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Social Choice Meets Graph Drawing: How to Get Subexponential
Time Algorithms for Ranking and Drawing Problems
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Abstract: We analyze a common feature of p-Kemeny AGGregation (p-KAGG) and p-One-Sided Crossing

Minimization (p-OSCM) to provide new insights and findings of interest to both the graph drawing community and

the social choice community. We obtain parameterized subexponential-time algorithms for p-KAGG—a problem in

social choice theory—and for p-OSCM—a problem in graph drawing. These algorithms run in time O�.2O.
p

k log k//,

where k is the parameter, and significantly improve the previous best algorithms with running times O�.1.403k/

and O�.1.4656k/, respectively. We also study natural “above-guarantee” versions of these problems and show

them to be fixed parameter tractable. In fact, we show that the above-guarantee versions of these problems are

equivalent to a weighted variant of p-directed feedback arc set. Our results for the above-guarantee version of

p-KAGG reveal an interesting contrast. We show that when the number of “votes” in the input to p-KAGG is odd the

above guarantee version can still be solved in time O�.2O.
p

k log k//, while if it is even then the problem cannot have

a subexponential time algorithm unless the exponential time hypothesis fails (equivalently, unless FPT D MŒ1�).

Key words: Kemeny aggregation; one-sided crossing minimization; parameterized complexity; subexponential-time

algorithms; social choice theory; graph drawing; directed feedback arc set

1 Introduction

In this paper, we link two seemingly different areas of
algorithmics: computational social choice and graph
drawing. In both areas, ordering of permutations plays
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some role. This was already observed by Biedl et
al.[1], but not as fully exploited as we do it here. We
study such problems in the realm of parameterized
complexity, yielding subexponential algorithms, as well
as in that of approximability, obtaining Polynomial
Time Approximation Scheme (PTAS) results. We also
provide an extensive list of references, allowing the
reader to follow down the different areas of computer
science that we touch.

1.1 Computational social choice

Many voting schemes are known to be computationally
hard, as already shown by Bartholdi et al.[2] Betzler
et al.[3] and Simjour[4] considered Kemeny scores
under the point of view of parameterized algorithms.
We show here that the standard parameterization
of this minimization problems allows for better
parameterized algorithms. This problem offers a variety



Henning Fernau et al.: Social Choice Meets Graph Drawing: How to Get Subexponential Time Algorithms � � � 375

of applications.
The Dodgon’s Score Problem (DSP) only differs

from the Kemeny score problem the way two votes
are compared: Within DSP, the distance between two
votes, interpreted as permutations �1 and �2 is given
by the minimum number of transpositions whose
composition � satisfies � ı �1 D �2. The Dodgson
voting scheme was first considered by Bartholdi et
al.[2] under complexity-theoretic viewpoints, whilst first
considerations from the viewpoint of parameterized
algorithms are derived by Betzler et al.[5] However,
our approach (and the problem statement) here is
different from that in Ref. [5], since we will only
consider aggregation-type problems. Further issues
regarding parameterized complexity of voting schemes
can be found in Refs. [6, 7]. Computational experiments
and complexity results, in particular concerning
approximability, are reported by McCabe-Dansted in
Ref. [8].

Kemeny aggregation
Preference lists are extensively used in social science

surveys and voting systems to capture information
about choice. In many such scenarios there arises the
need to combine the data represented by many lists
into a single list which reflects the opinion of the
surveyed group as much as possible. The p-Kemeny
AGGregation (p-KAGG) problem was introduced by
Kemeny and Snell[9, 10] to abstract out the problem
of combining many preference lists into one. This
problem appears in a variety of applications, from rank
aggregation methods for the web[11] up to breeding
problems in agronomy[12]. In p-KAGG we are given
a set of permutations (also called votes) over a set
of alternatives (also called candidates), and a positive
integer k, and are asked for a permutation � of
the set of candidates, called an optimal aggregation,
such that the sum of the Kendall-Tau distances
(KT-distances) of � from all the votes is at most
k. The KT-distance between two permutations �1 and
�2 is the number of pairs of candidates that are
ordered differently in the two permutations and is
denoted by KT-dist.�1; �2/. The problem is known
to be NP-complete[2] and admits PTASs[13]. Betzler
et al.[3] considered this problem from the point of
view of parameterized algorithms and obtained an
algorithm that runs in time O�.1:53k/which suppresses
polynomial terms in the expression. Simjour[4] obtained
an algorithm for the problem that runs in time
O�.1:403k/. Independently from our exposition in the

conference version of this paper[14], Karpinski and
Schudy[15] obtained an algorithm for p-KAGG that runs
in O�.2O.

p
k// time.

