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Abstract. We obtain asymptotically tight algorithmic bounds for MAX-CuT and EDGE Dom-
INATING SET problems on graphs of bounded clique-width. We show that on an n-vertex graph of

clique-width ¢ both problems (1) cannot be solved in time f(t)n°(*) for any function f of ¢t unless

exponential time hypothesis fails, and (2) can be solved in time nO®),

Key words. exponential time hypothesis, clique-width, max-cut, edge dominating set
AMS subject classifications. 05C85, 68R10, 68Q17, 68Q25, 68W40

DOI. 10.1137/130910932

1. Introduction. Tree-width is one of the most fundamental parameters in
graph algorithms. Graphs of bounded tree-width enjoy good algorithmic properties
similar to trees, and this is why many problems which are hard on general graphs
can be solved efficiently when the input is restricted to graphs of bounded tree-width.
On the other hand, many hard problems also become tractable when restricted to
graphs “similar to complete graphs.” Courcelle and Olariu [6] introduced the notion
of clique-width which captures nice algorithmic properties of both extremes.

Since 2000, the research on algorithmic and structural aspects of clique-width is
an active direction in graph algorithms, logic, and complexity. Corneil et al. [4] show
that graphs of clique-width at most 3 can be recognized in polynomial time. Fellows
et al. [12] settled a long-standing open problem by showing that computing clique-
width is NP-hard. Oum and Seymour [30] describe an algorithm that for every fixed
t, in time O(|V(G)|?1log |V (G)|) computes a (2342 — 1)-expressions of a graph G of
clique-width at most t. Recently, Hlinény and Oum obtained time O(f(t) - |V (G)[?)
algorithm computing (2!+! — 1)-expressions of a graph G of clique-width at most ¢
[19]. We refer to the recent survey [20] for further information on different width
parameters.

By the meta-theorem of Courcelle, Makowsky, and Rotics [5], all problems ex-
pressible in M Si-logic (monadic second-order logic on graphs with quantification over
subsets of vertices but not of edges) are fixed parameter tractable when parameter-
ized by the clique-width of a graph and the expression size. For many other problems
not expressible in this logic including problems like MAX-CUT, EDGE DOMINATING
SET, GRAPH COLORING, or HAMILTONIAN CYCLE, there is a significant amount of
the literature devoted to algorithms for these problems and their generalizations on
graphs of bounded clique-width [10, 16, 17, 18, 24, 25, 27, 32, 33, 34]. Running times
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of all these algorithms on an n-vertex graph of clique-width at most ¢ are of order
O(nf®) for some functions f of t.

One of the central questions in the area is whether the bound O(nf®)) on the run-
ning time of all these algorithms is asymptotically optimal. Even the existence of fixed
parameter tractable algorithms (with clique-width being the parameter) for all these
problems (or their generalizations) was open until very recently [16, 24, 25, 27, 18]. As
the first step toward obtaining lower bounds for clique-width parameterizations, we
have shown in [15] that unless FPT = W/1], there is no function g such that GRAPH
COLORING, EDGE DOMINATING SET, and HAMILTONIAN PATH are solvable in time
g(t) - n®M) . While [15] resolves the parameterized complexity of these problems, the
conclusion that unless FPT = W[1] there is no algorithm with run time O(g(t) - n°)
for some function g and a constant ¢ not depending on ¢ is weak compared to the
known algorithmic upper bounds. For example, it does not rule out an algorithm of
running time n®(vV92t.

In this paper, we provide asymptotically tight optimal lower bounds for MAX-
Cut and EDGE DOMINATING SET. In particular, we show that unless exponential
time hypothesis (ETH) fails, there is no f(t)-n°®)-time algorithm for both problems.
While known algorithms for these problems run in times nO#) [24, 25, 10, 34], we
give new algorithmic upper bounds of the form n®®. Together, these lower and
upper bounds give asymptotically tight algorithmic bounds for MAX-CuT and EDGE
DOMINATING SET.

To obtain our lower bounds we construct “linear FPT-reductions.” These type
of reductions are much more stringent and delicate than the usual FPT reductions.
This is the reason why this research direction is still in a nascent stage and not so
many asymptotically tight bounds are known in the literature. Chen, Huang, Kanj,
and Xia [2, 3] were the first to succeed in obtaining results of such flavor by showing
that there is no algorithm for k-CLIQUE (finding a clique of size k) running in time
f(E)n°®) unless there exists an algorithm for solving 3-SAT running in time 2°(™) on
a formula with n-variables. The assumption that there does not exist an algorithm
for solving 3-SAT running in time 2°(™ is known as ETH [21] and is equivalent
to the following conjecture from parameterized complexity: FPT # M][1]; see [8,
13]. The lower bound on k-CLIQUE can be extended to some other parameterized
problems via linear FPT-reductions [2, 3]. This kind of investigation has also been
useful in obtaining tight algorithmic lower bounds for polynomial time approximation
schemes [28] and for constraint satisfaction problems when parameterized by the tree-
width of the “primal graph” [29]. We further extend the utility of this approach by
obtaining asymptotically tight algorithmic bounds for clique-width parameterizations.
We refer to the recent survey of Lokshtanov, Marx, and Saurabh [26] for detailed
discussions on the ETH.

The remaining part of the paper is organized as follows. Section 2 contains
definitions and preliminary results. Section 3 is devoted to the proof of an auxiliary
result, namely, that RED-BLUE CAPACITATED DOMINATING SET cannot be solved
in time f(k)n°®) on graphs with a feedback vertex set of size at most k assuming
ETH. RED-BLUE CAPACITATED DOMINATING SET and its variants appear to be
very handy tools for proving intractability of problems parameterized by the clique-
width. In section 4 we provide tight upper and lower bounds for MAX-CuT. We also
show how the obtained bound implies bounds on related BIPARTIZATION BY EDGE
REMOVAL and MAXIMUM (MINIMUM) BISECTION problems. In section 5, we obtain
bounds for EDGE DOMINATING SET. We conclude by section 6, where we provide
open problems and directions for further research.
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2. Definitions and preliminary results.

Parameterized complezity and ETH. Parameterized complexity is a two-dimen-
sional framework for studying the computational complexity of a problem. One di-
mension is the input size n and the other is the parameter k. More formally, a
(parameterized) language £ C ¥* x N for a finite alphabet ¥ is contained in FPT if
there is a computable function f: N — N such that any instance (Q, k) can be decided
with respect to £ in time f(k) - p(|Q|) for some polynomial function p: N — N. We
call such a problem fized-parameter tractable. We refer to the books of Downey and
Fellows [9], Flum and Grohe [13], and Niedermeier [31] for a detailed treatment to
parameterized complexity.

We define the notion of parameterized (linear) reduction which is the main tool
for establishing of our results.

DEFINITION 1. Let A and B be parameterized problems. We say that A is
(uniformly many:1) FPT-reducible to B if there exist functions f,g : N — N, a
constant o € N, and an algorithm ® transforming an instance (z,k) of A into an
instance (z', g(k)) of B in time f(k)|z|® such that (x,k) € A if and only if (2, g(k)) €
B. The reduction is called linear if g(k) = O(k).

The following well-known complexity hypothesis was formulated by Impagliazzo,
Paturi, and Zane [21].

HypoTHESIS 1 (ETH). There exists a positive real number s such that 3SAT with
n variables and m clauses cannot be solved in time 2°™(n +m)°™).

Graphs. We only consider finite undirected graphs without loops or multiple
edges. The vertex set of a graph G is denoted by V (G) and its edge set by E(G). A set
S C V(@) of pairwise adjacent vertices is called a cliqgue. For v € V(G), by Eg(v) we
denote the set of edges incident with v. For vertex v € V(G), we denote by Ng(v) its
(open) neighborhood, that is, the set of vertices adjacent to v. The closed neighborhood
of v is Ng[v] := Ng(v)U{v}. The degree of a vertex v is dg(v) := |N¢g(v)|. For graph
G, its incidence graph is the bipartite graph I(G) with the vertex set V(G) U E(G)
such that v € V(G) and e € E(G) are adjacent if and only if v is incident with e in
G. For a set of vertices S C V(G), G[S] is the subgraph of G induced by S, and by
G — S we denote the graph obtained form G by removal of S.

Clique-width. Let G be a graph, and ¢ be a positive integer. A t-graph is a graph
with vertices labeled by integers from {1,2,...,¢}. We refer to a t-graph consisting of
exactly one vertex labeled by some integer from {1,2,...,t} as to an initial t-graph.
The clique-width cwd(QG) is the smallest integer ¢ such that G can be constructed by
means of repeated application of the following four operations:

i(v) : Introduce operation constructing an initial ¢-graph with vertex v labeled
by 1.
@ : Disjoint union.
pi—; : Relabel operation changing all labels 7 to j.
ni,; © Join operation making all vertices labeled by ¢ adjacent to all vertices labeled
by j.
An expression tree of a graph G is a rooted tree T' with nodes of four types i, @, n
and p:
e Introduce nodes i(v) are leaves of T corresponding to initial ¢-graphs with
vertices v labeled by 1.
e Union node ® stands for a disjoint union of graphs associated with its chil-
dren.
e Relabel node p;—,; has one child and is associated with the ¢-graph obtained
by applying the relabeling operation to the graph corresponding to its child.
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e Join node 1;; has one child and is associated with the t-graph resulting by
applying the join operation to the graph corresponding to its child.
e The graph G is isomorphic to the graph associated with the root of T' (with
all labels removed).
The width of the tree T is the number of different labels appearing in T'. If G is of
clique-width ¢, then there is a rooted expression tree T of width ¢ of G. Given a node
X of an expression tree, the graph G x represents the graph formed by the subtree of
the expression tree rooted at X.

