), or simple fill(W ), to be the number of nonedges of
W , i.e., the number of pairs u �= v ∈ W such that uv �∈ E(G). We use GW to denote
the graph obtained from graph G by completing its vertex subset W into a clique.
We say that a path P in graph G is chordless if its vertex set induces a path. In
other words, any two nonconsecutive vertices of P are not adjacent in G. We refer to
Diestel’s book [17] for basic definitions of graph theory.

Chordal graphs and minimal triangulations. Chordal or triangulated graphs
form the class of graphs containing no induced cycles of length more than three. In
other words, every cycle of length at least four in a chordal graph contains a chord.
Graph H = (V,E ∪ F ) is said to be a triangulation of G = (V,E) if H is chordal.
The triangulation H is called minimal if H ′ = (V,E ∪ F ′) is not chordal for every
edge subset F ′ ⊂ F and H is a minimum triangulation if H ′ = (V,E ∪ F ′) is not
chordal for every edge set F ′ such that |F ′| < |F |. The edge set F for the chordal
graph H is called the fill of H , and if H is a minimum triangulation of G, then |F | is
the minimum fill-in for G.

Minimal triangulations can be described in terms of vertex eliminations (also
known as the elimination game) [26, 47]. A vertex elimination procedure takes as
input a vertex ordering π : {1, 2, . . . , n} → V (G) of graph G and outputs a chordal
graph H = Hn. We put H0 = G and define Hi to be the graph obtained from
Hi−1 by completing all neighbors v of π(i) in Hi−1 with π−1(v) > i into a clique.
An elimination ordering π is called minimal if the corresponding vertex elimination
procedure outputs a minimal triangulation of G.

Proposition 2.1 (see [46]). Graph H is a minimal triangulation of G if and
only if there exists a minimal elimination ordering π of G such that the corresponding
procedure outputs H.

We will also need the following description of the fill edges introduced by vertex
eleminations.

Proposition 2.2 (see [50]). Let H be the chordal graph produced by vertex
elimination of graph G according to ordering π. Then uv �∈ E(G) is a fill edge
of H if and only if there exists a path P = uw1w2 . . . w�v such that π−1(wi) <
min(π−1(u), π−1(v)) for each 1 ≤ i ≤ �.

Minimal separators. Let u and v be two nonadjacent vertices of a graph G. A
set of vertices S ⊆ V , u, v �∈ S, is a u, v-separator if u and v are in different connected
components of the graph G[V \S]. We say that S is a minimal u, v-separator of G
if no proper subset of S is an u, v-separator and that S is a minimal separator of
G if there are two vertices u and v such that S is a minimal u, v-separator. Notice
that a minimal separator can be a proper vertex subset of another minimal separator.
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Fig. 2.1. Graph G has two minimal triangulations, H1 and H2. The maximal cliques in H1

are {a, b, c}, {a, c, e}, and {c, d, e}. In H2 the maximal cliques are {a, b, e}, {b, c, e}, and {c, d, e}.
Potential maximal cliques of G are {a, b, c}, {a, c, e}, {c, d, e}, {a, b, e}, and {b, c, e}. Graph G has
two minimal a, d-separators, namely, {c, e} and {b, e}.

If a minimal separator is a clique, we refer to it as a clique minimal separator. A
connected component C of G[V \S] is a full component associated to S if N(C) = S.
The following proposition is an exercise in [29].

Proposition 2.3 (folklore). A set S of vertices of G is a minimal a, b-separator
if and only if a and b are in different full components associated to S. In particular,
S is a minimal separator if and only if there are at least two distinct full components
associated to S.

Potential maximal cliques are combinatorial objects whose properties are cru-
cial for our algorithm. A vertex set Ω is defined as a potential maximal clique in graph
G if there is some minimal triangulation H of G such that Ω is a maximal clique of
H ; see Figure 2.1. Potential maximal cliques were defined by Bouchitté and Todinca
in [8, 9].

The following proposition was proved by Kloks, Kratsch, and Spinrad for minimal
separators [39] and by Bouchitté and Todinca for potential maximal cliques [8].

Proposition 2.4 (see [8, 39]). Let X be either a potential maximal clique or a
minimal separator of G, and let GX be the graph obtained from G by completing X
into a clique. Let C1, C2, . . . , Cr be the connected components of G\X. Then graph
H obtained from GX by adding a set of fill edges F is a minimal triangulation of G if
and only if F =

⋃r
i=1 Fi, where Fi is the set of fill edges in a minimal triangulation

of GX [N [Ci]]. See the example in Figure 2.2. Let us remark that by Proposition 2.4,
we have that for every minimal triangulation H of a graph G,

• if S is a clique minimal separator of G, then S is a minimal separator of H ;
• if Ω is a potential maximal clique of G and a clique in G, then Ω is a maximal
clique and potential maximal clique of H .

The following result about the structure of potential maximal cliques is due to
Bouchitté and Todinca.

Proposition 2.5 (see [8]). Let Ω ⊆ V be a set of vertices of the graph G. Let
{C1, C2, . . . , Cp} be the set of the connected components of G\Ω and let Si = N(Ci),
i ∈ {1, 2, . . . , p}. Then Ω is a potential maximal clique of G if and only if

1. G\Ω has no full component associated to Ω, i.e., Si ⊂ Ω for every i ∈
{1, 2, . . . , p}, and

2. the graph on the vertex set Ω obtained from G[Ω] by completing each Si,
i ∈ {1, 2, . . . , p}, into a clique is a complete graph. In other words, every pair
of nonadjacent vertices of Ω is in some Si.

Moreover, if Ω is a potential maximal clique, then {S1, S2, . . . , Sp} is the set of mini-
mal separators of G contained in Ω.
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Fig. 2.2. In graph G vertices c and f form a minimal separator X. Graph G\X has two
connected components, C1 = {a, b} and C2 = {d, e}. There are four minimal triangulations of G
that can be obtained by triangulating GX . Each of these minimal triangulations is a “combination”
of a minimal triangulation of graph GX [N [C1]], which is a cycle abcf , and GX [N [C2]], which is cycle
cfde. No minimal triangulation of G can be obtained from GX by adding an edge “crossing” cf .

