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LONG CIRCUITS AND LARGE EULER SUBGRAPHS∗

FEDOR V. FOMIN† AND PETR A. GOLOVACH†

Abstract. We study the parameterized complexity of the following Euler subgraph problems:
(a) Large Euler Subgraph: For a given graphG and integer parameter k, doesG contain an induced
Eulerian subgraph with at least k vertices? (b) Long Circuit: For a given graph G and integer
parameter k, does G contain an Eulerian subgraph with at least k edges? Our main algorithmic
result is that Large Euler Subgraph is fixed parameter tractable (FPT) on undirected graphs.
The complexity of the problem changes drastically on directed graphs, and we obtain the following
complexity dichotomy: Large Euler Subgraph is NP-hard for every fixed k > 3 and is solvable in
polynomial time for k ≤ 3. For Long Circuit, we prove that the problem is FPT on directed and
undirected graphs.
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1. Introduction. One of the oldest theorems in graph theory is attributed to
Euler, and it says that a (undirected) graph admits an Euler circuit, i.e., a closed
walk visiting every edge exactly once, if and only if the graph is connected and all
its vertices are of even degrees. Respectively, a directed graph has a directed Euler
circuit if and only if the graph is (weakly) connected and for each vertex its in-degree
is equal to its out-degree. While checking if a given directed or undirected graph is
Eulerian is easily done in polynomial time, the problem of finding k edges (arcs) in a
graph to form an Eulerian subgraph is NP-hard. We refer to the book of Fleischner
[12] for a thorough study of Eulerian graphs and related topics.

In [5], Cai and Yang initiated the study of parameterized complexity of subgraph
problems motivated by Eulerian graphs. In particularly, they considered the following
parameterized subgraph and induced subgraph problems:

k-Circuit Parameter: k
Input: A (directed) graph G and nonnegative integer k
Question: Does G contain a circuit with k edges (arcs)?

and

Euler k-Subgraph Parameter: k
Input: A (directed) graph G and nonnegative integer k
Question: Does G contain an induced Euler subgraph with k vertices?
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Clearly, a graph has a circuit with k edges (arcs) if and only if G has an Euler subgraph
with k edges (arcs), i.e., k-Circuit asks about existence of an Euler subgraph with
k edges (arcs).

The nonparameterized versions of both k-Circuit and Euler k-Subgraph are
known to be NP-complete [5]. Cai and Yang in [5] proved that k-Circuit on undi-
rected graphs is fixed parameter tractable (FPT). On the other hand, the authors
have shown in [14] that Euler k-Subgraph is W[1]-hard. The variant of the problem
(m − k)-Circuit, where one asks to remove at most k edges to obtain an Eulerian
subgraph, was shown to be FPT by Cygan et al. [7] on directed and undirected
graphs. The problem of removing at most k vertices to obtain an induced Eulerian
subgraph, namely, Euler (n − k)-Subgraph, was shown to be W[1]-hard by Cai
and Yang for undirected graphs [5] and by Cygan et al. for directed graphs [7]. Dorn
et al. in [8] provided FPT algorithms for the weighted version of Eulerian extension.

In this work we extend the set of results on the parameterized complexity of Eule-
rian subgraph problems by considering the problems of finding an (induced) Eulerian
subgraph with at least k (vertices) edges. We consider the following problems:

Large Euler Subgraph Parameter: k
Input: A (directed) graph G and nonnegative integer k
Question: Does G contain an induced Euler subgraph with at least k vertices?

and

Long Circuit Parameter: k
Input: A (directed) graph G and nonnegative integer k
Question: Does G contain a circuit with at least k edges (arcs)?

Using the observation of Cygan et al. in [7], it is not difficult to see that the
nonparameterized versions of Long Circuit and Large Euler Subgraph are NP-
complete for directed and undirected graphs. Let us note that by plugging these
observations into the framework of Bodlaender et al. [4], it is easy to conclude that
both problems have no polynomial kernels unless NP ⊆ coNP /poly.

However, the question about the parameterized complexity of these problems
appears to be much more interesting.

Our results. We show that Large Euler Subgraph behaves differently for
directed and undirected cases. For undirected graphs, we prove that the problem is
FPT. We find it a bit surprising, because the very closely related Euler k-Subgraph
problem is known to be W[1]-hard [14]. The proof is based on a structural result
interesting on its own. Roughly speaking, we show that large treewidth certifies
containment of a large induced Euler subgraph. For directed graphs, Large Euler

Subgraph is NP-complete for each k ≥ 4, and this bound is tight—the problem is
polynomial-time solvable for each k ≤ 3. We also prove that Euler k-Subgraph
is W[1]-hard for directed graphs. Long Circuit is proved to be FPT for directed
and undirected graphs. Our algorithm is based on the results by Gabow and Nie [17]
about the parameterized complexity of finding long cycles. The known and new results
about Euler subgraph problems are summarized in Table 1.

This paper is organized as follows. Section 2 contains basic definitions and prelim-
inaries. In section 3.1 we show that Large Euler Subgraph is FPT on undirected
graphs. In section 3.2 we prove that on directed graphs, Euler k-Subgraph is W[1]-
hard while Large Euler Subgraph is NP-complete for each k ≥ 4. In section 4 we
show that Long Curcuit is FPT on directed and undirected graphs.
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Table 1

Parameterized complexity of Euler subgraph problems.

