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Abstract. It is known that the problem of deleting at most k vertices to obtain a proper interval
graph (Proper Interval Vertex Deletion) is fixed parameter tractable. However, whether the
problem admits a polynomial kernel or not was open. Here, we answer this question in the affirmative
by obtaining a polynomial kernel for Proper Interval Vertex Deletion. This resolves an open
question of van Bevern et al. [Graph-Theoretic Concepts in Computer Science (WG 2010), Lecture
Notes in Comput. Sci. 6410, Springer, Berlin, 2010, pp. 232–243].
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1. Introduction. The problem of editing (adding/deleting vertices/edges) to
ensure that a graph has some property is a family of well-studied problems in theory
and in applications of graph algorithms. When we want the edited graph to be in a
hereditary (that is, closed under induced subgraphs) graph class, the optimization ver-
sion of the corresponding vertex deletion problem is known to be NP -hard by a classi-
cal result of Lewis and Yannakakis [12]. In this paper we study the problem of deleting
vertices to obtain a proper interval graph in the realm of kernelization complexity.

A graph G is a proper (unit) interval graph if it is an intersection graph of
unit-length intervals on a real line. Proper interval graphs form a well-studied and
well-structured hereditary class of graphs. The parameterized study of the following
problem of deleting vertices to get into the class of proper interval graphs was initiated
by van Bevern et al. [20].

p-Proper Interval Vertex Deletion (PIVD) Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Decide whether G has a vertex set X of size at most k such that G\X
is a proper interval graph.

Wegner [22] (see also [1]) showed that proper interval graphs are exactly the class
of graphs that are {claw,net,tent,hole}-free. Claw, net, and tent are graphs containing
at most 6 vertices, depicted in Figure 1.1, and a hole is an induced cycle of length
at least 4. By combining the results of Wegner [22], Cai [2], and Marx [15], it can
be shown that PIVD is Fixed-parameter tractable (FPT). That is, one can obtain
an algorithm for PIVD running in time τ(k)nO(1), where τ is a function depending
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PROPER INTERVAL VERTEX DELETION 1965

Claw Tent HoleNet

Fig. 1.1. Excluded subgraphs.

only on k and n is the number of vertices in the input graph. Van Bevern et al. [20]
presented a faster O(k(14k+14)k+1n6) time algorithm for PIVD using the structure of
a problem instance that is already {claw, net, tent, C4, C5, C6}-free. The running time
was recently improved by van’t Hof and Villanger down to O(6kkn6) [21]. However,
the question of whether the problem has a polynomial kernel or not was not resolved.
This question was explicitly asked by Van Bevern et al. [20] and is the problem we
address in this paper.

A parameterized problem is said to admit a polynomial kernel if every instance
(I, k) can be reduced in polynomial time to an equivalent instance with both size
and parameter value bounded by a polynomial in k. In other words, it is possible in
polynomial time to “compress” every instance of the problem to a new instance of
size kO(1).

Our interest into PIVD is also motivated by the following more general problem.
Let G be an arbitrary class of graphs. We denote by G+kv the class of graphs that can
be obtained from a member of G by adding at most k vertices. For an example, PIVD

is equivalent to deciding if G is in G+kv, where G is the class of proper interval graphs.
There is a generic criterion providing sufficient conditions on the properties of class G
to admit a polynomial kernel for the G+kv recognition problem. A graph class is called
hereditary if every induced subgraph of every graph in the class also belongs to the
class. Let Π be a hereditary graph class characterized by forbidden induced subgraphs
of size at most d. Cai [2] showed that the following Π+ kv problem is FPT when pa-
rameterized by k: Given an input graph G and positive integers k, determine whether
there exists a k-sized vertex subset S such that G[V \ S] ∈ Π. The Π + kv problem
can be shown to be equivalent to the p-d-Hitting Set problem, and thus it admits a
polynomial kernel [7, 11]. In the p-d-Hitting Set problem, we are given a family F
of sets of size at most d over a universe U and a positive integer k, and the objective
is to find a subset S ⊆ U of size at most k intersecting, or hitting, every set of F .

However, the result of Cai does not settle the parameterized complexity of Π+kv
when Π cannot be characterized by a finite number of forbidden induced subgraphs.
Here even for graph classes with well-understood structure and a very simple infinite
set of forbidden subgraphs, the situation becomes challenging. In particular, for
the “closest relatives” of proper interval graphs, chordal and interval graphs, the
current situation is still unclear. For example, the FPT algorithm of Marx [15] for
the problem of vertex deletion into a chordal graph, i.e., a graph without induced
cycles of length at least 4, requires heavy algorithmic machinery. The question of
whether Chordal+kv admits a polynomial kernel is still open. The question about
parameterized complexity of Interval+kv was open for a long time. Recently, Cao
and Marx [3] and Rafiey [18] independently announced that the problem is FPT. The
existence of a polynomial kernel for Interval+kv is still open.