Let us remark that if Ω is a potential maximal clique, and we want to check if it
remains so after adding new edges, then it is sufficient to verify only the first condition
of Proposition 2.5 since the second condition will hold automatically.

A naive approach of deciding if a given vertex subset is a potential maximal clique
would be to try all possible minimal triangulations. Proposition 2.5 brings us to a
faster recognition algorithm.

Proposition 2.6 (see [8]). There is an algorithm that, given a graph G = (V,E)
and a set of vertices Ω ⊆ V , verifies if Ω is a potential maximal clique of G in time
O(nm).

We need also the following proposition from [23].
Proposition 2.7 (see [23]). Let Ω be a potential maximal clique of G. Then for

every y ∈ Ω, Ω = NG(Y ) ∪ {y}, where Y is the connected component of G\(Ω\{y})
containing y. For example, in graph G depicted in Figure 2.1, vertices {b, c, e} form
a potential maximal clique Ω. Say, for vertex c ∈ Ω, the component C of G\(Ω\{c})
containing c consists of vertices c and d. The neighborhood of this component consists
of b and e and Ω = NG(C) ∪ {c} = {b, c, e}.

Parameterized complexity. A parameterized problem Π is a subset of Γ∗ ×N

for some finite alphabet Γ. An instance of a parameterized problem consists of (x, k),
where k is called the parameter. A central notion in parameterized complexity is fixed
parameter tractability (FPT) which means, for a given instance (x, k), solvability in
time f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the
input size. We refer to the book of Downey and Fellows [19] for further reading on
parameterized complexity. For Minimum Fill-in, the natural parameterization is by
the number of fill edges and the parameterized version of the problem is as follows:

Minimum Fill-in

Input: A graph G = (V,E) and a nonnegative integer k.
Parameter: k.
Question: Is there F ⊆ [V ]2, |F | ≤ k, such that graph H = (V,E ∪ F ) is chordal?

Kernelization. A kernelization algorithm for a parameterized problem Π ⊆
Γ∗×N is an algorithm that given (x, k) ∈ Γ∗×N outputs in time polynomial in |x|+k
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a pair (x′, k′) ∈ Γ∗ ×N, called a kernel such that (x, k) ∈ Π if and only if (x′, k′) ∈ Π,
|x′| ≤ g(k), and k′ ≤ k, where g is some computable function. The function g is
referred to as the size of the kernel. If g(k) = kO(1), then we say that Π admits a
polynomial kernel.

There are several known polynomial kernels for the Minimum Fill-in problem
[37, 38]. The best known kernelization algorithm is due to Natanzon, Shamir, and
Sharan [44, 45], which for a given instance (G, k) outputs in time O(k2nm) an instance
(G′, k′) such that k′ ≤ k, |V (G′)| ≤ 2k2+4k, and (G, k) is a YES instance if and only if
(G′, k′) is.

Proposition 2.8 (see [44, 45]). Minimum Fill-in has a kernel with vertex set
of size O(k2). The running time of the kernelization algorithm is O(k2nm).

3. Branching. Rule 1 is a branching procedure identifying a set of subproblems
on which we call the algorithm recursively. The procedure is based on a notion of an
obscure visibility. Loosely speaking, the visibility of a set of vertices X is h-obscured
from a chordless path P if for every internal vertex v of P at least h vertices of X are
not adjacent to v. Thus from every internal vertex of P , at least h vertices cannot be
seen.

More formally, let X be a vertex set of G. We say that the visibility of X
from a chordless path P = uw1w2 . . . w�v is h-obscured if |X\N(wi)| ≥ h for every
i ∈ {1, . . . , �}. See Figure 3.1 for an example.

In the branching procedure, we use the notion of obscure visibility only for special
sets and paths defined by a pair of nonadjacent vertices u and v. Let X = N(u)∩N(v)
be the common neighborhood of u and v, and let P = uw1w2 . . . w�v be a chordless
path such that the visibility ofX from P is h-obscured. The idea behind the branching
is that every fill-in edge set of G should contain either uv or at least h edges between
vertices of X and some internal vertex of P . The proof of this fact is based on
Proposition 2.2 and is given in Lemma 3.1.

Rule 1 (branching rule). If instance (G = (V,E), k) of Minimum Fill-in con-
tains a pair of nonadjacent vertices u, v ∈ V and a chordless uv-path P = uw1w2 . . . w�v
such that visibility of X = N(u) ∩N(v) from P is h-obscured, then branch into �+ 1
instances (G0, k0), (G1, k1), . . . , (G�, k�). Here

• G0 = (V,E ∪ F0), k0 = k − 1, where F0 = {uv};
• for i ∈ {1, . . . , �}, Gi = (V,E ∪ Fi), ki = k − |Fi|, where Fi = {wix|x ∈
X ∧ wix �∈ E}.

Lemma 3.1. Rule 1 is sound, i.e., (G, k) is a YES instance if and only if (Gi, ki)
is a YES instance for some i ∈ {0, . . . , �}.

Fig. 3.1. A vertex set X = N(u) ∩ N(v) of size 4 and a path P = uw1w2w3v such that the
visibility of X from P is 2-obscured.
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Proof. If for some i ∈ {0, . . . , �}, (Gi, ki) is a YES instance, then G can be turned
into a chordal graph by adding at most ki + |Fi| = k edges, and thus (G, k) is a YES
instance.

Let (G, k) be a YES instance, and let F ⊆ [V ]2 be such that graph H = (V,E∪F )
is a minimal triangulation of G and |F | ≤ k. By Proposition 2.1, there exists an
ordering π of V such that the elimination game algorithm on G and π outputs H .
Without loss of generality, we can assume that π−1(u) < π−1(v). If for some x ∈ X ,
π−1(x) < π−1(u), then by Proposition 2.2, uv ∈ F . Also by Proposition 2.2, if
π−1(wi) < π−1(u) for each i ∈ {1, . . . , �}, then again uv ∈ F . In both cases (G0, k0)
is a YES instance.