1.2 Graph drawing

The graph drawing problem that we are mainly
interested in is the p-One-Sided Crossing Minimization
(p-OSCM) problem, which is a key ingredient of the
well-known “Sugiyama approach” to layered graph
drawing[16]. After the first phase (the assignment of
the vertices to layers), the order of the vertices within
the layers has to be fixed such that the number of
the corresponding crossings of the edges between two
adjacent layers is minimized. Finally, the concrete
position of the vertices within the layers is determined
according the previously computed order. The crossing
minimization step alone, although most essential in
the Sugiyama approach, comprises an NP-complete
problem. The most commonly used method is the layer-
by-layer sweep heuristics where, starting from i D 1,
the order for Li is fixed and the order for LiC1
that minimizes the number of crossings amongst the
edges between layers Li and LiC1 is determined. After
increasing index i to the maximum layer index, we
turn around and repeat this process from the back with
decreasing indices. In each step, a p-OSCM problem
has to be solved. For an introduction into this specific
area of graph drawing, we refer the interested reader to
the exposition of Bastert and Matuszewski[17].

One-sided crossing minimization
An input to this problem consists of a bipartite graph

G D .V1; V2; E/, a permutation � of V1, and a positive
integer k. The vertices of V1 are placed on a line,
also called a layer, in the order induced by � . The
objective is to check whether there is a permutation
�m of V2 such that, when the vertices of V2 are placed
on a second layer parallel to the first one in the order
induced by �m, then drawing a straight-line segment for
each edge in E will introduce no more than k pairwise
edge crossings. As shown by Eades and Wormald, this
seemingly simple problem is NP-complete[18], even on
sparse graphs[19].

The study of the parameterized algorithmics of
graph drawing problems was initiated by Dujmović
et al.[20], and several new generic results were later
obtained by Dujmović and others[21]. Dujmović and
Whitesides[22] investigated the p-OSCM problem and
obtained an algorithm for this problem which runs
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in time O�.1:6182k/. This was later improved to
O�.1:4656k/ by Dujmović et al.[23] We also refer to the
survey article[24] on parameterized approaches to graph
drawing. There has been a similar race to obtain better
approximation algorithms for the problem. To the best
of our knowledge, the current best approximation factor
for p-OSCM is 1:4664, due to Nagamochi[25].

Discussing related problems
Already in the paper by Sugiyama et al.[16], the

concept of a penalty graph was introduced that
links this graph-drawing problem with the problem
of finding a lightest set of arcs whose removal
turns a given arc-weighted digraph into an acyclic
digraph. This type of relation will be exploited in the
following. After the conference version[14] appeared,
another approach to subexponential algorithms for p-
OSCM was presented, based on interval graphs[26]. In
some sense, also this idea is already present in earlier
papers on this problem. All this might also give a
reason why heuristics or also translations to other
areas (mathematical optimization and SAT solving
are prominent examples) work very well on this
particular problem and also some of its generalizations
and variants (see Refs. [27-33] and the references
cited therein for some examples). This also proves
the practical interest in this kind of graph drawing
problems.

Many variants of these problems have been
considered in the literature. We only mention some
of them which we will also treat in this paper,
complementing what we did in the conference
version[14].
� Çakiroglu et al.[34] considered drawing graphs as

in the OSCM setting, but with edge weights. If
two edges cross, then the crossing receives as a
weight the product of both according edge weights.
The overall weight of a crossing is then the sum
of all respective crossing weights, and the goal is
to minimize this weight. They call this problem
Weighted One-Layer-Free Problem (WOLF).
� Forster[35, 36] considered the so-called constrained

variant where the ordering of some of the vertices
of the free layer is already fixed (as part of the
input).
� In Refs. [37, 38], another generalization of OSCM,

called Positive weighted Completion of an
Ordering (PCO), was studied. An Fixed-Parameter
Tractability (FPT) result was obtained both by

kernelization and by a search tree approach,
leading to a running time of O�.1:52k/.
� In radial drawings of graphs, also the restricted

(NP-complete) variant called Radial One-Sided
Two-Level Crossing Minimization (ROSCM) has
been considered[39, 40]. ROSCM (OSCM for radial
drawings) tries to map the two vertex sets on
two concentric cycles (as opposed to two parallel
lines); otherwise, the game is the same.

Not only for p-OSCM, but also for many of
its variants related to the Sugiyama approach,
parameterized algorithms have been published.
We only mention Refs. [20, 41-45] to give the reader
some impression.

1.3 Subexponential algorithms and polynomial-
time approximation schemes

By now, it is a classical result that many NP-
hard problems admit parameterized subexponential
algorithms with running times of the type O.c

p
k/when

restricted to planar graphs, or, more generally, to graphs
of bounded genus (for instance)[46-50]. However, such
type of algorithms are rarely observed in other contexts
except for very few examples[51, 52].