In this paper we make a step towards understanding the kernelization behavior
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1966 FEDOR V. FOMIN, SAKET SAURABH, AND YNGVE VILLANGER

for G + kv recognition problems, where G is well understood and the infinite set of
forbidden subgraphs is simple. A generic strategy to obtain an FPT algorithm for
many G + kv recognition problems is to first take care of small forbidden subgraphs
by branching on them, as in [3]. When these small subgraphs are not present, the
structure of a graph is utilized to take care of an infinite family of forbidden subgraphs.
However, to apply a similar strategy for a kernelization algorithm we need to obtain
a polynomial kernel for a variant of p-d-Hitting Set that preserves all minimal
solutions of size at most k along with a “witness” for the minimality, rather than
the kernel for p-d-Hitting Set which was sufficient when we had only finitely many
forbidden induced subgraphs. Preserving the witness for the minimality is crucial
here as this “insulates” small constant-size forbidden induced subgraphs from the
large and infinite forbidden induced subgraph. In some way it mimics the generic
strategy used for the FPT algorithm. Towards this we show that indeed one can
obtain a kernel for a variant of p-d-Hitting Set that preserves all minimal solutions
of size at most k along with a witness for the minimality (section 3). Finally, using
this in combination with reduction rules that shrink “clique and clique paths” in
proper interval graphs, we resolve the kernelization complexity of PIVD. We show
that PIVD admits a polynomial kernel and thus resolve the open question posed
in [20]. We believe that our strategy to obtain a polynomial kernel for PIVD will be
useful in obtaining polynomial kernels for various other G + kv recognition problems.

2. Definitions and notation. We consider simple, finite, and undirected graphs.
For a graph G, V (G) is the vertex set of G and E(G) is the edge set of G. For ev-
ery edge uv ∈ E(G), vertices u and v are adjacent or neighbors. The neighborhood
of a vertex u in G is NG(u) = {v | uv ∈ E}, and the closed neighborhood of u is
NG[u] = NG(u) ∪ {u}. When the context is clear, we will omit the subscript. A set
X ⊆ V is called a clique of G if the vertices in X are pairwise adjacent. A maximal
clique is a clique that is not a proper subset of any other clique. For U ⊆ V , the sub-
graph of G induced by U is denoted by G[U ], and it is the graph with vertex set U and
edge set equal to the set of edges uv ∈ E with u, v ∈ U . For every U ⊆ V , G′ = G[U ]
is an induced subgraph of G. By G \ X for X ⊆ V , we denote the graph G[V \ X ].
A vertex sequence W = v0, v1, . . . , v� is called a closed walk if vivi+1(mod �) ∈ E for
each i ∈ {0 . . . , �} and vertex sequence P = v0, v1, . . . , v� is called a simple path if
no vertex is repeated and vivi+1 ∈ E for each i ∈ {0, . . . , � − 1} are the only edges
between these vertices.

Parameterized problems and kernels. A parameterized problem Π is a sub-
set of Γ∗ × N for some finite alphabet Γ. An instance of a parameterized problem
consists of (x, k), where k is called the parameter. The notion of kernelization is
formally defined as follows. A kernelization algorithm, or in short, a kernelization,
for a parameterized problem Π ⊆ Γ∗ × N is an algorithm that, given (x, k) ∈ Γ∗ × N,
outputs in time polynomial in |x|+ k a pair (x′, k′) ∈ Γ∗ ×N such that (a) (x, k) ∈ Π
if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable function
depending only on k. The output of kernelization (x′, k′) is referred to as the kernel
and the function g is referred to as the size of the kernel. If g(k) ∈ kO(1), then we say
that Π admits a polynomial kernel. For general background on the theory, the reader
is referred to the monographs [5, 7, 16].

Interval graphs. A graph G is an interval graph if and only if we can associate
with each vertex v ∈ V (G) an open interval Iv = (lv, rv) on the real line, such that
for all v, w ∈ V (G), v �= w: vw ∈ E(G) if and only if Iv ∩ Iw �= ∅. The set of intervals
I = {Iv}v∈V is called an (interval) representation of G. By the classical results of
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Gilmore and Hoffman [9] and Fulkerson and Gross [8], for every interval graph G there
is a linear ordering of its maximal cliques such that for every vertex v, the maximal
cliques containing v occur consecutively. We refer to such an ordering of maximal
cliques C1, C2, . . . , Cp of interval graph G as a clique path of G. Note that an interval
graph can have several different clique paths. A clique path of an interval graph can
be constructed in linear time [8].

A proper interval graph is an interval graph with an interval model where no
interval is properly contained in any other interval. There are several equivalent
definitions of proper interval graphs. Graph G is a unit interval graph if G is an
interval graph with an interval model of unit-length intervals. By the result of Roberts
[19], G is a unit interval graph if and only if it is a proper interval graph. A claw is
a graph that is isomorphic to K1,3; see Figure 1.1. A graph is claw-free if it does not
have a claw as an induced subgraph. Proper interval graphs are exactly the claw-free
interval graphs [19].

A vertex ordering σ = 〈u1, . . . , un〉 of graph G = (V,E) is called interval ordering
if for every 1 ≤ i < j < k ≤ n, vivk ∈ E implies vjvk ∈ E. A graph is an interval
graph if and only if it admits an interval ordering [17]. A vertex ordering σ for
G is called a proper interval ordering if for every 1 ≤ i < j < k ≤ n, vivk ∈ E
implies vivj , vjvk ∈ E. A graph is a proper interval graph if and only if it admits a
proper interval ordering [14]. Interval orderings and proper interval orderings can be
computed in linear time, if they exist. We will need the following properties of proper
interval graphs.

Proposition 2.1 (see [22, 1]). A graph G is a proper interval graph if and only
if it contains neither claw, net, tent, nor induced cycles (holes) of length at least 4 as
induced subgraphs.

A circular-arc graph is the intersection graph of a set of arcs on the circle. A
circular-arc graph is a proper circular-arc graph if no arc is properly contained in any
other arc.

Proposition 2.2 (see [21]). Every connected graph G that does not contain ei-
ther tent, net, or claw or induced cycles (holes) of lengths 4, 5, and 6 as an induced
subgraph is a proper circular-arc graph. Moreover, for such a graph there is a poly-
nomial time algorithm computing a set X of the minimum size such that G \X is a
proper interval graph.