The only remaining case is when π−1(u) < π−1(x) for all x ∈ X , and there is at
least one vertex of P placed after u in ordering π. Let i ≥ 1 be the smallest index
such that π−1(u) < π−1(wi). Thus for every x ∈ X , in the path xuw1w2 . . . wi all
internal vertices are ordered by π before x and wi. By Proposition 2.2, this implies
that wi is adjacent to all vertices of X , and hence (Gi, ki) is a YES instance.

The following lemma shows that every branching step of Rule 1 can be performed
in polynomial time.

Lemma 3.2. Let (G, k) be an instance of Minimum Fill-in and let h be an
integer. It can be identified in time O(n4) if there is a pair u, v ∈ V (G) satisfying the
conditions of Rule 1. Moreover, if the conditions of Rule 1 hold, then a pair u, v of two
nonadjacent vertices and a chordless uv-path P such that the visibility of N(u)∩N(v)
from P is h-obscured can be found in time O(n4).

Proof. For each pair of nonadjacent vertices u, v, we compute X = N(u) ∩N(v).
We compute the set of all vertices W ⊆ V (G)\{u, v} such that every vertex of W is
nonadjacent to at least h vertices of X . Then conditions of Rule 1 do not hold for u
and v if in the subgraph Guv induced by W ∪{u, v}, u and v are in different connected
components. If u and v are in the same connected component of Guv, then a shortest
(in Guv) uv-path P is a chordless path and the visibility of X from P is h-obscured.
Clearly, all these procedures can be performed in time O(n4).

To obtained the claimed bound on the running time of our algorithm, we use
Rule 1 only for the case when h ≥ √

k. We say that instance (G, k) is nonreducible if
Rule 1 cannot be applied to an

√
k-obscured path. Thus for every pair of nonadjacent

vertices u, v of a nonreducible graphG, there is no uv-path with
√
k-obscured visibility

of N(u) ∩N(v).

Lemma 3.3. Let t(n, k) be the maximum number of nonreducible problem in-
stances resulting from recursive application of Rule 1 starting from instance (G, k)

with |V (G)| = n and h =
√
k. Then t(n, k) = nO(

√
k) and all generated nonreducible

instances can be enumerated within the same time bound.

Proof. Let us assume that we branch on the instances corresponding to a pair
u, v and path P = uw1w2 . . . w�v such that the visibility of N(u) ∩ N(w) is obscure

from P . Then the value of t(n, k) is at most
∑�

i=0 t(n, ki). Here k0 = k− 1 and for all

i ≥ 1, ki = k − |Fi| ≤ k −√
k. Since the number of vertices in P does not exceed n,

t(n, k) ≤ t(n, k − 1) + n · t(n, k −√
k). By making use of standard arguments on the

number of leaves in branching trees (see, for example, [35, Theorem 8.1]) it follows

that t(n, k) = nO(
√
k). By Lemma 3.2, every recursive call of the branching algorithm

can be done in time O(n4), and thus all nonreducible instances are generated in time

O(nO(
√
k) · n4) = nO(

√
k).
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4. Listing vital potential maximal cliques. Let (G, k) be a YES instance
of Minimum Fill-in. This means that G can be turned into a chordal graph H
by adding at most k edges. Every maximal clique in H corresponds to a potential
maximal clique of G. The observation here is that if a potential maximal clique Ω
needs more than k edges to be added to become a clique, then no solution H can
contain Ω as a maximal clique.

A potential maximal clique Ω is vital if the number of edges in G[Ω] is at least
|Ω|(|Ω| − 1)/2− k. In other words, the subgraph induced by vital potential maximal
clique can be turned into a complete graph by adding at most k edges. In this section
we show that all vital potential maximal cliques of an n-vertex nonreducible graph

can be enumerated in time nO(
√
k). In section 5 we prove that the only potential

maximal cliques that are essential for a fill-in with at most k edges are the ones that
miss at most k edges from a clique.

First we show how to enumerate potential maximal cliques which are, in some
sense, almost cliques. This enumeration algorithm will be used as a subroutine to enu-
merate vital potential maximal cliques. A potential maximal clique Ω is a quasi clique
if there is a set Z ⊆ Ω of size at most 5

√
k such that Ω\Z is a clique. In particu-

lar, if |Ω| ≤ 5
√
k, then Ω is a quasi clique. The following lemma gives an algorithm

enumerating all quasi cliques.

Lemma 4.1. Let (G, k) be a problem instance on n vertices. Then all quasi cliques

in G can be enumerated within time nO(
√
k).

Proof. We will prove that while a quasi clique can be very large, it can be
reconstructed in polynomial time from a small set of O(

√
k) vertices. Hence all

quasi cliques can be generated by enumerating vertex subsets of size O(
√
k). Because

the number of vertex subsets of size O(
√
k) is nO(

√
k), this will prove the lemma.

Let Ω = X∪Z be a potential maximal clique which is a quasi clique, where Z ⊆ Ω
is a set of size at most 5

√
k such that X = Ω\Z is a clique. Depending on the number

of full components associated to X in G\Ω, we consider three cases: there are at least
two full components, there is exactly one, and there is no full component.

Consider first the case when X has at least two full components, say, C1 and C2.
In this case, by Proposition 2.3, X is a minimal clique separator of G\Z. Let H be
some minimal triangulation of G\Z. By Proposition 2.4, X is a minimal separator
in every minimal triangulation of G\Z. Therefore, X remains a minimal separator in
H . It is well known that every chordal graph has at most n− 1 minimal separators
and that they can be enumerated in linear time [12]. To enumerate quasi cliques
we implement the following algorithm. We construct a minimal triangulation H of
G\Z. A minimal triangulation can be constructed in time O(nm) or O(nω logn),
where ω < 2.373 is the exponent of matrix multiplication and m is the number of
edges in G [33, 50, 52]. For every minimal separator S of H , where G[S] is a clique,
we check if S ∪ Z is a potential maximal clique in G. This can be done in O(nm)
time by Proposition 2.6. Therefore, in this case, the time required to enumerate
all quasi cliques Ω of the form X ∪ Z, up to a polynomial multiplicative factor, is
proportional to the number of sets Z of size at most 5

√
k. The total running time to

enumerate quasi cliques of this type is nO(
√
k).

