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Abstract The HAMILTONIAN CYCLE problem is the problem of deciding whether
an n-vertex graph G has a cycle passing through all vertices of G. This problem is
a classic NP-complete problem. Finding an exact algorithm that solves it in O∗(αn)

time for some constant α < 2 was a notorious open problem until very recently, when
Björklund presented a randomized algorithm that uses O∗(1.657n) time and polyno-
mial space. The LONGEST CYCLE problem, in which the task is to find a cycle of
maximum length, is a natural generalization of the HAMILTONIAN CYCLE problem.
For a claw-free graph G, finding a longest cycle is equivalent to finding a closed trail
(i.e., a connected even subgraph, possibly consisting of a single vertex) that domi-
nates the largest number of edges of some associated graph H . Using this translation
we obtain two deterministic algorithms that solve the LONGEST CYCLE problem,
and consequently the HAMILTONIAN CYCLE problem, for claw-free graphs: one al-
gorithm that uses O∗(1.6818n) time and exponential space, and one algorithm that
uses O∗(1.8878n) time and polynomial space.

An extended abstract of this paper has been presented at WG 2009 [4].
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1 Introduction

We study exact algorithms for the LONGEST CYCLE problem: given a graph G, find
a cycle in G with the largest number of vertices. This problem generalizes the well-
known NP-complete decision problem HAMILTONIAN CYCLE (cf. [11]) that asks
whether a graph G has a Hamiltonian cycle, i.e., a cycle passing through all vertices
of G.

The HAMILTONIAN CYCLE problem can be seen as a special case of the well-
known TRAVELING SALESMAN problem. The input of the latter problem is a com-
plete graph together with an edge weighting. The goal is to find a Hamiltonian cy-
cle of minimum total weight. Held and Karp [15] present a classic dynamic pro-
gramming algorithm that solves the TRAVELING SALESMAN problem in O∗(2n)

time and O∗(2n) space for graphs on n vertices. The O∗-notation indicates that we
suppress factors of polynomial order, and we use this notation throughout the pa-
per. Polynomial-space algorithms for the HAMILTONIAN CYCLE problem (which
is a special case of the TRAVELING SALESMAN) were rediscovered several times
[1, 17, 18]. It was a major and long outstanding open problem whether the HAMIL-
TONIAN CYCLE problem, and more generally, the TRAVELING SALESMAN prob-
lem, could be solved in O∗(αn) time for some constant α < 2. Recently, Björk-
lund [2] gave a Monte Carlo algorithm that solves the HAMILTON CYCLE problem
in O∗(1.657n) time. For bipartite graphs he improved this bound by presenting a
Monte Carlo algorithm that solves the HAMILTON CYCLE problem in O∗(1.414n)

time. Both algorithms use polynomial space, and his first algorithm can also be
used for solving the TRAVELING SALESMAN problem with integer edge weights
in O∗(w1.657n) time, where w is the sum of all edge weights.

For some graph classes for which the HAMILTONIAN CYCLE, and consequently
the TRAVELING SALESMAN problem, remains NP-complete, faster exact algorithms
have been designed. For planar graphs, and more generally, on graphs excluding some
fixed graph as a minor, the HAMILTONIAN CYCLE problem can be solved in O∗(c

√
n)

for some constant c (cf. [7, 8, 27]). The TRAVELING SALESMAN problem can be
solved in O∗(1.251n) time for cubic graphs [16] and in O∗(1.890n) time for graphs
with maximum degree 4 [9]. Both algorithms use polynomial space. For graphs with
maximum degree 4, an algorithm with time complexity O∗(1.733n) is known [12],
but this algorithm uses exponential space. More generally, Björklund et al. [3] present
an algorithm that solves the TRAVELING SALESMAN problem in O∗((2 − ε)n) for
graphs with bounded degree, where ε > 0 only depends on the maximum degree but
not on the number of vertices. They show that this bound can be improved further
for regular triangle-free graphs. These algorithms use exponential space. They also
present a O∗((2−ε)n) time algorithm that uses polynomial space for bounded degree
graphs in which the edges have bounded integer weights.

We consider the class of claw-free graphs, i.e., graphs that do not contain the four-
vertex star as an induced subgraph. This is a rich class containing, e.g., the class of
line graphs and the class of complements of triangle-free graphs. It is also an inten-
sively studied graph class, both within structural graph theory and within algorithmic
graph theory; see [10] for a survey.

The HAMILTONIAN CYCLE problem is NP-complete for claw-free graphs. More-
over, the problem remains NP-complete even on 3-connected cubic planar claw-free
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graphs [20]. A simple reduction from the latter result shows that the HAMILTONIAN

CYCLE problem stays NP-complete on claw-free graphs of minimum degree d for
any fixed d ≥ 3; we first replace each vertex of a given cubic claw-free graph G by
a copy of the complete graph Kd+1 on d + 1 vertices, then arbitrarily choose three
vertices of each Kd+1 as “terminals”, and finally connect the terminals according to
the edges of G in order to obtain a claw-free graph G′ that has minimum degree d ,
such that G′ has a Hamiltonian cycle if and only if G has. The above results im-
mediately imply that the LONGEST CYCLE problem is NP-hard for these subclasses
of claw-free graphs as well. In contrast, the HAMILTONIAN CYCLE problem can be
solved in polynomial time on claw-free n-vertex graphs that have minimum degree at
least cn for any constant c > 0 [19]. It is also known that every connected claw-free
graph that is locally connected has a Hamiltonian cycle [23].

