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In this paper we make the first step beyond bidimensionality by obtaining subexponential
time algorithms for problems on directed graphs. We develop two different methods to
achieve subexponential time parameterized algorithms for problems on sparse directed
graphs. We exemplify our approaches with two well studied problems. For the first
problem, k-Leaf Out-Branching, which is to find an oriented spanning tree with at least k

leaves, we obtain an algorithm solving the problem in time 2O(
√

k log k)n+nO(1) on directed
graphs whose underlying undirected graph excludes some fixed graph H as a minor. For
the special case when the input directed graph is planar, the running time can be improved

to 2O(
√

k )n + nO(1) . The second example is a generalization of the Directed Hamiltonian

Path problem, namely k-Internal Out-Branching, which is to find an oriented spanning
tree with at least k internal vertices. We obtain an algorithm solving the problem in time

2O(
√

k log k) + nO(1) on directed graphs whose underlying undirected graph excludes some
fixed apex graph H as a minor. Finally, we observe that on these classes of graphs, the
k-Directed Path problem is solvable in time O((1 + ε)kn f (ε)), for any ε > 0, where f is
some function of ε.
Our methods are based on non-trivial combinations of obstruction theorems for undirected
graphs, kernelization, problem-specific combinatorial structures, and a layering technique
similar to the one employed by Baker to obtain PTAS for planar graphs.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Parameterized complexity theory is a framework for a refined analysis of hard (NP-hard) problems. Here, every input
instance I of a problem Π is accompanied with an integer parameter k and Π is said to be fixed parameter tractable (FPT)
if there is an algorithm running in time f (k) · nO(1) , where n = |I| and f is a computable function. A central problem in
parameterized algorithms is to obtain algorithms with running time f (k) ·nO(1) such that f is as slowly growing function as
possible. This has led to the development of various graph algorithms with running time 2O(k)nO (1) — notable ones include
k-Feedback Vertex Set [9,12], k-Leaf Spanning Tree [39], k-Odd Cycle Transversal [43], k-Path [4], and k-Vertex Cover [13]
in undirected graphs. A natural question was whether we can get subexponential time algorithms for these problems, that is,
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can we have algorithms with running time 2o(k)nO(1) . It is now possible to show that these problems do not admit algo-
rithms with running time 2o(k)nO(1) unless the Exponential Time Hypothesis (ETH) [28,36] fails. Finding algorithms with
subexponential running time on general undirected graphs is a trait uncommon to parameterized algorithms.

However, the situation changes completely when we consider problems on topological graph classes like planar graphs or
graphs of bounded genus. In 2000, Alber et al. [1] obtained the first parameterized subexponential algorithm on undirected
planar graphs by showing that k-Dominating Set is solvable in time 2O(

√
k )nO(1) . This result triggered an extensive study

of parameterized problems on planar and more general classes of sparse graphs like graphs of bounded genus, apex-minor-
free graphs and H-minor-free graphs. All this work led to subexponential time algorithms for several fundamental problems
like k-Feedback Vertex Set, k-Edge Dominating Set, k-Leaf Spanning Tree, k-Path, k–r-Dominating Set, k-Vertex Cover to
name a few on planar graphs [1,18,33], and more generally, on H-minor-free graphs [19,21,22]. These algorithms are ob-
tained by showing a combinatorial relation between the parameter and the structure of the input graph, and proofs require
strong graph-theoretic arguments. This graph-theoretic and combinatorial component in the design of subexponential time
parameterized algorithms makes it of an independent interest.

Demaine et al. [19] abstracted out the “common theme” among the parameterized subexponential time algorithms on
sparse graphs and created the meta-algorithmic theory of bidimensionality. The bidimensionality theory unifies and im-
proves almost all known previous subexponential algorithms on spare graphs. The theory is based on algorithmic and
combinatorial extensions to various parts of Graph Minor Theory of Robertson et al. [44] and provides a simple criterion
for checking whether a parameterized problem is solvable in subexponential time on sparse graphs. The theory applies to
graph problems that are bidimensional in the sense that the value of the solution for the problem in question on a k × k
grid or “grid like graph” is at least Ω(k2) and the value of solution decreases while contracting or sometime deleting
the edges. Problems that are bidimensional include k-Feedback Vertex Set, k-Edge Dominating Set, k-Leaf Spanning Tree,
k-Path, k–r-Dominating Set, k-Vertex Cover and many others. In most cases we obtain subexponential time algorithms
for a problem using bidimensionality theory in following steps. Given an instance (G,k) to a bidimensional problem Π ,
in polynomial time we either decide that it is a YES-instance to Π or the treewidth of G is O(

√
k ). In the second case,

using known parameterized constant factor approximation algorithm for the treewidth [5,10], we find a tree decomposition
of width O(

√
k ) for G and then solve the problem by doing dynamic programming over the obtained tree decompo-

sition. This approach combined with Catalan structure based dynamic programming over graphs of bounded treewidth
has led to 2O(

√
k )nO(1) time algorithm for k-Feedback Vertex Set, k-Edge Dominating Set, k-Leaf Spanning Tree, k-Path,

k–r-Dominating Set, k-Vertex Cover and many others on planar graphs [18,19,26] and in some cases like k-Dominating Set

and k-Path on H-minor-free graphs [19,25]. We refer to surveys by Demaine and Hajiaghayi [22] and Dorn et al. [24] for
further details on bidimensionality and subexponential parameterized algorithms.