1.4 Our results

We obtain O�.2O.
p
k logk//-time algorithms for both

p-KAGG and p-OSCM. These significantly improve
the previous best algorithms with running times
O�.1:403k/ and O�.1:4656k/, respectively. Both of
our algorithms are based on modeling these problems
as the p-Weighted Directed Feedback Arc Set (p-
WDFAS) problem. In p-WDFAS we are given a
directed (multi)graph D D .V; A/, a weight function
w W A! RC and a positive integer k, and the objective
is to find a set of arcs F � A of total weight at most
k such that deleting F from D turns D into a directed
acyclic graph; such an F is called a feedback arc set of
D. Both p-KAGG and p-OSCM have been modeled as
p-WDFAS in earlier work as well[4, 16, 53]; the novelty
in our modeling is that it allows us to work with p-
WDFAS on “tournament-like” structures.

A tournament is a digraph in which between every
two vertices there is exactly one arc. A semi-complete
digraph is a directed (multi)graph on n vertices that
contains a tournament on n vertices as a subgraph. We
study a problem that we call parameterized Feedback
Arc Set on Semi-Complete digraphs (p-FASSC). Our
modeling allows us to use the chromatic-coding
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technique recently developed by Alon et al.[54], which
they used to obtain the first subexponential time
algorithm for p-WDFAS on tournaments.

Independently, Karpinski and Schudy[15] have
obtained a faster algorithm for a special case
of p-WDFAS restricted to complete digraphs
where, for every two vertices u; v in the digraph,
w.uv/C w.vu/ D 1 (the probability constraint). This
algorithm runs in O�.2O.

p
k// time. Using essentially

the same modeling as we use for p-KAGG, they show
that p-KAGG can be solved in O�.2O.

p
k// time. Let

us also mention algorithms of Feige[55] and Fomin and
Pilipczuk[56] for the unweighted case of the problem.

We also study natural “above-guarantee” versions of
these problems and show them to be fixed parameter
tractable. We show that the above-guarantee versions
of p-KAGG (A-p-KAGG) and p-OSCM(A-p-OSCM)
are both equivalent to p-WDFAS and hence both have
algorithms that run in time O�.2O.k logk//[57]. A finer
analysis of A-p-KAGG reveals an interesting contrast
in its running time: If the number of votes in the
input to p-KAGG is odd, then A-p-KAGG can still
be solved in time O�.2O.

p
k logk//, while if it is even,

then the problem cannot have any subexponential-
time algorithm unless the Exponential Time Hypothesis
(ETH) is false[58], or equivalently[59], unless FPTDMŒ1�.

It is also worth mentioning that our reduction from
p-OSCM to p-WDFAS on tournaments implies a PTAS
for the graph drawing problem, as well as for the related
ones. To summarize, we analyze a common feature
of p-KAGG and p-OSCM to provide new insights
and findings of interest to both the graph drawing
community and the social choice community.

2 Preliminaries

A parameterized problem ˘ is a subset of � � �
N, where � is a finite alphabet. An instance of a
parameterized problem is a tuple .x; k/, where k is
called the parameter. A central notion in parameterized
complexity is FPT which means, for a given instance
.x; k/, decidability in time O.f .k/ � p.jxj//, where f
is an arbitrary function of k and p is a polynomial in the
input size.

Let ˘1 and ˘2 be two parameterized problems. A
parameterized reduction from˘1 to˘2 is an algorithm
that takes an instance .x; k/ of˘1 as input, runs in time
O.f .k/ � p.jxj//, and outputs an instance .y; `/ of ˘2
such that ` is some function of k alone and .x; k/ is

a YES instance of ˘1 if and only if .y; `/ is a YES
instance of ˘2.

We (partially) repeat and summarize some notions
from the theory of directed graphs that we need in the
following. A tournament is a directed graph in which
there is exactly one directed arc between every two
vertices. A feedback arc set in a tournament can be
also characterized a set of arcs whose reversal results
in a Directed Acyclic Graph (DAG). A semi-complete
digraph is a directed (multi)graph on n vertices, for
some n 2 N, which contains a tournament on n vertices
as a subgraph.

3 FPT Algorithms for p-KAGG

Let S be a finite set, and let �1 and �2 be two
permutations of S . For u; v 2 S , we define

d�1
�2
.u; v/ D

8̂̂<̂
:̂
0; if �1 and �2 rank

u and v in the same orderI

1; otherwise:

The KT-distance of �1 and �2 is defined as: KT-
dist.�1; �2/ D

P
fu;vg�S d

�1
�2
.u; v/.

Let C be a set of candidates and V a set of votes over
C . For any permutation r of C , the Kemeny score of r
with respect to V is defined as:

KS.r; V / D
X
�2V

KT-dist.r; �/:

Observe that
KS.r; V / D

X
�2V

KT-dist.r; �/ DX
�2V

X
fu;vg�C

d r�.u; v/ DX
fu;vg�C

X
�2V

d r�.u; v/ (1)

These preparations allow us now to formally state the
problem Kemeny score problem p-KAGG that we are
going to consider:

Given: A set C of candidates, a set V of votes over
C , and an integer k > 0
Parameter: k
Question: Is there a permutation r of C such that
KS.r; C / 6 k?