Our Results We show that on claw-free graphs the LONGEST CYCLE problem can
be solved significantly faster than in time O∗(2n). We present two deterministic exact
algorithms. Our first algorithm uses O∗(1.6818n) time and exponential space, and our
second algorithm uses O∗(1.8878n) time and polynomial space. Our techniques are
based on a (known) transformation of the problem into the problem of finding an
optimum closed trail (i.e., a closed trail dominating the largest number of edges) of
an associated graph, and a new study of structural properties of such trails. These
techniques are different from the ones used in the already known algorithms, and are
of independent interest.

Paper Organization Some basic definitions are presented in Sect. 2. Section 3 con-
tains some structural results on closed trails, which will be used in the exact algo-
rithms described in Sects. 4 and 5. In Sect. 4 we translate the problem of finding a
longest cycle in a claw-free graph into the problem of finding an optimum closed
trail of an associated triangle-free graph. Two exact algorithms for finding such an
optimum closed trail are presented in Sect. 5. Section 6 contains the conclusions and
mentions some open problems.

2 Preliminaries

All graphs in this paper are finite, undirected and without multiple edges and loops.
For notation and terminology not defined in this paper we refer to [6]. We denote the
vertex set and edge set of a graph G by V (G) and E(G), respectively, and we assume
throughout the paper that all graphs we consider have a nonempty vertex set. The
neighborhood of a vertex v in G is denoted by NG(v) := {w ∈ V (G) | vw ∈ E(G)},
and dG(v) = |NG(v)| denotes the degree of v. The maximum degree among the ver-
tices of a graph G is denoted by �(G). A 2-factor of G is a spanning subgraph of G

in which all vertices have degree 2. The subgraph of G induced by some nonempty
subset U ⊆ V (G) is denoted by G[U ]. For any proper subset S ⊂ V (G), we write
G−S to denote the graph G[V (G)\S], i.e., the graph obtained from G by removing
all vertices of S. If S = {v}, we write G − v instead of G − {v}. Similarly, for any
set S ⊆ E(G), the graph G − S is the graph obtained from G by removing all edges
of S.
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A graph is called triangle-free if it does not contain a subgraph isomorphic to the
cycle on three vertices. A graph is called claw-free if it has no induced subgraph
isomorphic to the claw, i.e., the four-vertex star K1,3 = ({u,a, b, c}, {ua,ub,uc}).
Let G be a claw-free graph. Then, for each vertex v of G, the set of neighbors of
v in G induces a subgraph with at most two components. If this subgraph has two
components, both of them must be cliques. If the subgraph induced by NG(v) is
connected but not complete, then the operation that adds edges joining all pairs of
nonadjacent vertices in NG(v) is called the local completion of G at v.

The line graph of a graph H with edges e1, . . . , ep is the graph L(H) with vertices
u1, . . . , up such that there is an edge between any two vertices ui and uj if and only
if ei and ej share one end vertex in H . Note that L(K3) = L(K1,3) = K3; it is well-
known that every connected line graph F 	= K3 has a unique H with F = L(H) (see
e.g. [13]). We call H the preimage graph of F . For K3 we let K1,3 be its preimage
graph.

A graph is called even if all its vertices have even degree. A graph is called a
closed trail if it is a connected even graph. Note that an even graph, and a closed
trail in particular, might consist of a single vertex. A closed trail that does not consist
of a single vertex is called nontrivial; note that a nontrivial closed trail contains at
least three vertices. Let T be a closed trail of a graph H . An edge e ∈ E(H) is
dominated by T if T contains at least one of the end vertices of e. In this context
“dominated” means “edge-dominated”, and this is the case whenever we speak of
domination in this paper. Note that, by definition, every edge of a nontrivial closed
trail T is dominated by T itself. For any closed trail T of H , we denote by β(T )

the number of edges of H dominated by T , i.e., β(T ) := |E(H) \ E(H − V (T ))|.
If every edge of H is dominated by T , i.e., if β(T ) = |E(H)|, then we say that T is
a dominating closed trail of H . An optimum nontrivial closed trail or ONCT of H

is a nontrivial closed trail of H that dominates at least as many edges of H as any
other nontrivial closed trail of H . A closed trail T of a graph H is called an optimum
closed trail or OCT if β(T ) ≥ β(T ′) for any closed trail T ′ of H . Note that every
graph has an OCT, and that an OCT of H is either an ONCT of H , or a single vertex
with degree �(H) in case �(H) ≥ β(T ) for any nontrivial closed trail T of H .

For any integer k ≥ 1, a graph H is called k-degenerate if every subgraph of H

(including H itself) has a vertex with degree at most k. We say that H is k-ordered if
H allows a vertex ordering v1, . . . , v|V (H)| such that, for 1 ≤ i ≤ |V (H)|, the graph
H [{v1, . . . , vi}] is connected and vi has at most k neighbors in H [{v1 . . . , vi}].

3 Closed Trails of Low Degeneracy and Ordering

In this section we study structural properties of closed trails. We will use such prop-
erties in the exact algorithms for the OCT problem presented in the next two sections.
A cycle C of a connected graph H is called removable if the graph H −E(C) is con-
nected, and non-separating if H − V (C) is connected. The following result is due to
Thomassen and Toft [26].