The following proposition of proper interval orderings of proper interval graphs
follows almost directly from the definition.

Proposition 2.3. Let σ = 〈v1, . . . , vn〉 be a proper interval ordering of G =
(V,E).

1. For every maximal clique K of G, there exist integers 1 ≤ i < j ≤ n such
that K = {vi, vi+1, . . . , vj−1, vj}. That is, vertices of K occur consecutively.

2. For a vertex v� let i, j be the smallest and the largest numbers such that
viv�, v�vj ∈ E. Then N [v�] = {vi, . . . , vj} and the sets {vi, . . . , v�} and {v�,
. . . , vj} are cliques;

3. Let C1, C2, . . . , Cp be a clique path of G. If vi ∈ Cj , then vi �∈ Cj+�+1, where
� ≥ |N [vi]|.

3. Sunflower lemma and minimal hitting sets. In this section we obtain a
kernel for a variant of p-d-Hitting Set that preserves all minimal solutions of size
at most k along with a witness for the minimality. Towards this we introduce the
notion of sunflower. A sunflower S with k petals and a core Y is a collection of sets
{S1, S2, . . . , Sk} such that Si ∩ Sj = Y for all i �= j; the sets Si \ Y are petals and we
require that none of them be empty. Note that a family of pairwise disjoint sets is
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1968 FEDOR V. FOMIN, SAKET SAURABH, AND YNGVE VILLANGER

a sunflower (with an empty core). We need the following algorithmic version of the
classical result of Erdős and Rado [6].

Lemma 3.1 (sunflower lemma; see [7]). Let F be a family of sets of cardinality
at most d over a universe U . If |F| > d!(k − 1)d, then F contains a sunflower with k
petals, and such a sunflower can be found in O(k + |F|) time.

A subset X of U intersecting every set in F is referred to as a hitting set for F .
The sunflower lemma is a common tool used in parameterized complexity to obtain
a polynomial kernel for p-d-Hitting Set [7]. The observation is that if F contains a
sunflower S = {S1, . . . , Sk+1} of cardinality k+1, then every hitting set of size at most
k of F must have a nonempty intersection with the core Y . However, for our purposes
it is crucial that the kernelization algorithm preserves all small minimal hitting sets.
The following application of the sunflower lemma is very similar to its use for kerneliza-
tion, for p-d-Hitting Set. However, it does not seem to exist in the literature in the
form required for our kernelization, and thus we give its proof here. Let us remark that
a statement for a similar notion of full kernels was obtained by Damaschke [4]. The
difference between our version of the sunflower lemma and the lemma of Damaschke
is that the set F ′ in Lemma 3.2 also has to preserve a witness for the minimality.

Lemma 3.2. Let F be a family of sets of cardinality at most d over a universe
U , and let k be a positive integer. Then there is an O(|F|(k + |F|)) time algorithm
that finds a nonempty set F ′ ⊆ F such that

1. for every Z ⊆ U of size at most k, Z is a minimal hitting set of F if and only
if Z is a minimal hitting set of F ′; and

2. |F ′| ≤ d!(k + 1)d.
Proof. The algorithm iteratively constructs sets Ft, where 0 ≤ t ≤ |F|. We start

with t = 0 and F0 = F . For t ≥ 1, we use Lemma 3.1 to check if there is a sunflower of
cardinality k+2 in Ft−1. If there is no such sunflower, we stop and output F ′ = Ft−1.
Otherwise, we use Lemma 3.1 to construct a sunflower {S1, S2, . . . , Sk+2} in Ft−1. We
put Ft = Ft−1\{Sk+2}. At every step, we delete one subset of F . Thus the algorithm
calls the algorithm from Lemma 3.1 at most |F| times, and hence its running time
is O(|F|(k + |F|)). Since F ′ has no sunflower of cardinality k + 2, by Lemma 3.1,
|F ′| ≤ d!(k + 1)d.

Now we prove that for each t ≥ 1 and for every set Z ⊆ U , it holds that Z is
a minimal hitting set for Ft−1 of size k if and only if Z is a minimal hitting set for
Ft. Since for t = 1, Ft−1 = F , and for some t ≤ |F|, Ft = F ′, by transitivity this is
sufficient for proving the first statement of the lemma.

The set Ft is obtained from Ft−1 by removing the set Sk+2 of the sunflower
{S1, S2, . . . , Sk+2} in Ft−1. Let Y be the core of this sunflower. If Y = ∅, then
Ft−1 has no hitting set of size k. In this case, Ft contains pairwise disjoint sets
S1, S2, . . . , Sk+1 and hence Ft also has no hitting set of size k. Thus the interesting
case is when Y �= ∅.

Let Z be a minimal hitting set for Ft−1 of size k. Since Ft ⊆ Ft−1, we have
that set Z is a hitting set for Ft. We claim that Z is a minimal hitting set for Ft.
Targeting towards a contradiction, let us assume that Z is not a minimal hitting set
for Ft. Then there is u ∈ Z, such that Z ′ = Z \ {u} is a hitting set for Ft. Sets
S1, S2, . . . , Sk+1 form a sunflower in Ft, and thus every hitting set of size at most k,
including Z ′, intersects its core Y . Thus Z ′ hits all sets of Ft−1, as it hits all the sets of
Ft and it also hits Sk+2 because Y ⊂ Sk+2. Therefore, Z is not a minimal hitting set
in Ft−1, which is a contradiction. This shows that Z is a minimal hitting set for Ft.