A slight generalization is to weight the votes � 2 V
with positive integers !.�/ (see Ref. [3]). The question
is then to see if the weighted Kemeny score

w � KS.r; V / D
X
�2V

!.�/ �
X
fu;vg�C

d r�.u; v/



378 Tsinghua Science and Technology, August 2014, 19(4): 374-386

is at most k. Both the weighted and the unweighted
variant can be easily seen as minimization problems; the
task is now to find an ordering of the candidates whose
Kemeny score is minimum.

3.1 Parameterized reduction from p-KAGG to p-
WDFAS

We now describe a parameterized reduction from p-
KAGG to p-WDFAS, briefly mentioned by Betzler et
al.[3], which runs in polynomial time and takes the
parameter from k to k. Let .C; V; k/ be an instance of
p-KAGG. In what follows, we assume without loss of
generality that jV j > 1. We construct a digraph G such
that .C; V; k/ is a YES instance of p-KAGG if and only
if G has a feedback arc set of weight at most k. We set
the vertex set of G to be the set C of candidates. For
each vote �i 2 V and for each pair of vertices .u; v/ of
G, we add a new arc with weight 1 from u to v in G
if and only if u appears before v in �i (equivalently,
when u is preferred over v by �i ). In the weighted
case, this arcs gets the weight !.�i /. This completes
the construction; the parameter is k.

Fix a vote �i 2 V . For each pair of candidates u; v 2
C , �i prefers exactly one of these candidates over the
other. Thus, for any two vertices u; v of G, each vote
contributes exactly one arc between u and v in G. As a
consequence, we have:

Observation 1 Let G be the digraph constructed
from an instance .C; V; k/ of p-KAGG as described
above. For any two vertices u; v of G, let i be the
number of arcs in G from u to v, and j the number
of arcs from v to u. Then i C j D jV j.

The next two claims show that the reduction is sound.
Claim 1 Let .C; V; k/ be a YES instance of the

problem p-KAGG; let G be the digraph constructed
from .C; V; k/ as described above. Then G has a
feedback arc set of weight at most k.

Proof Since .C; V; k/ is a YES instance of p-
KAGG, there exists a permutation r of the set C such
that X

�2V

KT-dist.r; �/ 6 k:

For u; v 2 V.G/, let ruv be the set of arcs inG between
u and v that are oriented contrary to the direction
implied by r . That is, if u appears before v in r , then
ruv consists of all arcs from v to u in G; if u appears
after v in r , then ruv consists of all arcs from u to v in
G. Using Eq. (1), we get

P
fu;vg�C

P
�2V d

r
�.u; v/6

k. By construction, this implies
P
fu;vg�V.G/ jruvj 6 k.

That is, there are at most k arcs in G, each of weight

exactly 1, that are oriented contrary to the directions
implied by r . Reversing these arcs, we get a digraph G0

in which every arc is oriented according to the direction
implied by r . Since r is a permutation of V.G/ D
V.G0/, it follows that G0 is acyclic. �

Claim 2 Let G be the digraph constructed from an
instance .C; V; k/ of p-KAGG as described above. If
G has a feedback arc set S of weight at most k, then
.C; V; k/ is a YES instance of p-KAGG.

Proof Note that, as each arc in G has weight
exactly 1, S contains exactly k arcs. Consider the DAG
G0 obtained fromG by reversing the arcs in S . Note that
this operation preserves the number of arcs between any
pair of vertices. From Observation 1, and since G0 is a
DAG, between each pair u; v of vertices of G0 there are
exactly jV j arcs, all of which are in the same direction.
The arcs of G0 thus define a permutation r of C , where
for any u; v 2 C , u appears before v in r if and only if
there is an arc (in fact, jV j arcs) from u to v in G0. For
u; v 2 V.G/, let ruv be the set of arcs between u and v
in G that are oriented contrary to the direction implied
by r . Then

S
fu;vg�V.G/ ruv D S ,

P
fu;vg�V.G/ jruvj D

jS j 6 k, and from this and the construction we getP
fu;vg�C

P
�2V d

r
�.u; v/ 6 k. From Eq. (1) it follows

that KS.r; V / 6 k, and so .C; V; k/ is a YES instance
of p-KAGG. �

The reduction above can clearly be done in
polynomial time, and the number of vertices in the
reduced instance .G; k/ is equal to the number of
candidates jC j in the input instance .C; V; k/. Further,
the reduced instance has at least one arc (in fact, exactly
jV j arcs) between every pair of vertices. Let H be the
edge-weighted digraph obtained from G by replacing
parallel arcs with single weighted arcs in the natural
way. That is, if there are i > 0 arcs from u to v in
G, then H contains a single arc of weight i from u to
v. It is easy to verify that H has a feedback arc set of
weight at most k if and only if G has a feedback arc set
of weight at most k. Hence from Claims 1 and 2, we
obtain:

Lemma 1 Given an instance .C; V; k/ of p-KAGG,
we can construct an equivalent instance .G; k/ of p-
WDFAS in polynomial time, where G is a semi-
complete digraph such that jV.G/j D jC j.