Now we consider the case when no full component in G\Ω is associated to X .
This means that for every connected component C of G\Ω = G\(Z ∪ X), there is
a vertex x ∈ X\N(C). By Proposition 2.5, X is also a potential maximal clique in
G\Z. We construct a minimal triangulation H of G\Z. Because X is a clique and
a potential maximal clique in G\Z, by Proposition 2.4, we have that X is also a
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potential maximal clique in H . By the classical result of Dirac [18], chordal graph H
contains at most n maximal cliques and all maximal cliques of H can be enumerated
in linear time [3]. For every maximal clique K of H such that K is also a clique
in G, we check if K ∪ Z is a potential maximal clique in G, which can be done in
O(nm) time by Proposition 2.6. As in the previous case, the enumeration of all such

quasi cliques boils down to enumerating sets Z, which takes time nO(
√
k).

In the last case, vertex set X has a unique full component Cr in G\Ω associated
to X . Let C1, C2, . . . , Cr be the connected components of G\Ω = G\(Z ∪ X). We
claim that for every i ∈ {1, . . . , r − 1},

• Si = NG\Z(Ci) is a clique minimal separator in G\Z.
Indeed, Ci is a connected component of G\Ω and thereforeN(Ci) ⊆ Ω. Therefore,

Si = NG\Z(Ci) = NG(Ci)\Z ⊆ Ω\Z = X and thus Si is a clique. To prove that Si is
a minimal separator in G\Z, we show that Si has at least two full components in G\Z.
By Proposition 2.3, this will imply that Si is a minimal separator. By definition, Ci

is a full component associated to Si in graph G\Z. Moreover, in graph G\Z, there
is a connected component C′ of (G\Z)\Si containing X\Si. Because X is a clique,
we have that NG\Z(C′) = Si, and thus C′ is another full component associated to Si.
This conclude the proof of the claim.

Let H be a minimal triangulation of G\Z. Because X is a clique in G\Z, X is
also a clique in H . Let K be a maximal clique ofH containingX . By the claim above,
each Si, i ∈ {1, . . . , r−1}, is a clique minimal separator in G\Z and hence, by Propo-
sition 2.4, is also a minimal separator in H . ThereforeH has no fill edges between ver-
tices separated by Si in G\Z. This implies that K is disjoint from C1, C2, . . . , Cr−1.
Indeed, Cr is the unique full component associated to X , and thus for every Ci,
i ∈ {1, . . . , r − 1}, there is x ∈ X ⊆ K such that x �∈ NG\Z(Ci) = NH(Ci) = Si.
In G\Z, every vertex of Ci is separated from x by Si. Thus if there was a vertex
y ∈ Ci ∩K, then because K is a clique in H , this would imply the existence of a fill
edge xy between vertices separated by Si. But as we already observed, there are no
such fill edges, and hence K ∩ Ci = ∅.

Because Ω is a potential maximal clique in G, by Proposition 2.5, there is y ∈ Ω
such that y �∈ NG(Cr). Since Cr is a full component for X , it follows that y ∈ Z.
Moreover, because for every connected component C �= Cr of G\Ω, we have that
K ∩ C = ∅, it follows that C is also a connected component of H\K. Thus every
connected component of H\K containing a neighbor of y in G is also a connected
component of G\Ω containing a neighbor of y.

Let B1, B2, . . . , B� be the set of connected components in G\(K ∪ Z) with y ∈
NG(Bi). We define

Y =
⋃

1≤i≤�

Bi ∪ {y}.

By Proposition 2.7, Ω = NG(Y ) ∪ {y} and in this case the potential maximal
clique is characterized by y and Y .

To summarize, to enumerate all quasi cliques corresponding to the last case we
do the following. For every set Z of size at most 5

√
k, we construct a minimal

triangulation H of G\Z. Chordal graph H has at most n maximal cliques. For
every maximal clique K of H and for every y ∈ Z, we compute the set Y . We use
Proposition 2.6 to check if NG(Y ) ∪ {y} is a potential maximal clique. The total
running time to enumerate quasi cliques in this case is bounded, up to polynomial

factor, by the number of subsets of size O(
√
k) in G, which is nO(

√
k).
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Fig. 4.1. Partitioning of potential maximal clique Ω into sets Nu, Nv, Nuv, {u}, {v}, and Y .

Now we are ready to prove the result about vital potential maximal cliques in
nonreducible graphs.

Lemma 4.2. Let (G, k) be a nonreducible instance of the problem. All vital

potential maximal cliques in G can be enumerated within time nO(
√
k), where n is the

number of vertices in G.

Proof. We start by enumerating all vertex subsets of G of size at most 5
√
k + 2

and apply Proposition 2.6 to check if each such set is a vital potential maximal clique
or not.

Let Ω be a vital potential maximal clique with at least 5
√
k + 3 vertices and let

Y ⊆ Ω be the set of vertices of Ω such that each vertex of Y is adjacent in G to at
most |Ω| − 1 − √

k vertices of Ω. To turn Ω into a complete graph, for each vertex
v ∈ Y , we have to add at least

√
k fill edges incident to v. Hence |Y | ≤ 2

√
k. If

Ω\Y is a clique, then Ω is a quasi clique. By Lemma 4.1, all quasi cliques can be

enumerated in time nO(
√
k).

If Ω\Y is not a clique, there is at least one pair of nonadjacent vertices u, v ∈ Ω\Y .
By Proposition 2.5, there is a connected component C of G\Ω such that u, v ∈ N(C).

Claim 1. There is w ∈ C such that |Ω\N(w)| ≤ 5
√
k + 2.