Let Z be a minimal hitting set for Ft of size k. Every hitting set of size k for
Ft should contain at least one vertex of the core Y . Hence Y ∩ Z �= ∅. But then
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Z∩Sk+2 �= ∅, and thus Z is a hitting set for Ft−1. Because Ft ⊆ Ft−1, Z is a minimal
hitting set for Ft−1.

Given a family F of sets over a universe U and a subset T ⊆ U , we define FT as
the subset of F containing all sets Q ∈ F such that Q ⊆ T .

4. PROPER INTERVAL VERTEX DELETION. In this section, we apply re-
sults from the previous section to obtain a polynomial kernel for PIVD. Let (G, k)
be an instance of PIVD, where G is a graph on n vertices and k is a positive integer.
The kernel algorithm is given in four steps. First we take care of small forbidden sets
using Lemma 3.2; the second and the third steps reduce the size of maximal cliques
and shrink the length of induced paths. Finally, we combine the three previous steps
into a kernelization algorithm.

4.1. Small induced forbidden sets. In this section we show how we could use
Lemma 3.2 to identify a vertex subset of V (G), which allows us to forget about small
induced subgraphs in G and concentrate on long induced cycles in the kernelization
algorithm for PIVD. We view vertex subsets of G inducing a forbidden subgraph as
a set family. More precisely, we prove the following lemma.

Lemma 4.1. Let (G, k) be an instance of PIVD. Then there is a polynomial time
algorithm that either finds a nonempty set T ⊆ V (G) such that

1. G \ T is a proper interval graph;
2. every set Y ⊆ V (G) of size at most k is a minimal hitting set for nets, tents,

claws, and induced cycles C�, 4 ≤ � ≤ 8, in G if and only if it is a minimal
hitting set for nets, tents, claws, and induced cycles C�, 4 ≤ � ≤ 8, contained
in G[T ]; and

3. |T | ≤ 8 · 8!(k + 1)8 + k
or concludes that (G, k) is a NO instance.

Proof. Let F be the family consisting of all nets, tents, claws, and induced cycles
C�, 4 ≤ � ≤ 8, of the input graph G. We apply Lemma 3.2 on F and in polynomial
time find F ′ such that

1. Y is a minimal hitting set of F of size at most k if and only if Y is a minimal
hitting set of F ′ of size at most k; and

2. |F ′| ≤ 8!(k + 1)8 + k.
We take T to be the elements contained inside any sets of F ′. Thus |T | ≤ 8 ·8!(k+1)8.
In graph theoretic terms, this means that every vertex set Y ⊆ V (G) of size at most
k is a minimal hitting set for nets, tents, claws, and induced cycles C�, 4 ≤ � ≤ 8,
contained in G if and only if it is a minimal hitting set for nets, tents, claws, and
induced cycles C�, 4 ≤ � ≤ 8, contained in G[T ]. Then G \ T contains neither tent,
net, claw, nor induced cycles of length 4, 5, or 6 and, by Proposition 2.2, is a proper
circular-arc graph. Using Proposition 2.2, in polynomial time we find a minimum size
set X of V (G) \ T such that G \ (T ∪ X) is a proper interval graph. If the size of
|X | > k, then we conclude that(G, k) is a NO instance. So we assume that |X | ≤ k.
Now we add X to T , increasing its size by at most k. This concludes the proof.

In the remaining subsections we assume that

GT = G \ T is a proper interval graph and |T | ≤ δ(k) = 8 · 8!(k + 1)8 + k.

4.2. Finding irrelevant vertices in GT . A vertex v of an instance (G, k) is
defined as irrelevant if (G\{v}, k) is a NO instance if and only if (G, k) is a NO instance.
In this subsection we show that if the maximum size of a clique in GT is larger than
(k + 1)(δ(k) + 2), then we can find some irrelevant vertex v ∈ V (GT ) and delete it
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without altering the answer to the problem. More precisely, we prove the following
result.

Lemma 4.2. Let G and T be as described before. Furthermore, let the size of a
maximum clique in GT be greater than ε(k) = (k + 1)(δ(k) + 2). Then in polynomial
time we can find a vertex v ∈ V (GT ) such that (G, k) is a YES instance of PIVD if
and only if (G \ v, k) is a YES instance.

Proof. We start by giving a procedure for finding an irrelevant vertex v. Letting
K be a maximum clique of GT , it is known that in proper interval graphs a maximum
clique can be found in linear time [10]. Let σ = 〈u1, . . . , un〉 be a linear vertex order-
ing of GT . By Proposition 2.3, vertices of K form an interval in σ; we denote this
interval by σ(K). Suppose that |K| > ε(k). The following procedure marks vertices
in the clique K and helps to identify an irrelevant vertex:

Set Z = ∅. For every vertex v ∈ T , pick k + 1 arbitrary neighbors
of v in K, say Sv, and add them to Z. If v has at most k neighbors
in K, then add all of them to Z. Furthermore, add V F , the first
k+1 vertices in σ(K), and V L, the last k+1 vertices in σ(K), to Z.
Return Z.

Observe that the above procedure runs in polynomial time and adds at most
k+1 vertices for any vertex in T . In addition, the procedure also adds some 2(k+1)
other vertices to Z. Thus the size of the set Z containing marked vertices is at most
(k + 1)(δ(k) + 2) = ε(k). By our assumption on the size of the clique, we have that
K \Z �= ∅. We show that any vertex in K \Z is irrelevant. Let v ∈ (K \Z). Now we
show that (G, k) is a YES instance of PIVD if and only if (G \ v, k) is a YES instance
of PIVD. Towards this goal we first prove the following auxiliary claim.