Theorem 1 (Thomassen and Toft [26]) Every connected graph with minimum degree
at least 3 has an induced non-separating cycle.
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Theorem 1 implies the following result.

Corollary 1 Every connected graph with minimum degree at least 3 has an induced
removable cycle.

Proof Let H be a connected graph with minimum degree at least 3. By Theorem 1,
H has an induced non-separating cycle C. Since H −V (C) is connected, all vertices
of V (H)\V (C) belong to the same component of H −E(C). Since H has minimum
degree at least 3 and C is an induced cycle, every vertex of C has a neighbor in
V (H) \ V (C). Hence H − E(C) is connected, so C is removable. �

Using Corollary 1, we can prove the following result.

Lemma 1 Every closed trail contains a 2-degenerate spanning closed trail.

Proof Since a closed trail consisting of a single vertex is 2-degenerate, the lemma
holds for such closed trails. We claim that every nontrivial closed trail contains a
2-degenerate spanning closed trail. Let H be a counterexample to this claim with
|E(H)| minimum, i.e., H is a nontrivial closed trail which does not contain a
2-degenerate spanning closed trail. In particular, H itself is not 2-degenerate. We
repeatedly remove vertices from H with degree at most 2 in the current subgraph of
H as long as possible. Let H ′ be the subgraph of H we obtain this way. Since H

is not 2-degenerate, H ′ indeed exists. Let H1 be a component of H ′. Since H ′ has
minimum degree at least 3, H1 has a removable cycle C by Corollary 1. Then C is
also a removable cycle in H , since H is a connected supergraph of H1. Hence the
graph H − E(C) is a spanning nontrivial closed trail of H . Since H is a counterex-
ample, H −E(C) is not 2-degenerate and H −E(C) does not contain a 2-degenerate
spanning closed trail. But then H −E(C) is a counterexample to the claim that every
nontrivial closed trail contains a 2-degenerate spanning closed trail, contradicting the
minimality of H . �

The next lemma shows that the notions of degeneracy and ordering are closely
related.

Lemma 2 Every connected k-degenerate graph is (k + 1)-ordered, for any k ≥ 1.

Proof Let H be a connected k-degenerate graph, and suppose for contradiction that
H is not (k + 1)-ordered. We repeatedly remove vertices from H with degree at most
k + 1 in the current subgraph of H , until we cannot remove any vertex with degree
at most k + 1 without making the current subgraph disconnected. Let H ′ be the re-
sulting (connected) subgraph of H . Since H is not (k + 1)-ordered, H ′ indeed exists.
Let U consist of all vertices with degree at most k in H ′. By our procedure, every
vertex of U is a cut vertex of H ′, and since H is k-degenerate, U is not empty. Hence
H ′ contains at least one cut vertex. Let D be an end-block of H ′, i.e., a maximal
2-connected subgraph of H ′ containing exactly one cut vertex x of H ′. By our pro-
cedure, every vertex of D −x has degree at least k + 2 in H ′, which means that every
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Fig. 1 The graph G3, which is
3-degenerate but not 3-ordered

vertex of D − x has degree at least k + 1 in D − x. Since D − x is a subgraph of H ,
this contradicts the k-degeneracy of H . �

It is well-known that a connected graph is 1-degenerate if and only if it is a tree. It
is not hard to see that every tree, and therefore every connected 1-degenerate graph,
is 1-ordered. This means that Lemma 2 can be slightly strengthened for k = 1. The
following result shows that Lemma 2 is best possible for k ≥ 2.

Proposition 1 For any k ≥ 2, there exists a connected k-degenerate graph that is not
k-ordered.

Proof For any k ≥ 2, let Gk be the graph constructed as follows. Start with the join of
Ck+2 and Kk−1, i.e., the graph obtained from the disjoint union of a cycle of length
k + 2 and an independent set S on k − 1 vertices by making every vertex of the
cycle adjacent to every vertex of S. Let H be the graph obtained from this graph by
removing one edge cw, where c is a vertex of the cycle and w is a vertex of S. Take
k copies H1, . . . ,Hk of the graph H , and let c1, . . . , ck denote the copies of vertex c

in H1, . . . ,Hk , respectively. Finally, Gk is obtained by adding a vertex x and edges
xc1, . . . , xck . As an example, the graph G3 is depicted in Fig. 1.

It is straightforward to verify that Gk is k-degenerate. We claim that Gk is not
k-ordered. For contradiction, suppose Gk is k-ordered. By definition, Gk has an
ordering v1, . . . , v|V (Gk)| of its vertices such that, for 1 ≤ i ≤ |V (Gk)|, the graph
Gk[{v1, . . . , vi}] is connected and vi has at most k neighbors in Gk[{v1 . . . , vi}].
Since x is the only vertex of Gk with degree at most k in Gk , x = v|V (Gk)|. But
the fact that x is a cut vertex of Gk implies that the graph Gk[{v1, . . . , vi}] is not
connected for i = |V (Gk)| − 1, yielding the desired contradiction. �

Lemma 1 and Lemma 2 together imply the following result, which will be used in
the exact algorithms described in the next two sections.

Corollary 2 Every graph has a 2-degenerate 3-ordered optimum closed trail.

