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a b s t r a c t

We prove three complexity results on vertex coloring problems
restricted to Pk-free graphs, i.e., graphs that do not contain a
path on k vertices as an induced subgraph. First of all, we show
that the pre-coloring extension version of 5-coloring remains
NP-complete when restricted to P6-free graphs. Recent results of
Hoàng et al. imply that this problem is polynomially solvable on
P5-free graphs. Secondly, we show that the pre-coloring extension
version of 3-coloring is polynomially solvable for P6-free graphs.
This implies a simpler algorithm for checking the 3-colorability
of P6-free graphs than the algorithm given by Randerath and
Schiermeyer. Finally, we prove that 6-coloring is NP-complete
for P7-free graphs. This problem was known to be polynomially
solvable for P5-free graphs and NP-complete for P8-free graphs, so
there remains one open case.
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1. Introduction

In this paper we consider computational complexity issues related to vertex coloring problems
restricted to Pk-free graphs. Due to the fact that the usual ℓ-Coloring problem is NP-complete for
any fixed ℓ ≥ 3, there has been considerable interest in studying its complexity when restricted
to certain graph classes. Without doubt one of the most well-known results in this respect is that
ℓ-Coloring is polynomially solvable for perfect graphs. More information on this classic result and
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related work on coloring problems restricted to graph classes can be found in, e.g., [11,13]. Instead
of repeating what has been written in so many papers over the years, we also refer to these surveys
for motivation and background. Here we continue the study of ℓ-Coloring and its variants for Pk-free
graphs, a problem that has been studied in several earlier papers by different groups of researchers
(see, e.g., [2,3,6,8–10,15]). We summarize all these results in the table in Section 5.

1.1. Terminology

We refer to [1] for standard graph theory terminology and to [5] for terminology on computational
complexity.

Let G = (V , E) be a graph and k a positive integer. We say that G is Pk-free if G does not have a path
on k vertices as an induced subgraph.

A (vertex) coloring of a graph G = (V , E) is a mapping φ : V → {1, 2, . . .} such that φ(u) ≠ φ(v)
whenever uv ∈ E. Here φ(u) is usually referred to as the color of u in the coloring φ of G. An ℓ-coloring
of G is a mapping φ : V → {1, 2, . . . , ℓ} such that φ(u) ≠ φ(v) whenever uv ∈ E. The problem
ℓ-Coloring asks if a given graph has an ℓ-coloring.

In list-coloring we assume that V = {v1, v2, . . . , vn} and that for every vertex vi of G there is a
list Li of admissible colors (a subset of the natural numbers). Given these lists, a list-coloring of G is a
coloring φ : V → {1, 2, . . .} such that φ(vi) ∈ Li for all i ∈ {1, 2, . . . , n}; we say that φ respects the
lists Li.

In pre-coloring extension we assume that a (possibly empty) subset W ⊆ V of G is pre-colored
with φW : W → {1, 2, . . .} and the question is whether we can extend φW to a coloring of G. If φW is
restricted to {1, 2, . . . , ℓ} and wewant to extend it to an ℓ-coloring of G, we say we deal with the pre-
coloring extension version of ℓ-Coloring. In fact, we consider a slight variation on the latter problem
which can be considered as list coloring, but which has the flavor of pre-coloring: lists have varying
sizes including some of size 1.Wewill slightly abuse terminology and call these problems pre-coloring
extension problems too.

1.2. Results of this paper

We prove the following three complexity results on vertex coloring problems restricted to Pk-free
graphs.

First of all, in Section 2 we show that the pre-coloring extension version of 5-Coloring remains
NP-complete when restricted to P6-free graphs. Recent results of Hoàng et al. [6] imply that this
problem is polynomially solvable on P5-free graphs. Their algorithm for ℓ-Coloring for any fixed ℓ
is in fact a list-coloring algorithm where the lists are from the set {1, 2, . . . , ℓ}.

Secondly, in Section 3 we show that the pre-coloring extension version of 3-Coloring is
polynomially solvable for P6-free graphs. The 3-Coloring problem was known to be polynomially
solvable for P6-free graphs from a paper by Randerath and Schiermeyer [10]. Their approach is as
follows. First they note that the input graph G may be assumed to be K4-free, i.e., does not contain
a complete graph on four vertices as a subgraph, as otherwise it is not 3-colorable. Their algorithm
then determines if G contains a C5. If so, it exploits the existence of this C5 in G in a clever way. If
not, the authors use the Strong Perfect Graph Theorem to deduce that G is perfect. This allows them
to use the polynomial time algorithm of Tucker [12] for finding a χ-coloring of a K4-free perfect
graph. Here χ denotes the chromatic number of a graph, i.e., the smallest ℓ such that the graph
is ℓ-colorable. We follow a different approach. First, our algorithm is independent of the Strong
Perfect Graph Theorem, and second it uses a recent characterization of P6-free graphs in terms of
dominating subgraphs [14]. This way we can indeed show that the pre-coloring extension version
of 3-Coloring is polynomially solvable for P6-free graphs, whereas the approach of Randerath and
Schiermeyer [10] does not immediately lead to this result. The reason for this lies in the second part
of their algorithm that focuses onK4-free perfect graphs. Already for a subclass of this class, namely the
class of bipartite graphs, Kratochvíl [8] showed that the pre-coloring extension version of 3-Coloring
is an NP-complete problem.
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Finally, in Section 4we show that 6-Coloring is NP-complete for P7-free graphs. This problemwas
known to be polynomially solvable for P5-free graphs [6] and NP-complete for P8-free graphs [15], so
there remains one open case.