An expression tree 1" is irredundant if for any join node 7; ;, the vertices labeled
by ¢ and j are not adjacent in the graph associated with its child. It was shown
by Courcelle and Olariu [6] that every expression tree T' of G can be transformed
into an irredundant expression tree 7" of the same width in time linear in the size
of T.

Feedback vertex set. A feedback vertex set of a graph G is a set of vertices X C
V(G) such that G — X is a forest. The feedback vertex set number of a graph G,
denoted by fvs(G), is the size of a smallest feedback vertex set of G. We need the
following observation.

OBSERVATION 1. Let X be a feedback vertex set of a graph G. If G’ is obtained
from G by subdividing some edges, then X is a feedback vertex set of G'.

We also use the following lemma.

LEMMA 2.1. Let X be a feedback vertex set of a graph G such that each vertex
v of the forest F = G — X is adjacent to at most one vertex of X. Then cwd(G) <
4-1X]|+3.

Proof. Let X = {x1,...,21}. Observe that because F is a forest, we have that
cwd(F) < 3 (see, e.g., [23]). Let T be an expression tree for F of width 3 using labels
1,2,3. To construct an expression tree for G, we use the following additional labels:

e labels agl), s ozg) for i € {1,2,3} for vertices of F' adjacent to vertices of X,
e labels (1, ..., 0k for vertices of X.

We construct an expression tree for G by making necessary changes in 7. For each
vertex v € V(F') adjacent to z,, the corresponding introduce node i(v) is replaced by
node oz,(f) (v). Each relabel node p;_,; is replaced by path PisjPald ol " Pod _yqls
children of p;—; become children of the first endpoint p;—; of the path, and the
parent of p;_,; becomes the parent of the second endpoint Pol®) o+ In a similar

way each join node 7; ; is replaced by path URUANOY/ NOWY NOINEP where indices
g P P tq

p,q run through all pairs of different integers from {1,...,k}. Then we construct an
expression tree for G[X] with introduce nodes 51 (x1), ..., Bk(zk). Since all vertices of
X are labeled by pairwise different labels, this construction is done in a straightforward
way. Finally, we add the union vertex with the roots of the modified tree for F' and the
tree for G[X] being its children, and construct the join nodes o) gyoe for

ie{1,2,3}. O

’naﬁj),ﬁk

3. Capacitated domination. In this section we prove an auxiliary theorem
about the CAPACITATED DOMINATING SET problem. This result will be heavily used
in the proof of the main results of this paper. The parameterized complexity of
CAPACITATED DOMINATING SET with the treewidth of the input graph being the
parameter was considered in [1, 7]. Here, we use a special variant of the problem and
parameterize it by the feedback vertex set number.

A red-blue capacitated graph is a pair (G, c¢) where G is a bipartite graph with
the vertex bipartition R and B and c: R — N is a capacity function such that
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1 < ¢(v) < dg(v) for every vertex v € R. The vertices of R are called red and the ver-
tices of B are called blue. A set S C R is called a capacitated dominating set if there is
a domination mapping f: B — S mapping every vertex from B to one of its neighbors
in S such that the total number of vertices mapped by f to each vertex v € S does not
exceed its capacity c¢(v). For v € S, we say that vertices in f~1(v) are dominated by v.
The RED-BLUE CAPACITATED DOMINATING SET (RED-BLUE CDS) problem for a
given red-blue capacitated graph (G, ¢) and a positive integer k asks whether there ex-
ists a capacitated dominating set S for G containing at most k vertices. A capacitated
dominating set S C R is called saturated if there is a domination mapping f which
saturates all vertices of S, that is, |f~1(v)| = ¢(v) for each v € S. The RED-BLUE EX-
ACT SATURATED DOMINATING SET problem (RED-BLUE EXACT SATURATED CDS)
takes a red-blue capacitated graph (G, ¢) and a positive integer k as an input and asks
whether there exists a saturated capacitated dominating set with exactly k vertices.

The main result of this section is the following technical theorem.

THEOREM 3.1. Unless the ETH fails, RED-BLUE CDS and RED-BLUE EXACT
SATURATED CDS cannot be solved in time f(k)n°®), where n is the number of vertices
and k is the feedback vertex set number of the input graph. Moreover, none of the two
problems can be solved in time f(k)n°®) even if the input is restricted to graphs G
such that for every minimum feedback vertex set X C V(G),

e X is independent and
e cach vertex of the forest G — X is adjacent to at most one vertexr of X .

The remaining part of the section is devoted to the proof of this theorem.

Proof of Theorem 3.1. First we prove the claim for RED-BLUE CDS. We construct
a linear FPT-reduction from the k-MULTI-COLORED CLIQUE (k-MCC) problem to
RED-BLUE CDS parameterized by the feedback vertex set number. In fact, our
reduction runs in polynomial time.

The k-MCC problem asks for a given k-partite graph G = (V4 U --- U Vi, E),
where Vi, ...,V are sets of the k-partition, whether there is a k-clique C' in G. The
fact that, assuming ETH, this problem cannot be solved in time f(k)n°*) follows,
immediately from the reduction from the k-CLIQUE problem (see, e.g., [11, 26]). We
show how, for a given instance (G, k) of k-MCC, to construct an instance (H, ¢, k')
of RED-BLUE CDS such that

o fvs(H) = 2k,
o k' = (5) + 5k,
e (G has a clique of size k if and only if H has a capacitated dominating set of
size k', and
e for every minimum feedback vertex set X C V(H), X is independent, and
each vertex of the forest H — X is adjacent to at most one vertex of X.
Let us note that while the number of vertices in a capacitated dominating set of H is
O(k?), we have fvs(H) = 2k and thus this reduction is linear for the required param-
eterization of RED-BLUE CDS. Without loss of generality, we assume that k > 3.

To each vertex v € V(G) we will assign two unique identification numbers v*?
and v9°*". The choice of identification numbers plays a crucial role in our reduction.
Let n be the number of vertices in GG. For an integer p, we say that a set X of positive
integers is a p-nonaveraging set if for every tuple (z1, z2, ..., x,) of elements of X their
average is in X if and only if ; = 23 = --- = ,. Remarkably, dense p-nonaveraging
sets exist and can be constructed in polynomial time.

LEMMA 3.2 (see [22]). For every p and n there exists a p-nonaveraging set X,
|X| = n, such that the largest element of X has value 32p®n?. Furthermore, X can
be constructed in O(p*n3) time.
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F1G. 1. Partial construction of H corresponding to two sets Vi and V; of the k-MCC instance.
The edges of the original graph are shown by dashed lines; the vertices from R are shown in white
and vertices of B are shown in black.

We construct a (k — 1)-nonaveraging set X of size n and assign to each vertex
v of G a unique identification number v*? € X. Now we fix ¢ to be three times the
largest element of X. For every v, we set v9°%" =t — ¢uP,

For two red vertices u and v of H and a positive integer A, by adding an A-arrow
from u to v we will mean adding A subdivided edges between v and v. All the vertices
on the added subdivided edges are blue. Now we describe how to build the graph H
for a given instance (G = (Vi UV, --- U Vg, E), k) of k-MCC.

For a pair of distinct integers 4,5 € {1,...,k}, let E; ; be the set of edges with
one endpoint in V; and the other in V;. For every integer ¢ between 1 and k, we make
a blue vertex x; that has a red neighbor © for each v € V;. For every pair of integers
1,j such that 1 < i < j < k, we make a blue vertex z; ; that has a red neighbor é
for every edge e in E; ;. For every i, we add a red vertex y; and a red vertex z;,
which we call marked. For every marked vertex y;, a red vertex a; and a blue vertex
b; adjacent to a; are added, and for y; and a;, a 2-arrow is constructed. Similarly,
for every marked vertex z;, a red vertex ¢; and a blue vertex d; adjacent with ¢; are
added, and z; is joined with ¢; by a 2-arrow.

Now, for every vertex v € V;, we add a ((k — 1) - v"P)-arrow from ¢ to y; and a
((k — 1) - v¥ewn)_arrow from o to z;. For every 1 < i < j < k and edge e = uv in
E; j, we proceed as follows. Let u € V; and v € V;. We add a (u9°*™)-arrow from
é to y;, a (u"P)-arrow from é to z;, a (v9°“™)-arrow from é to y;, and a (v*?)-arrow
from € to z;. At this point, if any marked vertex has degree less than (k — 1)t +2, we
add blue leaves adjacent only to that vertex, such that the marked vertex gets degree
(k — 1)t + 2. This concludes the construction of H. The construction is shown in
Figure 1. Finally, we describe the capacities of the red vertices. We set capacities of
all vertices a; and ¢; equal to one. All other red and unmarked vertices have capacities
equal to their degree. The marked vertices all have capacity exactly (k — 1)t less than
their degree.