Proof Let T be an optimum closed trail of a graph H , and let S ⊆ E(H) be the
set of edges of H that are dominated by T . By Lemma 1, the graph T contains a
2-degenerate spanning closed trail T ′. Since V (T ′) = V (T ), the set of edges of H

dominated by T ′ is exactly the set S. Hence T ′ is an optimum closed trail of H . Since
T ′ is 2-degenerate, T ′ is 3-ordered as a result of Lemma 2. �
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4 Two Exact Algorithms for Finding a Longest Cycle

In this section we explain our two algorithms that solve the LONGEST CYCLE prob-
lem for a claw-free graph G on n vertices. We assume from now on that G is con-
nected, since we can treat the components of G separately in case G is disconnected.
We also assume that G contains a longest cycle, i.e., that G is not a tree. Note that
we can check in polynomial time whether G is a connected graph other than a tree.

For the first, third and fourth step below we do not have to develop any new theory
or algorithms, but can rely on the beautiful existing machinery from the literature.

Step 1: Restrict to the preimage graph H of the closure of G

We recursively repeat the local completion operation, as long as this is possible.
This way we obtain the closure cl(G) of G. Ryjáček [25] showed that the closure
of G is uniquely determined, i.e., that the ordering in which one performs the local
completions does not matter. This means we can obtain cl(G) in polynomial time.
Ryjáček [25] also showed that the length of a longest cycle in G equals the length
of a longest cycle in cl(G). In particular, G is Hamiltonian if and only if cl(G)

is Hamiltonian. Furthermore he showed that for any claw-free graph G there is a
unique (triangle-free) graph H such that L(H) = cl(G). We can obtain the preimage
graph of a line graph in polynomial time (see e.g. [24]). Hence we can compute the
unique graph H with L(H) = cl(G) in polynomial time.

Step 2: Find an OCT of H

Harary and Nash-Williams [14] showed that a Hamiltonian cycle in a line graph of
any connected graph on at least three vertices corresponds to a dominating closed
trail of the graph itself. By an easy variation on their arguments, many researchers
have shown that a longest cycle in such a line graph corresponds to an optimum
closed trail of the graph itself. This result, combined with the results from the pre-
vious step, implies that finding a longest cycle in G corresponds to finding an OCT
of H . In Sect. 5 we present two exact algorithms for finding an OCT of a con-
nected graph with n edges: one algorithm that uses O∗(1.6818n) time and exponen-
tial space, and one algorithm that uses O∗(1.8878n) time and polynomial space.

Step 3: Translate the OCT of H back into a longest cycle in cl(G)

Let T be the OCT of H that we obtained in Step 2. We construct a longest cycle
in cl(G) by traversing T , picking up the edges (corresponding to vertices in cl(G))
one by one and inserting dominated edges as soon as an end vertex of a dominated
edge is encountered. For traversing T we use the polynomial-time algorithm that
finds a Eulerian tour in a connected even graph (cf. [6]). We point out that in case
T consists of a single vertex v, a longest cycle in cl(G) is any cycle spanning the
clique in cl(G) that corresponds to all edges of H dominated by v.

Step 4: Translate the longest cycle in cl(G) into one in G

We can translate the longest cycle in cl(G) obtained in Step 3 into a longest cycle
in G in polynomial time by using the method described in [5]. There, two of the
present authors show how to translate a 2-factor of cl(G) into a 2-factor of G. It is
straightforward to adapt this process and apply it to a single cycle D in cl(G) such
that we find, in polynomial time, a cycle C in G with the same length as D.

We mentioned that the first, third and fourth step above can be performed in poly-
nomial time. We also mentioned that we will show in Sect. 5 that the second step can
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be executed in O∗(1.6818n) time using exponential space, or in O∗(1.8878n) time
using polynomial space. Hence, we have found the following.

Theorem 2 The LONGEST CYCLE problem, and consequently the HAMILTONIAN

CYCLE problem, for a claw-free graph on n vertices can be solved in O∗(1.6818n)

time, using exponential space. It can also be solved in O∗(1.8878n) time, using poly-
nomial space.

5 Two Exact Algorithms for Finding an OCT

In this section we present two exact algorithms for solving the following problem.

OPTIMUM CLOSED TRAIL (OCT)
Instance: a connected graph H .
Task: find an optimum closed trail of H .

Both algorithms can be outlined as follows.

Algorithm solving the OPTIMUM CLOSED TRAIL problem

Input: a connected graph H

Output: an optimum closed trail of H

Test whether or not H is a tree

If H is a tree, output a vertex v of H with degree �(H)

If H is not a tree, find an optimum nontrivial closed trail T of H

Test whether or not β(T ) ≥ �(H)

If β(T ) ≥ �(H), output T

If β(T ) < �(H), output a vertex v of H with degree �(H)

The difference between the two algorithms is the way in which they compute an
ONCT of H in case H is not a tree. To find an ONCT of a connected graph H other
than a tree, both algorithms start by branching on vertices of low degree by the same
branching procedure, explained in Sect. 5.1. This way both algorithms obtain a set
of subproblems. Each subproblem has the original graph H as input. However, for
some subset of edges of H it is already decided whether they will be included in
or excluded from the ONCT. Our first algorithm, described in Sect. 5.2, solves each
of the subproblems using dynamic programming. Our second algorithm, described
in Sect. 5.3, solves each of the subproblems by guessing the remaining edges of a
possible ONCT.

