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Abstract Given an n-node edge-weighted graph and a subset of k terminal nodes, the
NP-hard (weighted) Steiner tree problem is to compute a minimum-weight tree which
spans the terminals. All the known algorithms for this problem which improve on
trivial O(1.62n)-time enumeration are based on dynamic programming, and require
exponential space.

Motivated by the fact that exponential-space algorithms are typically impracti-
cal, in this paper we address the problem of designing faster polynomial-space algo-
rithms. Our first contribution is a simple O((27/4)knO(log k))-time polynomial-space
algorithm for the problem. This algorithm is based on a variant of the classical tree-
separator theorem: every Steiner tree has a node whose removal partitions the tree in
two forests, containing at most 2k/3 terminals each. Exploiting separators of logarith-
mic size which evenly partition the terminals, we are able to reduce the running time
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to O(4knO(log2 k)). This improves on trivial enumeration for roughly k < n/3, which
covers most of the cases of practical interest. Combining the latter algorithm (for
small k) with trivial enumeration (for large k) we obtain a O(1.59n)-time polynomial-
space algorithm for the weighted Steiner tree problem.

As a second contribution of this paper, we present a O(1.55n)-time polynomial-
space algorithm for the cardinality version of the problem, where all edge weights are
one. This result is based on a improved branching strategy. The refined branching is
based on a charging mechanism which shows that, for large values of k, convenient
local configurations of terminals and non-terminals exist. The analysis of the algo-
rithm relies on the Measure & Conquer approach: the non-standard measure used
here is a linear combination of the number of nodes and number of non-terminals.
Using a recent result in Nederlof (International colloquium on automata, languages
and programming (ICALP), pp. 713–725, 2009), the running time can be reduced to
O(1.36n). The previous best algorithm for the cardinality case runs in O(1.42n) time
and exponential space.

Keywords Steiner tree · Exact algorithms · Space complexity

1 Introduction

The Steiner tree problem is one of the best-studied problems in Computer Science.
Given a connected graph G = (V ,E) on n = |V | nodes, edge weights w : E → R

+,
and a set T ⊆ V of k terminals, the objective is finding a subtree ST of G spanning
T such that the weight w(ST ) := ∑

e∈ST w(e) of ST is minimized. In the cardinality
version of the problem, all edge weights are one. Steiner trees are important in various
applications such as VLSI routings [32], phylogenetic tree reconstruction [31] and
network routing [34]. We refer to the book of Prömel and Steger [38] for an overview
of the results and applications of the Steiner tree problem.

The Steiner tree problem is known to be NP-hard [26]. Furthermore, it is APX-
complete, even when the graph is complete and all edge costs are either 1 or 2 [3].
Finding the best (polynomial-time) approximation algorithm for the Steiner tree prob-
lem has been a challenge and many papers have been written on this subject. The cur-
rently best approximation algorithm, due to Byrka, Grandoni, Rothvoß, and Sanità,
has approximation ratio ln 4 + ε < 1.39 [8]. Robins and Zelikovsky [39] establish an
approximation ratio of 1.28 for complete graphs with edge costs 1 or 2. The Steiner
tree problem remains NP-hard for Euclidean and rectilinear metrics [25]. On the pos-
itive side, Arora established polynomial-time approximation schemes for those two
important variants of the problem [1].

The Steiner tree problem plays a crucial role also in parameterized algorithms
[10, 15, 37]. The aim here is designing the fastest possible algorithm under the nat-
ural assumption that k � n. In particular, an algorithm for the Steiner tree problem
is fixed-parameter-tractable (FPT) if its running time is O(τ(k)nO(1)) = O∗(τ (k)),
where τ(k) is a function of k only.1 For more than 30 years the fastest FPT algo-

1Throughout this paper we use the O∗ notation which suppresses polynomial factors: for any polynomial
p(n), O(p(n)T ) is O∗(T ).
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rithm for the Steiner Tree problem was the classical O∗(3k) dynamic programming
algorithm by Dreyfus and Wagner [11]. Dreyfus-Wagner’s algorithm is still a pop-
ular algorithm used for solving different variants of the problem in practice [9, 24].
This algorithm and its variations are also used as a subroutine in many other algo-
rithms. For example, recent applications of it can be found in FPT algorithms for
certain vertex cover problems [29] and for near-perfect phylogenetic tree reconstruc-
tion [6]. Recent progress in parameterized complexity and exact algorithms led to
new insights on the Steiner tree problem. Mölle, Richter, and Rossmanith [35] (see
also [23]) improved the running time to O∗((2 + ε)k), for any constant ε > 0. More
recently, Björklund, Husfeldt, Kaski, and Koivisto [5] obtained an O∗(2k) time algo-
rithm for the cardianility version of the problem. This result can be easily generalized
to the case of polynomially-bounded integral weights by splitting edges. All the men-
tioned algorithms are based on a dynamic programming approach: they store useful
auxiliary information for every subset of the terminal set, and thus use exponential
space �(2k).

For arbitrary values of k, the fastest known O∗(1.4143n)-time (exponential-space)
algorithm for the weighted Steiner tree problem is obtained by combining the algo-
rithm by Mölle et al. [35] (for small k) with trivial enumeration (for large k). This is
(essentially) also the fastest algorithm for the cardinality version of the problem.

1.1 Exponential-Space Versus Polynomial-Space

The situation with exact algorithms for the Steiner tree problem is quite typical
for a number of other NP-hard problems: the best exponential time complexity is
achieved by algorithms with exponential space complexity [40]. However, algorithms
with very high space complexity are unlikely to be fast in practice, especially when
external memory accesses are frequent (which is likely the case, due to the huge
space usage). This kind of phenomena is not captured by the standard RAM model.
Hence it makes sense to search for algorithms with low memory requirements, even if
they are asymptotically slower than their exponential-space counterpart. Polynomial-
space exact algorithms have been studied for various NP-hard problems, among them
Hamiltonian Path [2, 30, 33] and Coloring [4].