2. Pre-coloring extension of 5-coloring for P6-free graphs

In this section we show that the pre-coloring extension version of 5-Coloring remains NP-
complete when restricted to P6-free graphs. We use a reduction fromNot-All-Equal 3-Satisfiability
with positive literals only which we denote as NAE 3SATPL. This NP-complete problem [5] is also
known as Hypergraph 2-Colorability and is defined as follows. Given a set X = {x1, x2, . . . , xn} of
logical variables, and a set C = {C1, C2, . . . , Cm} of three-literal clauses over X in which all literals
are positive, does there exist a truth assignment for X such that each clause contains at least one true
literal and at least one false literal?

We consider an arbitrary instance I ofNAE 3SATPL anddefine a graphGI and a pre-coloring on some
vertices of GI , and next we show that GI is P6-free and that the pre-coloring on GI can be extended to a
5-coloring of GI if and only if I has a satisfying truth assignment in which each clause contains at least
one true literal and at least one false literal.

Theorem 1. The pre-coloring extension version of 5-Coloring is NP-complete for P6-free graphs.

Proof. Let I be an instance ofNAE 3SATPLwith variables {x1, x2, . . . , xn} and clauses {C1, C2, . . . , Cm}.
We define a graph GI corresponding to I and lists of admissible colors for its vertices based on the
following construction.We note here that the lists we introduce below are only there for convenience
to the reader; it will be clear later that all lists other than {1, 2, . . . , 5} are in fact forced by the pre-
colored vertices.

1. We introduce one new vertex for each of the clauses, and use the same labels C1, C2, . . . , Cm for
these m vertices; we assume that for each of these vertices there is a list {1, 2, 3} of admissible
colors. We say that these vertices are of C-type and use C to denote the set of C-type vertices.

2. We introduce one new vertex for each of the variables, and use the same labels x1, x2, . . . , xn for
these n vertices; we assume that for each of these vertices there is a list {4, 5} of admissible colors.
We say that these vertices are of x-type and use X to denote the set of x-type vertices.

3. We join all C-type vertices to all x-type vertices to form a complete bipartite graph with |C| |X|

edges.
4. For each clause Cj we fix an arbitrary order of its variables xi, xk, and xr , and we introduce three

pairs of new vertices {ai,j, bi,j}, {ak,j, bk,j}, {ar,j, br,j}; we assume the following lists of admissible
colors for these three pairs, respectively: {{1, 4}, {2, 5}}, {{2, 4}, {3, 5}}, {{3, 4}, {1, 5}}. We say
that these vertices are of a-type and b-type, and useA andB to denote the set of a-type and b-type
vertices, respectively. We add edges between x-type and a-type vertices whenever the first index
of the a-type vertex is the same as of the x-type vertex, and similarly for the b-type vertices. We
add edges between C-type and a-type vertices whenever the second index of the a-type vertex is
the same as the index of the C-type vertex, and similarly for the b-type vertices. Hence each clause
with three variables is represented by three 4-cycles that have one C-type vertex in common.

5. For each a-type vertex we introduce a copy of a K2,3, as follows: for ai,j we add five vertices
{pi,j,1, . . . , pi,j,5}, and we add all edges between {pi,j,1, pi,j,2, pi,j,3} and {pi,j,4, pi,j,5}. We say that
these vertices are of p-type and use P to denote the set of p-type vertices. We add edges between
each a-vertex and the p-vertices of its correspondingK2,3 depending on its list of admissible colors.
In particular, we join the a-vertex to the three p-vertices of its K2,3 that have a third index which
is not in its list of admissible colors. So, if ai,j has list {1, 4}, we join it to pi,j,2, pi,j,3, pi,j,5. We use
P1 to denote the set of all p-type vertices with the third index in {1, 2, 3} and P1 to denote all
other p-type vertices.

6. For each b-type vertex we introduce a new copy of a K2,3 on five vertices of q-type, in the same
way aswe introduced the p-type vertices for the a-type vertices. Edges are added in a similar way,
depending on the indices and the lists. We useQ to denote the set of q-type vertices,Q1 to denote
the set of all q-type vertices with third index in {1, 2, 3} andQ1 to denote all other q-type vertices.