It is easy to see that 2k marked vertices form a feedback vertex set of H. Moreover,
all marked vertices should be contained in each feedback vertex set of a size at most 2k
because of 2-arrows which join these vertices with the vertices a; and ¢;, respectively.
Indeed, let X be a feedback vertex set of size at most 2k. Because 2-arrows form 2k
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vertex disjoint cycles of length 4, set X should contain at least one vertex from each
of these cycles. Hence, |X| = 2k, and thus only vertices of these 2-arrows can be in
X. Now if there was a marked vertex, say, y; not in X, then because k& > 3, for each
v € Vi, the ((k — 1) - v"P)-arrow from v to y; contains a cycle. On the other hand, X
cannot contain vertices of this cycle, a contradiction. Hence, fvs(H) = 2k, and the
set of the marked vertices is a unique minimum feedback vertex set.

By the construction, the set of marked vertices is independent and each marked
vertex is adjacent only to subdivision vertices of A-arrows. Therefore, each vertex
of the forest obtained from H by removal of vertices of the feedback vertex set is
adjacent to at most one vertex of this set.

The following two lemmata complete the proof.

LEMMA 3.3. If G has a multicolor cliqgue C = {vy,va,..., v}, then H has a
capacitated dominating set D of size k'.

Proof. For every i < j, let e;; be the edge from v; to v; in G. In addition to all
the marked vertices and vertices a; and ¢; for ¢ € {1,...,k}, let D contain ¢; and €5j
for every i,j € {1,...,k}, i < j. Clearly D contains exactly k" vertices, so it remains
to prove that D is indeed a capacitated dominating set.

Vertices a; and ¢; dominate blue neighbors b; and d;, respectively. All other
unmarked red vertices have degree equal to their capacity, so such vertices in D
dominate all their neighbors. Thus, all the z;-s are dominated by unmarked vertices
in D. Observe that every blue vertex except for the z;,b;, and d;-s has exactly one
marked neighbor. Thus, since the marked vertices all have capacity exactly (k — 1)t
less than their degree, it is sufficient to prove that every marked vertex has at least
(k — 1)t blue neighbors that are dominated by unmarked vertices in D.

Consider y; for some . Notice that ¢; dominates (k — 1) - v;” blue neighbors of
yi. Also, every €j; such that ¢ < j and every ¢j; such that j < i dominates vdown blue
neighbors of y;. Thus (k—1)(v;” +v@°¥") = (k—1)t blue neighbors of y; are dominated
by unmarked vertices in D. The proof for z; is identical. Namely, v; dominates
(k —1) - v blue neighbors of z;. Also, every €;; such that i < j and every €j; such
that j < i dominates v;" blue neighbors of z;. Thus (k — 1)(vfov™ + vi'?) = (k — 1)t
blue neighbors of z; are dominated by unmarked vertices in D. This concludes the
proof. a

LEMMA 3.4. If H has a capacitated dominating set D of size k', then G has a
multicolor clique of size k.

Proof. For each i € {1,...,k}, a; has capacity one and has a private neighbor b;
which should be dominated. Therefore, y; must be included in D and must dominate
two adjacent vertices in the 2-arrows joining y; and a;. Similarly, every z; must be
included in D and must dominate two adjacent vertices in the 2-arrows which joins
z; and ¢;.

For every i € {1,...,k}, there is v; € V; such that 9; € D, because otherwise x;
is undominated. Similarly, for every pair of integers 4, j with i < j, there must be an
edge e;; € I; j such that é;; € D; otherwise, x;; is undominated. Also all vertices b;
and d; should be dominated, and hence all vertices a; and ¢; must be included in D.
Since |D| < k', it follows that these are the only unmarked vertices in D.

Since all unmarked vertices in D except a; and ¢;, i € {1,...,k}, have capacity
equal to their degree, we can assume that each such vertex dominates all its neighbors.
For j > i, define e;; = e;; and é;; = €;;. We proceed by proving that for every pair
of integers i,j with ¢ # j, e;; = uv is incident with v;.

Consider z; for some i. The blue neighbors of z; can be dominated by z;, 0;, or
some é;; for j # i. Since the capacity of z; is (k— 1)t less than its degree, we have that
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at least (k — 1)t neighbors of z; are dominated by some vertices 0; or é;; in D. For
every j # i, let u; be the endpoint of e;; that is in V;. Now 9; dominates (k — 1)vdown
neighbors of z;, and for every j # ¢ we have that é;; dominates u;-“) neighbors of z;.
Hence,

(3.1) (k = Dofow™ + 3 " ul? > (k- 1)t.
J#i

An identical argument for y; yields (k — 1)v;" + 37, udown > (k — 1)t. For every
v € V(G), we have v*P + v%¥" =t and thus

(k — Dvferm + 3 ul? 4+ (k — Do + > " udo™ = 2(k — 1)t
i i

Thus it follows that the inequality in (3.1) is the equality, yielding the following:

(3.2) > ouf? = (k= 1)t — (k — Lo = (k — ™.
J#i

Since the up-identification numbers were taken from a (k — 1)-nonaveraging set, it
follows that w; = v; for all j # 4. Thus for every ¢ and j # 7, v; is incident with e;;.
Thus v1,...,v, form a multicolored clique in G. This concludes the proof. O

To prove the claim of Theorem 3.1 for RED-BLUE EXACT SATURATED CDS,; it
is sufficient to observe that if the instances constructed in the proof for RED-BLUE
CDS have a capacitated dominating set D of size k', then the capacitated dominating
set D is saturated and exact. O

4. Max-Cut and related problems. In this section we consider the MAX-CuT
problem and a few other closely related problems. Let G be a graph. For a partition
V1,V of V(G), the cut set is defined as Cq(V1,Va) = {uv € E(G): u € Vi,v € Va}.
A cut set of a graph G is a set of edges C' C E(G) such that there is a partition Vi, Vs
of V(G) with C = Cg(Vi, V). The size of a maximum cut set in G is denoted by
mcut(G). In the MAX-CUT problem, we are given a graph G and a positive integer
k, and the objective is to check whether there exists a cut set C' C E(G) such that
|C| > k. Our main theorem in this section is the following.

THEOREM 4.1. Let G be an n-vertex graph given together with an expression tree
of width t. Then the MAX-CUT problem

e cannot be solved in time f(t)-n°® unless the ETH fails;
e is solvable in time n®®

We prove this theorem in two steps. We first show the lower bound and then

complement this result with the corresponding upper bound.

4.1. Lower bound. To prove the lower bound, we give a reduction from the
RED-BLUE CDS problem parameterized by the feedback vertex set number to the
MAX-Cut problem. The proof is organized as follows: we first give a construction,
then prove its correctness, and finally argue on the clique-width of the transformed
instance.

Construction. Let (G, ¢, k) be an instance of RED-BLUE CDS with R = {uy, ..., u,}
being the set of red vertices and B = {v1,...,v,.} being the set of blue vertices, and
such that for every minimum feedback vertex set X of G, set X is independent. We
also assume that G has m edges.
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We start from the auxiliary gadgets.

Auziliary gadgets F(xz,y) and F'(x,y). Let x,y be two vertices. We construct
F(z,y) by joining x and y by 4m+1 paths of length two. Graph F’(z,y) is constructed
by joining x and y by 4m + 1 paths of length three. The properties of F'(x,y) and
F'(x,y) required for our proof are summarized in the following lemma.

LEMMA 4.2. For every F(x,y) and F'(x,y)

e mcut(F(z,y)) =8m + 2 and mcut(F'(z,y)) = 12m + 3;

e for every partition Vi,Va of the vertex set of F(x,y) such that x € Vi and
y € Va, [Cpay)(Vi, V2)| < mcut(F(z,y)) —4m —1;

e for every partition Vi,Va of the vertex set of F'(x,y) such that x,y € Vi,
|CFr (2, (V1, Vo) | < meut(F'(z,y)) — 4m — 1.

We will attach gadgets F'(z,y) and F’'(x,y) to other parts of the construction
through the vertices = and y. Notice that we can always assume that the vertices of
V(F(x,y))\{z, y} are included in exactly one side of an optimal partition of the vertex
set leading to the maximum sized cut. Similarly, we can assume that the vertices of
Ngr(@y)(@) (Npr(2,y)(y), respectively) also included in exactly one side of an optimal
partition of the vertex set.

Auziliary gadgets Hq (21, ..., xs,y). Let £ = max{n,r}. We first construct graph
H with the vertex set {z;;: 1 < ¢ < 20,1 < j < 4m + 1}. Vertices z; ; and zy j
are joined by an edge for 1 < i < i/ < 2¢. That is, we construct a complete 2/¢-
partite graph with the 2¢-partition Z1, ..., Za, where Z; = {z; 1, ..., Ziam+1}. Then
we add graphs F(z1,2i2), ..., F(%iam, Ziam+1) for each i € {1,...,20}. Let h =
L(4m + 1)(4ml + 16m + £). We observe that a partition Vi, Va corresponding to
mcut(H) is the following. Let V; consists of Z1,. .., Z; and all the vertices of gadgets
F(zi1,2i2)s o F(Ziams Zijam+1), t € {€+1,...,2}, except those vertices of gadgets
contained in Zyi1,...,Z2. Let V5 be the remaining vertices. Using partition Vi, Vs
corresponding to mcut(H), by Lemma 4.2, we obtain the following lemma.