While bidimensionality theory is a powerful algorithmic framework on undirected graphs, it remains unclear how to
apply it to problems on directed graphs (or digraphs). The main reason is that Graph Minor Theory for digraphs is still in
a nascent stage and there are no suitable obstruction theorems so far. For an example, even the first step of the framework
does not work easily on digraphs, as there is no unique notion of directed k × k grid. Given a k × k undirected grid we can
make 2Ω(k2) distinct directed grids by choosing orientations for the edges. Hence, unless we can guarantee a lower bound of
Ω(k2) on the size of solution of a problem for any directed k × k grid, the bidimensionality theory does not look applicable
for problems on digraphs. Even the analogue of treewidth for digraphs is not unique and several alternative definitions
have been proposed [7,35,37]. Only recently the first non-trivial subexponential parameterized algorithms on digraphs was
obtained. Alon et al. [3] introduced the method of chromatic coding, a variant of color coding [4], and combined it with
divide and conquer to obtain 2O(

√
k log k)nO(1) for k-Feedback Arc Set in tournaments. See also [27,32,38] for more recent

refinements of this result.

1.1. Our contribution

In this paper we make the first step beyond bidimensionality by obtaining subexponential time algorithms for problems
on sparse digraphs. We develop two different methods to achieve subexponential time parameterized algorithms for digraph
problems when the input graph can be embedded on some surface or the underlying undirected graph excludes some fixed
graph H as a minor.

1.2. Quasi-bidimensionality

Our first technique can be thought of as “bidimensionality in disguise”. We observe that given a digraph D , whose
underlying undirected graph UG(D) excludes some fixed graph H as a minor, if we can remove o(k2) vertices from the
given digraph to obtain a digraph whose underlying undirected graph has a constant treewidth, then the treewidth of
UG(D) is o(k) (Lemma 1). So given an instance (D,k) to a problem Π , in polynomial time we either decide that it is
a YES-instance to Π or the treewidth of UG(D) is o(k). In the second case, as in the framework based on bidimensionality,
we solve the problem by doing dynamic programming over the tree decomposition of UG(D). The dynamic programming
part of the framework is problem-specific and runs in time 2o(k) + nO(1) . We exemplify this technique on the well studied
problem of k-Leaf Out-Branching.
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We say that a subdigraph T on vertex set V (T ) of a digraph D on vertex set V (D) is an out-tree if T is an oriented tree
with only one vertex r of in-degree zero (called the root). The vertices of T of out-degree zero are called leaves and every
other vertex is called an internal vertex. If T is a spanning out-tree, that is, V (T ) = V (D), then T is called an out-branching
of D . Now we are in position to define the problem formally.

k-Leaf Out-Branching (k-LOB): Given a digraph D with the vertex set V (D) and the arc set A(D) and a positive integer k,
check whether there exists an out-branching with at least k leaves.

The study of k-Leaf Out-Branching has been at forefront of research in parameterized algorithms in the last few years.
Alon et al. [2] showed that the problem is fixed parameter tractable by giving an algorithm that decides in time f (k) · nO(1)

whether a strongly connected digraph has an out-branching with at least k leaves. Bonsma and Dorn [11] extended this
result to all digraphs, and improved the running time of the algorithm. Kneis et al. [39] provided a parameterized algorithm
solving the problem in time 4knO(1) . This result was further improved to 3.72knO(1) by Daligault et al. [16]. Binkele-Raible
et al. [8] showed that for the rooted version of the problem, where apart from the input instance we are also given a root r
and one asks for a k-leaf out-branching rooted at r, admits an O(k3) kernel. Furthermore they also show that k-LOB does
not admit polynomial kernel unless the polynomial hierarchy collapses to its third level. Finally, Daligault and Thomassé [17]
obtained an O(k2) kernel for the rooted version of the k-LOB problem and gave a constant factor approximation algorithm
for k-LOB.

Using our new technique in combination with the kernelization result of [8], we obtain an algorithm for k-LOB that
runs in time 2O(

√
k log k)n + nO(1) for digraphs whose underlying undirected graph is H-minor-free. For planar digraphs our

algorithm runs in 2O(
√

k )n + nO(1) time.

1.3. Kernelization and divide & conquer

Our second technique is a combination of divide and conquer, kernelization and dynamic programming over graphs of
bounded treewidth. Here, using a combination of kernelization and a Baker style layering technique for obtaining polynomial
time approximation schemes [6], we reduce the instance of a given problem to 2o(k)nO(1) many new instances of the
same problem. These new instances have the following properties: (a) the treewidth of the underlying undirected graph of
these instances is bounded by o(k); and (b) the original input is a YES-instance if and only if at least one of the newly
generated instances is. We exhibit this technique on the k-Internal Out-Branching problem, a parameterized version of
a generalization of Directed Hamiltonian Path.

k-Internal Out-Branching (k-IOB): Given a digraph D with the vertex set V (D) and the arc set A(D) and a positive inte-
ger k, check whether there exists an out-branching with at least k internal vertices.

Prieto and Sloper [42] studied the undirected version of this problem and gave an algorithm with running time
24k log knO(1) and obtained a kernel of size O(k2). Recently, Fomin et al. [29] obtained a vertex kernel of size 3k and gave an
algorithm for the undirected version of k-IOB running in time 8knO(1) . For the (directed) k-IOB, Gutin et al. [34] obtained
an algorithm of running time 2O(k log k)nO(1) and gave a kernel of size of O(k2). Cohen et al. [14] improved the algorithm
for k-IOB and gave an algorithm with running time 49.4knO(1) . Here, we obtain a subexponential time algorithm for k-IOB

with running time 2O(
√

k log k) + nO(1) on directed planar graphs and digraphs whose underlying undirected graphs are
apex-minor-free.

Finally, we also observe that for any ε > 0, there is an algorithm finding in time O((1 + ε)kn f (ε)) a directed path of
length at least k (the k-Directed Path problem) in a digraph whose underlying undirected graph excludes a fixed apex
graph as a minor. The existence of subexponential parameterized algorithm for this problem remains open.