Author's personal copy

612 H. Broersma et al. / European Journal of Combinatorics 34 (2013) 609–619

Fig. 1. The (complete bipartite) subgraph of GI induced by vertices of type C, p, q, x.

Fig. 2. (i) The subgraph of GI for clause C1 with ordered variables x1, x2, x3 . (ii) How a1,1 and b1,1 are connected to P and Q,
respectively.

7. We join all the p-type and q-type vertices with third indices 1, 2, 3 to all the p-type and q-type
vertices with third indices 4, 5 to form a complete bipartite graph with |P1 ∪Q1||P1 ∪Q1| edges.

8. We join all x-type vertices to all p-type and q-type vertices with third indices 1, 2, 3.
9. We join all C-type vertices to all p-type and q-type vertices with third indices 4, 5.

10. We pre-color all the p-type and q-type vertices according to their third index, so pi,j,ℓ will be pre-
colored with color ℓ ∈ {1, 2, . . . , 5}. Note that we can now in fact replace all lists introduced
earlier by {1, 2, . . . , 5}, since the shorter lists will be forced by the given pre-coloring.

See Figs. 1 and 2 for sketches of the ingredients in the construction of the graph GI ; in Fig. 2 we
illustrate an example in which C1 is a clause with ordered variables x1, x2, x3.

We now prove that GI is P6-free. In order to obtain a contradiction, suppose that the graph GI
contains an induced subgraph H that is isomorphic to P6. We first consider the complete bipartite
subgraph with bipartition classes V1 = C ∪ P1 ∪ Q1 and V2 = X ∪ P1 ∪ Q1.

Suppose that H contains at least four vertices from V1 ∪ V2. Since P6 contains no independent
set of cardinality four, H then contains at least one vertex from each of V1 and V2. This either yields
a vertex with degree at least three in H or a cycle on four vertices in H , a contradiction. Hence
|V (H)∩ (V1 ∪ V2)| ≤ 3. Since A∪B is an independent set, we also have |V (H)∩ (A∪B)| ≤ 3. Since
|V (H)| = 6, this implies that both inequalities are in fact equalities.

Let V (H) = {v1, v2, . . . , v6} and E(H) = {v1v2, v2v3, v3v4, v4v5, v5v6}. By symmetry, we may
assume that either {v1, v3, v5} ⊂ V (H)∩ (A∪B) or {v1, v3, v6} ⊂ V (H)∩ (A∪B). Noting that every
vertex ofP∪Q has atmost oneneighbor inA∪B, in both cases v2 ∈ C∪X.Wenext observe that every
vertex of A ∪ B has precisely one neighbor in C and precisely one neighbor in X. This implies that
we can neither have {v2, v4} ⊂ X nor {v2, v4} ⊂ C. Since v2v4 ∉ E(GI), we cannot have v4 ∈ C ∪ X.
This rules out the first case, and in the remaining case wemay assume {v1, v3, v6} ⊂ V (H)∩ (A∪B),
with v2 ∈ C ∪ X and v4 ∈ P ∪ Q. Since v5 is a neighbor of v4 while v2 is not a neighbor of v4, we
find that v5 ∉ C ∪ X. Hence v5 ∈ P ∪ Q. Because v4v5 is an edge and v4, v5 both belong to P ∪ Q,
one of them belongs to V1 and the other one to V2. However, then either v2v4 or v2v5 is an edge of
GI , because v2 ∈ C ∪ X is either adjacent to all vertices in V1 or else to all vertices in V2. This is not
possible, and we conclude that GI is P6-free.
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We claim that I has a truth assignment in which each clause contains at least one true and at least
one false literal if and only if the pre-coloring of GI can be extended to a 5-coloring of GI .

First suppose that I has a satisfying truth assignment inwhich each clause contains at least one true
and at least one false literal. We use color 4 to color the x-type vertices representing the true literals
and color 5 for the false literals. Now consider the lists assigned to the a-type and b-type vertices that
come in pairs chosen from {{1, 4}, {2, 5}}, {{2, 4}, {3, 5}}, {{3, 4}, {1, 5}}. If the adjacent x-type vertex
has color 4, color 1, 2 or 3 is forced on one of the adjacent a-type or b-type vertices, respectively, while
on the other one we can use color 5; similarly, if the adjacent x-type vertex has color 5, color 2, 3 or 1
is forced on one of the adjacent a-type or b-type vertices, respectively, while on the other one we can
use color 4. Since precisely two of the three x-type vertices of one clause gadget have the same color,
this leaves at least one of the colors 1, 2 and 3 admissible for the C-type vertex representing the clause.
By coloring the vertices associated with each clause and variable as described above, a 5-coloring of
the pre-colored graph GI is obtained.