For k = ω(logn), the existing parameterized algorithms for the Steiner tree prob-
lem are not polynomial-space. Under that assumption, the fastest known polynomial-
space algorithm is the (almost) trivial enumerative algorithm, based on the following
observation. Since all the leaves of any optimal Steiner tree are terminals, the number
of Steiner nodes T ′ of degree 3 or larger is at most k. Given T ′, the Steiner tree prob-
lem is equivalent to the minimum spanning tree problem on GM [T ∪ T ′], where GM

is the metric closure of G. Such problem can be solved in polynomial time. Hence it
is sufficient to list all the subsets T ′ ⊆ N := V \ T of size at most k, and then apply
the observation above. This takes time O(

∑k
i=0

(
n−k

i

)
nO(1)). This running time is

O∗(nk) and O∗(1.6181n).

1.2 Our Results and Techniques

Motivated by the practical limitations of exponential-space algorithms and by the the-
oretical interest of the topic itself, in this paper we address the problem of designing
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faster polynomial-space exact algorithms for the Steiner tree problem. We obtained
the following results.

• We describe a new, easy-to-implement, (weighted) Steiner tree algorithm, taking
time O∗((27/4)knO(log k)) and polynomial space. Our algorithm is based on a sim-
ple variant of the classical tree-separator theorem: there is a node s in every Steiner
tree whose removal partitions the tree in two forests, containing at most 2k/3 ter-
minals each. This is exploited in a top-down recursive implementation of the clas-
sical algorithm by Dreyfus and Wagner (where no partial solution is stored to keep
the space complexity polynomial). In more detail, guessing s and the partition
(T1, T2) of T \ {s}, one obtains two Steiner tree problems on terminal sets T1 ∪ {s}
and T2 ∪ {s}, which can be solved recursively.

We remark that our algorithm is not FPT, but quasi-FPT, that is, its running
time is of the form O∗(τ (k)npolylog(k)). As we will see, quasi-FPT algorithms
turn out to be useful for the design of exact algorithms (where the value of k is
arbitrary). Combining our algorithm for k > logn with the algorithm of Dreyfus
and Wagner for k ≤ logn, one obtains the first polynomial-space FPT algorithm
for the problem, of running time O∗(2O(k log k)).2

• We obtain a quasi-FPT algorithm running in O∗(4knO(log2 k)) time and polyno-
mial space. This means an improvement on known polynomial-space results for
roughly ω(logn) = k < n/3, which covers many real-world instances. The im-
proved algorithm is based on a novel, simple lemma which shows that, by remov-
ing a logarithmic-size (in k) subset of nodes S from any Steiner tree, one can
partition the terminal set in two perfectly balanced forests, containing at most k/2
terminals each. The algorithm however becomes slightly more complicated. In par-
ticular, defining two proper Steiner tree subproblems is less obvious in this case for
|S| > 1.

Combining our algorithm (for small k) with trivial enumeration (for large k),
we improve the polynomial-space time complexity of the weighted Steiner tree
problem from O∗(1.62n) to O∗(1.59n).

• We present a O∗(1.55n)-time polynomial space algorithm for the cardinality
Steiner tree problem. Our algorithm combines the quasi-FPT algorithm above (for
small k) with a improved branching strategy (for large k). The refined branching
exploits the fact that, for k large enough, there must be clusters of terminals “close”
to each other. This property can be used to guide the branching process. In partic-
ular, one can branch so that “large” connected components of terminals can be
contracted afterwards. From a technical point of view, we use a simple charging
mechanism to show that, for large k, the graph must contain one of a small list of
local configurations of terminals and non-terminals. On such configurations we are
able to branch better than trivially.

A standard analysis of our algorithm does not provide any improved time bound.
For this reason we use the Measure & Conquer analytical technique described in
[21] (see also [17, 18]), which is based on the quasiconvex analysis of multivariate
recurrences by Eppstein [13]. The basic idea is designing a convenient (non-trivial)

2Throughout this paper, logx stands for log2 x.
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measure of the size of the problem. This measure is used to bound in a tighter way
the progress made by the considered recursive algorithm at each branching step. The
running time obtained with respect to the refined measure is eventually turned into
the equivalent running time in terms of some standard measure (typically the number
of nodes or edges for graph problems). Measure & Conquer has been successfully
applied to the design of exact algorithms for coloring [12], independent set [18],
dominating set [17, 22, 27, 28], cubic-TSP [14], feedback vertex set [16], and maxi-
mum leaf spanning tree [20], among others. As it will be clearer from the analysis, a
convenient measure in our case is a linear combination of the number n of nodes and
number n− k of non-terminals in the graph. (In particular, non-terminals are counted
more than once.)

• Using a similar algorithm and analysis, we are also able to solve the cardinality
Steiner tree problem in O∗(1.36n) time and exponential space, hence improving
on the previous best O∗(1.42n) running time.

• After the publication of the conference version of this paper, Nederlof [36] pre-
sented a O∗(2k)-time polynomial-space algorithm for the cardinality Steiner tree
problem. Combining his algorithm with our techniques, one obtains an algorithm
running in O∗(1.36n)-time and polynomial space.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2 we introduce notation and
preliminary notions, including the Steiner separators that we will use in next sections.
In Sect. 3 we present our quasi-FPT algorithms. The improved algorithm for the car-
dinality Steiner tree problem is described and analyzed in Sect. 4. The corresponding
exponential-space variant is given in Sect. 5. Conclusions and open problems are
discussed in Sect. 6.

2 Preliminaries

Given a graph G = (V ,E), we sometimes use V (G) and E(G) to denote the set of
nodes and edges of G, respectively. The minimum weight of a Steiner tree of G on
terminals T is denoted by stG(T ). In the cardinality version of the problem, stG(T )

is simply the number of edges in a minimum-size Steiner tree. When the graph G is
clear from the context, we will simply write st (T ).

One of the crucial operations in our algorithms is contraction of adjacent nodes.
By contracting a pair of adjacent nodes v and u, we mean (i) removing v and u from
the graph, (ii) adding a new node w (contracted node), and (iii) adding one edge
between w and the nodes N(u) ∪ N(v) \ {u,v}, i.e. the neighbors of u and v distinct
from those two nodes. Observe that, if a node z is adjacent to both u and v, then edges
zu and zv are replaced by a unique edge zw. In the weighted case, we let the weight
of zw be the minimum weight of zu and zv.