2. Preliminaries

Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc set of D , respectively. Given a subset
V ′ ⊆ V (D) of a digraph D , let D[V ′] denote the digraph induced by V ′ . The underlying graph UG(D) of D is obtained from D
by omitting all orientations of arcs and by deleting one edge from each resulting pair of parallel edges. A vertex u of D is
an in-neighbor (out-neighbor) of a vertex v if uv ∈ A(D) (vu ∈ A(D), respectively). The in-degree d−(v) (out-degree d+(v))
of a vertex v is the number of its in-neighbors (out-neighbors). We say that a subdigraph T of a digraph D is an out-tree
if T is an oriented tree with only one vertex r of in-degree zero (called the root). The vertices of T of out-degree zero are
called leaves and every other vertex is called an internal vertex. If T is a spanning out-tree, that is, V (T ) = V (D), then T
is called an out-branching of D . An out-branching (respectively, out-tree) rooted at r is called r-out-branching (respectively,
r-out-tree). We define the operation of a contraction of a directed arc as follows. An arc uv is contracted as follows: add
a new vertex u′ , and for each arc w v or wu add the arc wu′ and for an arc v w or uw add the arc u′w , remove all arcs
incident to u and v and the vertices u and v . We call a loopless digraph D rooted, if there exists a pre-specified vertex r of
in-degree 0 as a root r and d+(r) � 2. The rooted digraph D is called connected if every vertex in V (D) is reachable from r
by a directed path.
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Let G be an undirected graph with the vertex set V (G) and the edge set E(G). For a subset V ′ ⊆ V (G), by G[V ′] we mean
the subgraph of G induced by V ′ . By N(u) we denote the (open) neighborhood of u that is the set of all vertices adjacent
to u and by N[u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V , we define N[D] = ⋃

v∈D N[v]. The diameter of a graph G ,
denoted by diam(G), is defined to be the maximum length of a shortest path between any pair of vertices of V (G).

Given an edge e = uv of a graph G , the graph G/e is obtained by contracting the edge uv; that is, we get G/e by
identifying the vertices u and v and removing all the loops and duplicate edges. A minor of a graph G is a graph H that
can be obtained from a subgraph of G by contracting edges. A graph class C is minor closed if any minor of any graph in C
is also an element of C . A minor closed graph class C is H-minor-free or simply H-free if H /∈ C . A graph H is called an apex
graph if the removal of one vertex makes it a planar graph.

A tree decomposition of an (undirected) graph G is a pair (X, T ) where T is a tree whose vertices we will call nodes and
X = ({Xi | i ∈ V (T )}) is a collection of subsets of V (G) such that (a)

⋃
i∈V (T ) Xi = V (G), (b) for each edge v w ∈ E(G), there

is an i ∈ V (T ) such that v, w ∈ Xi , and (c) for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of T . The width of
a tree decomposition ({Xi | i ∈ V (T )}, T ) equals maxi∈V (T ){|Xi | − 1}. The treewidth of a graph G is the minimum width over
all tree decompositions of G . We use notation tw(G) to denote the treewidth of a graph G .

A parameterized problem is said to admit a polynomial kernel if there is a polynomial time algorithm (where the degree
of the polynomial is independent of k), called a kernelization algorithm, that reduces the input instance down to an instance
with size bounded by a polynomial p(k) in k, while preserving the answer. This reduced instance is called a p(k) kernel for
the problem. See [40] for an introduction to kernelization.

3. Method I — Quasi-bidimensionality

In this section we present our first approach. In general, a subexponential time algorithm using bidimensionality is
obtained by showing that the solution for a problem in question is at least Ω(k2) on k × k (contraction) grid minor. Using
this we reduce the problem to a question on a graph with treewidth o(k). We start with a lemma which enables us to use
the framework of bidimensionality for digraph problems, though not as directly as for undirected graph problems.

Lemma 1. Let D be a digraph such that UG(D) excludes a fixed graph H as a minor. For any constant c � 1, if there exists a subset
S ⊆ V (D) with |S| = s such that tw(UG(D[V (D) \ S])) � c, then tw(UG(D)) =O(

√
s ).

Proof. By [22], for any H-minor-free graph G with treewidth more than r, there is a constant δ > 1 only dependent on H
such that G has an r

δ
× r

δ
grid minor. Suppose tw(UG(D)) > δ(c + 1)

√
s. Then UG(D) contains a (c + 1)

√
s × (c + 1)

√
s grid

as a minor. Notice that this grid minor cannot be destroyed by any vertex set S of size at most s. That is, if we delete any
vertex set S with |S| = s from this grid, it will still contain a (c + 1) × (c + 1) subgrid. Thus, UG(D[V (D) \ S]) contains
a (c + 1) × (c + 1) grid minor and hence by [28, Exercise 11.6] we have that tw(UG(D[V (D) \ S])) > c. This shows that we
need to delete more than s vertices from UG(D) to obtain a graph with treewidth at most c, a contradiction. �

Using Lemma 1, we show that k-Leaf Out-Branching problem has a subexponential time algorithm on digraphs D such
that UG(D) exclude a fixed graph H as a minor. For our purpose a rooted version of k-LOB will also be useful which we
define now. In the Rooted k-Leaf Out-Branching (R-k-LOB) problem apart from D and k, the root r of the tree searched
for is also a part of the input and the objective is to check whether there exists an r-out-branching with at least k leaves.
We now state our main combinatorial lemma and postpone its proof for a while.

Lemma 2. Let D be a digraph, k be a positive integer and r ∈ V (D) be the root. Then in polynomial time we can either construct
an r-out-branching with at least k leaves in D or find a digraph D ′ such that the following hold.

• D has an r-out-branching with at least k leaves if and only if D ′ has an r-out-branching with at least k leaves;
• There exists a subset S ⊆ V (D ′) such that |S| =O(k) and tw(UG(D ′[V (D ′) \ S])) � c, c is a constant.