Proof. Aiming toward a contradiction, we assume that the claim does not hold.
We define the following subsets of Ω\Y :

• Nu ⊆ Ω\Y is the set of vertices which are not adjacent to u,
• Nv ⊆ Ω\Y is the set of vertices which are not adjacent to v, and
• Nuv = Ω\(Y ∪Nu ∪Nv) is the set of vertices adjacent to u and to v.

See Figure 4.1 for an illustration. Let us note that

Ω = Nu ∪Nv ∪Nuv ∪ {u} ∪ {v} ∪ Y.

Since u, v �∈ Y , we have that there is less than
√
k fill edges incident to u or v, and

thus max{|Nu|, |Nv|} ≤ √
k.

We claim that |Nuv| ≤
√
k. Aiming toward a contradiction, let us assume that

|Nuv| >
√
k. By our assumption, every vertex w ∈ C is not adjacent to at least 5

√
k+2

vertices of Ω. Since |Y ∪Nu∪Nv∪{u}∪{v}| ≤ 2
√
k+

√
k+

√
k+2 = 4

√
k+2, we see

that each vertex of C is nonadjacent to at least
√
k vertices of Nuv. We take a shortest

uv-path P with all internal vertices in C. Because C is a connected component and
u, v ∈ N(C), such a path exists. Every internal vertex of P is nonadjacent to at least√
k vertices of Nuv ⊆ N(u) ∩ N(v), and thus the visibility of Nuv from P is

√
k-

obscured. But this is a contradiction to the assumption that (G, k) is nonreducible.
Hence |Nuv| ≤

√
k.
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Thus if the claim does not hold, we have

|Ω| = |Nu ∪Nv ∪Nuv ∪ {u} ∪ {v} ∪ Y | ≤ 5
√
k + 2,

but this contradicts the assumption that |Ω| ≥ 5
√
k+3. This concludes the proof of

the claim.
We have shown that for every vital potential maximal clique Ω of size at least

5
√
k+3, there is a connected component C and w ∈ C such that |Ω\N(w)| ≤ 5

√
k+2.

Let H be the graph obtained from G by completing N(w) into a clique.
Claim 2. Ω is a quasi clique in H.
Proof. The graph H [Ω] consist of a clique plus at most 5

√
k + 2 vertices. Thus

to show that Ω is a quasi clique in H , it is sufficient to argue that Ω is a potential
maximal clique in H . Vertex set Ω is a potential maximal clique in G, and thus
by Proposition 2.5, there is no full component associated to Ω in G\Ω. Because
N(w) ∩ Ω ⊆ N(C) ⊂ Ω, there is no full component associated to Ω in H . Then by
Proposition 2.5, Ω is a potential maximal clique in H as well. Hence Ω is a quasi clique
in H , which concludes the proof of the claim.

To conclude, we use the following strategy to enumerate all vital potential maxi-
mal cliques:

• We enumerate first all quasi cliques in G in time nO(
√
k) by making use of

Lemma 4.1, and for each quasi clique we use Proposition 2.6 to check if it is
a vital potential maximal clique.

• We also try all vertex subsets of size at most 5
√
k+2 and use Proposition 2.6

to check if each such set is a vital potential maximal clique.
• As we have shown, all vital potential maximal cliques which are not enu-
merated prior to this moment should satisfy the condition of Claim 1. By
Claim 2, each such vital potential maximal clique is a quasi clique in the
graph H obtained from G by selecting some vertex w and turning NG(w)
into clique. Thus for every vertex w of G, we construct graph H by complet-
ing N(w) into a clique and then use Lemma 4.1 to enumerate all quasi cliques
in H . For each quasi clique of H , we use Proposition 2.6 to check if it is a
vital potential maximal clique in G.

The total running time of this procedure is nO(
√
k).

5. Exploring the remaining solution space. For an instance (G, k) of Min-

imum Fill-in, let Πk be the set of all vital potential maximal cliques. In this section,
we give an algorithm of running time O(nm|Πk|), where n is the number of vertices
and m the number of edges in G. The algorithm receives (G, k) and Πk as an input
and decides if (G, k) is a YES instance. The algorithm is a modification of the al-
gorithm from [23]. The only difference is that the algorithm from [23] computes an
optimum triangulation from the set of all potential maximal cliques, while here we
have to work only with vital potential maximal cliques. For the reader’s convenience
we provide the full proof, but first we need the following lemma.

Lemma 5.1. Let S be a minimal separator in G and let C be a full connected com-
ponent of G\S associated to S. Then every minimal triangulation H of GS contains
a maximal clique K such that S ⊂ K ⊆ S ∪C.

Proof. By Proposition 2.4, H is a minimal triangulation of GS if and only if
H [S ∪ C] is a minimal triangulation of GS [S ∪ C]. Because S is a clique in GS , S
is a subset of some maximal clique K of H [S ∪ C]. By definition, K is a potential
maximal clique in GS [S∪C], and by Proposition 2.5, K is a potential maximal clique
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in G. Since GS [S ∪ C]\S has a full component associated to S, by making use of
Proposition 2.5 we conclude that S is not a potential maximal clique in GS [S ∪ C]
and thus S ⊂ K.

Lemma 5.2. Given a set of all vital potential maximal cliques Πk of G, it can be
decided in time O(nm|Πk|) if (G, k) is a YES instance of Minimum Fill-in.

Proof. Let mfi(G) be the minimum number of fill edges needed to triangulate G.
Let us recall that by fillG(Ω) we denote the number of nonedges in G[Ω] and by GΩ

the graph obtained from G by completing Ω into a clique. If mfi(G) ≤ k, then by
Proposition 2.4, we have

(5.1) mfi(G) = min
Ω∈Πk

[
fillG(Ω) +

∑
C is a component of G\Ω

mfi(GΩ[C ∪NG(C)])

]
.

Formula (5.1) can be used to compute mfi(G); however, by making use of this formula
we are not able to obtain the claimed running time. To implement the algorithm in
time O(nm|Πk|), we compute mfi(GΩ[C ∪NG(C)]) by dynamic programming.