Notice that the previous claims and also the lemma is
also valid for the weighted version of the problem.

3.2 A subexponential FPT algorithm for p-KAGG

Our algorithm is based on the observation that
the algorithm of Alon et al.[54] for p-WDFAS on
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tournaments also works for semi-complete digraphs.
The algorithm presented in Ref. [54] starts by
preprocessing the instance and then obtains an
equivalent instance with at most O.k2/ vertices in
polynomial time. That is, given a tournament T and
a positive integer k, using only polynomial time, the
preprocessing algorithm either concludes that T does
not have a feedback arc set of weight at most k or finds
a new tournament T 0 with O.k2/ vertices and k0 6 k

such that the original tournament T has a feedback arc
set of weight at most k, if and only if T 0 has a feedback
arc set of weight at most k0. This preprocessing allows
them to assume that the instance where they actually
apply the subexponential time algorithm is of size
O.k2/ only. Their preprocessing can also be applied
to semi-complete digraphs by allowing both directed
cycles of length two and triangles in the reduction rules
proposed in Ref. [54].

So we always first apply these preprocessing rules
and obtain a semi-complete digraph on O.k2/ vertices.
Let the preprocessed semi-complete digraph be T D
.V; A/.

To obtain our algorithm we also use universal
coloring families introduced by Alon et al. in
Ref. [54]. For integers m; k; and r , a family F of
functions from Œm� to Œr� is called a universal .m; k; r/-
coloring family if for any graph G on the set of vertices
Œm� with at most k edges, there exists an f 2 F which
is a proper vertex coloring of G. The following result
gives a bound on the size of universal coloring families.

Proposition 1[54] For any n > 10k2 there exists an
explicit universal .n; k;O.

p
k//-coloring family F of

size jF j 6 2O.
p
k logk/ logn.

We enumerate each function in the universal coloring
family and then color the vertices of T with the help
of these functions. Observe that since the number of
arcs possible in the solution is at most k, there exists
a function f 2 F such that no end-points of the arc in
the solution are colored with same color, that is, no arc
of the solution is mono-chromatic. By making use of the
dynamic programming algorithm proposed in Ref. [54],
we can find a feedback arc set of weight at most k of T ,
if there exists one, in time O.2O.

p
k logk//. This yields

the following theorem.
Theorem 1 Every p-KAGG instance with n

candidates can be solved in 2O.
p
k logk/ C nO.1/ time.

By slightly adapting the dynamic programming, the
weighted version of the problem can be captured as
well.

3.3 FPT algorithms for A-p-KAGG

Discussing parameterizations above guaranteed value
has become an important topic in the development of
parameterized algorithms since Mahajan and Raman
had introduced this concept in the context of MAX

SAT[60]. We will discuss this idea now for p-KAGG in
the unweighted case.

Consider an instance of the p-KAGG problem. Let
� be any permutation of the candidate set C , let V be
the set of all votes, and let KS.�; V / denote the sum
of the KT-distances of � from all the votes in the set
V . Suppose A and B are two candidates in the input,
and let i votes prefer A over B and j votes prefer
B over A. Clearly, the pair fA;Bg contributes at least
min.i; j / to KS.�; V /. For fu; vg � C , let I.u; v/
(respectively J.u; v/) be the number of votes that rank
u before v (respectively v before u), and let

g D
X
fu;vg�C

minfI.u; v/; J.u; v/g:

Then KS.�; V / > g, and so in the natural above-
guarantee version of p-KAGG, which we are going to
call A-p-KAGG, we ask for a permutation � of C such
that KS.�; V / 6 g C k.

We now describe a reduction from A-p-KAGG to p-
WDFAS, originally due to Dwork et al.[61]

� When the number of votes in the input instance is
odd (A-p-KAGG(odd )), the reduced instance is a
tournament with positive integral edge weights.
� When the number of votes in the input instance is

even (A-p-KAGG(even)), the reduced instance is
not necessarily a tournament.

In both cases, the parameter goes from k to k. That
is, the reduction takes A-p-KAGG(odd ) to p-
WDFAS on tournaments, and A-p-KAGG(even) to p-
WDFAS in general digraphs, in both cases preserving
the parameter. Together with the subexponential
FPT algorithm of Alon et al.[54] for p-WDFAS
on tournaments, this implies a subexponential FPT
algorithm for A-p-KAGG(odd ).

In the next subsection, we describe a parameterized
reduction from p-WDFAS to A-p-KAGG(even) in
which the parameter goes from k to 2k. This implies
that A-p-KAGG(even) does not have a subexponential
FPT algorithm unless the exponential time hypothesis
is false.