Furthermore, if UG(D) excludes a fixed graph H as a minor, then so does UG(D ′).

Combining Lemmata 1 and 2 we obtain the following result.

Lemma 3. Let D be a digraph such that UG(D) excludes a fixed graph H as a minor, k be a positive integer and r ∈ V (D) be a root.
Then in polynomial time either we can construct an r-out-branching with at least k leaves in D or find a digraph D ′ such that D has
an r-out-branching with at least k leaves if and only if D ′ has an r-out-branching with at least k leaves. Furthermore tw(UG(D ′)) =
O(

√
k ).

When a tree decomposition of UG(D) is given, dynamic programming methods can be used to decide whether D has
an out-branching with at least k leaves, see [34]. The time complexity of such a procedure is 2O(w log w)n, where n = |V (D)|
and w is the width of the tree decomposition. Now we are ready to prove the main theorem of this section assuming the
combinatorial Lemma 2.
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Theorem 1. The k-LOB problem can be solved in time 2O(
√

k log k)n + nO(1) on digraphs with n vertices such that the underlying
undirected graph excludes a fixed graph H as a minor.

Proof. Let D be a digraph where UG(D) excludes a fixed graph H as a minor. We guess a vertex r ∈ V (D) as a root. This
only adds a factor of n to our algorithm. By Lemma 3, we can either compute, in polynomial time, an r-out-branching with
at least k leaves in D or find a digraph D ′ with UG(D ′) excluding a fixed graph H as a minor and tw(UG(D ′)) = O(

√
k ).

In the later case, using the constant factor approximation algorithm of Demaine et al. [23] for computing the treewidth
of an H-minor-free graph, we find a tree decomposition of width O(

√
k ) for UG(D ′) in time nO(1) . With the previous

observation that we can find an r-out-branching with at least k leaves, if one exists, in time 2O(
√

k log k)n using dynamic
programming over graphs of bounded treewidth, we have that we can solve R-k-LOB in time 2O(

√
k log k)nO(1) . Hence, we

need 2O(
√

k log k)nO(1) to solve the k-LOB problem.
To obtain the claimed running time bound we use the known kernelization algorithm after we have guessed the root r.

Binkele-Raible et al. [8] gave an O(k3) kernel for R-k-LOB which preserves the graph class. That is, given an instance (D,k)

of R-k-LOB, in polynomial time they output an equivalent instance (D ′′,k) of R-k-LOB such that (a) if UG(D) is H-minor-free
then so is UG(D ′′); and (b) |V (D ′′)| = O(k3). We will use this kernel for our algorithm rather than the O(k2) kernel for
R-k-LOB obtained by Daligault and Thomassé [17], as they do not preserve the graph class. So after we have guessed
the root r, we obtain an equivalent instance (D ′′,k) for R-k-LOB using the kernelization procedure described in [8]. Then
using the algorithm described in the previous paragraph we can solve R-k-LOB in time 2O(

√
k log k) + nO(1) . Hence, we need

2O(
√

k log k)n + nO(1) to solve k-LOB. �
Since this paper was submitted, new algorithmic techniques for solving connectivity problems on graphs of bounded

treewidth have appeared. Cygan et al. [15] designed randomized algorithm solving k-LOB on a tree decomposition of
width w of UG(D) and running in time 6wnO (1) . By making use of recent developments in this area, like rank based
approach [9] or the approach based on representative sets [31], a deterministic algorithm solving k-LOB in time 2O(w)nO (1)

is possible. By making use of these observations, the running time in Theorem 1 can be improved to 2O(
√

k )nO(1) .

3.1. Proof of Lemma 2

To prove the combinatorial lemma, we need a few results from the literature on out-branching problems. Recall that
we have a directed graph D with a designated root vertex r. We start with some definitions given in [17]. A cut of D is
a subset S such that there exists a vertex z ∈ V (D) \ S such that z is not reachable from r in D[V (D) \ S]. We say that D
is 2-connected if there exists no cut of size one in D or equivalently there are at least two vertex disjoint paths from r to
every vertex in D .

Lemma 4. (See [17, Theorem 1].) Let D be a rooted 2-connected digraph with r being its root. Let α be the number of vertices in D
with in-degree at least 3. Then D has an out-branching rooted at r with at least α/6 leaves and such an out-branching can be found in
polynomial time.

A vertex v ∈ V (D) is called a nice vertex if v has an in-neighbor which is not its out-neighbor. The following lemma is
proved in [17].

Lemma 5. (See [17, Theorem 2].) Let D be a rooted 2-connected digraph rooted at a vertex r. Let β be the number of nice vertices in D.
Then D has an out-branching rooted at r with at least β/24 leaves and such an out-branching can be found in polynomial time.

Proof of Lemma 2. To prove the combinatorial lemma, we consider two cases based on whether or not D is 2-connected.

Case 1. D is a rooted 2-connected digraph.

We prove this case in the following claim.

Claim 1. Let D be a rooted 2-connected digraph with root r and a positive integer k. Then in polynomial time, we can find an out-
branching rooted at r with at least k leaves or find a set S of at most 30k vertices whose removal results in a digraph whose underlying
undirected graph has treewidth one.