In the cardinality Steiner tree problem, adjacent terminals can be contracted, hence
reducing the size of the problem without branching.
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Fig. 1 Tight example for
Lemma 2 (black nodes are
terminals): a separator S = {s},
and the corresponding forests
R1 and R2 with |T1| = k/3 and
|T2| = 2k/3 terminals,
respectively

Lemma 1 (Contraction lemma) Let (G,T ) be an instance of the cardinality Steiner
tree problem, and t ′ and t ′′ be two adjacent terminals. Let moreover G′ be the graph
resulting from the contraction of t ′ and t ′′ into t . Then

stG(T ) = 1 + stG′(T \ {t ′, t ′′} ∪ {t}).

Proof Consider an optimum Steiner tree ST . If the edge t ′t ′′ belongs to ST , the claim
is trivially true. Otherwise, adding t ′t ′′ to ST and removing any other edge of ST in
the resulting cycle gives an alternative optimal Steiner tree ST ’ containing t ′t ′′. Tree
ST ’ falls in the first case. �

2.1 Steiner Separators

A set of nodes S is called an α-separator of a graph G, 0 < α ≤ 1, if the vertex set
V (G)\S can be partitioned into sets VL and VR of size at most αn each, such that no
vertex of VL is adjacent to any vertex of VR . We next define a similar notion, which
turns out to be useful for Steiner trees. Given a Steiner tree ST on terminals T , an
α-Steiner separator S of ST is a subset of nodes which partitions ST in two forests
R1 and R2, each one containing at most αk terminals.

The following result, whose proof is given for the sake of completeness, is implied
by [7].

Lemma 2 [7] Every Steiner tree ST on terminal set T , |T | = k ≥ 3, has a 2/3-
Steiner separator S = {s} of size one.

Proof We describe a procedure to find one such node s. Take any internal node
v ∈ ST and consider the subtrees ST1(v), ST2(v), . . . , STp(v)(v) obtained by remov-
ing v. Name the subtrees such that ST1(v) contains the largest number of terminals.
With a slight notational abuse, we identify each tree/forest with the set of its nodes.
If |ST1(v) ∩ T | > 2k/3, replace v with the root of ST1(v), and iterate the process.
Otherwise, set s = v.

Note that, as far as the condition |ST1(v) ∩ T | > 2k/3 is satisfied, the union of
all the subtrees STi(v), i ≥ 2, contains less than k/3 terminals. Moreover, in each
iteration the number of terminals in ST1(v) cannot increase, while the number of its
nodes decreases by at least one. It follows that the procedure halts.

It remains to show that the final node s has the desired property. Note that, for
each i, |STi(s) ∩ T | ≤ 2k/3 by the halting condition. If ST1(s) contains at least k/3
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Fig. 2 A perfectly-balanced
separator S = {s1, s2}, of size
2 ≤ log 9 + 1, and the
corresponding forests R1 and
R2, each one containing
4 ≤ 9/2 terminals

terminals, we are done: R1 = {ST1(s)} and R2 = {ST2(s), ST3(s), . . . , STp(s)}. Oth-
erwise the definition is satisfied by the forests R1 = {ST1(s), . . . , STj (s)} and R2 =
{STj+1(s), . . . , STp(s)(s)}, where j is the smallest index such that |R1 ∩ T | ≥ k/3
(which implies |R2 ∩T | ≤ 2k/3). In fact, since by assumption all the STi(s)’s contain
less than k/3 terminals, it must be |R1 ∩ T | < 2k/3 by the minimality of j . �

An example of (roughly-balanced) 2/3-Steiner separator is given in Fig. 1. This
example is tight. In particular, in general it is not possible to find a (perfectly-
balanced) 1/2-Steiner separator of size 1. We next show that a 1/2-Steiner separator
of size at most logk + 1 always exists.

We first need the following lemma, whose proof is analogous to the proof of
Lemma 2.

Lemma 3 [7] Given a Steiner tree ST on terminal set T , |T | = k ≥ 3, there is a
node s whose removal partitions ST into a forest where each tree contains at most
k/2 terminals.

Lemma 4 Given a Steiner tree ST on terminal set T , |T | = k ≥ 3, there is a 1/2-
Steiner separator S of size at most log k + 1.

Proof We construct V1 := V (R1), V2 := V (R2) and S iteratively, starting from
empty sets, as follows. Let G = ST . By Lemma 3 there is a node s such that, for any
connected component G[C] of G \ {s}, |C ∩ T | ≤ k/2. We add s to S and for each
component G[C] of G \ {s}, add C to V1 or V2 if this does not violate |V1 ∩T | ≤ k/2
or |V2 ∩ T | ≤ k/2, respectively.

Let us show that at most one component G[C] is left outside V1 ∪ V2. Suppose
by contradiction that there are at least 2 such components, say G[C1] and G[C2].
Observe that V1, V2, C1 and C2 are pairwise disjoint. W.l.o.g. assume |C1 ∩ T | ≤
|C2 ∩ T |. Since C1 was added to no V1 nor V2, it must be the case that |V1 ∩ T | +
|C1 ∩ T | > k/2 and |V2 ∩ T | + |C1 ∩ T | > k/2. Consequently,

|V1 ∩ T | + |V2 ∩ T | + 2|C1 ∩ T | > k.
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However, this contradicts the fact that

|V1 ∩ T | + |V2 ∩ T | + 2|C1 ∩ T | ≤ |V1 ∩ T | + |V2 ∩ T | + |C1 ∩ T | + |C2 ∩ T | ≤ k.

Now we iteratively reapply the construction above up to logk times, each time
considering as graph G the component G[C] left from previous step, if any. Eventu-
ally we add C to either VL or VR .

Since the number of terminals in G[C] halves at each step, at the end of the process
C contains no terminal. Hence the number of terminals in V1 and V2 is at most k/2.
The final size of S is at most logk + 1 by construction. �

An example of perfectly-balanced separator is given in Fig. 2. We observe that the
Steiner separator of Lemma 4 can be computed in polynomial time, given the Steiner
tree. However, we will never exploit this feature, since we will consider the optimum
Steiner tree which is unknown. For this reason, we will simply guess the separator
by trying all the possible

∑log k+1
i=1

(
n
i

) ≤ 2nlogk+1 combinations of at most logk + 1
nodes.