Let .C; V; k/ be an instance of A-p-KAGG. We are
going to construct an instance .H; k/ of p-WDFAS in
two stages, as follows.
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Stage 1 We construct a digraph G exactly as in the
previous reduction. We set the vertex set of G to be the
set C of candidates. For each vote �i 2 V and for each
pair of vertices .u; v/ of G, we add a new arc of weight
1 from u to v in G if and only if u appears before v in
�i (equivalently, when u is preferred over v by �i ).

Stage 2 We now prune the “above-guarantee” arcs
of G. We process every two-vertex subset fu; vg of G
as follows: Let there be a total of i arcs from u to v
and j arcs from v to u in H . Assume without loss of
generality that i > j . We replace all the arcs between u
and v by a single arc of weight i � j from u to v. If
i � j D 0, then we just remove all the arcs between
u and v, and do not add any arc to replace them. We
repeat this for every 2-subset of vertices of G to obtain
a digraph H with integer-weighted arcs. .H; k/ is the
desired instance of p-WDFAS.

Suppose the number jV j of votes in the input instance
.C; V; k/ is odd. Then, with the same notation as above,
i C j D jV j is odd for each 2-subset fu; vg of G
(Observation 1), and so i > j . Thus there is exactly one
arc between every two vertices of H , and so H is a
tournament. If jV j is even, then it is possible that i D j
for some fu; vg � V.G/, and so in H there will not
be any arc between u and v. Hence when jV j is even,
H is not necessarily a tournament or a semi-complete
digraph.

Dwork et al.[61] showed that the above reduction is
sound�; see also Mahajan et al.[62]:

Lemma 2 [61, 62] Let .H; k/ be the instance of p-
WDFAS obtained from an instance .C; V; k/ of A-
p-KAGG as described above. Then .H; k/ is a YES
instance of p-WDFAS if and only if .C; V; k/ is a YES
instance of A-p-KAGG.

The fastest known FPT algorithm for p-WDFAS runs
in time O�.2O.k logk//[57]; and the fastest known FPT
algorithm for p-WDFAS on tournaments runs in time
2O.
p
k logk/ C nO.1/[54]. Hence from Lemma 2 we get:

Theorem 2 Any A-p-KAGG problem instance
with n candidates can be solved
� in time 2O.

p
k logk/ C nO.1/ when the number of

votes is odd,
� and in time O�.2O.k logk// when the number of

votes is even.

� The quoted paper is nearly identical with Ref. [11], but the
reduction we are interested in is contained in the appendix that is
not part of the conference paper.

3.4 A lower bound for A-p-KAGG(even)

We now argue that the A-p-KAGG(even) problem
does not have a subexponential FPT algorithm, unless
the ETH is false. ETH is a well-known complexity
hypothesis formulated by Impagliazzo et al.[58]

Exponential Time Hypothesis: There is a positive
real s such that 3-CNF-SAT with n variables
and m clauses cannot be solved in time 2sn.n C
m/O.1/.
To see this, consider the following sequence of two

reductions:
verterx cover!directed feedback arc set!

A-p-KAGG:

The first reduction is due to Karp[63], and the second
is due to Dwork et al.[61] This sequence of reductions
takes an input instance .G; k/ of vertex cover where G
is a graph on n vertices and m edges and k 6 n is a
positive integer, and outputs an instance .C; V; 2k/ of
A-p-KAGG(even) where jC j D 3n C 2m, jV j D 4,
and the guarantee is

g D 2

  
2n

2

!
C

 
nC 2m

2

!
C nC 2m

!
I

see Refs. [61, 63] for details. Suppose A-p-
KAGG(even) has an algorithm that runs in time
O�.2O.k//. Since k D O.n/ throughout the reduction,
we can then use this algorithm to solve vertex cover in
O�.2O.n// time: We first apply the above sequence of
reductions and then apply the supposed subexponential
FPT algorithm for A-p-KAGG(even) to the resulting
instance. This would in turn imply that ETH is false[58],
and so we have Theorem 3.

Theorem 3 The A-p-KAGG problem with an even
number of votes cannot be solved in O�.2O.k// time,
unless ETH is false.

4 FPT Algorithms for p-OSCM

Let us now turn our attention to graph drawing. We first
formally state the problem p-OSCM that we are going
to consider:

Given: A bipartite graph G D .V1; V2; E/, a
bijection � W f1; � � � ; jV1jg ! V1 and an integer
k > 0
Parameter: k
Question: Is there a bijection � 0Wf1; � � � ; jV2jg ! V2
such that, if G is drawn according to .�; � 0/, no
more than k crossings are incurred?

We say that a bipartite graph G D .V1; V2; E/ is
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drawn according to .�; � 0/ (in the plane) if the vertex
�.`/, ` 2 f1; � � � ; jV1jg, of V1 gets the position .�.`/; 0/
and the vertex � 0.`/, ` 2 f1; � � � ; jV2jg, of V2 gets the
position .� 0.`/; 1/ and edges are drawn as straight lines.
Whenever there are two edges e1 D u1v1 and e2 D
u2v2 such that ��1.u1/ < ��1.u2/ but � 0�1.v1/ >
� 0�1.v2/, we say that e1 and e2 incur a crossing. The
lines f.x; 0/ j x 2 Rg and f.x; 1/ j x 2 Rg are also
referred to as the first and second layers of the drawing.