Proof. If α � 6k, then we are done by Lemma 4. Similarly if β � 24k, then we are done by Lemma 5. Hence we assume
that α < 6k and β < 24k. Let S be the set of nice vertices and vertices of in-degree at least 3 in G . Then |S| � α + β � 30k.
Observe that D[V (D) \ S] is simply a collection of directed paths where every edge of the path is a directed 2-cycle. This
is because D[V (D) \ S] contains only those vertices which are not nice (that is, those vertices whose in-neighbors are also
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out-neighbors) and are of in-degree at most two. Hence, if there is an arc xy in D[V (D) \ S], then the arc yx also exists
in D[V (D) \ S]. Next we note that D[V (D) \ S] does not contain a directed cycle of length more than two. We prove the
last assertion as follows. Let C be a directed cycle in D[V (D) \ S] of length at least 3. Since D is a rooted 2-connected
digraph, we have a vertex v on the cycle C such that there is a path from r to v without using any other vertex from the
cycle C . This implies that the in-degree of v is at least 3 in D and hence v ∈ S , contrary to our assumption that v /∈ S . This
proves that D[V (D) \ S] does not contain a directed cycle of length more than two. Hence the underlying undirected graph
UG(D[V (D) \ S]) is just a collection of paths and hence tw(UG(D[V (D) \ S])) is one. �
Case 2. D is not 2-connected.

Since D is not 2-connected, it has cut-vertices, those vertices that separate r from some other vertices. We deal with the
cut-vertices in three cases. Let x be a cut-vertex of D . The three cases we consider are following.

Case 2a. There exists an arc xy that disconnects at least two vertices from r.

In this case, we contract the arc xy. After repeatedly applying Case 2a, we obtain a digraph D ′ such that any arc out of
a cut-vertex x of D ′ disconnects at most 1 vertex. The resulting digraph D ′ is the one required in the statement of the
lemma. Since we have only contracted some arcs iteratively to obtain D ′ , it is clear that UG(D ′) also excludes H as a minor.
The proof that such contraction does not decrease the number of leaves follows from a reduction rule given in [8]. We
provide a proof for completion.

Claim 2. Let D be a rooted connected digraph with root r, let xy be an arc that disconnects at least two vertices from r and D ′
be the digraph obtained after contracting the arc xy. Then D has an r-out-branching with at least k leaves if and only if D ′ has
an r-out-branching with at least k leaves.

Proof. Let the arc xy disconnect at least two vertices y and w from r and let D ′ be the digraph obtained from D by
contracting the arc xy. Let T be an r-out-branching of D with at least k leaves. Since every path from r to w contains the
arc xy, T contains xy as well and neither x nor y is a leaf of T . Let T ′ be the tree obtained from T by contracting xy. T ′ is
an r-out-branching of D ′ with at least k leaves.

For the converse, let T ′ be an r-out-branching of D ′ with at least k leaves. Let x′ be the vertex in D ′ obtained by
contracting the arc xy, and let u be the parent of x′ in T ′ . Notice that the arc ux′ in T ′ was initially the arc ux before the
contraction of xy, since there is no path from r to y avoiding x in D . We obtain an r-out-branching T of D from T ′ , by
replacing the vertex x′ by the vertices x and y and adding the arcs ux, xy and arc sets {yz: x′z ∈ A(T ′) ∧ yz ∈ A(D)} and
{xz: x′z ∈ A(T ′) ∧ yz /∈ A(D)}. All these arcs belong to A(D) because all the out-neighbors of x′ in D ′ are out-neighbors
either of x or of y in D . Finally, x′ must be an internal vertex of T ′ since x′ disconnects w from r. Hence T has at least as
many leaves as T ′ . �

Now we handle the remaining cut-vertices of D ′ as follows. Let S be the set of cut-vertices in D ′ . For every vertex x ∈ S ,
we associate a cut-neighborhood C(x), which is the set of out-neighbors of x such that there is no path from r to any vertex
in C(x) in D ′[V (D ′) \ {x}]. By C[x] we denote C(x) ∪ {x}. The following observation is used to handle other cases.

Claim 3. Let S be the set of cut-vertices in D ′ . Then for every pair of vertices x, y ∈ S and x 	= y, we have that C[x] ∩ C[y] = ∅.

Proof. To the contrary let us assume that C[x] ∩ C[y] 	= ∅. We note that C[x] ∩ C[y] can only have a vertex v ∈ {x, y}. To
prove this, assume to the contrary that we have a vertex v ∈ C[x] ∩ C[y] and v /∈ {x, y}. But then it contradicts the fact that
v ∈ C[x], as x doesn’t separate v from r due to the path between r and v through y. Thus, either x ∈ C(y) or y ∈ C(x).
Without loss of generality let y ∈ C(x). This implies that we have an arc xy and there exists a vertex z ∈ C(y) such that
z /∈ C(x). But then the arc xy disconnects at least two vertices y and z from r and hence Case 2a would have applied. This
proves the claim. �

Now we distinguish cases based on cut-vertices having cut-neighborhood of size at least 2 or 1. Let S�2 and S=1 be the
subset of cut-vertices of D ′ having at least two cut-neighbors and exactly one neighbor respectively.

Case 2b. S�2 	= ∅.

We first bound |S�2|. Let Ac = {xy | x ∈ S�2, y ∈ C(x)} be the set of out-arcs emanating from the cut-vertices in S�2 to
its cut-neighbors. We now prove the following structural claim which is useful for bounding the size of S�2.

Claim 4. If D ′ has an r-out-branching T ′ with at least k leaves then D ′ has an r-out-branching T with at least k leaves and containing
all the arcs of Ac , that is, Ac ⊆ A(T ). Furthermore, when T ′ is given, then T can be found in polynomial time.
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Proof. Let T ∗ be an r-out-branching of D ′ with at least k leaves and containing the maximum number of arcs from the
set Ac . If Ac ⊆ A(T ∗), then we are through. So let us assume that there is an arc e = xy ∈ Ac such that e /∈ A(T ∗). Notice
that since the vertices of S�2 are cut-vertices, they are always internal vertices in any out-branching rooted at r in D . In
particular, the vertices of S�2 are internal vertices in T ∗ . Furthermore by Claim 3 we know that y is an end-point of exactly
one arc in Ac . Let z be the parent of y in T ∗ . Now obtain T ∗

e = T ∗ \ {zy} ∪ {xy}. Observe that T ∗
e contains at least k leaves

and has more arcs from Ac than T ∗ . This is contrary to our assumption that T ∗ is an r-out-branching of D ′ with at least k
leaves and containing the maximum number of arcs from the set Ac . This proves that T ∗ contains all the arcs of Ac .