3 Steiner Tree via Steiner Separators

In Sect. 3.1 we describe a simple polynomial-space algorithm for the (weighted)
Steiner tree problem of running time O∗((27/4)knO(log k)), based on the roughly-
balanced separators given by Lemma 2. We later show in Sect. 3.2 how to reduce
the time complexity to O∗(4knO(log2 k)), exploiting the perfectly-balanced separators
implied by Lemma 4. Combining this second algorithm with trivial enumeration one
obtains a O∗(1.59n)-time polynomial-space algorithm for the weighted Steiner tree
problem.

3.1 Roughly-Balanced Separators

Our algorithm is inspired by the classical dynamic programming algorithm D&W by
Dreyfus and Wagner [11], which takes O∗(3k) time and exponential space. Algorithm
D&W is based on the following observation. Consider any Steiner tree ST on the set
of terminals T , k := |T | ≥ 3. There must be an internal node s ∈ ST , not necessarily
a terminal, such that the subtrees of ST rooted at s can be partitioned in two forests
R1 and R2, each one containing at least one terminal. Let Ti be the terminals in Ri ,
i ∈ {1,2}. If we compute optimal Steiner trees ST1 and ST2 on terminals T1 ∪{s} and
T2 ∪ {s}, respectively, and we merge them together, we obtain an optimal Steiner tree
for the original problem. Of course we do not know s nor (T1, T2) a priori, but we can
guess them by enumerating all the possible cases. Recall that stG(T ) = st (T ) is the
minimum cost of a Steiner tree of G on terminals T . The following equation holds:

st (T ) = min
s∈V

min
(T1,T2)∈P (s,T )

{st (T1 ∪ {s}) + st (T2 ∪ {s})}, (1)

where P (s, T ) is the set of possible partitions (T1, T2) of T \ {s} in two non-empty
subsets. Algorithm D&W essentially applies (1) to any subset of T , in a bottom-up
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fashion, storing each partial solution computed for later computations. Storing the
partial solutions takes �(2k) space.

A simple-minded approach to obtain a polynomial-space variant of D&W is to ap-
ply (1) recursively, in a top-down fashion, without storing any partial solution. When
|T | ≤ 2, the problem is solved trivially in polynomial time and space (base case).
Unfortunately, this approach leads to a very high running time. The main reason is
that, by applying (1) as it is, one generates some subproblems with almost the same
number of terminals as in the original problem.

This problem can be circumvented by exploiting Lemma 2. In particular, when
applying (1), we do not really need to consider all the partitions in P (s, T ), but it is
sufficient to consider only the subset B(s, T ) ⊆ P (s, T ) of (roughly balanced) parti-
tions (T1, T2) where |T1| ≤ |T2| ≤ 2k/3:

st (T ) = min
s∈V

min
(T1,T2)∈B(s,T )

{st (T1 ∪ {s}) + st (T2 ∪ {s})}. (2)

Using (2) instead of (1) makes no substantial difference with the dynamic program-
ming approach by Dreyfus and Wagner: in fact, in their case the most frequent parti-
tions (which determine the running time) contain a balanced number of terminals, and
such partitions are contained both in B(s, T ) and in P (s, T ). The situation changes
drastically in the top-down recursive implementation of the algorithm: here the run-
ning time is essentially determined by the most unbalanced partitions. Hence, re-
placing P (s, T ) with B(s, T ) has a tremendous impact on the performance of the
algorithm.

The following Steiner tree algorithm paramST summarizes the discussion
above:

• (base case) If T = {v}, return 0. If T = {v,w}, return the shortest path distance
between v and w.

• (recursive case) For every s ∈ V and for every partition (T1, T2) of T \ {s}, |T1| ≤
|T2| ≤ 2k/3, compute recursively minimum-weight Steiner trees ST1 and ST2 over
T1 ∪ {s} and T2 ∪ {s}, respectively. Return the cheapest Steiner tree ST1 ∪ ST2

obtained.

Theorem 1 Algorithm paramST solves the weighted Steiner tree problem in
O((27/4)knO(log k)) time and polynomial space.

Proof The correctness of the algorithm follows from the discussion above, and its
space complexity is trivially polynomial. Let P(k) be the number of base instances
generated by the algorithm to solve the problem. The time complexity of the algo-
rithm is O(P (k)nO(1) logk) = O∗(P (k)), where we use the fact that each branching
step takes polynomial time and the depth of the recursion is O(log k).

It remains to bound P(k). We will show by induction on k ≥ 2 that P(k) ≤
Cnc lnkαk , for proper constants C > 0, c > 0, and α ≥ 4. Clearly the condition is
true for k < k′, for an arbitrarily large constant k′: it is sufficient to choose large
enough C and c. Now assume the condition is satisfied for every 2 ≤ h ≤ k − 1, and
consider an instance with k ≥ k′ terminals. For a given partition (T1, T2), the number
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of base instances generated is P(|T1| + 1) + P(|T2| + 1). For the sake of simplic-
ity, assume that k/2 and 2k/3 are integers, and |T1| + |T2| = k: other cases can be
handled similarly. By construction, k/2 ≤ |T2| ≤ 2k/3. Hence, for sufficiently large
constants C and c and for α = 8, the following inequalities hold:

P(k) ≤ n

2k/3∑

i=k/2

(
k

i

)

(P (i + 1) + P(k − i + 1)) ≤ 2n

2k/3∑

i=k/2

(
k

i

)

P(i + 1)

≤ 2nP (2k/3 + 1)

2k/3∑

i=k/2

(
k

i

)

≤ 2nCnc ln(2k/3+1)α2k/3+12k

≤ Cnc lnk(2α2/3)k ≤ Cnc lnkαk.

Above we used the fact that 2α2/3 = α for α = 8. In order to obtain a better value
of α, we use the following observation. �

Fact 1 For every fixed x ≥ 4, function f (y) = xy

yy(1−y)1−y is increasing on interval

(0,2/3].