By Proposition 2.5, for every connected component C of G\Ω, where Ω ∈ Πk,
S = NG(C) ⊂ Ω is a minimal separator. We define the set Δk as the set of all minimal
separators S such that S = N(C) for some connected component C in G\Ω for some
Ω ∈ Πk. Since for every Ω ∈ Πk the number of components in G\Ω is at most n, we
have |Δk| ≤ n|Πk|.

For S ∈ Δk and a full connected component C of G\S associated to S, we define
ΠS,C as the set of potential maximal cliques Ω ∈ Πk such that S ⊂ Ω ⊆ S ∪ C. The
triple (S,C,Ω) was called a good triple in [23].

For every Ω ∈ Πk, connected component C of G\Ω, and S = N(C), we compute
mfi(F ), where F = GΩ[C ∪ S]. We start dynamic programming by computing the
values for all sets (S,C) such that Ω′ = C ∪ S is an inclusion-minimal potential
maximal clique. In this case we put mfi(F ) = fill(C ∪ S). Observe that GS [C ∪ S] =
GΩ[C ∪ S]. Hence by Lemma 5.1, for every minimal triangulation H of GS , there
exists a potential maximal clique Ω in G such that Ω is a maximal clique in H and
S ⊂ Ω ⊆ S ∪ C. Thus Ω ∈ ΠS,C . Using this observation, we write the following
formula for dynamic programming:

(5.2) mfi(F ) = min
Ω′∈ΠS,C

[
fillF (Ω

′) +
∑

C′ is a component of F\Ω′
mfi(FΩ′ [C′ ∪N(C′)])

]
.

The fact S ⊂ Ω′ ensures that the solution in (5.2) can be reconstructed from
instances with |S ∪ C| of smaller sizes. By (5.1) and (5.2), we can decide if there
exists a triangulation of G using at most k fill edges. It remains to argue for the
running time.

Finding connected components in G\Ω and computing fill(Ω) can easily be done
in O(n + m) time. Furthermore, (5.1) is applied |Πk| times in total. The running
time of dynamic programming using (5.2) is proportional to the number of states of
the dynamic programming, which is∑

S∈Δk

∑
C∈G\S

|ΠS,C |.

The graph G\Ω contains at most n connected components and thus for every minimal
separator, each potential maximal clique is counted at most n times, and thus the
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number of elements in the sum does not exceed n|Πk|. The total running time is
O(nm|Πk|).

Let us remark that the algorithm from Lemma 5.2 can be easily modified to
construct the triangulation.

6. Putting things together. Now we are in position to prove the main result
of this paper.

Theorem 6.1. The Minimum Fill-in problem is solvable in time O(2O(
√
k log k)+

k2nm).
Proof. Step A. Given instance (G, k) of the Minimum Fill-in problem, we use

Proposition 2.8 to obtain a kernel (G′, k′) on O(k2) vertices and with k′ ≤ k. Let us
note that (G, k) is a YES instance if and only if (G′, k′) is a YES instance. This step
is performed in time O(k2nm).

Step B1. We use Branching Rule 1 on instance (G′, k′). Since the number of
vertices in G′ is O(k2), by Lemma 3.3, the result of this procedure is the set of

(k2)O(
√
k) = 2O(

√
k log k) nonreducible instances (G1, k1), . . . , (Gp, kp). For each i ∈

{1, 2, . . . , p}, graph Gi has O(k2) vertices and ki ≤ k. Moreover, by Lemma 3.1, we
have that (G′, k′), and thus (G, k), is a YES instance if and only if at least one (Gi, ki)

is a YES instance. By Lemma 3.3, the running time of this step is 2O(
√
k log k).

Step B2. For each i ∈ {1, 2, . . . , p}, we list all vital potential maximal cliques
of graph Gi. By Lemma 4.2, the number of all vital potential maximal cliques in

nonreducible graph Gi is 2
O(

√
k log k) and they can be listed within the same running

time.
Step C. At this step for each i ∈ {1, 2, . . . , p}, we are given instance (Gi, ki)

together with the set Πki of vital potential maximal cliques ofGi computed in Step B2.
We use Lemma 5.2 to solve the Minimum Fill-in problem for instance (Gi, ki) in time

O(k6|Πki |) = 2O(
√
k log k). If at least one of the instances (Gi, ki) is a YES instance,

then by Lemma 3.1, (G, k) is a YES instance. If all instances (Gi, ki) are NO instances,

we conclude that (G, k) is a NO instance. Since p = 2O(
√
k log k), we have that Step C

can be performed in time 2O(
√
k log k). The total running time required to perform all

steps of the algorithm is O(2O(
√
k log k) + k2nm).

Let us remark that our decision algorithm can be easily adapted to output the
optimum fill-in of size at most k.

7. Applications to other problems. The algorithmic techniques developed
in the previous sections can be modified to solve several related problems. Prob-
lems considered in this section are Minimum chain completion, Chordal Graph

Sandwich, and Triangulating Colored Graph.
Minimum chain completion. A bipartite graph G = (V1, V2, E) is a chain

graph if the neighborhoods of the nodes in V1 form a chain, that is, there is an ordering
v1, v2, . . . , v|V1| of the vertices in V1 such that N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(v|V1|).

Minimum Chain Completion

Input: A bipartite graph G = (V1, V2, E) and integer k ≥ 0.
Parameter: k.
Question: Is there F ⊆ V1 × V2, |F | ≤ k, such that graph H = (V1, V2, E ∪ F ) is a
chain graph?

In his NP-completeness proof of Minimum Fill-in, Yannakakis [54] used the
following observation. Let G be a bipartite graph with bipartitions V1 and V2, and
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let G′ be cobipartite (the complement of bipartite) graph formed by turning V1 and
V2 into cliques. Then G can be transformed into a chain graph by adding k edges if
and only if G′ can be triangulated with k edges. By Theorem 6.1, Minimum Chain

Completion is solvable in O(2O(
√
k log k) + k2nm) time.

Chordal graph sandwich. In the chordal graph sandwich problem we are
given two graphs G1 = (V,E1) and G2 = (V,E2) on the same vertex set V and with
E1 ⊂ E2. The Chordal Graph Sandwich problem asks if there exists a chordal
graph H = (V,E1 ∪ F ) sandwiched between G1 and G2, that is, E1 ∪ F ⊆ E2.