Observe that starting from any r-out-branching T ′ of D ′ we can obtain the desired T in polynomial time by simple arc
exchange operations described in the previous paragraph. �

We know that in any out-tree, the number of internal vertices of out-degree at least 2 is bounded by the number of
leaves. Hence if |S�2| � k then we obtain an r-out-branching T of D ′ with at least k leaves using Claim 4 and we are done.
So from now onwards we assume that |S�2| = � � k − 1.

We now do a transformation to the given digraph D ′ . For every vertex x ∈ S�2, we introduce an imaginary vertex xi and
add an arc uxi if there is an arc ux ∈ A(D ′) and add an arc xi v if there is an arc xv ∈ A(D ′). Basically we duplicate the
vertices in S�2. We also add edges xxi for all x ∈ S�2. Let the transformed graph be called Ddup . We have the following
two properties about Ddup . First, no vertex in S�2 ∪ {xi |x ∈ S�2} is a cut-vertex in Ddup . We sum up the second property in
the following claim.

Claim 5. The digraph D ′ has an r-out-branching T with at least k leaves if and only if Ddup has an r-out-branching T ′ with at least
k + � leaves.

Proof. Given an r-out-branching T of D ′ with at least k leaves, we obtain an out-branching T ′ of Ddup with at least k + �

leaves by adding an arc xxi to T for every x ∈ S�2. Since every vertex of S�2 is an internal vertex in T , this process only
adds {xi | x ∈ S�2} as leaves and hence we have at least k + � leaves in T ′ .

For the converse, assume that Ddup has an r-out-branching T ′ with at least k + � leaves. First, we modify the out-
branching so that not both of x and xi are internal vertices and we do not lose any leaf. This can be done easily by making
all out-arcs in the out-branching from x and making xi a leaf. That is, if N+

T ′ (xi) is the set of out-neighbors of xi in T ′
then we delete the arcs xi z, z ∈ N+

T ′ (xi) and add xz for all z ∈ N+
T ′ (xi). This process cannot decrease the number of leaves.

Furthermore we can always assume that if exactly one of x and xi is an internal vertex, then x is the internal vertex in T ′ .
Now delete all the vertices of {xi | x ∈ S�2} from T ′ and obtain T . Since the vertices in the set {xi | x ∈ S�2} are leaves of T ′ ,
we have that T is an r-out-branching in D ′ . Since in the whole process we have only deleted � vertices we have that T has
at least k leaves. �

Now we move on to the last case.

Case 2c. S=1 	= ∅.

Consider the arc set Ap = {xy | x ∈ S=1, y ∈ C(x)}. Observe that Ap ⊆ A(D ′) ⊆ A(Ddup) and Ap forms a matching in Ddup

because of Claim 3. Let Ddup
c be the digraph obtained from Ddup by contracting the arcs of Ap . That is, for every arc uv ∈ Ap ,

the contracted graph is obtained by identifying the vertices u and v as uv and removing all the loops and duplicate arcs.

Claim 6. Let Ddup
c be the digraph obtained by contracting the arcs of Ap in Ddup. Then the following hold.

1. The digraph Ddup
c is 2-connected;

2. If Ddup
c has an r-out-branching T with at least k + � leaves then Ddup has an r-out-branching with at least k + � leaves.

Proof. The digraph Ddup
c is 2-connected by the construction as we have iteratively removed all cut-vertices. If Ddup

c has
an r-out-branching T with at least k + � leaves then we can obtain an r-out-branching with at least k + � leaves for Ddup

by expanding each of the contracted vertices to arcs in A p . �
We are now ready to combine the above claims to complete the proof of the lemma. We first apply Claim 1 on Ddup

c
with k + �. Either we get an r-out-branching T ′ with at least k + � leaves or a set S ′ of size at most 30(k + �) such that
tw(UG(Ddup

c [V (Ddup
c ) \ S])) is one. In the first case, by Claims 5 and 6 we get an r-out-branching T with at least k leaves

in D ′ . In the second case we know that there is a vertex set S ′ of size at most 30(k+�) such that tw(UG(Ddup
c [V (Ddup

c )\ S ′]))
is one. Let S∗ = {u | uv ∈ S ′, vu ∈ S ′, u ∈ S ′} be the set of vertices obtained from S ′ by expanding the contracted ver-
tices in S ′ . Clearly the size of |S∗| � 2|S ′| � 60(k + �) � 120k = O(k). We now show that the treewidth of the underlying
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undirected graph of Ddup[V (Ddup) \ S∗] is at most 3. This follows from the observation that tw(UG(Ddup
c [V (Ddup

c ) \ S ′]))
is one. Hence given a tree decomposition of width one for UG(Ddup

c [V (Ddup
c ) \ S ′]) we can obtain a tree decomposi-

tion for UG(Ddup[V (Ddup) \ S∗]) by expanding the contracted vertices. This can only double the bag size and hence the
treewidth of UG(Ddup[V (Ddup) \ S∗]) is at most 3, as the bag size can at most be 4. Now we take S = S∗ ∩ V (D ′) and since
V (D ′) ⊆ V (Ddup), we have that tw(UG(D[V (D) \ S])) � 3. This concludes the proof of the lemma. �
4. Method II — Kernelization and divide & conquer

In this section we exhibit our second method of designing subexponential time algorithms for digraph problems through
the k-Internal Out-Branching problem. In this method we utilize the known polynomial kernel for the problem and obtain
a collection of 2o(k) instances such that the input instance is a YES-instance if and only if one of the instances in our
collection is. The property of the instances in the collection which we make use of is that the treewidth of the underlying
undirected graph of each of these instances is o(k). The last property brings dynamic programming on graphs of bounded
treewidth into picture as the final step of the algorithm.