Recall that i ∈ [k/3,2k/3]. From Stirling’s formula, for any ε > 0 and k large
enough,

(
k

i

)

= k!
i! · (k − i)! ≤ (1 + ε)

(k/e)k
√

2πk

(i/e)i
√

2πi · ((k − i)/e)k−i
√

2π(k − i)

= (1 + ε)

√
k

2πi(k − i)
· kk

ii(k − i)k−i

≤ (1 + ε)

√
9

4πk
· 1

((i/k)i/k(1 − i/k)1−i/k)k

<
1

((i/k)i/k(1 − i/k)1−i/k)k
. (3)

Combining (3) with Fact 1, one obtains

(
k

i

)

P(i + 1) ≤ Cnc ln(i+1)αi+1

((i/k)i/k(1 − i/k)1−i/k)k
≤ (αi/k)kαCnc ln(2k/3+1)

((i/k)i/k(1 − i/k)1−i/k)k

≤ αCnc ln(2k/3+1)

(
α2/3

(2/3)2/3(1/3)1/3

)k

= αCnc ln(2k/3+1)

(
3α2/3

22/3

)k

.
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Fig. 3 On the left, a Steiner tree ST of a graph G. (The other edges of G are not depicted for visu-
alization reasons.) Black nodes denote terminals. Squared nodes define a perfectly-balanced separator
S = {a, b, c, d, e, f }. The nodes above and below S define the node sets V1 and V2, respectively. In partic-
ular, T1 and T2 are given by the top and bottom black nodes, respectively. Observe that ST1 = ST [V1 ∪ S]
is a forest. On the right, the corresponding tree ST ′ . In particular, F = {bc, de}, E1 = {ab, ef }, and
E2 = {cd}

It follows that

P(k) ≤ 2n

2k/3∑

i=k/2

(
k

i

)

P(i + 1) ≤ 2nkαCnc ln(2k/3+1)

(
3α2/3

22/3

)k

≤ Cnc lnkαk,

for sufficiently large constants C and c and for α = 27/4. The claim follows. �
Algorithm paramST is not FPT, due to the nO(log k) factor. However, it can be

used to get a factorial-time polynomial-space FPT algorithm.

Corollary 1 There is a O∗(2O(k log k))-time polynomial-space algorithm for the
Steiner tree problem.

Proof It is sufficient to run the algorithm of Dreyfus and Wagner for k ≤ logn, and
algorithm paramST otherwise. In both cases the space complexity is polynomial. In
the first case the running time is polynomial. In the second case the running time is
O∗((27/4)knO(log k)) = O∗(2O(k log k)), where we exploit the fact that n ≤ 2k . �

3.2 Perfectly-Balanced Separators

In this section we describe a variant of paramST, running in time O∗(4knO(log2 k))

and polynomial space. The basic idea is combining the approach of Sect. 3.1 with the
perfectly-balanced separators S guaranteed by Lemma 4.

The main difficulty here is that the optimal solution to each subproblem needs not
to be a tree. More precisely, let ST be the optimal Steiner tree, S ⊆ V (ST ) be the
separator, and (V1,V2) be the partition of V (ST ) \ S induced by S. We use Ti =
Vi ∩ T to denote the terminals in Vi . The subgraphs ST1 := ST [V1 ∪ S] and ST2 :=
ST [V2 ∪ S] of ST are in general forests. They are guaranteed to be trees only for
|S| = 1, which is the case in Sect. 3.1. See the left part of Fig. 3 for an example.

In order to circumvent this problem, we use the following observation. Let us iter-
atively contract the edges of ST with at least one endpoint not in S. More precisely,
the resulting contracted node is the node in S, if any, and otherwise one of the two
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Fig. 4 The two subproblems corresponding to the instance of Fig. 3. For visualization reasons, we drew
only the edges of ST , plus the edges in F ∪E2 and F ∪E1 (dashed edges on the left and right, respectively)

endpoints chosen arbitrarily. Note that the resulting graph ST ′ is indeed a tree, and
the node-set of ST ′ is S.

The tree ST ′ will (possibly) contain some edges F between nodes in S. These
edges belong to ST (and hence to G) as well, since they are not contracted. The
remaining edges {s′, s′′} correspond to trees of either ST1 or ST2, which contain both
s′ and s′′. In other terms, the internal nodes of the path between s′ and s′′ in ST are
contained either in V1 or in V2. Let us call these edges E1 and E2, respectively. We
remark that (F,E1,E2) is a 3-partition of E(ST ′). See the right part of Fig. 3 for an
example.

The idea is then as follows. In order to compute ST1, it is sufficient to compute the
cheapest forest which spans T1 ∪V (E1), and such that each pair {s′, s′′} ∈ E1 belongs
to the same tree. The latter problem can be reduced to a standard Steiner tree problem:
it is sufficient to set to zero the cost of edges in E2 ∪ F , and compute the cheapest
Steiner tree on terminals T1 ∪S. Then one removes the edges E2 ∪F . Symmetrically,
one can construct ST2. Hence, given the tuple (S,T1, T2,F,E1,E2), one can split the
original problem in two subproblems, which can be solved independently. See Fig. 4
for an example.

This intuition is formalized in the next lemma. For notational convenience, let us
replace the input graph with its metric closure.3 This does not change the value of the
optimal solution and any solution to the new instance can be turned into a solution
of the original instance of no-larger cost (by replacing edges with the corresponding
shortest paths). For a given E′ ⊆ E, let GE′ be the weighted graph obtained from G

by setting to zero the cost of edges E′.

Lemma 5 Given a graph G = (V ,E) and a set of terminals T , |T | ≥ 3,

stG(T ) = min{w(F) + stGE2∪F
(T1 ∪ S) + stGE1∪F

(T2 ∪ S)}, (4)

where the minimum is taken over

• All the subsets S ⊆ V of at most logk + 1 nodes;
• All the partitions (T1, T2) of T \ S with |T1|, |T2| ≤ |T |/2;
• All the disjoint subsets F,E1,E2 ∈ (

S
2

)
, such that ST ′ := (S,F ∪ E1 ∪ E2) is a

tree.

3We recall that the metric closure of a weighted graph G = (V ,E) is a complete graph on node-set V ,
with weights given by the shortest path distances with respect to original weights.
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Proof We first observe that, for a given tuple (S,T1, T2,F,E1,E2), one can con-
struct a subgraph spanning the terminals T of cost exactly w(F) + stGE2∪F

(T1 ∪
S) + stGE1∪F

(T2 ∪ S). In fact, consider the tree ST1 of cost stGE2∪F
(T1 ∪ S), and

remove from ST1 the edges E2 ∪ F . Construct ST2 symmetrically. Then the graph
ST1 ∪ST2 ∪F is a connected subgraph of G which spans T , and its cost is as claimed.