Undirected Directed

k-Circuit FPT [5] FPT, Prop. 4.4

Euler k-Subgraph W[1]-hard [14] W[1]-hard, Thm. 3.7

(m − k)-Circuit FPT [7] FPT [7]

Euler (n− k)-Subgraph W[1]-hard [5] W[1]-hard [7]

Long Circuit FPT, Thm. 4.7 FPT, Cor. 4.3

Large Euler Subgraph FPT, Thm. 3.6 NP-complete ∀ k ≥ 4, Thm. 3.8;
in P for k ≤ 3

2. Basic definitions and preliminaries. Graphs. We consider finite directed
and undirected graphs without loops or multiple edges. The vertex set of a (directed)
graphG is denoted by V (G), and the edge set of an undirected graph and the arc set of
a directed graph G are denoted by E(G). To distinguish edges and arcs, the edge with
two end-vertices u, v is denoted by {u, v}, and we write (u, v) for the corresponding
arc. For an arc e = (u, v), v is the head of e and u is the tail. For a set of vertices
S ⊆ V (G), G[S] denotes the subgraph of G induced by S, and by G − S we denote
the graph obtained from G by the removal of all the vertices of S, i.e., the subgraph
of G induced by V (G)\S. Let G be an undirected graph. For a vertex v, we denote
by NG(v) its (open) neighborhood, that is, the set of vertices which are adjacent to v.
The degree of a vertex v is denoted by dG(v) = |NG(v)|, and Δ(G) is the maximum
degree of G. Let now G be a directed graph. For a vertex v ∈ V (G), we say that
u is an in-neighbor of v if (u, v) ∈ E(G). The set of all in-neighbors of v is denoted
by N−

G (v). The in-degree d−G(v) = |N−
G (v)|. Respectively, u is an out-neighbor of

v if (v, u) ∈ E(G), the set of all out-neighbors of v, is denoted by N+
G (v), and the

out-degree d+G(v) = |N+
G (v)|.

For a (directed) graph G, a (directed) trail of length k is defined as a sequence
v0, e1, v1, e2, . . . , ek, vk of vertices and edges (arcs, resp.) of G such that v0, . . . , vk ∈
V (G), e1, . . . , ek ∈ E(G), the edges (arcs, resp.) e1, . . . , ek are pairwise distinct, and
for i ∈ {1, . . . , k}, ei = {vi−1, vi} (ei = (vi−1, vi), resp.). A trail is said to be closed if
v0 = vk. A closed (directed) trail is called a (directed) circuit, and it is a (directed)
cycle if all its vertices except v0 = vk are distinct. Clearly, every cycle is a subgraph
of G, and it is said that C is an induced cycle of G if C = G[V (C)]. A (directed)
path is a trail such that all its vertices are distinct. For a (directed) walk (trail, path,
resp.) v0, e1, v1, e2, . . . , ek, vk, v0 and vk are its end-vertices, and v1, . . . , vk−1 are its
internal vertices. For a (directed) walk (trail, path, resp.) with end-vertices u and v,
we say that it is an (u, v)-walk (trail, path, resp.). We omit the word “directed” if it
does not create confusion. Also we write a trail as a sequence of its vertices v0, . . . , vk.

A connected (directed) graph G is an Euler (or Eulerian) graph if it has a (di-
rected) circuit that contains all edges (arcs, resp.) of G. By the celebrated result of
Euler (see, e.g., [12]), a connected graph G is an Euler graph if and only if all its
vertices have even degrees. Respectively, a connected directed graph G is an Euler
directed graph if and only if for each vertex v ∈ V (G), d−G(v) = d+G(v).

Ramsey numbers. The Ramsey number R(r, s) is the minimal integer n such
that any graph on n vertices has either a clique of size r or an independent set of size
s. By the famous paper of Erdös and Szekeres [10], R(r, s) ≤ (

r+s−2
r−1

)
.
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Parameterized complexity. Parameterized complexity is a two-dimensional
framework for studying the computational complexity of a problem. One dimension
is the input size n and another one is a parameter k. It is said that a problem is
FPT if it can be solved in time f(k) · nO(1) for some function f , and it is said that
a problem is in XP if it can be solved in time O(nf(k)) for some function f . One
of the basic assumptions of the parameterized complexity theory is the conjecture
that the complexity class W[1] �= FPT, and it is unlikely that a W[1]-hard problem
could be solved in FPT time. A problem is Para-NP-hard(complete) if it is NP-hard
(complete) for some fixed value of the parameter k. Clearly, a Para-NP-hard problem
is not in XP unless P=NP. We refer to the books of Downey and Fellows [9], Flum
and Grohe [13], and Niedermeier [22] for detailed introductions on parameterized
complexity.

Treewidth. A tree decomposition of an undirected graph G is a pair (X,T ),
where T is a tree and X = {Xi | i ∈ V (T )} is a collection of subsets (called bags) of
V (G) such that

1.
⋃

i∈V (T ) Xi = V (G),

2. for each edge {x, y} ∈ E(G), x, y ∈ Xi for some i ∈ V (T ), and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi| − 1}.
The treewidth of a graph G (denoted as tw(G)) is the minimum width over all tree
decompositions of G.

We conclude this section with simple observations about the hardness of the
considered problems. The results of Cygan et al. in [7] immediately imply that the
nonparameterized version of Long Circuit is NP-complete. By a similar argument
we obtain the same for Large Euler Subgraph.

Proposition 2.1. Long Circuit and Large Euler Subgraph are NP-
complete for directed and undirected graphs when k is a part of the input.

Proof. Let G be an n-vertex undirected cubic graph. It is straightforward to
see that G has a circuit with at least n edges if and only if G is Hamiltonian. As
the Hamiltonian Cycle is known to be NP-complete for cubic planar graphs [18],
it follows that Long Circuit is NP-complete for undirected graphs. Denote by G′

the graph obtained by subdividing each edge of G. Now we observe that G′ has an
induced Euler subgraph with at least 2n vertices if and only if G is Hamiltonian. We
have that Large Euler Subgraph is NP-complete for undirected graphs.