LEMMA 4.3. For every partition Vi, Vs of the vertex set of H, we have the follow-
ing. If Vi (or V) does not contain exactly £ sets from Zy, . .., Zag, then |Cy(Vi, Va)| <
mcut(H) — 4m — 1. Furthermore, mcut(H) = h.

Let s and ¢ be two positive integers such that s,t < ¢. We construct graph
Hs i (z1,...,25,y) from H by adding vertices z1,...,xs and y and then joining them
with H by gadgets F(z1,21.1),...,F(xs,2s,1) and F(y, ze411), .-, F(Yy, ze4¢1) (see
Figure 2). Let hg ¢ = h+(8m+2)(s+t). We say that the subgraph of H, ¢ (21, ..., 25, V)
induced by Z; and the set vertices of degree two adjacent to the vertices of Z; is the
ith column of Hg (x1,...,xs,y) for i € {1,...,2¢}. Fori € {1,...,s}, we say that
the ith column is associated with x;. Respectively, for i € {£+1,...,¢+ t}, the ith
column is associated with y. We also refer to vertices z; ; as to z-vertices of the gadget.
Lemmata 4.2 and 4.3 imply the following properties of this graph.

LEMMA 4.4. The following properties hold for Hs 1(x1,...,%s,y):

o mcut(H,(z1,...,25,9)) = hst.

o Let V1,Vo be an optimal partition of V(Hsi(z1,...,2s,y)), that is,
mcut(H, ¢ (21,...,75,Y)) = |Ch, ,(21,...0.,0)(V1, V2)|, and y € V1. Then at
most £ —t vertices from {x1,...,x5} are in Vi.

e There is an optimal partition V1, Vy such that y € Vi, and for each 0 < p <
min{s, ¢ — t}, exactly p vertices from {x1,...,xs} are in V3.

o For every nonoptimal partition Vi,V of V(Hs(x1,...,xs,y)) with the two
properties

(a) for every gadget F(z;j,zij+1), 1 <i <20 and 1 < j < 4m, we have
that V(F (2 5,2 j+1)) \ {#i,j, zij+1} is contained either in Vi or Va,
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(b) for every gadget F(x;,2zi1), 1 <i < s and F(y,zi4j1) 1 < j <t, we
have that V(F(xi, zi1)) \ {zi,zi1} and V(F(y, ze45,1)) \ {v, ze451} s

contained either in Vi, or Vs,
we have that |Ch_,(x,....z..9) (V1 V2)| < meut(Hy (21, ..., 25,y)) —4m — 1.
Final reduction. We are ready to describe the reduction. Each edge e = uw;v; of G
is replaced by two vertices a. and b.. Each of the new vertices becomes adjacent to u;
and v;. Thus we replace edge e with two paths of length two. We create two vertices
wy and wy and construct a copy of F'(wi,ws). For each vertex v; € B, a copy of
F(v;,w) is created. In the next step, we introduce a copy of Hy, ¢—k(u1,. .., up, wr).
By G’ we denote the graph obtained until now. (We will need this graph while
bounding the clique-width of the construction in Lemma 4.6.) Finally, for each vertex

u; € R, a copy of Hyg(u,),t—c(us)(@eys - - - Qegg, us wa), where the set of edges incident
with u;, Eg(u;) = {e1,...,eq5(u,)} is constructed, and for each vertex v; € B, a copy
of Hyg(v,),0—1(aeys-- -5 aeda(vj)ﬂug)7 where {e1,...,¢€q5(;)} = Ec(v;) is added. Let

@ be the resulting graph. We put

n T
nw= (4m + 1)(27‘ + 3) + hpo—i + Z hdc(ui)l—C(ui) + Z hdc(vj),f—l + 2(m + T‘).
i=1 j=1

LEMMA 4.5. Graph G has a capacitated dominating set of the size at most k if
and only if graph Q has a cut set with at least p edges.

Proof. Let S be a capacitated dominating set of size at most k in G and f be the
corresponding domination mapping. We construct a partition V;, V4 of the vertex set
of @ corresponding to a cut set of size at least u as follows. We put vertex wy in V7,
vertex we in V3, all vertices vq,...,v, in Vi, all vertices from S in Vj, and vertices
of R\ S in V5. We also put all vertices b. in V5. For each edge e = u;v; € E(G)
such that f(v;) = w,, that is, e is being used for domination, the corresponding
vertex a. is included in V5 and all other vertices a., whose corresponding edge is
not used for domination, are included in V;. Finally, we extend our partition to an
optimal partition of all gadgets F(x,y), F'(x,y) and Hs(z1,...,2s,y) used in the
construction of (). Desired extensions of these gadgets to an optimal partition can be
done by applications of Lemmata 4.2, 4.3, and 4.4. By the construction of partitions
V1 and Vs, the contribution of gadgets F(z,y), F'(x,y), and Hy(z1,...,2s,y) to
the cut Cq(Vh,V2) is meut(F(z,y)), mcut(F'(z,y)), and meut(H, (z1,. .., s, Y)),
respectively. Hence, we have already accounted for

(dm+1)(2r +3) + P o—k + Z hdc(ui))g,c(ui) + Z hdc(vj)jfl
i=1 j=1

edges in the cut Co(V1, Va). The remaining 2(m—+r) edges in the cut Cq(V1, V) come
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from the edges incident with vertices a, and b, for some e. Every edge e = uv is either
an edge used for domination or not. In the first case, when e is used for dominating,
we have that uae, a.v, ube, and bev are part of the cut. In the second case, exactly
two of the edges among uae, acv, ub., and b.v are part of the cut. In each case, for
every e at least two edges among ua., a.v, ub. and b.v are in the cut and hence edges
incident with vertices a. and b, contribute at least 2(m — r) + 4r = 2(m + r) to the
cut Cg(Vi, V2). This completes the forward direction of the proof.

Assume now that ) has a cut set C of size at least p, and let (Vi,V2) be the
corresponding partition of the vertex set of (). Let @’ be the graph obtained by taking
the union of the edge sets of auxiliary gadgets F'(z,y), F'(x,y), and Hy (21, ..., %5, y).
Then there exists a partition A and B of V(Q') such that Cq/ (A, B) = p/, where

p=(4m+1)(2r +3) + hpor + Z Pag (i) e—c(us) + Z P (v;),e-1-

i=1 j=1

Suppose that for at least one of the gadgets F'(z,y), F'(x,y), or Hyi(x1,...,Zs,Y),
say, F'(z,y), the partition (V{,Vy) of V(F(z,y)) obtained by restricting the partition
(V1,V2) to V(F(z,y)) is not optimal. That is, |Cr(y,,)(V{,V3)| < mcut(F(z,y)).
Then by Lemmata 4.2, 4.3, and 4.4, |C] < ¢/ — (4dm + 1) + 4m < u. By choosing
nonoptimal partitions of auxiliary gadgets, we lose at least 4m+ 1 edges while gaining
at most 4m new edges by cutting 4m edges of Q which do not belong to these gad-
gets. This implies that C restricted to all these gadgets is an optimal cut in Q'. By
Lemma 4.2, w; and wsy belong to different sets of the bipartition Vi, V5. Assume that
wy € V7 and wy € V5. Then Lemma 4.2 implies that vy, ..., v, € V4. Thus, by making
use of Lemma 4.4, we conclude that at most k vertices of set R = {u1, ..., u,} belong
to V3. We put S = RN Vj and prove that S is a capacitated dominating set in G.
Notice that by Lemma 4.4, at most one vertex a. in the neighborhood of each vertex
v; is included in V5. Suppose that there is a vertex v; such that its neighborhood
in @ has no vertices a. € Vo. Then |C| < u/ +2m + 2(r — 1) < u, a contradic-
tion. So, for each vertex v;, there is an edge e = u;v; such that a. € V. Now we
argue that u; € S. This follows from the fact that if u; ¢ S, then u; € Va; hence,
|IC| < i/ +2m+2r —2 < p. We define the domination mapping as f(v;) = u,. Since
by Lemma 4.4 at most ¢(u;) vertices in the set Ng(u;) N{ac | e € E(G)} are included
in Vo, we have that |f~!(u;)| < c(u;). This concludes the proof. O

Now we upper bound the clique-width of @) by a linear function of the feedback
vertex set number of G.

LEMMA 4.6. cwd(Q) < 40 - fvs(G) + 40.

Proof. Let t = fvs(G) and let X be a minimum feedback vertex set of G. By
Observation 1, X is a feedback vertex set of I(G). Recall that X is independent.
Then each vertex of I(G) — X is adjacent to at most one vertex of X. By Lemma 2.1,
cwd(I(G)) <4-|X|+3=4t+3.