It remains to show that there is a choice of the tuple (S,T1, T2,F,E1,E2) leading
to a solution of cost at most stG(T ). Let ST be the optimal Steiner tree. We let S be
the perfectly-balanced Steiner separator of ST which is guaranteed by Lemma 4, and
(T1, T2) and (V1,V2) be the corresponding partitions of T \S and V \S. Observe that
S, T1 and T2 satisfy the conditions of the claim.

Let us construct the auxiliary tree ST ′ and the 3-partition (F,E1,E2) of its edge
set as described before, with respect to ST and S. Also the triple (F,E1,E2) satisfies
the claim. Next consider the forests ST1 := ST [V1 ∪S] and ST2 := ST [V2 ∪S]. Note
that w(ST ) = w(F) + w(ST1) + w(ST2) by construction. Furthermore, for {i, j} =
{1,2}, STi ∪Ej ∪F is a feasible solution to the Steiner tree problem on graph GEj ∪F

and terminals Ti ∪ S, of cost w(STi). We can conclude that

stG(T ) = w(ST ) = w(F) + w(ST1) + w(ST2)

≥ w(F) + stGE2∪F
(T1 ∪ S) + stGE1∪F

(T2 ∪ S).

The claim follows �

We are now ready to describe the improved version of paramST. For |T | ≤ k′, for
a proper constant 2 ≤ k′ = O(1), the problem is solved by brute force in polynomial
time and space. Otherwise, the algorithm branches according to (4).

Theorem 2 Algorithm paramST, modified as above, solves the weighted Steiner
tree problem in time O∗(4knO(log2 k)) and polynomial space.

Proof The correctness of the algorithm follows from Lemma 5 and its space com-
plexity is trivially polynomial. Let P(k) be the number of base instances generated
by the algorithm to solve an instance on k terminals. By the same argument as in
Theorem 1, the running time of the algorithm is O∗(P (k)).

We next show by induction that P(k) ≤ Cnc log2 k4k , for some constants C > 0,
c > 0. Clearly the condition is true for k < k′ = O(1). Now assume it is satisfied for
every 2 ≤ h ≤ k − 1, and consider an instance with k ≥ k′ terminals. There are at
most

∑log k+1
i=1

(
n
i

) ≤ 2nlogk+1 possible choices for the separator S. For a fixed choice
of S, there are 2|T \S| ≤ 2k possible partitions (T1, T2) of T \ S.

By Cayley’s formula, the number of spanning trees ST ′ of S is |S||S|−2 ≤ (logk +
1)log k−1 ≤ (log k)2 log k . There are at most 3|S|−1 ≤ 3log k many ways to 3-partition the
edges of a given ST ′. Consequently, there are at most (log k)2 log k3log k ≤ (log k)3 log k

possible choices for the triple (F,E1,E2).
Altogether the algorithm generates at most 2nlog k+1 · 2k · (log k)3 log k ≤ n5 log k2k

pairs of subproblems, on at most k/2 + logk + 1 terminals each. Here we are using
the fact that k ≥ k′ is large enough. By the inductive hypothesis, for proper constants
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C and c,

P(k) ≤ n5 log k2k · 2P(k/2 + logk + 1)

≤ n5 log k2k · 2Cnc log2(k/2+log k+1)4k/2+log k+1

≤ Cn3+5 log k+c log2(k/2+log k+1)4k ≤ Cnc log2 k4k.

The claim follows. �

We can exploit algorithm paramST in combination with trivial enumeration to
obtain an improved exact algorithm for the weighted Steiner tree problem for arbi-
trary values of k.

Corollary 2 The weighted Steiner tree problem can be solved in O∗(1.5875n) time
and polynomial space.

Proof Consider the algorithm which runs paramST if k < n/3, and trivial enumer-
ation otherwise. This algorithm is obviously correct and its space complexity is triv-
ially polynomial. For k < n/3, the running time is O∗(4n/3+o(n)) = O∗(1.5875n).
For k ≥ n/3, the running time is O∗(

∑k
i=0

(
n−k

i

)
) = O∗(

(2n/3
n/3

)
) = O∗(22n/3) =

O∗(1.5875n). �

4 Branching on Small-Load Terminals

In Sect. 4.1 we describe a simple, recursive algorithm exactST for the cardinality
Steiner tree problem. Our algorithm computes the size stG(T ) of an optimal Steiner
tree, but it can be easily modified in order to produce one optimal Steiner tree. In
Sect. 4.2 we show that exactST runs in O∗(1.5468n) time and polynomial space.
The running time analysis is based on the Measure & Conquer technique [21]. In par-
ticular, we will measure the size of the subproblems in terms of a linear combination
of the number n of nodes and number n − k of non-terminals.

4.1 Algorithm

The main idea behind our algorithm is as follows. If k ≤ cn for a suitable constant
c < 1, it is convenient to use the O∗(4knO(log2 k))-time algorithm paramST from
Sect. 3.2. Otherwise, there must be a terminal t which is at distance at most one
from “many” other terminals. Thus, if by branching we add to T one or more non-
terminals adjacent to t , we can contract a “large” connected component of terminals
afterwards (applying the Contraction Lemma 1). This phenomenon is not exploited
in trivial enumeration, and it is at the base of our refined branching algorithm.

In order to formalize in a convenient way the mentioned scenario, we introduce the
following definition of load of a terminal. Let each non-terminal node s ∈ N := V \T

be initially assigned a load one. Node s evenly distributes its load among the terminals
adjacent to it (if any). The final load 	(t) of each terminal t is the sum of the loads
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Fig. 5 Assignment of load to terminals (black nodes) on the left, and multiple branching on the minimum
load terminal t : in the first subproblem s1 is added to the terminals (middle); in the second s1 is deleted
and s2 is added to the terminals (right). Dashed curves indicate components of terminals which will be
contracted in the following step.

received by its non-terminal neighbors. The process is illustrated in Fig. 5. As it will
be clearer from the analysis, we can branch efficiently on terminals of small load.

We are now ready to describe algorithm exactST:

1. (Base) If k = |T | ∈ {0,1}, stG(T ) = 0:

exactST(G,T ) = 0.