Here, we will solve a rooted version of the k-IOB problem, called Rooted k-Internal Out-Branching (R-k-IOB), where
apart from D and k we are also given a root r ∈ V (D), and the objective is to find an r-out-branching, if one exists, with at
least k internal vertices. The k-IOB problem can be reduced to R-k-IOB by guessing the root r at the additional cost of |V (D)|
in the running time of the R-k-IOB problem. Henceforth, we will only consider R-k-IOB. We call an r-out-tree T with k
internal vertices minimal if deleting any leaf results in an r-out-tree with at most k − 1 internal vertices. A well-known
result relating minimal r-out-tree T with k internal vertices with a solution to R-k-IOB is as follows.

Lemma 6. (See [14, Lemmata 3.1 and 3.4].) Let D be a rooted connected digraph with root r. Then D has an r-out-branching T ′ with at
least k internal vertices if and only if D has a minimal r-out-tree T with k internal vertices with |V (T )| � 2k − 1. Furthermore, given
a minimal r-out-tree T , we can find an r-out-branching T ′ with at least k internal vertices in polynomial time.

We also need another known result about kernelization for k-IOB.

Lemma 7. (See [34, Lemma 4.6].) k-Internal Out-Branching admits a polynomial kernel of size 8k2 + 6k.

In fact, the kernelization algorithm presented in [34] works for all digraphs and has a unique reduction rule which only
deletes vertices. This implies that if we start with a graph G ∈ G where G excludes a fixed graph H as a minor, then the
graph G ′ obtained after applying kernelization algorithm still belongs to G .

Our algorithm tries to find a minimal r-out-tree T with k internal vertices with |V (T )| � 2k − 1 recursively. As the first
step of the algorithm we obtain a set of 2o(k) digraphs such that the underlying undirected graphs have treewidth O(

√
k ),

and the original problem is a YES-instance if and only at least one of the 2o(k) instances is a YES-instance. More formally,
we prove the following lemma.

Lemma 8. Let H be a fixed apex graph and G be a minor closed graph class excluding H as a minor. Let (D,k) be an instance to
k-Internal Out-Branching such that UG(D) ∈ G . Then there exists a collection

C =
{(

Di,k′, r
) ∣∣∣ Di is a subgraph of D, k′ � k, r ∈ V (D), 1 � i �

(
8k2 + 6k√

k

)}
,

of instances such that tw(UG(Di)) = O(
√

k ) for all i and (D,k) has an out-branching with at least k internal vertices if and only if
there exists an i, r and k′ � k such that (Di,k′, r) has an r-out-branching with at least k′ internal vertices.

Proof. The idea of the proof is to a Baker style layering technique [6] combined with kernelization. In the first step we apply
the kernelization algorithm given by Lemma 7 on (D,k) and obtain an equivalent instance (D ′,k′) where |D ′| � 8k2 + 6k
and k′ � k for k-IOB. From now onwards we will confine ourselves to (D ′,k′). Observe that since the kernelization algorithm
only deletes vertices to obtain the reduced instance from the input digraph, we have that UG(D ′) ∈ G .

Now we reduce the k-IOB problem to the R-k-IOB problem by guessing a vertex r ∈ V (D ′) as a root. Furthermore we try
to find a minimal r-out-tree T with k′ internal vertices with |V (T )| � 2k′ − 1. This suffices for our purpose if we know that
every vertex in V (D ′) is reachable from the root r, as in this case Lemma 6 is applicable.

We start with a BFS starting at the vertex r in UG(D ′). Let the layers created by doing BFS on r be Lr
0, Lr

1, . . . , Lr
t . If

t � �√k , then the collection Cr consists of (D ′,k′, r). For t �
√

k, the fact that tw(D ′) =O(
√

k ) follows from the comments
later in the proof. Hence from now onwards we assume that t > �√k . Now we partition the vertex set into �√k  parts
where the q-th part contains all vertices which are at a distance of q mod(�√k ) from r. That is, let V (D ′) = ⋃

q Pq ,

q ∈ {0, . . . , �√k  − 1}. We define Pq = ⋃
Lr

q+i(�√k +1)
, i ∈ {0, . . . , � t−√

k
�√k +1

�}. It is clear from the definition of Pq that it

partitions the vertex set V (D ′). If the input is a YES-instance then there exists a partition Pa such that it contains at most
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� 2k′−1
�√k   � 2

√
k vertices of the minimal r-out-tree T we are seeking for. We guess the partition Pa and a subset Z of size at

most 2
√

k of Pa and obtain the collection

Cr(Pa) = {(
D ′[V

(
D ′) \ Pa ∪ Z

]
,k′, r

) ∣∣ Z ⊆ Pa, |Z | � 2
√

k
}
.

We now claim that for every Z ⊆ Pa , |Z | � 2
√

k, tw(UG(D ′[V (D ′) \ Pa ∪ Z ])) = O(
√

k ). Let V ′ = V (D ′) \ Pa be the set of
vertices after removal of Pa from the vertex set of D ′ . Let the resulting underlying undirected graph be G ′ = UG(D ′[V ′])
with connected components C1, . . . , C� . We show that each connected component Ci of G ′ has O(

√
k ) treewidth. More

precisely, every connected component Ci of G ′ is a subset of at most �√k  − 1 consecutive layers of the BFS starting at r.
If we start with UG(D ′), and delete all BFS layers after these layers and contract all BFS layers before these layers into
a single vertex v , we obtain a minor M of UG(D ′). This minor M has diameter at most �√k  and contains Ci as an induced
subgraph. Since UG(D ′) ∈ G ′ , we have that M ∈ G . Furthermore, Demaine and Hajiaghayi [20] have shown that for any
fixed apex graph H , every H-minor-free graph of diameter d has treewidth O(d). This is the reason that we exclude apex
graphs only in this section. This implies that tw(Ci) � tw(M) �O(

√
k ). Notice that since every connected component of G ′

has treewidth O(
√

k ), G ′ itself has O(
√

k ) treewidth. Given a tree decomposition of width O(
√

k ) for G ′ , we can obtain
a tree decomposition of width O(

√
k ) for UG(D ′[V (D ′) \ Pa ∪ Z ]) by adding Z to every bag. The collection Cr is given by⋃�√k 

a=0 Cr(Pa). Finally the collection C = ⋃
r∈V (D ′) Cr .