Claim 1. Let H be a proper interval graph, and let P = p1, . . . , p� be an induced
path in H. Let u /∈ {p1, . . . , p�} be some vertex of H, and let NP (u) be the set of its
neighbors in P . Then the vertices of NP (u) occur consecutively on the path P and,
furthermore, |NP (u)| ≤ 4.

Proof. The first statement follows from the fact that H has no induced cycle
of length more than three, and the second statement follows from the fact that H
contains no claw.

Let (G, k) be a YES instance, and let X ⊆ V (G) be a vertex set such that |X | ≤ k
and G \ X is a proper interval graph. Then clearly (G \ v, k) is a YES instance of
PIVD as |X \ {v}| ≤ k and G \ ({v} ∪X) is a proper interval graph.

For the opposite direction, let (G\ v, k) be a YES instance of PIVD and let X be
a vertex set such that |X | ≤ k and G \ ({v} ∪X) is a proper interval graph. Towards
a contradiction, let us assume that G \X is not a proper interval graph. Thus G \X
contains one of the forbidden induced subgraphs for proper interval graphs. We first
show that this cannot contain forbidden induced subgraphs of size at most 8. Let Y be
the subset of X such that it is a minimal hitting set for nets, tents, claws, and induced
cycles C�, 4 ≤ � ≤ 8, contained in G[T ]. By the definition of T and the fact that v /∈ T
we know that Y is also a minimal hitting set for nets, tents, claws, and induced cycles
C�, 4 ≤ � ≤ 8, contained in G. Thus, the only possible candidate for the forbidden
subgraph in G \X is an induced cycle C�, where � ≥ 9. Now since G \ (X ∪ {v}) is
a proper interval graph, the vertex v is part of the cycle C� = {v = w1, w2, . . . , w�}.
Furthermore, w2 and w� are the neighbors of v on C�.

Next we show that, using C�, we can construct a forbidden induced cycle in
G \ ({v} ∪X), contradicting that G \ ({v} ∪X) is a proper interval graph. Towards
this we proceed as follows. For vertex sets V F and V L (the first and the last k + 1
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vertices of σ(K)), we pick up vertex vF ∈ V F \X and vertex vL ∈ V L \X . Because
|X | ≤ k, such vertices always exist.

Claim 2. Vertices w2, w� ∈ T ∪N [vF ] ∪N [vL].
Proof. Suppose wa ∈ (T ∪K), a ∈ {2, �}. Then because K ⊆ N [vF ], we are done.

Otherwise wa is a vertex of the proper interval graph GT \K. Then wa occurs either
before or after the vertices of K in σ. If wa occurs before, then wa < vF < v on σ.
Now since wa has an edge to v and σ is a proper interval ordering of GT , we have
that wav

F is an edge and hence wa ∈ N [vF ]. The case where wa occurs after K is
symmetric. In this case we could show that wa ∈ N [vL].

Now with wa, a ∈ {2, �}, we associate a partner vertex p(wa). If wa ∈ T , then
Z ∩N(wa) contains at least k+1 vertices, as v ∈ K ∩N(wa) is not in Z. Thus there
exists za ∈ (Z ∩N(wa)) \X . In this case we define p(wa) to be za. If wa /∈ T , then
by Claim 2 we know that either vF or vL is a neighbor to wa. If vF is neighbor to
wa, then we define p(wa) = vF ; otherwise p(wa) = vL. Observe that p(wa) ∈ K \ {v}
for a ∈ {2, �}.

Now consider the closed walk W = {p(w2), w2, . . . , w�, p(w�)} in G \ ({v} ∪ X).
First of all W is a closed walk because p(w2) and p(w�) are adjacent. In fact, we would
like to show that W is a simple cycle in G\({v}∪X) (not necessarily an induced cycle).
Towards this we first show that p(wa) /∈ {w2, . . . , w�}. Suppose p(w2) ∈ {w2, . . . , w�}.
Then it must be w3 as the only neighbors of w2 on C� are v = w1 and w3. However,
v and p(w2) are part of the same clique K. This implies that v has w2, w3, and w�

as its neighbors on C�, contradicting the fact that C� is an induced cycle of length at
least 9 in G. Similarly, we can also show that p(w�) /∈ {w2, . . . , w�}. Now, the only
reason W may not be a simple cycle is that p(w2) = p(w�). However, in that case
W = {p(w2), w2, . . . , w�} is a simple cycle in G \ ({v} ∪X).

Notice that G[{w2, w3, . . . , w�}] is an induced path, where � ≥ 9. Let i be the
largest integer such that wi ∈ N(p(w2)), and let j be the smallest integer such that
wj ∈ N(p(w�)). By Claim 1 and the conditions that G[{w2, w3, . . . , w�}] is an induced
path, w2 ∈ N(p(w2)), and w� ∈ N(p(w�)), we get that i ≤ 5, j ≥ � − 4. As � ≥ 9
this implies that i < j, and hence G[{p(w2), wi, . . . , wj , p(w�)] is an induced cycle of
length at least 4 in G \ ({v} ∪ X), which is a contradiction. Therefore, G \ X is a
proper interval graph.

4.3. Shrinking GT . Let (G, k) be a YES instance of PIVD, and let T be a
vertex subset of G of size at most δ(k) such that GT = G \ T is a proper interval
graph with the maximum clique size at most ε(k) = (k + 1)(δ(k) + 2). The following
lemma argues that if GT has sufficiently long clique path, then a part of this path
can be shrunk without changing the solution.