Now suppose that we have a 5-coloring of the graph GI that respects the pre-coloring. Then
each of the x-type vertices has color 4 or 5, and each of the C-type vertices has color 1, 2 or 3.
We define a truth assignment that sets a variable to TRUE if the corresponding x-type vertex has
color 4, and to FALSE otherwise. Suppose that one of the clauses contains only true literals. Then
the three x-type vertices in the corresponding clause gadget of GI all have color 4. Now consider
the lists assigned to the a-type and b-type vertices of this gadget that come in pairs chosen from
{{1, 4}, {2, 5}}, {{2, 4}, {3, 5}}, {{3, 4}, {1, 5}}. Since the adjacent x-type vertices all have color 4,
colors 1, 2 and 3 are forced on three of the a-type and b-type vertices adjacent to the C-type vertex
of this gadget, a contradiction, since the C-type vertex has color 1, 2 or 3. This proves that every
clause contains at least one false literal. Analogously, every clause contains at least one true literal.
This completes the proof of Theorem 1. �

3. Pre-coloring extension of 3-coloring for P6-free graphs

In this section we show that the pre-coloring extension version of 3-Coloring is polynomially
solvable for P6-free graphs. A key ingredient in our approach is the following characterization of P6-
free graphs [14]. Here a subgraph H of a graph G is said to be a dominating subgraph of G if every
vertex of V (G) \ V (H) has a neighbor in H .

Lemma 2 ([14]). A graph G is P6-free if and only if each connected induced subgraph of G on more than
one vertex contains a dominating induced cycle on six vertices or a dominating (not necessarily induced)
complete bipartite subgraph. Moreover, these dominating subgraphs can be obtained in polynomial time.

Another key ingredient in our approach is the following lemma. Its proof follows from the fact that
the decision problem in this case can be modeled and solved as a 2SAT-problem. This approach has
been introduced by Edwards [4] and is folklore now, see also [6,10].

Lemma 3 ([4]). Let G be a graph in which every vertex has a list of admissible colors of size at most 2.
Then checking if G has a list-coloring is solvable in polynomial time.

An important subroutine in our algorithmworks as follows. Let G be a graph in which every vertex
has a list of admissible colors. Let U ⊆ V (G) contain all vertices that have a list consisting of exactly
one color. For every vertex u ∈ U we remove the unique color in its list from the lists of its neighbors.
Next we remove u from G. We repeat this process in the remaining graph as long as there exists a
vertex with a list of size 1. This process is called updating the graph. We note the following.

Lemma 4. A graph G with lists of admissible colors on its vertices can be updated in polynomial time. If
this results in a vertex with an empty list, then G does not have a list-coloring respecting the original lists.

We are now ready to state the main result of this section. We prove a slightly stronger statement,
namely that we can decide in polynomial timewhether a P6-free graph, in which each vertex has a list
of admissible colors from the set {1, 2, 3}, has a coloring respecting these lists; note that a pre-coloring
corresponds to lists of size 1 on the pre-colored vertices.
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Theorem 5. The pre-coloring extension version of 3-Coloring can be solved in polynomial time for P6-
free graphs.

Proof. Suppose that our instance graph G = (V , E) is connected (otherwise we treat the components
of G separately) and that we have lists of admissible colors from the set {1, 2, 3} on each vertex of G.
We show how to check in polynomial time whether G allows a 3-coloring respecting these lists.

We first check if G has a dominating C6. We can do this in O(|V |
6) time by brute force. If so, we

can solve our problem as follows. We assume a coloring on the C6 (respecting the lists) and apply
Lemma 4. Since all original lists are subsets of {1, 2, 3} and the vertices not in the C6 are dominated
by the C6, their new lists have size at most 2. This means that we can apply Lemma 3. Because the
number of possible 3-colorings of the C6 is at most 36, we can check all of them if necessary.

Now suppose that G does not have a dominating C6. Then, by Lemma 2, we can construct in
polynomial time a dominating complete (not necessarily induced) bipartite graph H of G with
bipartition classes A and B. As we cannot assume that H has a bounded size, we must use the special
structure of P6-free graphs in a more advanced way. Below we show how.

Claim 1. In any eligible 3-coloring of G at least one of the sets A, B is monochromatic.

We prove Claim 1 as follows. Suppose that both A and B contain two vertices with different colors.
Then either 4 colorsmust be used on A∪B or two vertices with the same color are adjacent. Both cases
are not possible.

Due to Claim 1 we can proceed as follows. We first assume that A is monochromatic. If this does
not result in a 3-coloring of Gwe repeat the procedure assuming that B is monochromatic.

So, from now on, we assume that all vertices of A are colored with color 1 (possibly after renaming
the colors). We apply Lemma 4. Let G′ denote the resulting graph after restoring one vertex a ∈ A
and its incident edges back into the graph; we need such a vertex later, in order to make use of the
P6-freeness. So, in G′, the list of every vertex except a has size 2 or 3. Let R denote the subset of all
vertices of G′ with lists of size 3. If R = ∅, then we are done by Lemma 3.