For directed graphs, we use similar arguments. Let G be a directed graph. Denote
by G′ the graph obtained from G by the replacement of each vertex v ∈ V (G) by two
vertices v+, v− joined by an arc (v+, v−), and we replace each arc (u, v) ∈ E(G) by
(u−, v+). BecauseG has a circuit with at least 2n edges if and only if G is Hamiltonian
and because Hamiltonian Cycle is NP-complete for directed graphs [18], Long
Circuit is NP-complete for directed graphs. Finally, let G′′ be the directed graph
obtained by subdividing each arc of G′. Since G′′ has an induced Euler subgraph with
at least 4n vertices if and only if G is Hamiltonian, we conclude that Large Euler

Subgraph is NP-complete for directed graphs.

Observe that if a (directed) graph G has components G1, . . . , Gt, then G has a
circuit of size k (an induced Euler subgraph with at least k vertices, resp.) if and only
if there is i ∈ {1, . . . , t} such that Gi has a circuit of size k (an induced Euler subgraph
with at least k vertices, resp.). By this observation, Proposition 2.1, and the results
by Bodlaender et al. [4], we have the following claim. We refer to [9, 13, 22] for the
definition of a polynomial kernel.
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Proposition 2.2. Long Circuit and Large Euler Subgraph for directed
and undirected graphs have no polynomial kernels unless NP ⊆ coNP /poly.

3. Large Euler subgraphs.

3.1. Large Euler subgraphs for undirected graphs. In this section we show
that Large Euler Subgraph is FPT for undirected graphs. Using Ramsey argu-
ments, we prove that if a graph G has sufficiently large treewidth, then G has an
induced Euler subgraph on at least k vertices. Then if the input graph has large
treewidth, we have a YES-answer. Otherwise, we use the fact that Large Euler

Subgraph is FPT parameterized by the treewidth of a graph. All graphs considered
here are undirected.

For a given positive integer k, we define the function f(�) for integers � ≥ 2
recursively as follows:

• f(2) = R(k, k − 1) + 1,
• f(�) = (k − 1)(2(�− 1)(f(� �

2�+ 1)− 1) + 1) + 1 for � > 2.
We need the following two lemmas.
Lemma 3.1. Let G be a graph, and suppose that s, t are distinct vertices joined by

at least f(�) internally vertex-disjoint paths of length at most � in G for some � ≥ 2.
Then G has an induced Euler subgraph on at least k vertices.

Proof. Consider the minimum value of � such that G has f(�) internally vertex
disjoint (s, t)-paths of length at most �. We have at least r = f(�) − 1 such paths
P1, . . . , Pr that are distinct from the trivial (s, t)-path with one edge. We assume
that each path Pi has no chords that either join two internal vertices or an internal
vertex and one of the end-vertices, i.e., each internal vertex is adjacent in G[V (Pi)]
only to its two neighbors in Pi. Otherwise, we can replace Pi by a shorter path with
all vertices in V (Pi) distinct from the path s, t. We consider two cases.

Case 1. � = 2. The paths P1, . . . , Pr are of length two and therefore have exactly
one internal vertex. Assume that u1, . . . , ur are internal vertices of these paths. Be-
cause r = f(2) − 1 = R(k, k − 1), the graph G[{u1, . . . , ur}] either has a clique K
of size k or an independent set I of size at least k − 1. Suppose that G has a clique
K. If k is odd, then G[K] is an induced Euler subgraph on k vertices. If k is even,
then G[K ∪ {s}] is an induced Euler subgraph on k + 1 vertices. Assume now that
I ⊆ {u1, . . . , ur−1} is an independent set of size k − 1. Let v ∈ I. If {s, t} ∈ E(G)
and k is even or {s, t} /∈ E(G) and k is odd, then G[I ∪ {s, t}] is an induced Euler
subgraph on k + 1 vertices. Else if {s, t} /∈ E(G) and k is even or {s, t} ∈ E(G) and
k is odd, then G[I ∪ {s, t}\{v}] is an induced Euler subgraph on k vertices.

Case 2. � ≥ 3. We say that paths Pi and Pj are adjacent if they have adjacent
internal vertices. Let p = f(��/2�+ 1). Suppose that there is an internal vertex v of
one of the paths P1, . . . , Pr that is adjacent to at least 2p− 1 internal vertices of some
other distinct 2p− 1 paths. Then there are p = f(��/2�+ 1) paths Pi1 , . . . , Pip that
have respective internal vertices v1, . . . , vp such that

(i) v is adjacent to v1, . . . , vp, and
(ii) either each vj is at distance at most ��/2� from s in Pij for all j ∈ {1, . . . , p}

or each vj is at distance at most ��/2� from t in Pij for all j ∈ {1, . . . , p}.
But then either the vertices s, v or v, t are joined by at least f(��/2�+1) internally

vertex-disjoint paths of length at most ��/2�+ 1 < �. This contradicts our choice of
�. Hence, for each i ∈ {1, . . . , r}, every internal vertex of Pi is adjacent to internal
vertices in at most 2p−2 other paths, and Pi is adjacent to at most 2(�−1)(p−1) other
paths. As r = (k− 1)(2(�− 1)(p− 1)+1), there are k− 1 distinct paths Pi1 , . . . , Pik−1

that are pairwise nonadjacent, i.e., they have no adjacent internal vertices.
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v4

u

v = v0 v1 vr = wv2 v3

Fig. 1. The path P and the graphs Q1 (shown by the thick lines), Q2 (shown by the thin lines),
and Q3 (shown by the dashed lines).

Let H = G[V (Pi1 ) ∪ · · · ∪ V (Pik−1
)] and H ′ = G[V (Pi1) ∪ · · · ∪ V (Pik−2

)]. Notice
that by our choice of the paths, H = Pi1 ∪ · · · ∪ Pik−1

and H ′ = Pi1 ∪ · · · ∪ Pik−2
if

{s, t} /∈ E(G), and Pi1 ∪ · · · ∪Pik−1
(Pi1 ∪ · · · ∪ Pik−2

, resp.) can be obtained from H
(H ′, resp.) by the removal of {s, t} if s, t are adjacent. If {s, t} ∈ E(G) and k is even
or {s, t} /∈ E(G) and k is odd, then H is an induced Euler subgraph on at least k+1
vertices. Else if {s, t} /∈ E(G) and k is even or {s, t} ∈ E(G) and k is odd, then H ′ is
an induced Euler subgraph on at least k vertices.