By the pigeon hole principle we know that if (D ′,k′) is a YES-instance then there exists a Pa containing at most 2
√

k
vertices of the minimal tree T we are looking for. Since we have run through all r ∈ V (D ′) as a potential root as well as all
subsets of size at most 2

√
k as the possible intersection of V (T ) with Pa , we know that (D ′,k′) has an out-branching with

at least k internal vertices if and only if there exists an i, r and k′ � k such that (Di,k′, r) ∈ C has an r-out-branching with
at least k′ internal vertices. This concludes the proof of the lemma. �

Given a tree decomposition of width w for UG(D), one can solve R-k-IOB in time 2O(w log w)n using a dynamic program-
ming over graphs of bounded treewidth as described in [34]. This brings us to the main theorem of this section.

Theorem 2. The k-IOB problem can be solved in time 2O(
√

k log k) + nO(1) on digraphs with n vertices such that the underlying undi-
rected graph excludes a fixed apex graph H as a minor.

Proof. As the first step of the algorithm we apply Lemma 8 and obtain collection C such that for every (D,k, r) ∈ C ,
tw(UG(D)) ∈ O(

√
k ). Then using the constant factor approximation algorithm of Demaine et al. [23] for computing the

treewidth of an H-minor-free graph, we find a tree decomposition of width O(
√

k ) for UG(D) in time kO(1) . Finally, we
apply dynamic programming algorithm running in time (

√
k )O(

√
k ) = 2O(

√
k log k) on each instance in C . If for any of them

we obtain a yes answer we return “yes”, else we return “no”. The running time of the algorithm is bounded by

|C| · 2O(
√

k log k) + nO(1) = 2O(
√

k log k) · 2O(
√

k log k) + nO(1) = 2O(
√

k log k) + nO(1).

We have an additive term of nO(1) as we apply the algorithm only on the O(k2) size kernel. This completes the proof. �
5. Conclusion and discussions

We have given the first subexponential parameterized algorithms on planar digraphs and on the class of digraphs whose
underlying undirected graph excludes a fixed graph H or an apex graph as a minor. We have outlined two general tech-
niques, and have illustrated them on two well studied problems concerning oriented spanning trees (out-branching) — one
that maximizes the number of leaves and the other that maximizes the number of internal vertices. One of our techniques
uses the grid theorem on H-minor graphs, albeit in a different way than how it is used on undirected graphs. The other
uses a Baker type layering technique combined with kernelization and solves the problem on a subexponential number of
problems whose instances have sublinear treewidth.

We believe that our techniques will be widely applicable and it would be interesting to find other problems where
such subexponential algorithms are possible. Two famous open problems in this context are whether the k-Directed Path

problem (does a digraph contains a directed path of length at least k) and the k-Directed Feedback Vertex Set problem
(does a digraph can be turned into acyclic digraph by removing at most k vertices) have subexponential algorithms (at
least) on planar digraphs. However, for the k-Directed Path problem, we can reach “almost” subexponential running time.
More precisely, we have the following theorem.

Theorem 3. For any ε > 0, there is δ such that the k-Directed Path problem is solvable in time O((1 + ε)k · nδ) on digraphs with n
vertices such that the underlying undirected graph excludes a fixed apex graph H as a minor.

Proof. Let P be a path of length k in a digraph D . The vertex set of P can be covered by at most b balls of radius k/b in
the metric of UG(D). Let F be a subgraph of UG(D) induced by the vertices contained in b balls of radius k/b. We claim
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that there is a constant c (depending only on the size of the apex graph H), such that tw(F ) � c · k/
√

b. Indeed, because F
is apex-minor-free, it contains a partially triangulated (d · tw(F ) × d · tw(F )) grid as a contraction for some d > 0 [30].
One needs Ω((tw(F )b/k)2) balls of radius k/b to cover such a grid, and hence to cover F [18]. But on the other hand,
F is covered by at most b balls of radius k/b, and the claim follows. By an easy adaptation of the algorithm from [25] for
undirected H-minor-free graphs, it is possible to find in time 2O(tw(F )) · nO(1) if the subdigraph of D with the underlying
undirected graph F contains a directed path of length k. Thus these computations can be done in time 2cH ·k/

√
b · nO(1) for

some constant cH > 0 depending only on the size of H .
Putting things together, to check if D contains a path of length k (and if yes, to construct such a path), we try all possible

sets of b vertices B and for each such set we construct a graph F induced by vertices at distance at most k/b from vertices
of B . If D contain a k-path, then this path should be covered by at least one such set of b balls. For each such graph, we
check, if the corresponding directed subgraph contains a k-path. The total running time of the algorithm is

O
((

n

b

)
2c·k/

√
b · nc

)
=O(

2c·k/
√

b · nb+c)

for some constant c. By putting b = (c/(log(1 + ε)))2 and δ = b + c, we complete the proof of the theorem. �
Let us remark that similar O((1+ε)kn f (ε)) results can also be obtained for several other problems including Steiner Tree

in apex-minor-free graphs. Recently, Pilipczuk et al. [41] gave a parameterized subexponential algorithm for this problem
parameterized by the size of the Steiner tree.
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