Suppose that R ≠ ∅. Note that the vertices in R are not adjacent to any vertex of A in the original
graph G. Then theymust be adjacent to at least one vertex of B, becauseH is a dominating subgraph of
G. Since H is complete bipartite, all vertices of B∩ V (G′) are in NG′(a), and we redefine B := NG′(a) for
convenience.We observe that every vertex of B has list {2, 3}, and consequently, Rmust be a subset of
Q = V (G′)\ ({a}∪B). We observe that B dominates R but not necessarily all vertices of Q . We analyze
pairs of adjacent vertices of Q and distinguish a number of cases.
Case 1. Q contains an edge pq such that p is adjacent to a vertex b ∈ B \ NG′(q) and q is adjacent to a
vertex c ∈ B \ NG′(p).

First note that the set S = {a, b, c, p, q} induces a C5 with possibly an additional edge bc in G′. Let
R′ be the subset of R consisting of vertices not dominated by S. If R′

= ∅, we check all O(35) eligible
3-colorings of S and apply Lemma 3 for every such coloring. Suppose the contrary, i.e., R′

1 ≠ ∅. Let R′

1
consist of all vertices x of R′ so that b or c has a neighbor in B∩NG′(x). Let R′

2 consist of all vertices x of
R′

\ R′

1 so that both p and q have a neighbor in B ∩ NG′(x). Let R′

3 = R′
\ (R′

1 ∪ R′

2).

Claim 2. Any eligible 3-coloring of S will reduce the list size of every vertex in R′

1 ∪R′

2 by at least one color.

We prove Claim 2 as follows. A 3-coloring on S would color b, c , and at least one of p, qwith color
2 or 3. Consequently, it will fix the color of every vertex y ∈ B that is adjacent to b, c or to both p and q,
because vertices in B have list {2, 3}. This has as a further consequence that the list of every neighbor
of such ywill be reduced by at least one color. By definition, R′

1 ∪R′

2 only contains such neighbors. This
proves Claim 2.

Suppose that R′

3 = ∅. Then, by Claim 2, we can apply Lemma 3 every time we guess a 3-coloring
of S. Suppose that R′

3 ≠ ∅. Because R is dominated by B, every vertex x ∈ R′

3 has a neighbor in B. By
definition, there is no edge between B ∩ NG′(x) and {b, c}, and only one of {p, q} may have a neighbor
in B ∩ NG′(x). However, every y ∈ B ∩ NG′(x) must be adjacent to one of p, q; otherwise xyabpq is an
induced P6. This means that we can partition R′

3 into two sets T1, T2, where T1 consists of all vertices
of R′

3, whose neighbors in B are adjacent to p and not to q, and T2 consists of all vertices of R′

3, whose
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neighbors in B are adjacent to q and not to p. Because R′

3 ≠ ∅, at least one of T1, T2 is nonempty, and
we analyze two subcases.
Case 1a. T1 ≠ ∅ and T2 ≠ ∅.

Let Di be the set of vertices in B that have a neighbor in Ti for i = 1, 2.

Claim 3. Every vertex in D1 is adjacent to every vertex in D2.

We prove Claim 3 as follows. Let b′
∈ D1 and c ′

∈ D2. Suppose that b′c ′
∉ E(G′). By definition, b′

has a neighbor p′
∈ T1, and c ′ has a neighbor q′

∈ T2. Then p′q′
∈ E(G′); otherwise p′b′pqc ′q′ is an

induced P6. However, then qcab′p′q′ is an induced P6. This is not possible and completes the proof of
Claim 3.

We nowproceed as follows. Every eligible 3-coloring of S colors at least one of p, qwith color 2 or 3.
As a direct consequence, one ofD1,D2 becomesmonochromatic, because all the vertices inD1∪D2 ⊆ B
have list {2, 3}. Due to Claim 3, also the other set in {D1,D2} becomesmonochromatic. Thismeans that
the list size of every vertex in R′

3 = T1 ∪ T2 is reduced by at least one color. By Claim 2, the same holds
for every vertex in R′

1 ∪ R′

2. Thus we may apply Lemma 3 every time we guess a 3-coloring of S.
Case 1b. T1 = ∅ or T2 = ∅.

We assumewithout loss of generality that T1 = ∅. If q receives color 2 or 3 in the guessed 3-coloring
of S then, as before, the subset of B that consists of vertices adjacent to q becomes monochromatic,
and consequently, the list size of every vertex in R′

3 = T2 reduces by at least one color. Recall that the
same holds for every vertex in R′

1 ∪ R′

2 due to Claim 2. This means that we may apply Lemma 3 every
time we guess a 3-coloring of S.