Let .G; �; k/ with G D .V1; V2; E/ be an instance of
p-OSCM. In what follows, we assume without loss of
generality that in G, every vertex in V2 has at least one
neighbor in V1.

4.1 Parameterized reduction from p-OSCM to p-
WDFAS

We now describe a parameterized reduction from p-
OSCM to p-WDFAS which runs in polynomial time
and takes the parameter from k to k. Let .G; �; k/
with G D .V1; V2; E/ be an instance of p-OSCM. For
two vertices u; v 2 V2, let Cuv denote the number of
crossings of edges incident to u with edges incident to
v, when u appears before v in the second layer. It is
known[22] that for a given graph G and a fixed ordering
� of the vertices of V1, Cuv is a constant and can
be computed in polynomial time. Moreover, if we are
given a bijection � 0 W f1; � � � ; jV2jg ! V2, the number
of crossings incurred by .�; � 0/ can be computed as:X

u;v2V2;� 0�1.u/<� 0�1.v/

Cuv (2)

We construct a digraphH as follows: H has one vertex
for each vertex of V2. For fu; vg � V2, we draw the arc
uv with weight Cuv if Cuv > 0.

Claim 3 Let .G; �; k/ with G D .V1; V2; E/ be an
instance of p-OSCM, and letH be the digraph obtained
from this instance as described above. .G; �; k/ is a
YES instance of p-OSCM if and only if H has a
feedback arc set of weight at most k.

Proof Suppose .G; �; k/ withG D .V1; V2; E/ is a
YES instance of p-OSCM, and let �m be a permutation
of V2 that witnesses this fact. Place the vertices of H
on a line in the order induced by �m : u is to the left
of v if and only if u comes before v in �m. From the
construction it is clear that the sum of the weights of
the arcs in H that go from left to right is at most k, and
so these arcs together form a feedback arc set of H of
weight at most k.

Now suppose S is a minimal feedback arc set of H
of weight at most k. Let � 0 be the unique permutation

of V2 such that if we place the vertices ofH on a line in
the order specified by � 0, then the arcs that go from left
to right are exactly the arcs in S . It is easily verified that
if the vertices of V2 are placed on the second layer in
the order specified by � 0, then the number of crossings
will be at most k. �

The reduction above can clearly be done in
polynomial time, and the graph H in the reduced
instance .H; k/ has jV2j vertices, where the p-OSCM
instance is .G; �; k/, with G D .V1; V2; E/. Further,
it is not difficult to see that the reduced instance has
at least one arc between every pair of vertices. Hence,
from Claim 3 we can deduce the following result:

Lemma 3 Given an instance .G; �; k/ of p-
OSCM, where G D .V1; V2; E/, we can construct, in
polynomial time, an equivalent instance .H; k/ of p-
WDFAS where H is a semi-complete digraph and
jV.H/j D jV2j.

4.2 A subexponential FPT algorithm for p-OSCM

From Lemma 3, and using the same argument as in
Section 3.2, we get:

Theorem 4 Any p-OSCM instance can be solved
in 2O.

p
k logk/ C nO.1/ time, where n is the number of

vertices in the layer that is not fixed.

4.3 Lower and upper bounds for A-p-OSCM

Let .G; �; k/ with G D .V1; V2; E/ be an instance
of p-OSCM. For two vertices u; v 2 V2, let Cuv
be defined as in Section 4.1. It is known that
the minimum possible number of crossings is g DP
fu;vg�V2

min.Cuv; Cvu/[22]. So in the natural above-
guarantee version of p-OSCM, which we call A-p-
OSCM, we ask for a permutation � of V2 such that the
number of crossings induced by � is at most g C k.

Given an instance .G; �; k/ of p-OSCM, with G D
.V1; V2; E/, the well-known penalty graph construction
of Sugiyama et al.[16] constructs an arc-weighted
digraph H with V2 as the vertex set, and there is
an arc in H from u to v with weight Cvu � Cuv
if Cuv < Cvu. It is easy to verify that there is a
permutation �m of V2 such that the number of crossings
induced by �m is at most g C k if and only if H has a
feedback arc set of weight at most k. Thus, using the
algorithm in Ref. [57], we have:

Theorem 5 The A-p-OSCM problem can be
solved in O�.2O.k logk// time.

Muñoz et al.[19] described a reduction from directed
feedback arc set to p-OSCM that, in fact, is a
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parameterized reduction from directed feedback arc set
(where the parameter k is the solution size) to A-p-
OSCM which takes the parameter from k to 2k. Hence
by a similar argument as in Section 3.4, we can
conclude:

Theorem 6 The A-p-OSCM problem cannot be
solved in O�.2O.k// time, unless ETH is false.