Let us remind readers that while describing graph @, as an intermediate step of
the construction, we defined graph G’. We construct an expression tree for @ in two
steps and use 10c + 10 labels, where ¢ = 4t + 3. At the first step, we construct en
expression tree for G’ using 4c + 10 labels, and at the second step we describe how it
can modified to an expression tree for () by the cost of 6¢ additional labels.

Ezpression tree for G'. Suppose that an expression tree for I(G) uses ¢ labels

ai,...,a.. To construct an expression tree for G’, besides labels aq, ..., a. we intro-
duce the following additional labels:
e labels (1, ..., 3. for vertices vy, ..., v,

e labels 71, ...,7. for vertices {a. | e € E(G)},
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labels 41, ..., d. for vertices {b. | e € E(G)},
labels (1, (5 for vertices wy, wa,

label n for vertices z; ; in Hy, ¢—p(u1, ..., up,wi),
working labels A1, Ao, A3 and &1, &2, &3, &4.

We construct the required expression tree for G’ by going over the expression tree
for I(G) and making necessary changes in it. When a vertex u; € R labeled by ay
is introduced, we construct u; and the column of the gadget H, ¢—x(u1,. .., Un, w1)
associated with u; together with the edges that join the column and wu;. To do it, we
perform the following set of operations. We first introduce vertex u; labeled by «,, and
a vertex (which is essentially z; 1 of the gadget) labeled by &. Then 4m + 1 vertices
labeled by & are introduced and joined with vertices labeled by a;, and £3. Then ver-
tices labeled &; are relabeled to A;. Now we repeat the following operations 4m times:

e introduce a vertex labeled by &; and 4m + 1 vertices labeled by &s;

e join vertices labeled by & with vertices labeled by & and &s;

e relabel vertices labeled by & by A, vertex labeled by &3 by 7, and vertex
labeled by &; by &3

e finally, vertex labeled by &3 is relabeled by 7.

We omit the union operations from our descriptions here and henceforth in any
similar descriptions and assume that if some vertex is introduced, then the union is
always performed.

When a vertex x € V(I(G)) corresponding to an edge e € E(G) and labeled
by «, is introduced, we introduce vertices a. and b. and label them by v, and §,,
respectively. Now we move toward the introduction of vertices from set B. When a
vertex v; € B labeled by «, is introduced, we introduce vertex v; with label 3,. Then
4m + 1 vertices labeled by & are introduced and joined with the vertex labeled by
Bp. Then we label these vertices by A2 and finally join them with vertex wy, after wy
is introduced.

For each union operation in the expression tree for I(G), we do as follows. If both
graphs contain vertices labeled 7, then both graphs contain columns of H,, ¢—x(u1, . . .,
Up, w1 ), and the z-vertices from different parts should be joined by edges. To imple-
ment this, besides the union operation, we do the following;:

e vertices labeled by 7 in one of the graphs are relabeled by &1
e we perform the union operation;
e the vertices labeled by n and &; are joined; and
e the vertices labeled by &; are relabeled by 7.
If only one graph contains vertices labeled 7, then we just do the union operation.

If in the expression tree of I(G), we have join operation between two labels, say,
ap and ay, then we simulate this by applying join operations between the vertices
with the following labels: o, and 74; o and 64; B, and v4; By and dg4; g and 7,5 o
and d,; B, and v,; and S, and Jp,.

Finally, the relabel operation in the expression tree of G, that is, relabel o, to
oy, is replaced by the following relabeling process: «, to ay; 5, to Bq; vp to v4; and
dp to dg.

After we have scanned the expression tree for I(G), vertices w; and we labeled
by (1 and (s, respectively, are introduced. Then we repeat the following operations
4m + 1 times:

e introduce two vertices labeled by &1 and &o;
e join vertices labeled by (; and &1, & and &9, & and (o;
e and relabel the vertices labeled by (i and (2 by A;.
After that, the vertex w; labeled by (i is joined with the vertices labeled \s.
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We show next how to complete the construction of Hy, ¢—x(u1, ..., Uy, w;1). Notice
that the columns associated with uy,...,u, and the edges that join wuq,...,u, with
these columns are constructed, all z-vertices in distinct columns are already pairwise
adjacent, and all z-vertices are labeled by 7. Now we construct columns of gadgets
that are not associated with uj,...,u,,w; and join them together. We repeat the
following ¢ — n + k times. A vertex labeled &3 is introduced, and now we repeat the
following operations 4m times:

e introduce a vertex labeled & and 4m + 1 vertices labeled &
e join vertices labeled & and vertices labeled with & and &s;
e relabel vertices labeled &> by Aq, the vertex labeled &3 by &4, and the vertex
labeled & by &3.
Finally, the vertex labeled &3 is relabeled &4, the vertices labeled &4 are joined with
vertices labeled 77 and then relabeled by 7.

It remains to consider the columns associated with wi. We do the following ¢ — k
times. The vertex labeled by &3 and 4m + 1 vertices labeled by &; are introduced.
Vertices labeled by & are joined with vertices labeled by (; and & and relabeled ;.
After this we repeat the following operations 4m times:

e introduce new vertex labeled by &; and 4m + 1 vertices labeled by &o;
e join vertices labeled by & and vertices labeled by &1 and &3;
e relabel vertices labeled by & by A1, the vertex labeled by &3 by &4, and the
vertex labeled by & by &3.
Finally, the vertex labeled &3 is relabeled by &4, the vertices labeled &4 are joined with
vertices labeled 7 and then relabeled 7.

Expression tree for Q. We now show how to modify the expression tree for
G’ by adding gadgets Hg, (u,),0—c(u;)(Geys - e up) wa), where {e1,..., €45} =
Eg(u;), for u; € R by making use of 3c additional labels. Gadgets Hyg (v;),0—1(e; ;- - -

Gegg, ;) ws), where {e1, ..., €400, } = Ec(v;), for vertices v; € B are added similarly
and with a help of additional 3¢ labels.
For u; € R, to add gadgets Hg, (u,),0—c(u:)(@eys - - ,aedc(m,wg), where {eq,...,
de(u) ) = Fa(ui), we use the following additional labels:
e labels of,..., o,

e labels v,...,7., and

e labels v/, ..., 7/,
Let us observe that label A; is not used in any join operation in the construction of
G’. Hence, it is safe to use it to relabel a vertex as soon as all its incident edges are
constructed. Notice also that label A3 is not used at all. Thus we can use it to relabel
the vertices that should be joined with wy. We use the working labels &, &2, &3,&4 as
well.

We scan the expression tree for G’ and iteratively change it for each u;, i €
{1,...,n}, by adding the corresponding gadgets.

Fori e {1,...,n}, let Eg(u;) = {e1,...,€ds(u,)}- Denote by A; the set of vertices
{ae, - ae, ., and let Uy = A; U{w;} for i € {1,...,n}.

We need the following claim.

CramM 1. Let X be a node of the expression tree for G' and G be the subgraph
of G' corresponding to this node. If V(G'y) NU; # 0 but G'|U;] is not a subgraph of
G'x, then the following holds:

o Ifu; € V|G|, then u; is labeled by a label which is different from labels of
other vertices of G'y.

o The vertices of A; NV (GY) that are not adjacent to u; in G’ are labeled by
labels that are different from the labels of the vertices of G’y — A;.
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Proof of Claim 1. Recall that the vertices uq, . .., u, arelabeled by ay, ..., a., and
these labels are used only for uy, ..., u,. Assume that there are two distinct vertices
u;, uj € V[G'] labeled by the same label o,. Because G’[U;] is not a subgraph of G'y,
there is a. € A; such that u;ae ¢ E(G’). Then a. should be joined with u; by an
edge on some further step of the construction of G’. But because u; and u; have the
same label, the join operation that constructs u;a. would construct u;a. ¢ E(G'), a
contradiction.

Recall that the vertices a. for e € E(G) are labeled by 71, ..., 7., and these labels
are used only for such vertices. Assume now that there is a vertex of a. € 4,NV(Gy)
such that u;a. ¢ E(G'y) that has the same label as some other vertex a.r € V[G's ]\ 4;.
Then again, a. should be joined with u; by an edge on some further step of the
construction of G’. But because a. and a. have the same label, the join operation
that constructs u;a. would construct uja.. Because aer ¢ A; , ujar ¢ E(G'), and
we obtain a contradiction. d

We use Claim 1 to construct graph Hyg (u,),e—c(u;)(@er s - - - s eq (> ws) in such a
way that all z-vertices of this gadget constructed for the node X are labeled by the
same label o, if u; € V[G'y] and this vertex is labeled by ay,. If u; ¢ V[G'y] and the la-
bels vp, ;. .., Vp, are used for vertices A;NV (G’ ), then all z-vertices are labeled by the
labels,, ,...,,, . The construction of the gadget Hag (u,),¢—c(u,) (@ers - - - Qe uy)» wa)
is completed when after some union operation all vertices of U; are included in graph
G's.