2. (Contraction) If there is a connected component V ′ of at least 2 terminals, we
apply iteratively the Contraction Lemma 1. Let G′ be the graph obtained from
G by iteratively contracting the nodes of V ′ until a unique node v′ is left. Let
moreover T ′ = T \ V ′ ∪ {v′}. Then

exactST(G,T ) = |V ′| − 1 + exactST(G′, T ′).

3. (Reduction) If there is a terminal t adjacent to a unique (non-terminal) node s, we
add s to the terminals since s must belong to any Steiner tree (being k ≥ 2):

exactST(G,T ) = exactST(G,T ∪ {s}).
4. (Small k) If k ≤ 2n/7, we apply algorithm paramST from Sect. 3.2:

exactST(G,T ) = paramST(G,T ).

5. (Single branch) If there is a non-terminal s adjacent to at least 3 terminals, we
simply branch by either removing s from the graph, or by adding it to the termi-
nals:

exactST(G,T ) = min{exactST(G \ {s}, T ),exactST(G,T ∪ {s})}.
6. (Multiple branch) Let t be a terminal of minimum load according to the defi-

nition above, and let s1, s2, . . . , sp be the (non-terminal) neighbors of t , sorted
in decreasing number m1,m2, . . . ,mp of adjacent terminals. We branch on the p

subproblems obtained by removing s1, s2, . . . , si−1, and adding si to the terminals,
for i ∈ {1,2, . . . , p} (see also Fig. 5):

exactST(G,T ) = min
i∈{1,2,...,p}{exactST(G \ {s1, s2, . . . , si−1}, T ∪ {si})}.
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Observe that Algorithm exactST does not work in the weighted case. This is es-
sentially due to the fact that the Contraction Lemma 1 does not extend to such case.
Finding an improved branching strategy (when k is large) for the weighted Steiner
tree problem is an interesting open problem.

4.2 Analysis

We next analyze algorithm exactST with the Measure & Conquer approach de-
scribed in [21]. Let nN := n − k be the number of non-terminals. We will measure
the size of the subproblems in terms of h := n + αnN , where α > 0 is a proper con-
stant that we obtained numerically.

Theorem 3 Algorithm exactST solves the cardinality Steiner tree problem in time
O∗(1.5468n) and polynomial space.

Proof The correctness of the algorithm is discussed above and its space com-
plexity is trivially polynomial. For k ≤ 2n/7 the running time of the algorithm
is O∗(4knO(log2 k)) = O∗(42n/7+o(n)) = O∗(1.4860n). So assume that initially k >

2n/7. We let h := n + αnN be the size of the problem, where α = 0.4875. Denote
by T (h) the time required to solve a problem of size h. We will show by induction
that T (h) = O∗(1.38197h). The claim follows since, being initially nN ≤ 5n/7 by
assumption, O∗(1.38197h) = O∗(1.381971.34822·n) = O∗(1.5468n).

Let poly(h) = O(nO(1)) be the maximum (polynomial) time spent at each step of
the algorithm (excluding the recursive calls). For h = 0, we have k = 0 and hence
T (h) ≤ poly(h) = O∗(1). Assume now that T (h′) = O∗(1.38197h′

) for any h′ < h,
and consider the different steps of the algorithm.

Case 1 (Base). The problem is solved directly:

T (h) ≤ poly(h).

Case 2 (Contraction). The algorithm generates a unique subproblem containing at
most n − 1 nodes and nN non-terminals:

T (h) ≤ poly(h) + T (h − 1) = poly(h) + O∗(1.38197h−1) = O∗(1.38197h).

Case 3 (Reduction). The algorithm adds s to the set of terminals (and hence removes
one node from the non-terminals), and then removes at least one node by Case 2:

T (h) ≤ 2poly(h)+T (h−α−1) = 2poly(h)+O∗(1.38197h−α−1) = O∗(1.38197h).

Observe that, from a technical point of view, we are considering two distinct recursive
calls: in the first call we add s to the set of terminals, and in the second we perform a
contraction. This explains the factor 2 in front of poly(h). The coefficients in front of
poly(h) in the following recurrences have a similar motivation.
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Table 1 Feasible values of
(m1,m2, . . . ,mp) for multiple
branch on terminal t , with the
corresponding load (strictly
smaller than 5/2), and decrease
of the problem size. In
particular, a decrease of x + αy

reflects the removal of x nodes
and y non-terminals

(m1,m2, . . . ,mp) 	(t) Size decrease

(1,1) 4/2 1 + α,2 + 2α

(2,1) 3/2 2 + α,2 + 2α

(2,2) 2/2 2 + α,3 + 2α

(2,2,1) 4/2 2 + α,3 + 2α,3 + 3α

(2,2,2) 3/2 2 + α,3 + 2α,4 + 3α

(2,2,2,2) 4/2 2 + α,3 + 2α,4 + 3α,5 + 4α

Case 4 (Small k). The problem is solved by applying algorithm paramST, in time
O∗(4knO(log2 k)). Recall that k ≤ 2n/7 in this case. Then

k = (n + αnN)
k

n + αnN

= h
k

(1 + α)n − αk
≤ h

2n/7

(1 + 5α/7)n
= h

2

7 + 5α
.

Moreover, the value of |n− k| changes by a constant amount in each step of the algo-
rithm. (In particular, when several nodes are removed, most of them are terminals.)
This implies k = 
(n) = 
(h), since this condition holds initially by assumption.
Hence the running time is

T (h) = O∗(4knO(log2 k)) = O∗(4k+o(k)) = O∗(42h/(7+5α)+o(h)) = O∗(1.3415h).

Case 5 (Single branch). Let p ≥ 3 be the number of terminals adjacent to the selected
non-terminal s. The algorithm generates two subproblems. In the first subproblem it
removes s from the graph. In the second subproblem it adds s to the set of terminals,
and then it removes p nodes by Case 2. Hence

T (h) ≤ 2poly(h) + T (h − α − 1) + T (n − α − 3)

= 2poly(h) + O∗(1.38197h−α−1) + O∗(1.38197h−α−3)

= O∗(1.38197h).