Chordal Graph Sandwich

Input: Two graphs G1 = (V,E1) and G2 = (V,E2) such that E1 ⊂ E2, and an
integer k.
Parameter: k.
Question: Is there F ⊆ E2 such that |F | ≤ k and graph H = (V,E1 ∪ F ) is a
triangulation of G1?

Let us remark that the Chordal Graph Sandwich problem is equivalent to
asking if there is a minimal triangulation of G1 sandwiched between G1 and G2. To
solve Chordal Graph Sandwich we cannot use the algorithm from Theorem 6.1
directly. The reason is that we are only allowed to add edges from E2 as fill edges.
We need a kernelization algorithm for this problem as well. This algorithm is very
similar to the kernelization algorithm for the fill-in problem, and we provide it here
for completeness.

Lemma 7.1. Chordal Graph Sandwich admits a kernel with O(k2) vertices.

Proof. To simplify notation, we denote an instance of the Chordal Graph

Sandwich problem by (G,E′, k), where G1 = G = (V,E), E′ ∩ E = ∅, and G2 =
(V,E ∪ E′).

We define two reduction rules and prove their correctness. The first rule eliminates
vertices which do not participate in any induced cycle of length at least four.

Vertex-in-cycle rule. If instance (G,E′, k) has vertex u ∈ V such that for each
connected component C of G\N [u], set NG(C) is a clique in G, then replace instance
(G,E′, k) with instance (G\{u}, E′, k).

Let us remark that if the vertex-in-cycle rule cannot be applied to an instance
(G,E′, k), then every vertex of G belongs to a chordless cycle. Indeed, if the vertex-
in-cycle rule cannot be applied to a vertex v, then there is a component C of G\N [v]
such that N(C) contains a pair of nonadjacent vertices x, y. But then the union of a
shortest xy-path in C with v is a chordless cycle containing v.

Claim 3. The vertex-in-cycle rule is sound, i.e., (G\{u}, E′, k) is a YES instance
if and only if (G,E′, k) is a YES instance.

Proof. Let Gu = G\{u}. Chordality is a hereditary property; hence if H =
(V,E ∪F ) is a triangulation of G with |F | ≤ k, then H\{u} is a triangulation of Gu.

For the opposite direction, assume that Hu = (V (Gu), E(Gu) ∪ Fu) is a minimal
triangulation of Gu, where |Fu| ≤ k. Our objective now is to argue that H = (V,E ∪
Fu) is a triangulation of G. Aiming toward a contradiction, let us assume that there
is a chordless cycle W of length at least four in H . Then u should be a vertex of
W as Hu = H\{u} is chordal. Thus W = uaw1w2 . . . w�bu. Vertices a and b of
W are adjacent to u in Gu because Fu has no edges incident with u. By the same
arguments, vertices w1w2 . . . w� are not adjacent to u in G, and by Proposition 2.3
and the fact that NG(C) is a clique for each connected component C of G\N [u], we
have that vertices w1w2 . . . w� are contained in a connected component C of G\N [u].
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Cycle W is chordless, and thus a and b are not adjacent. We arrive to the fact
that nonadjacent neighbors a, b of u are contained in N(C), which is a clique by the
condition of applying the vertex-in-cycle rule. This is a contradiction.

For every pair of nonadjacent vertices x, y ∈ V , we define Axy as the set of
vertices w ∈ NG(x) ∩NG(y) such that there is an xy-path P avoiding N [w], i.e., no
inner vertex of P is in N [w]. Let us note that nonadjacent vertices x, y, together with
w ∈ Axy and with a shortest xy-path avoiding N [w], induce a cycle of length at least
four. Our second rule exploits this property.

Safe-edge rule. If |Axy| > 2k for some pair of nonadjacent vertices x, y in a
problem instance (G,E′, k), then

• if xy �∈ E′, then (G,E′, k) is a NO instance, and in this case we replace
(G,E′, k) with a trivial NO instance;

• if xy ∈ E′, then make a new instance (G = (V,E ∪ {xy}), E′\{xy}, k − 1).

Claim 4. The safe-edge rule is sound.

Proof. By the definition of Axy, there exists an induced cycle of length at least
four consisting of x,w, y and a shortest induced path from x to y in G[(V \N [w]) ∪
{x, y}]. Then either every triangulation of G has xy as a fill edge or there exists a
fill edge incident to w. Thus in every minimal triangulation not using xy as a fill
edge, every vertex of Axy is an endpoint of some fill edge. But since |Axy| > 2k, this
is impossible for a triangulation using k edges. Hence (G,E′, k) is a NO instance if
xy �∈ E′. Otherwise, xy ∈ F for every edge set F ⊆ E′ such that H = (V,E ∪ F ) is
chordal.

We apply both rules exhaustively. It is clear that application of each rule can be
done in polynomial time. We claim that if a nonreducible instance, i.e., an instance
such that none of the reduction rules is applicable on this instance, contains more
than 2k + 2k2 vertices, then this is a NO instance.

Let (G,E′, k) be a nonreducible instance and let F be a set of at most k fill edges
such that F ⊂ E′. Let VF be the set of vertices of G incident with F .

Claim 5. The number of vertices in V \VF is at most 2k2.

Proof. As graph G is nonreducible, for each vertex u ∈ V \VF we cannot apply
the vertex-in-cycle rule. Thus there is a connected component C of G\N [u] such
that a pair of vertices x, y ∈ NG(C) are not adjacent in G. The union of a shortest
xy-path in C with v induces a chordless cycle in G. Since no edge of F is incident
with u and F is the set of fill edges, we conclude that xy ∈ F . As the component
C contains a chordless path from x to y avoiding N [u], we conclude that u ∈ Axy.
We cannot apply the safe-edge rule on G, hence |Axy| ≤ 2k for each xy ∈ F . Be-
cause every vertex of V \VF is contained in Axy for some edge xy ∈ F , the claim
follows.