When vertex u; € R labeled by oy, is introduced, we construct u; and the columns
of Hag (uy),t—c(uy)(@eys - - - ,aedc(ui),wg) that are not associated with ae,,...,ac,_,
together with joining them edges. To do it, we perform the following set of opera-
tions. First, we introduce the vertex u; labeled by c,. Then we repeat the following
operations ¢ + c(u;) — dg(u;) times. A vertex labeled 3 is introduced, and then the
following operations are repeated 4m times:

e introduce a vertex labeled by &; and 4m + 1 vertices labeled &,
e join vertices labeled & and vertices labeled by &; and &3,
e relabel vertices labeled by &2 by A1, the vertex labeled &3 by &4, and the vertex
labeled &1 by &3.
Finally, the vertex labeled by &3 is relabeled by &4, the vertices labeled by &4 are joined
with vertices labeled by «, (if they exist) and then relabeled by ar,.

Next we consider the columns associated with ws and perform the following ¢ —

c(u;) times:
e new vertex labeled by &3 and 4m + 1 vertices labeled by &; are introduced;
e the vertices labeled by & are joined with vertices labeled by &3, and relabeled
by )\3.
Then we repeat the following operations 4m times:
e introduce avertex labeled by &; and 4m + 1 vertices labeled by &,
e join vertices labeled by & and vertices labeled by &; and &3,
e relabel vertices labeled by & by A1, the vertex labeled &3 by &4, and the vertex
labeled &1 by &3.
Finally, the vertex labeled by &3 is relabeled by &4, the vertices labeled by &4 are joined
with vertices labeled aj, and then relabeled by a,.

When a vertex a., u;a. € E(Q), labeled by -, is introduced, we construct it
together with the column of Hyg(u,) t—c(u;)(@eys- -+ aedc(uin’?) associated with a..
To do it, we perform the following set of operations. First, we introduce the vertex a.
labeled v, and a vertex labeled by £3. Then 4m 41 vertices labeled &> are introduced
and joined with the vertices labeled 7, and £. Then the vertices labeled & are
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relabeled \;. Now we repeat the following operations 4m times:

e introduce a vertex labeled by &; and 4m + 1 vertices labeled &5,

e join vertices labeled & and vertices labeled &; and &3,

e relabel vertices labeled & by A1, the vertex labeled &3 by '7¢/1= and the vertex
labeled &1 by &3.

Finally, the vertex labeled &3 is relabeled ;.

We are done with introduction nodes. Next we proceed with union operations.
Notice that we construct different parts of each gadget Hg, (u,),e—c(u:)(@eys - - - Qeggup)
wg) while introducing the vertices of U;. We join them together when vertices of U;
are collected together by the union operations. Let X be a union node of the expres-
sion tree for G’. Denote by X and Y two children of this node and let G and G’,
be the subgraphs of G’ corresponding to these nodes. Denote also by Qy and Q7 the
subgraph of @ constructed for Y and Z, respectively. Assume inductively that for
every i € {1,...,n},

o if u; € V(Gy) (u; € V(G'), respectively) and w; is labeled by «,, then
the z-vertices of Hyg (u,),e—c(us)(@ers - - ws) that are in Qy (in Qz,
respectively) are labeled by a;,

o if u; ¢ V(Gy) (u; ¢ V(G'), respectively) and a. € A; is labeled by v, in G%

o aedG(ui) )

(in G, respectively), then the z-vertices of Hy, (u,),0—c(us) (@ers - - - Qe up) wa)
that are in the column associated with a. are labeled by 7; in Qy (Qz, re-
spectively),

e all z-vertices of distinct columns Hyg (u,),0—c(u,) (@ey s - - .,aedG(ui),wz) in Qy
(Qz, respectively) are pairwise adjacent,

o 1 ...,4/) are not used in Qy and Qz.

It is straightforward to see that these conditions hold if Y (Z, respectively) is an
introduce node.

If for every i € {1,...,n}, G% or G, has no vertices of U;, then we just perform
the union operation. Otherwise, we first relabel ~, to v, for p € {1,...,c} in Qy.
Then we perform the union operation. Now we consider 7 € {1,...,n} such that

UiNV(Gy) #0 and U; N V(G’) # 0. We have three cases.
Case 1. u; € V(GY ). Suppose that u; is labeled by «,. By Claim 1, «, is used only

for u; in G'y. Hence, a; is used only for z-vertices of Hgg, (u,),0—c(u)(Gers - - - Qe () wa)
in Qy. Suppose that graph G’, includes vertices of A; labeled by ~p,,...,Vp,. Then
all z-vertices of Hyg (u,),0—c(us)(@ers- -+ Qegg us) wa) in the columns associated with a

vertex labeled by v, are labeled by v, for j € {1,...,h} in Q7. Becauseu; ¢ V(G?%),
the vertices of A;NV (G’,) are not adjacent to u; in G’y. By Claim 1, labels v, , ..., 7p,
are not used for V(G’ )\ A;. Therefore, labels v, ,...,7,, are used only for z-vertices
of Hg (uy) b—c(ur)(@eys -+ Qe g u;) ws) in the columns associated with the vertices la-
beled by vp,,...,¥p,. For j € {1,...,h}, we join the vertices labeled by aj, and 7,
and then relabel the vertices labeled 7, by «j,. It remains to observe that in this
way we join the z-verties of Hyg (u,),e—c(u,)(@eys - - .,aedc(ui),wz) from G% and G,
and afterwards all these vertices are labeled by a,.

Case 2. u; € V(G%). This case is symmetric to Case 1, and we use the
same arguments. Suppose that wu; is labeled by «,. Then «/ is used only for

P

z-veritices of Hgg (u,),0—c(u)(Gey s - - .,aedc(ui),wg) in Qz. Suppose that the graph
L includes vertices of A; labeled by labels v,,,...,7p,. Then all z-vertices of

Hag (uy) —c(us) (@ey s - - - ,aedc(ui),wg) in the columns associated with a vertex labeled

by ~p, are labeled by 7;/)/1- for j € {1,...,h}. For j € {1,...,h}, we join the vertices
labeled o, and 7, and then relabel the vertices labeled v, by a,.
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Case 3. w; ¢ V(Gy) UV (G). Suppose that G% includes vertices of A; la-
beled by 7vp,,...,7p,, and G has vertices of A; labeled by v,,,...,7,,. Then all
z-vertices of Hyg(u,),t—c(us)(Qer s - - .,aedG(u”,wg) in the columns associated with a
vertex labeled by v, in Gy are labeled by vy for j € {1,...,h}, and all z-vertices

of Hag(u),t—c(ui)(@eys - - .,aedG(ui),wg) in the columns associated with a vertex la-
beled by 74, in G’ are labeled by v, for j € {1,..., f}. By Claim 1, v/, ...,7,, and
Ygus - ,'yéf are used only for the z-vertices of Hy, (u,),0—c(u)(Geys -+ - Qeqgy ) wsy). For
each j € {1,...,h} and each j" € {1,..., f}, we join the vertices labeled by 7, and
’y;j,. Clearly, in this way we join the z-verties of Hyg (u,) i—c(u,)(@eys -+ s Qe up) wo)
from Qy and Q.

In conclusion, we relabel v, to «, for p € {1,...,c}.

Observe that for the subgraph of Qx constructed for X, we have the required
properties. Namely, if u; € V(G'y) and w; is labeled by «, then the z-vertices of
Hag(ui)t—c(ui) (@ers - -+ Qey ., W2) that are in @x are labeled ay,, and if u; & V(G'y)
and a. € A; is labeled by v, in G', then the z-vertices of Hgg(u,),i—c(u;)(@eys - -
ey, (ui),wg) that are in the column associated with a. are labeled by 7,. Also all
z-vertices of distinct columns H g (u,),0—c(u;) (@e, ; - - wsg) In Qx are pairwise
adjacent, and 77, ...,/ are not used in Qx.

The join operations in the expression tree for G’ are done in the new tree in
exactly the same way. The relabel operation in the expression tree of G’, that is,
relabel ), to a, and relabel v, to v,, are replaced by relabel o, to a4, aj, to ag,
and v, to g, '71’) to "/:17 respectively. Notice that this relabeling does not violate the
aforementioned requirements for labelings that are crucial for the union operations.

When we have completed the scan of the expression tree for G’, the only thing
which remains is to join vertices labeled A3 and the vertex labeled (s (the vertex ws).

Gadgets Hyg (v;),0—1(e; s - - wo) for vertices v; € B, where {ey,...,

o aedc(ui) ’

] aedc(v,~>’
€ds(v;)} = Fa(vj), are added in the éame way by using additional 3¢ labels and
labels A1, Az, &1,&2, &3, 8. Observe also that Claim 1 can be reformulated for each v;
and Eg(v;). This completes the proof of Lemma 4.6. O

To conclude the first part of the proof of the Theorem 4.1, we observe that
the number of vertices of @) is polynomial in n + r, and therefore if MAX-CUT is
solvable in time f(cwd(Q)) - [V (Q)|°®V4(@) then RED-BLUE CDS is solvable in
time f(fvs(Q)) - [V(G)[oEvs(@)

4.2. Algorithmic upper bound for Max-Cut. Now we outline an algorithm
for solving MAX-CUT in time n®® on graphs given together with an expression tree of
width at most t. The algorithm is based on dynamic programming over the expression
tree of the input graph. We first describe what we store in the tables corresponding
to the nodes in the expression tree.