Suppose that using color 2 or 3 on q does not result in a 3-coloring of G′ in the end. Then we assign
color 1 to q and update G′ without removing a. We check if we are in Case 1. If so, we repeat the
(polynomial time) procedure described in Case 1. If not, then we check whether we are in Case 2 or
Case 3 described below; note that these two cases together cover all remaining possibilities.
Case 2. Case 1 does not apply, andQ contains an edge pq such that p is adjacent to a vertex b ∈ B∩N(q)
and q is adjacent to a vertex c ∈ B \ N(p).

The set S = {a, b, c, p, q} now induces a C5 with an edge bq and possibly an additional edge bc
in G′. We define R′ as in Case 1. If R′

= ∅, then we are done just as in Case 1. Otherwise we define
R′

1, R
′

2, R
′

3 as in Case 1. Then, in case R′

3 = ∅, we are done just as in Case 1. Suppose that R′

3 ≠ ∅. We
define T1, T2 as in Case 1. Suppose that T1 ≠ ∅. Then there exists a vertex p′

∈ T1 with a neighbor
b′

∈ B such that b′ is adjacent to p and not to q. Then we contradict our assumptions since we are in
Case 1 with b′ instead of b. Hence T1 = ∅, and we can proceed as in Case 1b.
Case 3. Every two adjacent vertices p, q ∈ Q have the same neighbors in B.

This means that all vertices in each component of Q have the same neighbors in B. We may assign
color 1 to every vertex in Q that has color 1 in its list but that does not have a neighbor with color 1
in its list. Afterwards, we update G′ (hence a is removed as well). Let F be the set of components of
the resulting graph and consider each component F ∈ F separately.

Suppose that F only contains vertices whose lists have size at most 2. Then we can apply Lemma 3.
Suppose that F contains at least one vertex x with a list of size 3. Because x is dominated by B, there
must exist vertices in B that are adjacent to x and that still have list {2, 3}, so B ∩ V (F) ≠ ∅. Let
y ∈ B ∩ V (F).

Claim 4. Assigning color 2 or 3 to y reduces the list of every vertex in B ∩ V (F) with at least one color.

We prove Claim 4 as follows. Let C be the set of components in the subgraph of F induced by
B ∩ V (F). Let C be the component in C that contains y. Then C is a bipartite graph, every vertex of
which has list {2, 3}. Hence, fixing a color of y fixes the color of all vertices in C . Let C ′

∈ C \ {C} be a
component that is connected to C in F by a path P that has all its internal vertices in Q .

First suppose that P has at least two internal vertices x, x′. By the assumption of Case 3, x and x′

share the same neighbors in B. Hence, a neighbor in C of the internal vertices of P must receive the
same color as a neighbor in C ′. Now suppose that P has exactly one internal vertex x. If x has list {2, 3},
coloring C fixes the color of x and consequently the color of C ′. If 1 is a color in the list of x, then by



Author's personal copy

616 H. Broersma et al. / European Journal of Combinatorics 34 (2013) 609–619

construction x has a neighbor x∗ with 1 in its list. By the assumption of Case 3, x and x∗ share the same
neighbors in C ′. Hence, we may add x∗ as an internal vertex of P and return to the previous case, in
which P has two internal vertices. We repeat these arguments for components in C connected to C or
C ′ by a path that has all its internal vertices in Q , and so on. This proves Claim 4.

We now proceed as follows. We first consider the case in which y gets color 2. Then, by Claim 4,
all colors on B are fixed and we may apply Lemma 3. If this does not lead to a 3-coloring of F , then we
give y color 3 and apply Lemma 3 as well.

After checking every F ∈ F separately, we have either found (in polynomial time) an eligible
3-coloring of every component ofF , or a component inF that does not allow an eligible 3-coloring. In
the first case we have found an eligible 3-coloring of G. In the second case we conclude that there does
not exist an eligible 3-coloring of G with monochromatic A (and we need to verify if such a coloring
exists with monochromatic B). This completes the proof of Theorem 5. �

4. 6-Coloring for P7-free graphs

In this section we prove that 6-Coloring is NP-complete for P7-free graphs. We use a reduction
from 3-Satisfiability (3SAT). We consider an arbitrary instance I of 3SAT and define a graph GI ,
and next we show that GI is P7-free and that GI is 6-colorable if and only if I has a satisfying truth
assignment.

Theorem 6. The 6-Coloring problem is NP-complete for P7-free graphs.

Proof. Let I be an arbitrary instance of 3SAT with variables {x1, x2, . . . , xn} and clauses {C1,
C2, . . . , Cm}. We define a graph GI corresponding to I based on the following construction.

1. We introduce a gadget on 8 new vertices for each of the clauses, as follows. For each clause Cj we
introduce a gadget with vertex set:
{aj,1, aj,2, aj,3, bj,1, bj,2, bj,3, cj,1, cj,2} and edge set:
{aj,1aj,2, aj,1aj,3, aj,2aj,3, aj,1bj,1, aj,2bj,2, aj,3bj,3, bj,1cj,1, bj,1cj,2, bj,2cj,1, bj,2cj,2,
bj,3cj,1, bj,3cj,2, cj,1cj,2}.
We say that these vertices are of a-type, b-type and c-type. These vertices induce disjoint
components in GI which we will call clause-components.