Now we show that if a 2-connected graph G has a vertex of sufficiently large
degree, then we can find an induced Euler subgraph on at least k vertices using
Lemma 3.1. For k ≥ 4, let

Δk = 1 +
(f(3k − 8)− 1)((f(3k − 8)− 2)3(k−3) − 1)

f(3k − 8)− 3
.

Lemma 3.2. For k ≥ 4, any 2-connected graph G with Δ(G) > Δk has an induced
Euler subgraph on at least k vertices.

Proof. Let G be a 2-connected graph and let u be a vertex of G with dG(u) =
Δ(G). As G is 2-connected, G′ = G− u is connected. Let v be an arbitrary vertex of
NG(u). Denote by T a tree of shortest paths from v to all other vertices of NG(u) in
G′, i.e., T is a tree in G′ such that for any w ∈ NG(w), the unique (v, w)-path in T
is a shortest (v, w)-path in G′.

Claim 1. If there is a (v, w)-path P of length at least 3(k − 3) + 1 in T for some
w ∈ NG(u), then G has an induced Euler subgraph on at least k vertices.

Proof. Let P be a (v, w)-path P of length at least 3(k − 3) + 1 in T . Denote by
v0, . . . , vr the vertices of P in NG(u). We assume that they are enumerated according
to the order in which they occur in P tracing it from v to w. In particular v0 = v
and w = vr. We consider the (v0, v1), . . . , (vr−1, vr)-subpaths of P . We construct
the graph Q1 by taking unions of every third subpath starting from the (v0, v1)-
subpath, Q2 is constructed by taking every third subpath starting from the (v1, v2)-
subpath, and Q3 is obtained when we start from the (v2, v3)-subpath. Formally,
Q1 is the union of the (v0, v1), (v3, v4), . . . , (v3�r/3�, v3�r/3�+1)-subpaths of P , Q2 is
the union of the (v1, v2), (v4, v5), . . . , (v3�r/3�+1, v3�r/3�+2)-subpaths of P , and Q3 is
the union of the (v2, v3), (v5, v6), . . . , (v3�r/3�−1, v3�r/3�)-subpaths of P , as shown in
Figure 1. Notice that some subpaths can be empty depending on whether r modulo
3 is 0, 1, or 2. By the constructions, Q1, Q2, Q3 are edge-disjoint. Because T is
a shortest path tree, we have that Q1, Q2, Q3 are induced subgraphs of G. Since
Q1 ∪Q2 ∪Q3 = P , there is Qi for i ∈ {1, 2, 3} with at least k− 2 edges. Then Qi has
at least k− 1 vertices. Let H = G[V (Qi)∪{u}]. By the definition of Qi, H is a union
of induced cycles with one common vertex u such that for different cycles C1, C2 in
the union, V (C1) ∩ V (C2) = {u} and {x, y} /∈ E(G) whenever x ∈ V (C1)\{u} and
y ∈ V (C2)\{u}. Hence, H is an Euler graph with at least k vertices.

From now we assume that all (v, w)-paths in T have length at most 3(k − 3) for
w ∈ NG(u).
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x1

u

z xr

y1v = y0
yr

P0 Pr

P1

Fig. 2. The paths P0, . . . , Pr.

Claim 2. If there is a vertex z ∈ V (T ) with dT (z) ≥ f(3(k− 3) + 1), then G has
an induced Euler subgraph on at least k vertices.

Proof. Recall that T is a tree of shortest paths from v to all other vertices of
NG(u) in G′. We assume that T is rooted in v. Then the root defines the parent-
child relation on T . Let x1, . . . , xr be the children of z. If z has no parent, then
z = v and r ≥ f(3(k − 3) + 1). Otherwise, r ≥ f(3(k − 3) + 1) − 1. Let y0 = v.
Because each leaf of T is a vertex of NG(u), for each i ∈ {1, . . . , r}, there is a closest
descendant yi ∈ V (T ) ∩NG(u) of xi in T . Denote by Pi the unique (z, yi)-path in T
for i ∈ {0, . . . , r}, as shown in Figure 2. As all (v, w)-paths in T have length at most
3(k − 3) for w ∈ NG(u), the paths P0, . . . , Pr have length at most 3(k − 3). Notice
that these paths have no common vertices except z. Observe now that y0, . . . , yr are
adjacent to u in G. Therefore, we have at least f(3(k−3)+1) internally vertex-disjoint
(u, z)-paths in G. By Lemma 3.1, it implies that G has an induced Euler subgraph
on at least k vertices.

To complete the proof of the lemma, it remains to observe that if Δ(T ) <
f(3(k− 3)+ 1) and all (v, w)-paths in T have length at most 3(k− 3) for w ∈ NG(u),
then

dG(u) ≤ |V (T )| ≤ 1 +
(f(3k − 8)− 1)((f(3k − 8)− 2)3(k−3) − 1)

f(3k − 8)− 3
= Δk.