4.4 Problem variants

Equation (2) can be easily modified to host edge
weights as required by the WOLF variant as introduced
by Çakiroglu et al[34]. This immediately implies:

Theorem 7 The edge-weighted p-OSCM problem
can be solved in 2O.

p
k logk/ C nO.1/ time, where n is

the number of vertices in the layer that is not fixed.
We now define a generalization of p-OSCM that has

been introduced and studied in Ref. [38]; PCO is the
following problem:

Given: A partial order R � V � V on a finite set
V , a cost function c W V � V n R ! .0;1/ and an
integer k > 0
Parameter: k
Question: Is there a linear ordering L � R such that
c.R n L/ 6 k?

There is an easy translation of PCO to Feedback Arc
Set in Tournaments (FAST): Interpret V as the vertices
of a digraph. We have one or two arcs between two
vertices.
� If .u; v/ 2 R and u ¤ v, then the arc .u; v/ is

assigned1 as its weight.
� If neither .u; v/ 2 R nor .v; u/ 2 R, then the arc
.u; v/ is assigned the weight c..u; v//.

Hence, we can immediately conclude a subexponential
algorithm for PCO:

Theorem 8 PCO can be solved in 2O.
p
k logk/ C

jV jO.1/ time.
Notice that the additive term results from the possible

kernelization for PCO as explained in Ref. [38]. We
now explain how to model p-OSCM by PCO:
� V D V2, the set of vertices whose ordering is not

yet fixed.
� We assume that some arbitrary initial linear

ordering 6init of V2 is given.
� Given two vertices u; v 2 V2, set .u; v/ 2 R if
Cuv D 0 and Cvu > 0.
� Given two vertices u; v 2 V2, set .u; v/ 2 R if
Cuv D 0 and Cvu D 0 and u 6init v.

Using this translation, Theorem 8 implies Theorem 4.
Moreover, Foster’s constrained OSCM variant can be

treated in the same way. The parts of V2 whose ordering
is already prescribed can be incorporated within R (in
the translation to the PCO instance). We can hence
conclude:

Theorem 9 The constrained p-OSCM problem can
be solved in 2O.

p
k logk/ C nO.1/ time, where n is the

number of vertices in the layer that is not fixed.
It is not so clear how (or even whether) we could

obtain subexponential algorithms for ROSCM.

5 Polynomial-Time Approximation Schemes

The following result largely improves on its precursors,
the best one being[25]. It is an immediate consequence
of our reductions and the approximation schemes
known for directed feedback arc set.

Theorem 10 There is a PTAS for approximating
OSCM, given a bipartite graph G D .V1; V2; E/ and
a strict linear ordering < on V1.

Observing Ref. [64], we can conclude the next result
by making use of Theorem 10:

Theorem 11 There is a PTAS for approximating
ROSCM, given a bipartite graph G D .V1; V2; E/ of
minimum degree two and a strict linear ordering < on
V1.

It is however unclear how to overcome the seemingly
technical degree condition in the previous theorem.

Notice that, due to the tight connection between
the problems directed feedback arc set and PCO, the
following results are again immediate:

Corollary 1 There is a PTAS for approximating
PCO.

Corollary 2 There is a PTAS for approximating
constrained OSCM.

6 Conclusion and Future Work

The general conclusion that we can draw from this
problem can be the advice to look over the rim
of one’s teacup. There are thousands of algorithmic
problems in different areas of applications, but these
problems appear often to be unrelated, as the people
working in these different domains use their own
vocabulary and express their thoughts in different ways.
Hence, possible interconnection between different areas
remains mostly hidden and unobserved. It would be
most inspiring and fruitful for computer science if we
could overcome such barriers in language and style. A
steady flow of ideas could result in quite an amount of
progress in different domains.

In this paper we modeled two basic problems,
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from two different domains, as the weighted feedback
arc set problem on “tournament-like” structures. This
allowed us to utilize the earlier developed technique
of chromatic-coding[54] to obtain subexponential-time
algorithms, that is, algorithms that run in time
O�.c

p
k logk/, most notably for p-KAGG and for

p-OSCM. The running time of these algorithms
is a significant improvement over the hitherto best
published algorithms, which had running times of the
form roughly O�.1:5k/. The same idea allowed us to
conclude PTAS results.

Our approach also allowed us to show that the
above-guarantee versions of these problems are fixed
parameter tractable with algorithms having running
times of the form O�.ck logk/. We also show that
the above-guarantee versions of these problems cannot
have algorithms that run in O�.2O.k// time, unless ETH
fails.

It also might be interesting to consider the crossing
minimization variant of these problems that attempts to
minimize the maximum number of crossings per edge
as proposed by Biedl et al.[1] from the viewpoints both
of fixed parameter tractability and of approximability.
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