Let G be a graph with n vertices and m edges, and let T" be an expression tree
for G of width ¢. By the results of Courcelle and Olariu [6], without loss of generality
we can assume that 7" is irredundant. For a node X of T', denote by Gx the t-graph
associated with this node, and let Uy (X),...,U(X) be the sets of vertices of Gx
labeled 1,...,¢, respectively. The table for the node X stores vectors (si,...,s¢,7)
of integers such that 0 < s; < |[Uy(X)| for 1 < i < ¢, and 0 < r < |E(Gx)],
for which there is a partition Vi, Vs of V(Gx) such that |Vi N U;(Gx)| = s; and
|Cay (V1,Va)| > r. Notice that this table contains at most (n+1)%-m vectors. If X is
the root node of T' (that is, G = Gx ), then mcut(G) is equal to the maximum value
of r for which the table for X contains an entry with this value.
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Now we provide the details of how to construct and update such tables. The
construction for introduce nodes of T' is straightforward.

Relabel node: Suppose that X is a relabel node p;—;, and let Y be the child of
X. Then the table for X contains a vector (si,...,s,7) if and only if s; = 0 and the
table for Y contains the entry (si,...,s;,r) such that s;, = s, for 1 <p <, t #14,7,
and s; = s; + 5.

Union node: Let X be a union node with children Y and Z. In this case the table
for X contains vector (si,...,s, ) if and only if the tables for Y and Z have vectors
(shy. .8, ") and (s,...,s/,r"), respectively, such that s, + s/ = s; for 1 <i <,
and ' +r" > r.

Join node: Finally, suppose that X is a join node 7;; with the child Y. The
table for X has vector (s1,...,s,r) if and only if the table for Y includes a vector
(s1,-..,8¢,7") such that v + s;(|U;(Y)| — s;) + s; (|Ui(Y)| — s;5) > r.

The correctness of the algorithm follows from the description of the procedure.
The running time of the algorithm is O(t?Mn2+0())  This proves that Max-CuT
can be solved in time n®® if a graph with a clique decomposition of width at most ¢
is given.

4.3. Bipartization by edge removal and maximum (minimum) bisec-
tion. Theorem 4.1 has several interesting corollaries for similar problems like BIPAR-
TIZATION BY EDGE REMOVAL and MAXIMUM (MINIMUM) BISECTION.

In the BIPARTIZATION BY EDGE REMOVAL problem, we are given a graph G and
a positive integer k, and the question is whether there is a set of edges X such that
|X| < k and the graph G’ with the vertex set V(G) and the edge set E(G) \ X is
bipartite. Since this problem is dual to the MAXiMUM CUT problem, we immediately
have the following corollary.

COROLLARY 4.7. Let G be an n-vertex graph given together with an expression
tree of width t. Then the BIPARTIZATION BY EDGE REMOVAL problem

e cannot be solved in time f(t)-n°® unless the ETH fails;
e is solvable in time n®®

In the MaxiMuM (MINIMUM) BISECTION problem, we are given a graph G with
an even number of vertices and a positive integer k, and the objective is to check
whether there is a partition of V(G) into two sets Vi and V5 of equal size such that
Ca(Vi, Vo)l = & (1Ca(Vi, V)| < k).

COROLLARY 4.8. Let G be an n-vertex graph given together with an expression
tree of width t. Then the MAXIMUM (MINIMUM) BISECTION problem

e cannot be solved in time f(t)-n°® unless the ETH fails;
e is solvable in time n°®) .

Proof. The algorithmic upper bounds for MAXIMUM BISECTION and MINIMUM
BIsecTION follow from an easy modification of the algorithm for MAX-CuUT described
in section 4.2. The lower bound can be obtained from the fact that the Max-Cut
problem for a graph G can be reduced to MAXIMUM BISECTION by adding |V (G)] iso-
lated vertices. The claim about the MINIMUM BISECTION follows from the observation
that the MAXIMUM BISECTION problem for a graph G can be reduced to MINIMUM
BISECTION for the complement graph G and the fact that cwd(G) < 2-cwd(G) (see
[34, 6]). O

5. Edge dominating set. In this section, we consider the EDGE DOMINATING
SET problem. In the EDGE DOMINATING SET problem, we are given a graph G and
a positive integer k, and the objective is to determine whether there is a set of edges
X C E(G) such that |X| < k and every edge of G is either included in X, or it is
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adjacent to at least one edge of X (which dominates it). The set X is called an edge
dominating set of G. We prove the following result for EDGE DOMINATING SET.
THEOREM b5.1. Let G be an n-vertex graph given together with an expression tree
of width t. Then the EDGE DOMINATING SET problem
e cannot be solved in time f(t) - n°®) unless the ETH fails;
e is solvable in time n®®
The remaining part of this section is devoted to the proof of Theorem 5.1. We
first show the lower bound and then complement this result with the corresponding
upper bound.

5.1. Lower bound. To prove our result, we give a linear FPT-reduction from
RED-BLUE ExAcT SATURATED CDS to EDGE DOMINATING SET. The proof is
organized as follows: we first give a construction, then prove its correctness, and finally
argue on the clique-width of the transformed instance. We start with descriptions of
auxiliary gadgets.

Auziliary gadgets. Let s <t be positive integers. We construct graph Fs; with
the vertex set {z1,...,%s,y1,...,Ys, 21, ..., 2} and edges z;y;, 1 < i < s and y;2;,
1 <i<sand 1l <j <t Basically we have a complete bipartite graph between y;’s
and z;’s with pendent vertices attached to y;’s. The vertices z1, 2o, ..., 2 are called
roots of F ;. Further we refer to the vertices ;,y; as  and y-vertices of the gadget.

Graph Fj; has the following property.

LEMMA 5.2. Any set of s edges incident with vertices y1,...,ys forms an edge
dominating set in Fs . Furthermore, let G be a graph obtained by taking the union of
Fs ¢ with some other graph H such that V(Fs:) NV (H) = {z1,...,2}. Then every
edge dominating set of G contains at least s edges from Fj ;.

The proof of the lemma follows from the fact that every edge dominating set
includes at least one edge from E(y;) for i € {1,...,s}.

Final reduction. Now we describe our reduction. Let (G, ¢) be a red-blue capaci-
tated graph with R = {u,...,u,} being the set of red vertices and B = {vy,...,v,}
being the set of blue vertices, and let k be a positive integer. Each red vertex wu; is
replaced by the set U; with c(u;) vertices, and for every edge u;v; € E(G), all vertices
of U; are joined to v; by edges. For every vertex v;, we add one additional leaf (a
pendent vertex). Now vertex sets {a1,...,a,} and {by,...,b,} are constructed, and
vertices a; are made adjacent to all the vertices of U; and the vertex b;. For every
vertex b;, a set R; of ¢(u;) vertices is added and b; is made adjacent to all the vertices
in R;. Then to every vertex of Ry U Ry U---U R, we add a path of length two. Let
X be the set of middle vertices of these paths. We denote the obtained graph by G’
(see Figure 3). Finally, we introduce three copies of F ;:

Uj

Fic. 3. Graph G'.
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e a copy of F,,_j , with roots {a1,...,an},
e a copy of Fy, with roots {b1,...,b,}, and
e a copy of F,, where £ = Y"1 | ¢(u;) with roots in X.
Let this final resulting graph be H.
LEMMA 5.3. A graph G has a saturated capacitated dominating set of size k if
and only if H has an edge dominating set of cardinality at most n +r + £.

Proof. Let S be an exact saturated dominating set of size k£ in G and f be its cor-

responding domination mapping. For convenience, we assume that S = {uy,...,u}.
We construct an edge dominating set as follows. First we select an edge emanating
from every vertex in the set {v1,...,v,}. For every vertex v, we choose a vertex u in

Ui, where u; = f(v;) which is not incident to already chosen edges, and add the edge
uv; to our set. Notice that we always have such a choice of u € U; as c(u;) = |U;|. We
observe that these edges already dominate all the edges in the sets E(v;), 1 < j <r,
and in sets E(u) for v € U; U--- U U,. Now we add n — k edges from F,,_j ,, which
are incident with vertices in {agt1,...,a,} and k edges from Fy, ,, which are incident
to {b1,...,br}. Then ¢ — r matching edges joining vertices of Rgy1,..., R, to the
vertices of X are included in the set. Finally, we add r edges from F., which are
incident to vertices of X and are adjacent to vertices of Ry,...,Ry. Since S is an
exact capacitated dominating set, Zle ¢(u;) = r, and from our description it is clear
that the resulting set is an edge dominating set of size n + r + ¢ for H.