Kosowski et al. [20] obtained the following bound for treewidth.
Theorem 3.3 (see [20]). Let k ≥ 3 and let G be a graph without induced cycles

of length at least k and Δ(G) ≥ 1. Then tw(G) ≤ k(Δ(G)− 1) + 2.
This theorem together with Lemma 3.2 immediately imply the next lemma.
Lemma 3.4. Let G be a graph and let k ≥ 4. If tw(G) > k(Δk − 1) + 2, then G

has an induced Euler subgraph on at least k vertices.
Proof. Suppose that tw(G) > k(Δk − 1) + 2. It is well known that the treewidth

of a graph G is equal to the maximum treewidth of its 2-connected components. Then
G has a 2-connected component G′ with tw(G′) > k(Δk−1)+2. If Δ(G′) > Δk, then
G′ has an induced Euler subgraph on at least k vertices by Lemma 3.2. Otherwise,
by Theorem 3.3, G′ has an induced cycle on at least k vertices, i.e., an induced Euler
subgraph.

Now we observe that Large Euler Subgraph is FPT for graphs of bounded
treewidth.

Lemma 3.5. For any positive integer t, Large Euler Subgraph can be solved
in linear time for graphs of treewidth at most t.

Proof. Recall that the syntax of the monadic second-order logic (MSOL) of graphs
includes logical connectives ∨, ∧, ¬, variables for vertices, edges, sets of vertices and
edges, and quantifiers ∀, ∃ that can be applied to these variables. Besides the standard
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relations =, ∈, ⊆, the syntax includes the relation adj(u, v) for two vertex variables,
which expresses whether two vertices u and v are adjacent, and for a vertex variable v
and an edge variable e, we have the relation inc(v, e) which expresses that v is incident
with e. The counting monadic first-order logic (CMSOL) is an extension of MSOL
with the additional predicate cardp,q(X) which expresses whether the cardinality of
a set X is p modulo q.

By the celebrated Courcelle’s theorem, any problem that can be expressed in
MSOL can be solved in linear time for graphs of bounded treewidth. Moreover, this
result holds also for optimization problems that can be expressed in CMSOL (see,
e.g., the monograph of Courcelle and Engelfriet [6]).

Observe that to solve Large Euler Subgraph for a graph G, it is sufficient
to find a subset of vertices U of maximum size such that U induces an Euler graph.
Clearly, U induces an Euler graph if and only if (i) G[U ] is connected and (ii) each
vertex of G[G] has even degree. The both properties can be expressed in CMSOL.
The standard way to express connectivity is to notice that G[U ] is connected if and
only if for any X ⊂ U , X �= ∅, and X �= U , there is an edge {x, y} ∈ E(G) such that
x ∈ X and y ∈ U\X . Then we have to express the property that for any u ∈ U ,
dG[U ](u) = |NG[U ](u)| is even. To do it, it is sufficient to observe that X = NG[U ](u)
if and only if X ⊆ U such that (i) for any v ∈ X , {u, v} ∈ E(G), and (ii) for any
v ∈ U such that {u, v} ∈ E(G), v ∈ X . Since we can express in CMSOL whether
|NG[U ](u)| is even, the claim follows.

Now we can prove the main result of this section.

Theorem 3.6. For any positive integer k, Large Euler Subgraph can be
solved in linear time for undirected graphs.

Proof. Clearly, we can assume that k ≥ 3, as any Euler graph has at least three
vertices. If k = 3, then we can find any shortest cycle in the input graph G. It is
straightforward to see that if G has no cycles, then we have no Euler subgraph, and
any induced cycle is an induced Euler subgraph on at least three vertices. Hence, it
can be assumed that k ≥ 4. We check in linear time whether tw(G) ≤ k(Δk − 1) + 2
using the Bodlaender’s algorithm [3]. If it is so, we solve our problem using Lemma 3.5.
Otherwise, by Lemma 3.4, we conclude that G has an induced Euler subgraph on at
least k vertices and return a YES-answer.

Notice that the proof of Theorem 3.6 is not constructive. Next, we sketch the
algorithm that produces an induced Euler subgraph on at least k ≥ 4 vertices if it
exists.

First, for each � ≥ 2, we can test the existence of two vertices s, t such that the
input graph G has at least f(�) internally vertex-disjoint (s, t)-paths of length at most
� in FPT time with the parameter � using the color coding technique [19]. If we find
such a structure for � ≤ 3k − 8, we find an induced Euler subgraph with at least k
vertices that is either a clique or a union of (s, t)-paths, as explained in the proof of
Lemma 3.1.

Otherwise, we find all 2-connected components. If there is a 2-connected compo-
nent G′ with a vertex u with dG′(u) > Δk, then we find an induced Euler subgraph
with at least k vertices that is a union of cycles with the common vertex u using the
arguments form the proof of Lemma 3.2.

If all 2-connected components have bounded maximum degrees, we use the algo-
rithm of Kosowski et al. [20] that in polynomial time either finds an induced cycle on
at least k vertices or constructs a tree decomposition of width at most k(Δk − 1)+ 2.
In the first case we have an induced Euler subgraph on at least k vertices. In the
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second case the treewidth is bounded, and Large Euler Subgraph is solved by a
dynamic programming algorithm instead of applying Lemma 3.5.

3.2. Large Euler subgraphs for directed graphs. In this section we show
that Euler k-Subgraph and Large Euler Subgraph are hard for directed graphs.

First, we consider Euler k-Subgraph. It is straightforward to see that this
problem is in XP, since we can check for every subset of k vertices whether it induces
an Euler subgraph. We prove that this problem cannot be solved in FPT time unless
FPT = W[1].

Theorem 3.7. The Euler k-Subgraph is W[1]-hard for directed graphs.
Proof. We reduce the Multicolored k-Clique problem that is known to be

W[1]-hard [11]:

Multicolored k-Clique Parameter: k
Input: A k-partite graph G = (V1 ∪ · · · ∪ Vk, E), where V1, . . . , Vk are sets of the
k-partition
Question: Does G has a clique with k vertices?

Let G = (V1 ∪ · · · ∪ Vk, E) be an instance of Multicolored k-Clique. We
construct the directed graph H as follows:

• Construct the copies of V1, . . . , Vk.
• For 1 ≤ i < j ≤ k and for each u ∈ Vi and v ∈ Vj , if {u, v} /∈ E(G), then
construct an arc (u, v) for the copies of u and v in H .