5.1 Branching on Vertices of Low Degree

Let H be an instance of the OCT problem, and suppose H is not a tree. As can be
seen in the outline of the algorithms at the start of Sect. 5, both algorithms find an
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ONCT of H . In order to find an ONCT of H , both algorithms start by assigning a
so-called parity label �(v) ∈ {0,1} to each vertex v of H . This is to keep track of the
parity of the number of edges that are incident to a vertex in the partial ONCT that
we will be building. Note that if T is an ONCT of H , then dT (v) is even for every
v ∈ V (H). After all, a vertex is either not in T (i.e., dT (v) = 0), or a vertex has an
even number of incident edges in T (since T is a nontrivial closed trail). Hence we
initially set �(v) := 0 for every v ∈ V (H).

Both algorithms now branch on vertices of degree at most d∗, thus creating a
number of subproblems; more specifically, d∗ = 4 for our first algorithm, and d∗ = 12
for our second algorithm. The choice of these values of d∗ is explained in the next
sections. During the branching process, the size of the graphs under consideration
decreases, and we might change the �-labels of certain vertices.

Suppose v is a vertex of degree d ≤ d∗ in H . If �(v) = 0 (respectively �(v) = 1),
then the algorithm branches into 2d−1 subproblems, each subproblem corresponding
to a possible way of choosing an even (respectively odd) number 0 ≤ p ≤ d of edges
incident with v that are guessed to be in the ONCT. We call the chosen edges old
trail edges. For each choice W of old trail edges, we perform the following two
operations:

1. set �(w) := �(w) + 1 (mod 2) for every w with vw ∈ W ;
2. delete v and all its d incident edges.

Repeat this procedure as long as the remaining graph contains a vertex of degree
at most d∗. Let H ′ be the resulting graph. Then H ′ has minimum degree d∗ + 1 and
each vertex u ∈ V (H ′) has some label �(u) ∈ {0,1}. Let E(H) = E(H ′) ∪ R(H ′) ∪
W(H ′), where W(H ′) contains all old trail edges and R(H ′) contains all other edges
we removed from H . In the next stage, edges in W(H ′) will be assumed to be in the
ONCT we are looking for, whereas edges in R(H ′) will be assumed not to be in the
ONCT. If there exists a vertex v ∈ V (H) \V (H ′) incident with an odd number of old
trail edges, then we discard the subproblem. The reason for this is the fact that we
can never obtain a nontrivial closed trail in such a subproblem, since v will have odd
degree in that trail and that is not possible. Otherwise, we keep the subproblem and
call the tuple (H ′,W(H ′), �) a stage-2 tuple.

Lemma 3 The branching phase creates T (n1) = O∗(2
d∗−1
d∗ n1) stage-2 tuples, where

n1 is the total number of edges deleted during this phase.

Proof Since for a vertex v of degree d we remove d edges and create 2d−1 subgraphs,

we find T (n1) = 2d−1 · T (n1 − d), which yields T (n1) = O∗(2 d−1
d

n1). Since d ≤ d∗,

we end up with O∗(2
d∗−1
d∗ n1) stage-2 tuples. �

We point out that the time complexity mentioned in Lemma 3 is O∗(1.6818n1) if
d∗ = 4 and O∗(1.8878n1) if d∗ = 12.

5.2 An O∗(1.6818n) Time Algorithm That Uses Exponential Space

In this section, we start by explaining how the first of our two algorithms for the OCT
problem finds an ONCT of the input graph H in case H is not a tree. We then prove
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that our first algorithm for finding an OCT of a connected graph H is correct, and
that it runs in O∗(1.6818n) time.

Let H be an input of the OCT problem other than a tree. In case H has vertices of
degree at most 4, we apply the branching procedure described in Sect. 5.1. Suppose
that during the branching process n1 edges were deleted (possibly n1 = 0). Then,
by Lemma 3, O∗(1.6818n1) stage-2 tuples (H ′,W(H ′), �) have been created. Each
of these stage-2 tuples will be processed using the dynamic programming procedure
described below.

Let (H ′,W(H ′), �) be a stage-2 tuple. If W(H ′) forms a dominating closed trail
of H , i.e., if every edge of H has at least one end vertex in common with an edge in
W(H ′), then we have found an optimum closed trail and the algorithm outputs this
trail. If this is not the case, then we enter the dynamic programming phase.

Our approach is to keep track of viable solutions in the following way. For a subset
S ⊆ V (H ′) and a labeling �′ : S → {0,1}, we say that the tuple (S, �′) is an option if
there is a subset E′ of edges in H ′[S] such that the following two conditions are both
satisfied:

(i) all vertices of S are in the same component of the graph (V (H),E′ ∪ W(H ′));
(ii) for each u ∈ S, the label �′(u) describes the parity of the number of edges in

E′ ∪ W(H ′) that are incident with u.

We apply dynamic programming to determine whether a tuple (S, �′) is an op-
tion. Hence, we start with considering each u ∈ V (H ′). We define two labellings
�∗ : {u} → {0,1} with �∗(u) := �(u) and �̄ : {u} → {0,1} with �̄(u) := �(u) +
1 (mod 2). Then ({u}, �∗) is an option if u is incident with at least one old trail edge.
Otherwise ({u}, �∗) is not an option. Furthermore, for every u ∈ V (H ′), ({u}, �̄) is
not an option.