We are ready to complete the proof of the lemma. The number of vertices in
G is |V | = |VF | + |V \VF |. Because the number of fill edges |F | ≤ k, we have that
|VF | ≤ 2k. By Claim 5, we have that V \VF ≤ 2k2, hence |V | ≤ 2k + 2k2.

Let us remark that the kernelization algorithm in Lemma 7.1 can be implemented
to run in time O(kn2m). By following almost the same procedure as in the work of
Natanzon, Shamir, and Sharan [44, 45] for the fill-in problem (and with much more
work and a more carefully selected set of reduction rules), it is possible to improve
the running time of the algorithm from Lemma 7.1 to O(k2nm). Since such an
improvement is not strongly relevant to our main results and since it follows almost
exactly the lines of the the work of [44, 45], we do not provide it here.
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Theorem 7.2. Chordal Sandwich Problem is solvable in time
O(2O(

√
k log k) + nO(1)).

Proof. Let (G1, G2, k) be an instance of the problem. We sketch the proof by
following the steps of the proof of Theorem 6.1 and commenting on the differences.

Step A. We use the kernelization algorithm of Lemma 7.1 to obtain in polynomial
time an equivalent instance (G′

1, G
′
2, k

′) such that |V (G′
1)| = O(k2) and k′ ≤ k.

Step B1. On the new instance we use Branching Rule 1 exhaustively with the
adaptation that every instance is defined by fill edge set Fi where Fi �⊆ E2 is discarded.

Thus we obtain 2O(
√
k log k) nonreducible instances.

Step B2. For each nonreducible instance (Gi
1, G

i
2, ki), we enumerate vital potential

maximal cliques of Gi
1 but discard all potential maximal cliques that are not cliques

in Gi
2.

Step C. Solve the remaining problem in time proportional to the number of vital
potential maximal cliques in G′

1 that are also cliques in Gi
2. This step is almost

identical to Step C of Theorem 6.1.

Triangulating colored graph. In the Triangulating Colored Graph

problem we are given a graph G = (V,E) with a partitioning of V into sets V1, V2, . . . ,
Vc, a coloring of the vertices. Let us remark that this coloring is not necessarily a
proper coloring of G. The question is if G can be triangulated without adding edges
between vertices in the same set (color).

Triangulating Colored Graph

Input: A graph G = (V,E), a partitioning of V into sets V1, V2, . . . , Vc, and an
integer k.
Parameter: k.
Question: Is there F ⊆ [V ]2, |F | ≤ k, such that for each uv ∈ F , |{u, v} ∩ Vi| ≤ 1,
1 ≤ i ≤ c, and graph H = (V,E1 ∪ F ) is a triangulation of G?

Triangulating Colored Graph can be trivially reduced to Chordal Graph

Sandwich by defining G1 = G, and the edge set of graphG2 as the edge set of G1 plus
the set of all vertex pairs of different colors. Thus by Theorem 7.2, Triangulating

Colored Graph is solvable in time O(2O(
√
k log k) + nO(1)).

8. Conclusions and open problems. In this paper we gave the first parame-
terized subexponential time algorithm solving Minimum Fill-in in time

O(2O(
√
k log k) + k2nm). It would be interesting to find out how tight the exponential

dependence is. We would be surprised to hear about a 2o(
√
k)nO(1) time algorithm

solving Minimum Fill-in. For example, because with a natural assumption k ≤ (
n
2

)
,

such an algorithm would be able to solve the problem in time 2o(n). However, the only
results we are aware of in this direction is that Minimum Fill-in cannot be solved
in time 2o(k

1/6)nO(1) unless the ETH, which posits that no subexponential time algo-
rithms for k-CNF-SAT or CNF-SAT exist, fails [14]. See [34, 42] for more informa-
tion on the ETH. Similar uncertainty occurs with a number of other graph problems
expressible in terms of vertex orderings. Is it possible to prove that unless the ETH
fails, there are no 2o(n) algorithms for Treewidth, Minimum Interval Comple-

tion, and Optimum Linear Arrangement? Here the big gap between what we
suspect and what we know is frustrating.

On the other hand, for the Triangulated Colored Graph problem, which

we are able to solve in time O(2O(
√
k log k)+nO(1)), Bodlaender, Fellows, and Warnow

[6] gave a polynomial time reduction that from a 3-SAT formula on p variables and q
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clauses constructs an instance of Triangulated Colored Graph. This instance
has 2 + 2p + 6q vertices and a triangulation of the instance respecting its coloring
can be obtained by adding at most (p + 3q) + (p + 3q)2 + 3pq edges. Thus up to
ETH, Triangulated Colored Graph and Chordal Graph Sandwich cannot

be solved in time 2o(
√
k)nO(1).

The possibility of improving the nm factor in the running time O(2O(
√
k log k) +

k2nm) of the algorithm is another interesting open question. The factor nm appears
from the running time required by the kernelization algorithm to identify simplicial
vertices. Identification of simplicial vertices can be done in timeO(min{mn, nω logn}),
where ω < 2.373 is the exponent of matrix multiplication [33, 40, 52]. Is the running
time required to obtain a polynomial kernel for Minimum Fill-in at least the time
required to identify a simplicial vertex in a graph, and can search of a simplicial vertex
be done faster than finding a triangle in a graph?

A combinatorial problem related to our work is to bound the number of vital po-
tential maximal cliques that can be in an n-vertex graph. Are there graphs containing
nΩ(k/ log k) vital potential maximal cliques?

Finally, there are various problems in graph algorithms, where the task is to
find a minimum number of edges or vertices to be changed such that the resulting
graph belongs to some graph class. For example, the problems of completion to
interval and proper interval graphs are fixed parameter tractable [32, 37, 38, 51]. Can
these problems be solved by subexponential parameterized algorithms? Are there
any generic arguments explaining why some FPT graph modification problems can
be solved in subexponential time and some can’t?

Acknowledgments. We are grateful to Marek Cygan and Saket Saurabh for
discussions and useful suggestions.
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