Lemma 4.3. Let us assume that every claw in G contains at least two ver-
tices from T and that there is a connected component of GT with at least ζ(k) =(
δ(k)(8ε(k) + 2) + 1

)(
2[ε(k)]2 + 32ε(k) + 3

)
maximal cliques. Then there is a polyno-

mial time algorithm transforming G into a graph G′ such that
• (G, k) is a YES instance if and only if (G′, k) is a YES instance;
• |V (G′)| < |V (G)|.

Proof. Let I be a connected component of GT with ζ(k) maximal cliques and let
C1, C2, . . . , Cp, p ≥ ζ(k), be a clique path of I. We first show that every vertex v of I
belongs to at most 2ε(k) maximal cliques of I. We know that every clique of I has size
at most ε(k), and by the property 2 of Proposition 2.3 we have that the neighborhood
of any vertex v can be covered with at most 2 cliques. Thus, |NI [v]| < 2ε(k). Now,
by the last property of Proposition 2.3, we have that if j is the least integer such that
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1972 FEDOR V. FOMIN, SAKET SAURABH, AND YNGVE VILLANGER

v ∈ Cj , then v /∈ Cj+�+1 for � ≥ |NI [v]|. This proves our claim. For every vertex
v ∈ T , we mark all maximal cliques of I containing at least one neighbor of v. Let
m(v) be the set of maximal cliques marked for vertex v. We claim that

∀v ∈ T, |m(v)| ≤ 8ε(k) + 2.(4.1)

Every vertex of I is in at most 2ε(k) maximal cliques and thus in every set of
4ε(k) + 1 maximal cliques no vertex of the first clique (in the ordering of the clique
path) can be adjacent to a vertex of the last clique. Thus in every set of 8ε(k) + 2
maximal cliques, it is always possible to select three cliques such that no vertex of one
clique is adjacent to a vertex of another. Thus, if m(v) consisted of at least 8ε(k) + 2
maximal cliques, vertex v would have at least three neighbors in I which are pairwise
nonadjacent. In other words, these three vertices, together with v, form a claw. This
claw contains exactly one vertex from T , contradicting the assumption that every
claw in G has at least two vertices from T . This proves (4.1).

By (4.1), the total number of marked maximal cliques in I is at most |T |(8ε(k)+
2) = δ(k)(8ε(k) + 2). By the pigeonhole principle, the clique path C1, C2, . . . , Cp

contains at least

� =
ζ(k)

δ(k)(8ε(k) + 2) + 1
= 2[ε(k)]2 + 32ε(k) + 3

consecutive unmarked maximal cliques, i.e., cliques containing no vertices adjacent to
vertices of T . Let Ci, Ci+1, . . . , Ci+�−1 be a set of unmarked consecutive cliques. Let
q = 16ε(k)+ 1. Then for every v ∈ Ci and u ∈ Ci+q , the distance between v and u in
G is at least 9. This is because every shortest path from v to u should contain at least
one vertex either from each of the cliques from Ci, Ci+1, . . . , Ci+q or from each of the
cliques Ci+q, Ci+q+1, . . . , Ci+�−1. In both cases, every shortest path goes through at
least q = 16ε(k) + 1 maximal cliques, and then by Proposition 2.3 the length of such
a path is at least 9. By similar arguments, for every v ∈ Ci+�−1−q and u ∈ Ci+�−1,
the distance between v and u in G is also at least 9.

Clique Ci+q is maximal, and thus it contains a vertex x which does not belong
to Ci+q+1. Similarly, let y ∈ Ci+�−1−q \ Ci+�−1−q−1. We compute the minimum
size s of an x, y-separator in I. Let us note that in proper interval graphs such a
separator is an intersection of two consecutive cliques in the clique path, and can be
found in polynomial time. We construct a new graph G′ from G as follows. In this
new graph G′, the connected component I of proper interval graph GT is replaced by
a smaller proper interval graph I ′. The proper interval graph I ′ is formed by cliques
C1, C2, . . . , Ci+q and Ci+�−1−q, Ci+�−q, . . . , Cp, and a new clique C of size s. We make
all vertices of C adjacent to all vertices of Ci+q and of Ci+�−1−q. Let us note that
because there are at least 2[ε(k)]2 + 1 maximal cliques in the clique path between
Ci+q and Ci+�−1−q, there are at least ε(k)+1 vertices belonging only to these cliques.
Thus I ′ has fewer vertices than I.

It is easy to check that I ′ is a proper interval graph. The construction of the
graph I ′, and hence the graph G′, can be done in polynomial time. Indeed, marking
maximal cliques can be performed in polynomial time, and then computing the size
of a minimal separator in I can be also performed in polynomial time.

What remains is to argue that (G, k) is a YES instance if and only if (G′, k) is a
YES instance. Let R = V (I) \V (I ′) be the vertices of G removed during construction
of graph G′. Vertices of R cannot be contained in any of the forbidden small induced
graphs: claw, net, tent, and cycles C�, � ≤ 8. The reason for that is that the distance
from any vertex v of R to any vertex of T is at least 9, and thus if such a small induced
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graph contains v, it should be a subgraph of the proper interval graph I, which is
a contradiction. Thus every set which hits small forbidden induced subgraphs in G
also hits them in G′, and vice versa. So in further arguments we concentrate only on
induced cycles (holes) of length at least 9.