2. We introduce a gadget on 3 new vertices for each of the variables, as follows. For each variable xi
we introduce a complete graph with vertex set {xi, xi, yi}. We say that these vertices are of x-type
(both the xi and the xi vertices) and of y-type. These vertices induce disjoint triangles in GI which
we will call variable-components.

3. For every clause Cj we fix an arbitrary order of its variables xi1 , xi2 , xi3 . For h = 1, 2, 3 we add the
edges bj,hxih or bj,hxih depending on whether xih or xih is a literal in C , respectively. We also add the
edge bj,hyih for h = 1, 2, 3.

4. We introduce three additional vertices d1, d2 and z, and join d1 and d2 by an edge. We join all xi to
d1 by edges, and all xi to d2.

5. We join z to all vertices of y-type, a-type, and c-type, and to d1 and d2.
6. We join all the x-type vertices and y-type vertices to all the a-type and c-type vertices.
7. Finally, we join d1 and d2 to all the a-type, b-type and c-type vertices.

See Figs. 3–5 for an example of a graph GI . In this example, C1 is a clause with literals x1, x2, and x3.
We now prove that GI is P7-free. In order to obtain a contradiction, suppose that the graph GI

contains an induced subgraph H that is isomorphic to P7. We observe that two distinct variable-
components do not share a b-type vertex as a common neighbor.

First suppose that H contains both d1 and d2. Then, since d1d2 ∈ E(H) and H has no cycles and
no vertices with degree more than 2, H does neither contain z nor any vertices of a-type, b-type or
c-type, and at most two x-type vertices (with one positive and one negative literal in the case where
it contains two). The longest path we can obtain is a P6, a contradiction. We conclude that H contains
at most one of the vertices d1 and d2.

Next suppose that H contains both d1 and z. Then, since d1z ∈ E(H) and H has no cycles and no
vertices with degree more than 2, H neither contains d2 nor any vertices of a-type or c-type, and at
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Fig. 3. The subgraph of GI induced by vertices of type a, c, x, y.

Fig. 4. (i) The subgraph of GI induced by d1, d2, z and vertices of type a, b, c. (ii) The subgraph of GI induced by d1, d2, z and
vertices of type x, y.

Fig. 5. The subgraph of GI for clause C1 with ordered literals x1, x2, x3 .

most one b-type and at most one y-type vertex. Since |V (H)| = 7, this implies that H contains at least
three vertices of x-type. Since d1 is adjacent to all xi and to z,H contains at most one xi. So H contains
at least two vertices xj and xk. InH, xj can only have neighbors in {xj, yj, b}where b is the only possible
b-type vertex in H . Recall that b can be adjacent to at most one of the variable-components. Since H
contains atmost one y-type vertex, atmost one b-type vertex, and atmost one xi, thismeans that there
cannot be three distinct vertices xj, xk and xr inH . Sowe conclude thatH contains precisely one y-type
vertex, one b-type vertex, one xi and two distinct xj and xk (where possibly i = j or i = k). But now d1
has degree 3 in H , a contradiction. We conclude that H contains at most one of the vertices d1 and z.
By symmetry, H contains at most one of the vertices d2 and z, and hence at most one of d1, d2 and z.

Next we are going to show that H contains at most two b-type vertices. To the contrary, first sup-
pose that H contains at least four b-type vertices. Because the b-type vertices form an independent
set, H contains exactly four of them, and the other three vertices of H also form an independent set.
This implies that the other three are either of a-type and c-type or of x-type and y-type. The latter
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cannot occur, because two variable-components do not share a b-type vertex as a common neighbor.
Hence, all vertices ofH are of a-type, b-type and c-type. This implies thatH is a subgraph of one clause-
component, a contradiction. Next suppose thatH contains precisely three b-type vertices. If z ∉ V (H),
then, since all the x-type and y-type vertices are joined to all the a-type and c-type vertices, the other
four vertices are either of a-type and c-type or of x-type and y-type. Again the former cannot occur
since H is not a subgraph of one clause-component and the latter cannot occur, because two variable-
components do not share a b-type vertex as a common neighbor. So we conclude that z ∈ V (H). Then
z and the three b-type vertices form an independent set inH , and the other three vertices also form an
independent set in H . Just as in the case when H contains four b-type vertices, the only possibility is
that these three other vertices are of a-type and c-type. But since z is adjacent to all a-type and c-type
vertices, we obtain a contradiction. We conclude that H contains at most two b-type vertices.