• For each i ∈ {1, . . . , k}, construct two vertices xi, yi, then join xi by arcs with
all vertices of Vi and join every vertex of Vi with yi by an arc.

• Construct arcs (y1, x2), (y2, x3), . . . , (yk, x1).
We set k′ = 3k.

We claim that G has a clique with k vertices if and only if H has an induced
Euler subgraph with at least k′ vertices.

Let K = {v1, . . . , vk} be a clique in G where vi ∈ Vi for i ∈ {1, . . . , k}. Ob-
serve that v1, . . . , vk are pairwise nonadjacent in H . Hence, the set of vertices
{x1, v1, y1, . . . , xk, vk, yk} induces a cycle in H . Hence, we have an induced Euler
subgraph with at least k′ vertices.

Suppose now that H has an induced Euler subgraph C with at least k′ vertices.
Observe that every directed cycle in G contains the arc (yk, x1), because if we delete
this arc, we obtain a directed acyclic graph. Since any Euler directed graph is a
union of arc-disjoint directed cycles (see, e.g., [12]), C is an induced directed cycle.
Moreover, for each i ∈ {1, . . . , k}, C contains at most one vertex of Vi. Indeed, assume
that two vertices u, v of C are in the same set Vi. Then the (u, v)-paths and the (v, u)-
path in C should contain (yk, x1), but this is impossible. Because C has 3k vertices,
we conclude that C contains exactly one vertex vi from each Vi for i ∈ {1, . . . , k},
and xi, yi ∈ V (C) for i ∈ {1, . . . , k}. Then C = H [{x1, v1, y1, . . . , xk, vk, yk}]. Since
C is an induced cycle, v1, . . . , vk are pairwise nonadjacent in H . Then {v1, . . . , vk} is
a clique in G.

For Large Euler Subgraph for directed graphs, we prove that this problem is
Para-NP-complete.

Theorem 3.8. For any k ≥ 4, Large Euler Subgraph is NP-complete for
oriented graphs, i.e., for directed graphs without cycles of length two.

Proof. We reduce the 3-Satisfiability problem. It is known [2] that this problem
is NP-complete even if each variable is used in exactly 4 clauses: two clauses contain
the literal xi and two clauses contain the literal xi.
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Fig. 3. Construction of G.

Let k ≥ 4 be an integer. Suppose that Boolean variables x1, . . . , xn and clauses
C1, . . . , Cm compose an instance of 3-Satisfiability such that each variable is used
in exactly 4 clauses: 2 times in positive and 2 times in negations. Let φ = C1∧· · ·∧Cm.
Without loss of generality we assume that k ≤ 4(n+m). We construct the oriented
graph G as follows (see Figure 3):

• For each i ∈ {1, . . . , n}, construct vertices yi, y′i, x1
i , x

2
i , x

1
i , x

2
i and arcs (yi, x

1
i ),

(x1
i , x

2
i ), (x

2
i , y

′
i), (yi, x

1
i ), (x

1
i , x

2
i ), (x

2
i , y

′
i).

• For each i ∈ {2, . . . , n}, construct (y′i−1, yi).
• For each j ∈ {1, . . . ,m}, construct vertices zj, z′j , u1

j , u
2
j , u

3
j , v

1
j , v

2
j , v

3
j and arcs

(zj , u
1
j), (u

1
j , v

1
j ), (v

1
j , z

′
j), (zj , u

2
j), (u

2
j , v

2
j ), (v

2
j , z

′
j), (zj, u

3
j), (u

3
j , v

3
j ), (v

3
j , z

′
j).

• For each j ∈ {2, . . . ,m}, construct (z′j−1, zj).
• Construct (y′n, z1), (z

′
m, y1).

• For each j ∈ {1, . . . ,m}, let Cj = w1 ∨ w2 ∨ w3. For h ∈ {1, 2, 3},
– if wh = xi for some i ∈ {1, . . . , n} and wh is the first occurrence of the

literal xi in φ, then construct (x1
i , u

h
j ), (v

h
j , x

1
i );

– if wh = xi for some i ∈ {1, . . . , n} and wh is the second occurrence of
the literal xi in φ, then construct (x2

i , u
h
j ), (v

h
j , x

2
i );

– if wh = xi for some i ∈ {1, . . . , n} and wh is the first occurrence of the
literal xi in φ, then construct (x1

i , u
h
j ), (v

h
j , x

1
i );

– if wh = xi for some i ∈ {1, . . . , n} and wh is the second occurrence of
the literal xi in φ, then construct (x2

i , u
h
j ), (v

h
j , x

2
i ).

We claim that φ can be satisfied if and only if G has an induced Euler subgraph
with at least k vertices.

For i ∈ {1, . . . , n}, let Pi = {yi, x1
i , x

2
i , y

′
i} and P i = {yi, x1

i , x
2
i , y

′
i}. For j ∈

{1, . . . , n} and h ∈ {1, 2, 3}, Qh
j = {zj, uh

j , v
h
j , z

′
j}. Let also Z = {z1, . . . , zm} and

Z ′ = {z′1, . . . , z′m}.
Suppose that the variables x1, . . . , xn have values such that φ is satisfied. We

construct the set of vertices U as follows:
• for i ∈ {1, . . . , n}, if xi = true, then the vertices of the set P i are included in
U , and Pi is included otherwise;

• for j ∈ {1, . . . ,m}, if Cj = w1 ∨ w2 ∨ w3, then we choose a literal wh = true
in Cj and include Qh

j in U .
Observe that U induces a cycle in G and |U | = 4(n + m) ≥ k. Then G[U ] is an
induced Euler subgraph on at least k vertices.
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Assume now that a set U ⊆ V (G) induces an Euler graph H = G[U ] and |U | ≥ k.
Notice that because |U | ≥ k ≥ 4, for every vertex w ∈ U , U contains at least one
in-neighbor of w and at least one out-neighbor of w. Also the number of in-neighbors
and the number of out-neighbors of w in U is the same.