Let X be a set of size at most k such that G \X is a proper interval graph. We
assume that the set X is a minimal set with such properties. If X intersects R, this
is because X hits some cycles passing in G through R. We claim that in this case, X
should contain at least s vertices from R. Let v ∈ X ∩R. By minimality of X , there
should be a witness hole Q of length at least 9 and such that Q∩X = {v}. Let u and
w be the neighbors of v in Q. Then the set of vertices NG(u)∩NG(w) is a subset of X .
Indeed, if there was a vertex v′ ∈ (NG(u)∩NG(w))\X , then the cycle obtained from Q
by replacing v with v′ is a hole of length at least 9 avoiding X . On the other hand, by
making use of Proposition 2.3, it is easy to show that the set NG(u)∩NG(w) separates
x and y, and thus |NG(u)∩NG(w)| ≥ s. Therefore either |X ∩R| ≥ s or X ∩R = ∅.

If |X∩R| ≥ s, then X ′ = (X \R)∪C is of size at most |X |. We claim that G′ \X ′

is a proper interval graph. Indeed, every induced subgraph of G′ which is forbidden
for proper interval graphs either intersects C or should be also a subgraph of G \ R.
But in both cases this subgraph is hit by X ′.

Suppose that R∩X = ∅. We know that G′ \X ′ cannot contain a claw, net, tent,
and induced cycles C�, � ≤ 8, because each of these subgraphs is entirely in G\R, and
thus is hit by X ′. If G′ \X ′ contain an induced cycle Q of length at least 9, then this
cycle cannot be entirely in G \R and thus should touch C. Because Q is an induced
cycle, it should contain a path passing through a vertex a ∈ Ci+q , then continuing
through a vertex from C, and through a vertex b ∈ Ci+�−1−q. In G vertices a and b
are also connected by a path whose vertices use only vertices of R, and thus avoiding
X . Replacing in Q the a, b-path passing through C by an a, b-path passing through
R, we obtain an induced cycle of length at least 9 in G avoiding X . But this is a
contradiction, and we conclude that G′\X ′ is a proper interval graph. We have shown
that if (G, k) is a YES instance, then (G′, k) is a YES instance.

Let X ′ be a minimal proper interval vertex deletion set of graph G′. If X ′ in-
tersects C, let v ∈ X ′ ∩ C. Because X ′ is minimal, we can select a witness-induced
cycle Q of length at least 9 such that v is the only vertex of X ′ in Q. Let u ∈ Ci+q ,
w ∈ Ci+�−1−q be the neighbors of v in Q. Then every vertex from the set N(u)∩N(w)
should be in X ′ too because otherwise it would be possible to modify Q into an in-
duced cycle Q of length at least 9 avoiding X ′. By the way we constructed graph
G′, we have that C = N(u) ∩ N(w), and thus C ⊆ X ′. Let C′ be a minimum x, y-
separator in G. The size of C′ is s, and the set X = (X ′ \C)∪C′ is of size |X ′|. Every
forbidden (for proper interval graph) subgraph in G avoiding X ′ \ C should contain
a path connecting a vertex from Ci+q to a vertex from Ci+�−1−q, and thus is hit by
C′. Thus G \ X is a proper interval graph. If X ′ does not intersect clique C, then
G \X ′ is a proper interval graph. Indeed, every induced cycle of length at least 9 in
G containing a path P connecting a vertex from Ci+q to a vertex from Ci+�−1−q can
be transformed into a cycle of length at least 9 in G′ by replacing P with a path of
length 2 passing through C. This implies that X ′ hits every forbidden subgraph in G
too. We have shown that if (G′, k) is a YES instance, then (G, k) is a YES instance,
which concludes the proof of the lemma.

4.4. Putting everything together: Final kernel analysis. We need one
auxiliary reduction rule to give the kernel for PIVD. The aim of this rule is to ensure
that vertex set T contains at least two vertices of each claw. Let F be the family
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consisting of all nets, tents, claws, and induced cycles C� for � ∈ {4, 5, . . . , 8} of the
input graph G.

Lemma 4.4. Let (G, k) be an instance of PIVD, and let T be as defined before.
Let X be a subset of T such that for every x ∈ X we have a set Sx ∈ F such that
Sx \ {x} ⊆ (V (G) \ T ). If |X | > k, then we conclude that G cannot be transformed
into proper interval graph by deleting at most k vertices. Otherwise, (G, k) is a YES

instance if and only if (G[V \X ], k − |X |) is a YES instance.
Proof. We first argue that X is a subset of every minimal hitting set S′ of size

at most k for F . By the property of the set T we have that S′ ⊆ T . This implies
that any forbidden set that is contained in F such that all but one of its vertices is in
T must be contained in every minimal hitting set of size at most k. This shows that
X ⊆ S′.

Suppose (G, k) is a YES instance. Then there exists a set P of size at most k such
that G\P is a proper interval graph. Hence this is also a hitting set for F . Let P ′ be
a subset of P such that P ′ is a minimal hitting set for F . By the property of the set T
we have that P ′ ⊆ T . By the arguments in the first paragraph, we have that X ⊆ P ′.
In fact, X is subset of every subset of size at most k such that its deletion makes the
graph proper interval. Hence (G, k) is a YES instance if and only if (G \X, k − |X |)
is a YES instance. This also implies that if |X | > k, then (G, k) is a NO instance, and
hence in this case we conclude that G cannot be made into proper interval graph by
deleting at most k vertices. This completes the proof.

Now we are ready to state the main result of this paper.
Theorem 4.5. PIVD admits a polynomial kernel.
Before proceeding with the proof of the theorem, let us recall the definitions of

all functions used so far.