Suppose that we know for all sets S ⊆ V (H ′) of size at most k and all labellings
�′ : S → {0,1} whether (S, �′) is an option or not. Then for each set S ⊆ V (H ′) of
size k, for each vertex v ∈ V (H ′) \ S, and for each {0,1}-labeling �′ of S ∪ {v}, we
do as follows. Let p be the number of old trail edges incident with v. We consider
every possible way of choosing 0 ≤ q ≤ 3 edges incident with v and a vertex in S.
The chosen edges will be referred to as new trail edges. For each choice N of new
trail edges, we set �′(x) := �′(x) + 1 (mod 2) for every x ∈ S with vx ∈ N . We then
perform the following three tests.

(1) Check if (S, �′) is an option.
(2) Check if p + q is even if �′(v) = 0 and odd if �′(v) = 1.
(3) If q = 0, check if there is a path from v to S in H only using old trail edges.

Only if the answers to tests (1), (2) and (3) are all affirmative, we say that (S ∪{v}, �′)
is an option. If so, we also check whether the set E′ of all new trail edges together
with the edges of W(H ′) belong to the same component of (V (H),E′ ∪W(H)), and
whether all parities are even, i.e., we check whether

(4) for each old trail edge e there is a path, consisting of only old trail edges, con-
necting e to a vertex in S ∪ {v};

(5) each vertex x in S ∪{v} has label �′(x) = 0 and each vertex y ∈ V (H ′)\ (S ∪{v})
incident with an old trail edge has label �(y) = 0.
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If the answers to tests (4) and (5) are both affirmative, the algorithm has detected a
nontrivial closed trail T of H (as we prove in Theorem 3 below). We may assume
that the algorithm also finds T , since that only requires some extra “bookkeeping”
during the dynamic programming phase; we omitted the details for clarity of pre-
sentation. The algorithm then checks how many edges of H are dominated by T

by computing β(T ). If β(T ) = |E(H)|, then T is a dominating closed trail of H .
Since every dominating closed trail is an optimum closed trail, the algorithm outputs
T . Otherwise the algorithm stores T , unless it has already found a nontrivial closed
trail T ′ with β(T ′) ≥ β(T ) before, in which case T is discarded. If k < |V (H ′)|, the
algorithm repeats the above procedure for all sets S ⊆ V (H ′) of size k + 1, all ver-
tices v ∈ V (H ′) \ S and all {0,1}-labellings �′ of S ∪ {v}. If k = |V (H ′)|, then the
algorithm terminates.

We now show that our first algorithm for finding an OCT is correct.

Theorem 3 (Correctness) When run on a connected graph H , the algorithm returns
an optimum closed trail of H .

Proof As shown in the outline at the beginning of Sect. 5, the algorithm starts by
checking if the input graph H is a tree. If H is a tree, then every closed trail of H

consists of a single vertex. In particular, an optimum closed trail of H consists of a
single vertex v of degree �(H). Hence the algorithm correctly outputs v in this case.
If H is not a tree, then H contains a nontrivial closed trail; in particular, H contains an
ONCT. We show below that the algorithm in fact finds such an ONCT T of H by ex-
ecuting the branching and dynamic programming procedures described in Sects. 5.1
and 5.2, respectively. Since an OCT of H might consist of a single vertex even if H is
not a tree, the ONCT T is not necessarily an OCT of H . Hence the algorithm checks
if a vertex v of maximum degree in H dominates more edges of H than T does. If so,
then v is an OCT of H , and the algorithm correctly outputs v. Otherwise T is both
an ONCT and an OCT of H , so the algorithm correctly outputs T .

It remains to show that, in case H is not a tree, the algorithm finds an ONCT T

of H by executing the branching and dynamic programming procedures described in
Sects. 5.1 and 5.2, respectively. Note that H has an optimum nontrivial closed trail
by our assumption that H is not a tree.

We first show that if the algorithm computes β(T ) for a subgraph T of H , then
T is a nontrivial closed trail of H . Only if the algorithm has found a stage-2 tuple
(H ′,W(H ′), �) with some option (S, �) for which the answers to tests (4) and (5)
are both affirmative, it computes β(T ) for a subgraph T of H consisting of all old
trail edges in W(H ′) plus all new trail edges that have been added between the ver-
tices of S. The dynamic programming, together with tests (3) and (4), ensures that
T is connected. Tests (1), (2) and (5) together with the definition of a stage-2 tuple
ensure that T is even. Hence, every subgraph T of H for which the value of β(T ) is
computed is a nontrivial closed trail of H . Note that the algorithm does not compute
β(T ) for each nontrivial closed trail T of H , but only for those that can be “built
up” satisfying certain connectivity conditions throughout the dynamic programming
phase.

It remains to show that the algorithm always finds an optimum nontrivial closed
trail T of H . Due to Corollary 2 we may assume that T is 3-ordered. We show that
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our algorithm stores T , unless it has already stored another optimum nontrivial closed
trail of H before it finds T . Let V ′ consist of all vertices that are not removed in the
branching procedure, so V ′ := V (H ′) for the graph H ′ in every stage-2 tuple. Let
T ′ be the subgraph of T with V (T ′) = V (T ) ∩ V ′. Then there exists a stage-2 tuple
(H ′,W(H ′), �) such that W(H ′) is exactly the set of edges of T that are incident with
at least one vertex in V (T )\V ′, and such that �(v) = 0 if v ∈ V ′ \V (T ′), and �(v) = 0
(respectively �(v) = 1) if v ∈ V (T ′) and v is incident with an even (respectively
odd) number of edges in W(H ′). Since our algorithm considers all possible stage-
2 tuples, it will detect tuple (H ′,W(H ′), �). As T is 3-ordered, each component of
T ′ is 3-ordered. This means that our dynamic programming procedure, based on the
number of ways a vertex can be made adjacent to a set S with at most three edges,
will find a labeling �′ such that (Ti, �

′) is an option for each component Ti of T . As
these components are connected to each other via old trail edges, at some moment
(T ′, �) will be formed. Then tests (1)–(5) will all be successful and the algorithm will
compute β(T ) for the subgraph T . Since T is an optimum nontrivial closed trail of H ,
there is no other nontrivial closed trail of H that dominates more edges of H than T

does. Hence the algorithm will store T , unless it has encountered a nontrivial closed
trail T ′ of H with β(T ′) = β(T ) before it found T , in which case the algorithm has
stored T ′. �

Below we give the overall time complexity of our first algorithm for solving the
OCT problem.

Theorem 4 (Running time) The algorithm runs in O∗(1.6818n) time on a connected
graph with n edges.

Proof From the outline of the algorithm at the beginning of Sect. 5 it is clear that all
steps not involving finding an ONCT can be performed in polynomial time. Hence
it suffices to prove that the algorithm finds an ONCT of a connected graph H other
than a tree in O∗(1.6818n) time, where n = |E(H)|.

We first prove that the dynamic programming procedure presented at the beginning
of Sect. 5.2 runs in O∗(3p) time on any p-vertex graph. Let H ′ be a graph on p

vertices. There are
(
p
k

)
sets S ⊆ V (H ′) of cardinality k, each of those sets has 2k

possible labellings �′, and there are
(
k
0

) + (
k
1

) + (
k
2

) + (
k
3

) = O(k3) ways to attach a
new vertex v to a subset of cardinality k by using at most 3 edges. Each of the tests
(1)–(5) can be done in polynomial time, and the same holds for computing β(T ) for
a nontrivial closed trail T of H . Hence the time complexity of this procedure is

O∗
(

p∑

k=1

(
p

k

)
· 2k · O(k3)

)

= O∗(3p).

Let H be an instance of the OCT problem having n edges, and suppose H is not a tree.
The algorithm repeatedly branches on vertices of degree at most d∗ = 4. Let n1 be the
number of edges deleted during this branching phase. Then we obtain O∗(1.6818n1)

stage-2 tuples by Lemma 3. Let (H ′,W(H ′), �) be such a stage-2 tuple, where H ′ is a
graph of minimum degree 5 having n2 := n−n1 edges and, say, p vertices. As shown
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above, the dynamic programming procedure uses O∗(3p) time. Since the minimum
degree in H ′ is 5, we obtain n2 ≥ 5p/2, or equivalently p ≤ 2n2/5. Hence we can

process each stage-2 tuple in time O∗(3
2n2

5 ) = O∗(1.5519n2). This means that the
overall time complexity of our algorithm on a graph H having n = n1 + n2 edges is

O∗(1.6818n1 · 1.5519n2) = O∗(1.6818n).

If we choose d∗ 	= 4, then the above time complexity is no longer guaranteed. �

Theorem 3 and Theorem 4 immediately imply the following.

Corollary 3 The OCT problem for a connected graph H with n edges can be solved
in O∗(1.6818n) time, using exponential space.

5.3 An O∗(1.8878n) Time Algorithm That Uses Polynomial Space

We describe our second algorithm for solving the OCT problem in the proof of the
following theorem.

Theorem 5 The OCT problem for a connected graph H with n edges can be solved
in O∗(1.8878n) time, using polynomial space.

Proof The second algorithm strongly resembles the first algorithm, described in
Sect. 5.2. The only difference is the way in which the algorithm finds an ONCT
of H in case H is not a tree. In order to prove correctness of our second algorithm
for the OCT problem, it therefore suffices to prove correctness of the procedure of
finding an ONCT of H described below.

Let H be a connected graph other than a tree. The algorithm executes the branch-
ing procedure described in Sect. 5.1, but this time we perform branching on ver-
tices of degree at most d∗ = 12. Suppose we delete n1 edges during the branch-
ing process. By Lemma 3, this yields O∗(211n1/12) = O∗(1.8878n1) stage-2 tuples
(H ′,W(H ′), �), where each graph H ′ has p vertices of degree at least 13 and
n2 = n − n1 edges. Note that n2 ≥ 13p/2, or equivalently p ≤ 2n2/13.

Since we assumed H not to be a tree, H has an ONCT T . By Theorem 2 we may
assume that T is 2-degenerate. Let T ′ denote the (2-degenerate) subgraph of T that
remains after the branching procedure. Note that T ′ is a subgraph of the graph H ′
of some stage-2 tuple (H ′,W(H ′), �). It is well-known that any 2-degenerate graph
on p vertices has at most 2p (or, more precisely, at most 2p − 3) edges. For every
stage-2 tuple (H ′,W(H ′), �), we check for every possible subset S ⊆ E(H ′) of edges
up to cardinality 2p whether S together with the old trail edges in W(H ′) forms a
nontrivial closed trail T of H . If so, then we compute the number β(T ) of edges
of H dominated by T , which can be done in polynomial time. If β(T ) = |E(H)|,
then T is a dominating closed trail of H . Since every dominating closed trail is an
optimum closed trail, the algorithm outputs T . Otherwise the algorithm stores T ,
unless it has already found a nontrivial closed trail T ′ with β(T ′) ≥ β(T ) before, in
which case T is discarded. Since we check all subsets S ⊆ E(H ′) for every stage-2
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tuple (H ′,W(H ′), �), we are guaranteed to find an optimum nontrivial closed trail
of H . This proves that our second algorithm for the OCT problem is correct.