Case 6 (Multiple branch). Observe that, being k > 2n/7 by Case 4, the minimum load
of a node is at most n−k

k
<

5n/7
2n/7 = 5/2. In particular, for the selected terminal t , 	(t) <

5/2. Recall that s1, s2, . . . , sp are the (non-terminal) neighbors of t , in decreasing
order m1,m2, . . . ,mp of the number of adjacent terminals. By Case 3, p ≥ 2 (each
terminal is adjacent to at least 2 non-terminals). Note that the load assigned by si to
t is exactly 1/mi . By Case 5 it must be mi ∈ {1,2} for each i (each non-terminal has
between 0 and 2 terminal neighbors). Hence the contribution of each si to the load
	(t) of t is either 1 or 1/2. It follows by a simple case enumeration that the sequence
(m1,m2, . . . ,mp) must be one of the sequences in Table 1.

In the ith subproblem, i ∈ {1,2, . . . , p}, the algorithm removes nodes s1, s2, . . . ,

si−1 from the graph, and adds node si to the terminals, which later determines the
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removal of mi nodes by Case 2. Note that in the ith step i non-terminals are removed.
Hence, by an easy case-by-case check,

T (h) ≤ (1 + p)poly(h) +
p∑

i=1

T (h − (i − 1) − mi − α · i)

= O∗
(

p∑

i=1

1.38197h−(1+α)i−mi+1

)

= O∗(1.38197h).

This concludes the proof. �

5 An Exponential-Space Algorithm

As a by-product of our approach, we are able to improve on the current best
O∗(1.4143n)-time exponential-space algorithm for the cardinality Steiner tree prob-
lem. This is achieved by modifying algorithm exactST in the following way.

• In Step 4 replace paramST with the O∗(2k)-time exponential-space algorithm of
[5], and increase the corresponding threshold from k ≤ 2n/7 to k ≤ 3n/7.

• In Step 5 increase the threshold number of adjacent terminals from 3 to 5.

In its analysis, the best choice for α turns out to be zero (i.e., the subproblems size h

is simply measured in terms of the number n of nodes).

Theorem 4 Algorithm exactST, modified as above, solves the cardinality Steiner
tree problem in time O(1.3533n) and exponential space.

Proof We can use the same type of analysis and notation as in Theorem 3, but using
the standard measure h = n. We show by induction that the running time is T (n) =
O∗(1.3533n).

The base of the induction and the inductive hypothesis for Cases 1, 2, and 3 are
trivially satisfied. In Case 4 (in its modified version), the problem is solved in time
O∗(2k) = O∗(23n/7) = O∗(1.3460n). In Case 5 (in its modified version), the node
considered is adjacent to p ≥ 5 terminals. Hence

T (n) ≤ 2poly(n) + T (n − 2) + T (n − 1 − p)

≤ 2poly(n) + T (n − 2) + T (n − 6)

= 2poly(n) + O∗(1.3533n−2) + O∗(1.3533n−6)

= O∗(1.3533n).

In Case 6, being k > 3n/7, the minimum load of a node is at most n−k
k

<
4n/7
3n/7 =

4/3. Recall that s1, s2, . . . , sp , p ≥ 2, are the (non-terminal) neighbors of t , in de-
creasing order m1,m2, . . . ,mp of the number of adjacent terminals. By Case 5 (in its
modified form) it must be mi ∈ {1,2,3,4}. The corresponding set of feasible local
configurations is described in Table 2.
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Table 2 Feasible values of
(m1,m2, . . . ,mp) for multiple
branch on terminal t in the
exponential-space algorithm,
with the corresponding load
(strictly smaller than 4/3) and
number of nodes removed

(m1,m2, . . . ,mp) 	(t) Size decrease

(4,4) 6/12 4,5

(4,3) 7/12 4,4

(4,2) 9/12 4,3

(4,1) 15/12 4,2

(3,3) 8/12 3,4

(3,2) 10/12 3,3

(2,2) 12/12 2,3

(4,4,4) 9/12 4,5,6

(4,4,3) 10/12 4,5,5

(4,4,2) 12/12 4,5,4

(4,3,3) 11/12 4,4,5

(4,3,2) 13/12 4,4,4

(4,2,2) 15/12 4,3,4

(3,3,3) 12/12 3,4,5

(3,3,2) 14/12 3,4,4

(4,4,4,4) 12/12 4,5,6,7

(4,4,4,3) 13/12 4,5,6,6

(4,4,4,2) 15/12 4,5,6,5

(4,4,3,3) 14/12 4,5,5,6

(4,3,3,3) 15/12 4,4,5,6

(4,4,4,4,4) 15/12 4,5,6,7,8

In the ith subproblem, i ∈ {1,2, . . . , p}, the algorithm removes nodes s1, s2, . . . ,

si−1 from the graph, and adds node si to the terminals, which later determines the
removal of mi nodes by Case 2. Altogether, i − 1 + mi nodes are removed. A case-
by-case check shows that the following set of inequalities is satisfied for any feasible
choice of the vector (m1,m2, . . . ,mp):

T (n) ≤ (1 + p)poly(n) +
p∑

i=1

T (n − (i − 1) − mi)

= O∗
(

p∑

i=1

1.3533n−i−mi+1

)

= O∗(1.3533n).

This concludes the proof. �

6 Conclusions and Open Problems

In this paper we investigated the problem of computing optimal Steiner trees in poly-
nomial space. We developed the first non-trivial algorithms for this problem, both
for k � n and for arbitrary k. Nederlof very recently developed an algorithm for the
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cardinality Steiner tree problem running in O∗(2k) time and polynomial space [36].
Combining our approach with his result, one obtains the following improvement of
Theorems 3 and 4.

Theorem 5 There is an algorithm which solves the cardinality Steiner tree problem
in time O(1.3533n) and polynomial space.

Proof It is sufficient to use the algorithm in [36] in Step 4 of the algorithm of Sect. 5.
The running time analysis is not affected and the space usage becomes polynomial. �

We remark that Nederlof’s approach does not generalize to the weighted version
of the problem. In that case, our O∗(4knO(log2 k)) algorithm remains the best-known
result in polynomial space. There is an interesting parallel between the state of the art
for the Steiner tree problem and the traveling salesman problem. For the latter prob-
lem the best-known polynomial-space algorithm for the unweighted case (i.e. for
the Hamiltonian cycle problem) runs in O∗(2n) time [2, 33], while the best-known
polynomial-space running time for the weighted case is O∗(4nnO(logn)) [30]. Devel-
oping improved algorithms to compute Steiner trees of minimum weight, both for
small and for large k, is an interesting open problem.
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