We proceed to prove the other direction of the equivalence. Let L be an edge
dominating set of cardinality at most n + r + £. The set L is forced to contain
at least one edge from every E(v;), at least n — k edges from F,_ g, at least k
edges from F} ., and at least one edge from E(z) for all x € X, because of the
presence of pendent edges. This implies that |L| =n +r 4+ £, and L contains exactly
one edge from every E(v;), exactly n — k edges from F,_y, ,, exactly k edges from
Fi.n, and exactly one edge from E(z) for all z € X. Every edge a;b; has to be
dominated by some edge of L, in particular it must be dominated from either an edge
of Fr_jn or Fyp. Let I ={i : a; is incident with an edge from L N E(F,,_¢)} and
J = {j: b; is incident to an edge from L N E(Fy)}. The above constraints on the
set L implies that |I| =n — k, |J| = k, and these sets form a partition of {1,...,n}.
The edges which join vertices b; and R; for ¢ € I are not dominated by edges from
L N E(Fy,,). Hence to dominate these edges we need at least ), |R;| edges which
connect sets ; and X. Since at least r edges of F;., are included in L, we have that
Y ier 1Rl <L —r and

PR I EY SR

jeJ iel

Let S = {u;: i € J}. Clearly, |S| = k. Now we show that S is a saturated capacitated
dominating set. For i € J, edges which join a vertex a; to U; are not dominated
by edges from L N E(F,_ 1), and hence they have to be dominated by edges from
sets E(v;). Since r < Y. |R;j| = >, |Ujl, there are exactly 7 such edges, and
every such edge must be dominated by exactly one edge from L. We also know that
LN E(v;) # 0 for all j € {1,...,r}, and hence for every v;, there is exactly one edge
which joins it with some vertex u € U; for some ¢ € J. Furthermore, all these edges are
not adjacent, that is, they form a matching. We define f(v;) =w; for j € {1,...,7}.
From our construction it follows that f is a domination mapping for S and S is an
exact saturated dominating set in G. d
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The next lemma shows that if the graph G we started with has bounded feedback
vertex number and has the properties required by Lemma 2.1, then H has bounded
clique-width.

LEMMA 5.4. If for every minimum feedback vertezx set X of G, each vertex v of the
forest G—X is adjacent with at most one vertex of X, then cwd(H) < 4-fvs(G)+13.

Proof. By Lemma 2.1, we have that the graph G is of clique-width at most
s =4 -fvs(G) + 3. Suppose that the expression tree for G uses s-labels {aq, ..., as}.
We construct the expression tree for H by scanning the expression tree for G. To
construct the expression tree for H, we need the following additional labels:

e labels &, &, and &3 for attaching Fi,— g, Fin, and F g, respectively,

e label A for marking some vertices that are already joined with all the neigh-
bors,

e working labels v1,...,7.

When a vertex u; € R labeled by «, is introduced, we perform the following set
of operations. First, we introduce the following vertices with working labels: ¢(u;)
vertices of U; with label v, the vertex a; with label 5, and the vertex b; with label
3. Then we join the vertices labeled by 1 with the vertex labeled with 79, and the
vertex labeled by 2 with the vertex labeled ~3. Then we relabel v; to o, and 2 to
&1. Now we create vertices of R; and the paths attached to it. To do so we perform
the following operations c¢(u;) times:

e Introduce three nodes labeled by 74, 75, and g.

e Join 3 with 4, v4 with 5 and 5 with ~s.

e Relabel 74 to A, 75 to &3, and v to A.
Finally, we relabel 3 to £&2. We omit the union operations from the description and as-
sume that if some vertex is introduced, then this operation is immediately performed.

If a vertex v; € B labeled by « is introduced, then we introduce vertex v; labeled
by ~1, and a pendent vertex labeled by -5, join vertices labeled by v and 79, and
then relabel v; to oy and 72 to A.

If in the expression tree of GG, the join operation occurs between two labels, say,
oy, and ay, then we repeat in the new tree. Union operations in the expression tree
are done exactly as before.

Finally, to complete the construction of the expression tree for H, we add £}, »,
Fi.n, and F,.g. Notice that all the vertices in {a1,...,an}, {b1,...,b,} and X are
labeled by &1, &, and &3, respectively. From here we can easily add Fy—gn, Fin,
and F, , with root vertices {a1,...,an}, {b1,...,b,} and X, respectively, by making
use of working labels ~y1,7v2,73, and A. To obtain each gadget, we construct =z and
y-vertices labeled by v1 and 79, respectively, join v; with ~s, and then relabel v; to
A and 72 to 3. As soon as x- and y-vertices of each gadget are constructed and
joined by a matching, we join ~3 with &;, &, or &3 to construct t Fy,_g n, Fin, OF Fr g,
respectively. When the construction of each gadget is completed, we relabel 3 to A.
This concludes the description for the expression tree for H. a

To conclude the lower bound proof of Theorem 5.1, it remains to note that H has
4(n+r+£) < 4(n+r+n?) vertices, and therefore if we could solve EDGE DOMINATING
SET in time f(¢)|V (H)|°"), where t = cwd(H), then we also would be able to solve
RED-BLUE EXACT SATURATED CDS in time f(k)|V(G)|°*), where k is the feedback
vertex set number of G. By Theorem 3.1, this would imply that the ETH does not
hold.

5.2. Algorithmic upper bound for edge dominating set. Now we give an
algorithmic upper bound for the EDGE DOMINATING SET problem parameterized by
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the clique-width, that is, give an algorithm running in time n°® for EbceE DowMmI-
NATING SET on graphs with a given expression tree of with at most ¢. Again, the
algorithm is based on a dynamic programming over the expression tree of the input
graph.

Let G be a graph with n vertices and m edges, and let T be an expression tree for
G of width t. We assume that 7T is irredundant. For a node X of T', denote by Gx
the t-graph associated with this node, and let Uy (X),..., Uy (X) be sets of vertices
of Gx labeled 1,...,t, respectively. The table of data for the node X stores vectors
($1,--+,St,71,...,71,1) of nonnegative integers with the following properties:

o s;+r; <|Ui(X)| for 1 <i<t.
o | <[E(Gx)|
e There is a set of edges S C E(Gx) such that s; vertices of U;(X) are adjacent
to the edges of S for 1 < i < ¢, and |S| <.
e It is possible to attach r; pendent edges to the vertices of U;(X) for 1 < i <t
in such a way that these edges dominate all edges of G x undominated by S.
The intuition behind this definition is that there are at most r; vertices in U;(X)
that are incident with at least one edge e ¢ S in Gx that is not dominated by S.
The size of this table is at most (n + 1) - m. If X is the root node of T' (that is,
G = Gx), then the size of the minimum edge dominating set is the minimum value
of [ for which the table for X contains an entry with the value of the parameter being
landri=...=7r, =0.

Now we give the details of how we make our tables and how we update it.

Introduce node: Tables for introduce nodes of T" are constructed in a straightfor-
ward way.

Relabel node: Let X be a relabel node p;—;, and let Y be the child of X. Then
the table for X contains a vector (s1,...,s,71,...,7s,0) if and only if s;, =0, ;, =0
and the table for Y contains the entry (si,...,s;,7,...,7,1) such that s}, = s, and
rp =1y, for 1 <p <t t#1i,5, and s; = s; + 8}, 7 = 1] + 17

Union node: Let X be a union node with children Y and Z. In this case the table
for X contains a vector (s1,...,S¢71,...,7,1) if and only if the tables for Y and Z
have vectors (s, ...,s, 7y, ...,r3, ') and (s7,..., s/, 7/,...,7r/,1"), respectively, such
that s, + s/ =s; and 7, + 7/ =r; for 1 <i<t,and I’ +1" <.

Join node: Finally, suppose that X is a join node n; ; with the child Y. It can
be noted that the table for X has a vector (s1,...,8¢71,...,7, 1) if and only if the
table for Y includes a vector (s},...,s},71,...,74,1") such that

e s,=s,andr, =7, for 1 <p<t, p#i,j;

o si -t =8, 8+ =5; 41

o s; < si, 85 <855

e cither s; +r; = |U;(Y)| or s + 15 = |U;(Y)[;

o '+ max{s; — s},s; — s} <.
The correctness of the algorithm follows from the description of the algorithm, and
its running time is O(t°Mp**+OW)) Hence, EDGE DOMINATING SET is solvable in
time n®®. This concludes the proof of Theorem 5.1.

6. Conclusion and further directions. In this paper, we obtained the first
asymptotically tight bounds for problems parameterized by the clique-width of the
input graph. In particular, we showed that MAX-CuUT and EDGE DOMINATING SET
cannot be solved in time f(t)n°*) unless the ETH collapses; while there do exist
algorithms with running time n©® for both these problems, where t is the clique-
width of the input graph. Notice that our reduction to obtain a tight lower bound
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for MAX-CuUT is also an FPT-reduction and, therefore, MAX-CuUT is W[1]-hard when
parameterized by the clique-width of the input graph. Thus, we resolve an open
problem about the parameterized complexity of MAX-CUT.

We conclude with an open problem related to HAMILTONIAN CYCLE. In the
HAMILTONIAN CYCLE problem, we are given a graph G, and the objective is to check
whether there exists a cycle passing through every vertex of G. Similar to MAX-CuT
and EDGE DOMINATING SET, we can obtain the following algorithmic lower bound
for the HAMILTONIAN CYCLE problem when parameterized by the clique-width of the
input graph.

THEOREM 6.1. Assuming ETH, the HAMILTONIAN CYCLE problem cannot be
solved in time f(t)n°®, where n is the number of vertices and t is the clique-width of
the input graph.

However, all the algorithms we know for HAMILTONIAN CYCLE run in time n
if an expression tree of width ¢ is given. We leave it open to find either an improved
lower bound or an improved upper bound for the HAMILTONIAN CYCLE problem.

O(t?)
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