From the outline of the algorithm at the beginning of Sect. 5 it is clear that all steps
not involving finding an ONCT can be performed in polynomial time. Since the above
procedure for finding an ONCT evidently only uses polynomial space, it remains
to determine the time complexity of this procedure. Using Stirling’s approximation
n2! ≈ n

n2
2 e−n2

√
2πn2 and the fact that p ≤ 2n2/13, the total number of checks per

stage-2 tuple can be estimated as follows:

2p∑

k=1

(
n2

k

)
≤ 2p

(
n2

2p

)
≤ 2p

(
n2
4n2
13

)
= O∗

((
1

αα(1 − α)1−α

)n2
)

,

where α = 4/13, which constitutes O∗(1.8539n2) checks. Since each of those checks
can be performed in polynomial time and the number of stage-2 tuples we have to
process is O∗(1.8878n1), the overall time complexity of our second algorithm is

O∗(1.8878n1 · 1.8539n2) = O∗(1.8878n) .

If we choose d∗ 	= 12, then this time complexity is no longer guaranteed. �

6 Conclusions

We presented the first deterministic exact algorithms breaking the 2n barrier for
the LONGEST CYCLE problem on claw-free graphs. Our first algorithm uses
O∗(1.6818n) time and exponential space, whereas our second algorithm uses
O∗(1.8878n) time and polynomial space. A natural question is whether similar ap-
proaches can be used for other generalizations of the HAMILTONIAN CYCLE prob-
lem. Since a Hamiltonian cycle is a connected 2-factor, the related NP-hard problem
of determining a 2-factor with the smallest number of components in a claw-free
graph G seems an obvious candidate. It was shown in [5] that this problem is equiv-
alent to finding a smallest set of edge-disjoint stars with at least three edges and
nontrivial closed trails that together dominate all edges of the preimage graph H of
the closure of G. However the approach in Sect. 5 for finding an OCT of H does
not generalize in a straightforward way to finding such a smallest set of edge-disjoint
stars with at least three edges and nontrivial closed trails. In fact, we do not believe a
similar approach is possible because the counterpart of Sect. 5 would involve solving
the following problem, which turns out to be NP-hard.

DECOMPOSITION IN ≥ 3-STARS AND CLOSED TRAILS (DEC)
Instance: a connected graph H .
Task: find a decomposition (partition) of E(H) into stars with at least three edges and
nontrivial closed trails.

It is not difficult to prove that the DEC problem is NP-hard by a reduction from
the following decision problem, which is known to be NP-complete [21].
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Fig. 2 The gadget for replacing the edges of G

DECOMPOSITION IN ≥ 3-STARS (DECOMP)
Instance: a connected graph H .
Question: can E(H) be decomposed into stars with at least three edges?

Let G be an instance of the DECOMP problem. Replace each edge uv of G

by the gadget illustrated in Fig. 2, i.e., replace uv by a graph with vertex set
{u,a, b, c, d, e, f, v} and edge set {ua,ab, bc, cd, de, ef,f v, ae, bf }. Then, consid-
ering the edge cd , one readily checks that E(G) has a decomposition into stars with
at least three edges if and only if the newly constructed graph has a decomposition of
its edge set into stars with at least three edges and nontrivial closed trails. This shows
that the decision version of the DEC problem is NP-complete, and hence that the
DEC problem is NP-hard. Note that the construction shows that the DEC problem
remains NP-hard even when restricted to 2-degenerate graphs.

Since a Hamiltonian cycle is a connected 2-regular spanning subgraph, another
direction would be to consider the problem of finding a connected spanning 3-regular
subgraph of a claw-free graph. We have no idea how to generalize our approach
in order to solve this problem. We heavily relied on the closure technique and the
relationship between longest cycles in a claw-free graph G and optimum closed trails
in the preimage graph H of the closure of G. We think it is highly unlikely that there
is a natural counterpart of our approach for finding connected 3-regular spanning
subgraphs.

Another interesting open problem is whether we can solve the TRAVELING

SALESMAN problem for claw-free graphs in O∗(αn) time for some constant α < 2.
This also requires some new ideas, as our current approach involving the relation-
ship between longest cycles in a claw-free graph G and optimum closed trails in the
preimage graph H of the closure of G does not suffice.

Recall that Björklund [2] recently gave a Monte Carlo algorithm that solves the
HAMILTON CYCLE problem in O∗(1.414n) time for bipartite graphs. It remains an
interesting question whether there exists a deterministic O∗(αn) time algorithm that
solves the HAMILTONIAN CYCLE problem for bipartite graphs for some constant
α < 2. Since Müller [22] showed that the HAMILTONIAN CYCLE problem is NP-
complete even for chordal bipartite graphs, i.e., bipartite graphs that do not contain a
cycle on six or more vertices as an induced subgraph, the same question can be asked
for this graph class. One might also try to design fast deterministic exact algorithms
for the HAMILTONIAN CYCLE problem restricted to superclasses of claw-free graphs
such as K1,4-free graphs.
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