Since k ≥ 4, U ∩ (Z ∪ Z ′) �= ∅ because G− (Z ∪ Z ′) has no cycles except vertex-
disjoint triangles. Hence, there is j ∈ {1, . . . ,m} such that zj ∈ U or z′j ∈ U . Suppose
that zj ∈ U . If j = 1, then y′n ∈ U because it is the unique in-neighbor of z1, and if
j > 1, then z′j−1 ∈ U as z′j−1 ∈ U is the unique in-neighbor. Then exactly one of the

out-neighbors of zj , i.e., exactly one of the vertices u1
j , u

2
j , u

3
j , is in U . Let uh

j ∈ U .

Then its unique out-neighbors vhj ∈ U . Further, exactly one of the out-neighbors of

vhj is in U , and either z′j ∈ U or some vertex xp
i ∈ U or xp

i ∈ U . But if xp
i ∈ U or

xp
i ∈ U , d−H(uh

j ) = 2 > 1 = d+H(uh
j ). Hence, z′j ∈ U . If j = m, then y1 ∈ U , and

if j < m, then zj+1 ∈ U . We use similar arguments for the case z′j ∈ U . If j = m,

then y1 ∈ U , and if j < m, then zj+1 ∈ U . Also, exactly one of the vertices v1j , v
2
j , v

3
j

is in U . Let vhj ∈ U . Then uh
j ∈ U . Further, either zj ∈ U or some vertex xp

i ∈ U

or xp
i ∈ U because U contains an in-neighbor of uh

j ∈ U . But if xp
i ∈ U or xp

i ∈ U ,

d−H(vhj ) = 1 < 2 = d+H(vhj ). Hence, zj ∈ U . If j > 1, then z′j−1 ∈ U . We have that for
each j ∈ {1, . . . ,m}, exactly one Qh ⊆ U for h ∈ {1, 2, 3}, and for h′ ∈ {1, 2, 3}\{h},
uh′
j , vh

′
j /∈ U . Also we have that y1 ∈ U .

Now we consequently consider i = 1, . . . , n. We already know that y1 ∈ U .
Assume inductively that yi ∈ U . Then exactly one of the vertices x1

i , x
1
i is in U .

Assume that x1
i is in U as another case is symmetric. Then either x2

i or some vertex
uh
j should be in U . But if uh

j ∈ U , then because zj ∈ U , d−H(uh
j ) = 2 > d+H(uh

j )

and this is impossible for an Euler graph. Then x2
j ∈ U . By the same arguments we

show that y′i ∈ U . If i < n, then yi+1 ∈ U , and we can proceed with our inductive
arguments. We conclude that for each i ∈ {1, . . . , n}, either Pi ⊆ U or P i ⊆ U , and
if Pi ⊆ U (P i ⊆ U , resp.), then x1

i , x
2
i /∈ U (x1

i , x
2
i /∈ U , resp.). Moreover, if Pi ⊆ U

(P i ⊆ U , resp.) and Qh
j ⊆ U , then H has no arcs between the vertices of these two

sets.

We define the truth assignment for the variables x1, . . . , xn as follows: for each
i ∈ {1, . . . , n}, if Pi ⊆ U , then xi = false, and xi = true otherwise. We claim that φ
is satisfied by this assignment. To show it, consider a clause Cj = w1 ∨ w2 ∨ w3. We
know that there is h ∈ {1, 2, 3} such that Qh

j ⊆ U . Assume that wh = xi (the case

wh = xi is symmetric). Then Qh
i is joined by arcs in G with Pi. It follows that Pi

was not included in U , i.e., P i ⊆ U and xi = true. Hence, wh = true.

We proved that Large Euler Subgraph is NP-complete for directed graphs
for k ≥ 4. In the conclusion of this section we observe that the bound k ≥ 4 is tight
unless P = NP.

Proposition 3.9. Large Euler Subgraph can be solved in polynomial time
for k ≤ 3.

Proof. For k = 1, the problem is trivial. If k = 2, then any shortest cycle C in a
directed graph G is an induced Euler subgraph of G with at least two vertices, and
G has no induced Euler subgraph if G is a directed acyclic graph. Hence, it remains
to consider k = 3.

Suppose that H is an induced Euler subgraph of a directed graph G, and H has
at least three vertices. Denote by H ′ the graph obtained from H by the deletion of all
pairs of opposite arcs, i.e., for each pair of vertices x, y such that (x, y), (y, x) ∈ E(H),
we delete (x, y), (y, x). Clearly, for any v ∈ V (H ′), d−H′ (v) = d+H′ (v). If H ′ is empty,
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then because |V (H)| ≥ 3, there are three distinct vertices x, y, z ∈ V (H) such that
(x, y), (y, x), (y, z), (z, y) ∈ E(H) and either (x, z), (z, x) ∈ E(H) or (x, z), (z, x) /∈
E(H). Then G[{x, y, z}] is an Euler subgraph of G. If H ′ is nonempty, then H ′ has
a shortest cycle C. Because H ′ has no cycles of length two, G[V (C)] is an induced
Euler subgraph with at least three vertices.

We conclude that Large Euler Subgraph can be solved for k = 3 as follows.
If G has three distinct vertices x, y, z such that (x, y), (y, x), (y, z), (z, y) ∈ E(G)
and either (x, z), (z, x) ∈ E(G) or (x, z), (z, x) /∈ E(G), then G[{x, y, z}] is an Euler
subgraph of G. Otherwise, let G′ be the graph obtained from G by the deletion of all
pairs of opposite arcs. We find a shortest cycle C in G′, and we have that G[V (C)]
is an induced Euler subgraph with at least three vertices. Finally, if G′ is a directed
acyclic graph, then we return a NO-answer.