Together with the earlier conclusion that H contains at most one of d1, d2 and z, this implies that
H contains at least four vertices from the set of all a-type, c-type, x-type and y-type vertices. Due to
the adjacencies between these vertices and the fact that H has neither cycles nor vertices with degree
more than 2, we find that all four are either of a-type and c-type or of x-type and y-type. In the for-
mer case z, d1 and d2 are no vertices of H . But then all vertices of H are of a-type, b-type and c-type,
so H is contained in one clause-component, a contradiction. In the latter case we know that H con-
tains vertices from at least two variable-components. Since these components have no b-type vertex
as a common neighbor, they are connected through one of d1, d2 and z. Hence H contains vertices of
precisely two of these components, implying that H contains precisely two b-type vertices. It is not
difficult to check that the b-type vertices have degree 1 in H . This in turn implies that d1 and d2 are no
vertices of H . Hence z ∈ V (H) and z has two y-type neighbors in H . The other two vertices of H are of
x-type and each of these xi or xi is adjacent to a b-type vertex and to yi in H . But then this yi and this
b-type vertex are adjacent, our final contradiction. We conclude that GI is P7-free.

We claim that I has a satisfying truth assignment if and only if GI is 6-colorable.
First suppose that I has a satisfying truth assignment. We use color 4 or 5 to color the x-type ver-

tices representing the true literals and color 6 for the false literals. In particular, if xi is true, we use
color 5 to color the corresponding vertex; if xi is true, we use color 4 to color the corresponding vertex.
We use color 4 or color 5 to color the y-type vertices, depending on the colors we used for the x-type
vertices. This yields a proper 3-coloring of all the variable-components with colors 4, 5 and 6. We ex-
tend this 3-coloring by using color 6 for z and colors 4 and 5 for d1 and d2, respectively. For the true
literals of Cj, we can use color 6 for the corresponding b-type vertex, and color 1 for the other b-type
vertices of the corresponding clause-component. Since each clause contains at least one true literal,
we note that we do not use color 1 for all three b-type vertices of the clause-components. We can now
use colors 2 and 3 for the c-type vertices and colors 1, 2 and 3 for the a-type vertices to extend the
coloring to a 6-coloring of GI .

Now suppose that we have a 6-coloring of GI with colors {1, 2, . . . , 6}. We assume that vertex z
has color 6, that d2 has color 5, and that d1 has color 4. This implies that all a-type and c-type vertices
have colors from {1, 2, 3}, and all three colors are used on the a-type vertices, and two of the three
on the c-type vertices. This implies that all x-type vertices have colors from {4, 5, 6} and all y-type
vertices from {4, 5}. Without loss of generality, suppose that in one of the clause-components, the
c-type vertices have colors 2 and 3. Then the b-type vertices in this clause-component can only have
colors from {1, 6}. If all of them have color 1, we obtain a contradiction with the coloring of the three
a-type vertices in this component. So at least one of the b-type vertices has color 6. The same holds
if we had assumed another choice for the two colors used on the c-type vertices. This implies that
the corresponding x-type vertex has color 4 or 5. We define a truth assignment that sets a literal to
FALSE if the corresponding x-type vertex has color 6, and to TRUE otherwise. In this way we obtain a
satisfying truth assignment for I . This completes the proof of Theorem 6. �

5. Conclusions and open problems

Weproved that the pre-coloring extension version of 5-Coloring remains NP-complete for P6-free
graphs. Hoàng et al. [6] showed that the pre-coloring extension version of ℓ-Coloring is polynomially
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Table 1
The complexity of ℓ-Coloring and its pre-coloring extension version (marked by ∗) on Pk-free graphs for fixed combinations
of k and ℓ.

Pk-free ℓ

3 3∗ 4 4∗ 5 5∗
≥6 ≥6∗

k ≤ 5 P P P P P P P P
k = 6 P P ? ? ? NP-c ? NP-c
k = 7 ? ? ? NP-c ? NP-c NP-c NP-c
k = 8 ? ? NP-c NP-c NP-c NP-c NP-c NP-c
k ≥ 9 ? ? NP-c NP-c NP-c NP-c NP-c NP-c

solvable on P5-free graphs for any fixed ℓ. In contrast, determining the chromatic number is NP-
hard on P5-free graphs [7]. We showed that the pre-coloring extension version of 3-Coloring is
polynomially solvable for P6-free graphs. Finally, we proved that 6-Coloring is NP-complete for
P7-free graphs. Recently, Broersma et al. [2] showed that 4-Coloring is NP-complete for P8-free graphs
and that the pre-coloring extension version of 4-Coloring is NP-complete for P7-free graphs. All
these results together lead to the following Table 1 that shows the current status of ℓ-Coloring and
its extension version for Pk-free graphs. This table also shows which cases are still open. We finish
this paper with two other open problems on 3-Coloring that have intrigued many researchers: the
complexity of 3-Coloring is open for graphs with diameter 2, and for graphs with diameter 3.
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