Size of T : ≤ δ(k) = 8 · 8!(k + 1)8 + k
Maximum clique size in GT : ≤ ε(k) = (k + 1)(δ(k) + 2)
# of maximal cliques in
a connected component of GT : ≤ ζ(k) = (δ(k)(8ε(k) + 2) + 1)·

(2[ε(k)]2 + 32ε(k) + 3)

Proof. Let (G, k) be an instance of PIVD. We first show that if G is not connected,
then we can reduce it to the connected case. If there is a connected component C
of G such that C is a proper interval graph, then we delete this component. Clearly,
(G, k) is a YES instance if and only if (G \ C, k) is a YES instance. We repeat this
process until every connected component of G is not a proper interval graph. At this
stage if the number of connected components is at least k+ 1, then we conclude that
G cannot be made into a proper interval graph by deleting at most k vertices. Thus,
we assume that G has at most k connected components. Now we show how to obtain
a kernel for the case when G is connected, and for the disconnected case we just run
this algorithm on each connected component. This increases the kernel size by only
a factor of k. From now on we assume that G is connected.

Now we apply Lemma 4.1 on G and in polynomial time either find a nonempty
set T ⊆ V (G) such that

1. G \ T is a proper interval graph;
2. Y ⊆ V (G) of size at most k is a minimal hitting set for nets, tents, claws,

and induced cycles C� for � ∈ {4, 5, . . . , 8} contained in G if and only if
it is a minimal hitting set for nets, tents, claws, and induced cycles C� for
� ∈ {4, 5, . . . , 8} contained in G[T ]; and

3. |T | ≤ δ(k)
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or conclude that G cannot be made into a proper interval graph by deleting at most
k vertices. If Lemma 4.1 concludes that G cannot be transformed into a proper
interval graph by deleting at most k vertices, then the kernelization algorithm returns
the same.

If the size of a maximum clique in GT is more than ε(k), then we apply Lemma 4.2
and obtain a vertex v ∈ V (GT ) such that (G, k) is a YES instance if and only if (G\v, k)
is a YES instance. We apply Lemma 4.2 repeatedly until the size of a maximum clique
in GT is at most ε(k). So, from now on we assume that the size of a maximum clique
in GT is at most ε(k).

Now we apply Lemma 4.4 on (G, k). If Lemma 4.4 concludes that G cannot be
made into a proper interval graph by deleting at most k vertices, then (G, k) is a NO

instance and the kernelization algorithm returns a trivial NO instance. Otherwise, we
find a set X ⊆ T such that (G, k) is a YES instance if and only if (G \X, k− |X |) is a
YES instance. If |X | ≥ 1, then (G \X, k − |X |) is a smaller instance and we start all
over again with this as a new instance of PIVD.

If we cannot apply Lemma 4.4 anymore, then every claw in G contains at least
two vertices from T . Thus if the number of maximal cliques in a connected component
of GT is more than ζ(k), we can apply Lemma 4.3 on (G, k) and obtain an equivalent
instance (G′, k) such that |V (G′)| < |V (G)|, and then we start all over again with
instance (G′, k).

Finally, we are in the case where GT is a proper interval graph and none of the
conditions of Lemmas 4.2, 4.3, and 4.4 can be applied. This implies that the number
of maximal cliques in each connected component of GT is at most ζ(k) and the size of
each maximal clique is at most ε(k). Thus we have that every connected component of
GT has at most ζ(k)ε(k) vertices. Since G is connected, we have that every connected
component of GT has some neighbor in T . However because Lemma 4.4 cannot
be applied, we have that every vertex in T has neighbors in at most 2 connected
components. The last assertion follows because of the following reason. If a vertex v
in T has neighbors in at least 3 connected components of GT , then v together with a
neighbor from each of the components of GT forms a claw in G, with all the vertices
except v in GT , which would imply that Lemma 4.4 is applicable. This implies that
the total number of connected components in GT is at most 2δ(k). Thus the total
number of vertices in G is at most 2δ(k)ζ(k)ε(k).

Recall that Gmay not be connected. However, we argued that G can have at most
k connected components, and we apply the kernelization procedure on each connected
component. If the kernelization procedure returns that some particular component
cannot be made into a proper interval graph by deleting at most k vertices, then we
return the same for G. Otherwise, the total number of vertices in the reduced instance
is at most 2k · δ(k)ζ(k)ε(k), which is a polynomial.

Observe that the above procedure runs in polynomial time, as with every step of
the algorithm the number of vertices in the input graph reduces. This together with
the fact that Lemmas 4.2, 4.3, and 4.4 run in polynomial time shows that the whole
kernelization algorithm runs in polynomial time. This concludes the proof.

5. Conclusion and discussions. In this paper we proved that PIVD admits
a polynomial kernel. While resolving the complexity of the problem from a kernel-
ization perspective, we have to admit that in the current form our result is purely of
theoretical importance. This is due to the large number 2k · δ(k)ζ(k)ε(k) ∈ O(k53)
of vertices in our kernel. It is possible to improve the sizes of our kernel slightly at
the cost of tedious case analysis, but the challenging open question is if a kernel of
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“reasonably” polynomial size, say k10, is possible. It seems that for this type of a
kernel we need completely different techniques. On the other hand, is it possible to
prove that PIVD does not have a kernel of size k7?

Another interesting open question is if p-Chordal Graph Vertex Deletion

admits a polynomial kernel. The problem is known to be FPT by the result of Marx
[15]. A similar question can be asked about p-Interval Graph Vertex Deletion.
Let us remark that not every vertex deletion problem to a hereditary class of graphs
is FPT [13].

Actually, we are not aware of any example of a vertex deletion problem to a
hereditary class of graphs which is FPT but admits no polynomial kernel. It would
be interesting to find an example of a FPT vertex deletion problem to a hereditary
graph class which has no polynomial kernel.
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