4. Long circuits. In this section we show that the Long Circuit problem is
FPT for directed and undirected graphs. Our algorithms are based on known results
about the Long Cycle problem:

Long Cycle Parameter: k
Input: A (directed) graph G and a positive integer k
Question: Does G contain a cycle with at least k edges (arcs)?

Fomin, Lokshtanov, and Saurabh [15, 16] gave a first single-exponential FPT
algorithm for the problem on directed graphs. In particular, they proved the following
theorem.

Theorem 4.1 (Theorem 5.1 of [16]). The Long Cycle problem can be solved
in time 8k+o(k) ·mn2 logn for directed graphs with n vertices and m arcs.

Let G be a directed graph. Recall that the line digraph L(G) of G is a directed
graph that has the vertex set E(G), and for any two distinct arcs e1 = (u1, v1) and
e2 = (u2, v2) of G, (e1, e2) is an arc of L(G) if and only if v2 = u1. We use the
following folklore observation and provide its proof for completeness.

Lemma 4.2. For a directed graph G and a positive integer k, G has a directed
circuit with at least k arcs if and only if L(G) has a directed cycle on at least k
vertices.

Proof. Suppose that G has a directed circuit v0, e1, v1, e2, . . . , er, vr. Then, by
the definition of L(G), the vertices e1, . . . , er, e1 of L(G) compose a directed cycle.
Suppose now that L(G) has a directed cycle e0, . . . , er. For each i ∈ {0, . . . , r− 1}, ei
and ei+1 have a common incident vertex vi such that vi is the head of ei and is the
tail of ei+1. Then v0, e1, . . . , er, v0 is a directed circuit in G.

Theorem 4.1 and Lemma 4.2 immediately provide the following corollary.

Corollary 4.3. The Long Circuit problem can be solved in time 8k+o(k) ·
m4 logn for directed graphs with n vertices and m arcs.

Observe also that Lemma 4.2 together with the results of Fomin, Lokshtanov, and
Saurabh [16] implies the following proposition. Notice that its undirected analogue
was proved by Cai and Yang in [5].

Proposition 4.4. The k-Circuit problem can be solved in time O(2.851k ·
m log2 n) for directed graphs with n vertices and m arcs.

For undirected graphs, it is slightly more convenient to use the structural result
by Gabow and Nie [17]. Let us recall that a fundamental cycle in an undirected graph
is formed from a spanning tree and a nontree edge.
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Theorem 4.5 (see [17]). In a connected undirected graph G having a cycle with
at least k edges, either there is a fundamental cycle with at least k edges for every
depth-first search tree or some cycle in G with at least k edges has at most 2k − 4
edges.

We need the following observation.

Lemma 4.6. Let G be a graph without cycles of length at least k. If G has a
circuit with at least k edges, then G has a circuit with at least k and at most 2k − 2
edges.

Proof. Let C be a circuit in G. It is well known (see, e.g., [12]) that C is a
union of edge-disjoint cycles C1, . . . , Cr. Moreover, it can be assumed that for any
i ∈ {1, . . . , r}, the graph C1 ∪ · · · ∪ Ci is connected, i.e., it is a circuit. Suppose now
that C is a circuit with at least k edges that has minimum length. Then the circuit
C′ = C1 ∪ · · · ∪Cr−1 has at most k− 1 edges. Since G has no cycles of length at least
k, Cr has at most k − 1 edges. Thus, C has at most 2k − 2 edges.

Now we are ready to prove the FPT-result for Long Circuit on undirected
graphs.

Theorem 4.7. The Long Circuit problem can be solved in O(k(2e)2k · nm)
expected time and in (2e)2kkO(log k)·nm logn worst-case time for graphs with n vertices
and m edges.

Proof. We assume that the input graph G is connected, as otherwise we can solve
the problem for each component. We choose a vertex v arbitrarily and perform the
depth-first search from v. In this way we find the fundamental cycles for the dfs-tree
rooted in v and check whether there is a fundamental cycle of length at least k. If we
have such a cycle, then it is a circuit with at least k edges, and we have a YES-answer.
Otherwise, by Theorem 4.5, either G has no cycles of length at least k or G has a
cycle with at least k and at most 2k − 4 edges. Hence, if G has a cycle of length at
least k, then G has a circuit with at least k and at most 2k − 4 edges. If G has no
cycles with at least k edges, then by Lemma 4.6, if G has a circuit with at least k
edges, it contains a circuit with at least k and at most 2k − 2 edges. We conclude
that if the constructed fundamental cycles have lengths at most k − 1, then G either
has a circuit with at least k and at most 2k − 2 edges or has no circuit with at least
k edges.

We check whether G has a circuit with at least k and at most 2k− 2 edges using
the color coding technique proposed by Alon, Yuster, and Zwick [1]. Our algorithm is
a variant of the algorithm of Cai and Yang [5] for k-Circuit. Hence, we only sketch
it here. For simplicity, we solve the decision problem, but the algorithm can be easily
modified to obtain a circuit of prescribed size if it exists.

Let G be a graph with n vertices and m arcs.

First, we describe the randomized algorithm. We color the edges of G by k′ =
2k − 2 colors 1, . . . , k′ uniformly at random independently from each other. Now we
are looking for a colorful circuit in G that has at least k edges, i.e., for a circuit such
that all edges are colored by distinct colors.

To do it, we apply the dynamic programming across subsets. We choose an
initial vertex u and try to construct a circuit that includes u. For a set of colors
X ⊆ {1, . . . , k′}, denote by U(X) the set of vertices v ∈ V (G) such that there is a
(u, v)-trail with |X | edges colored by distinct colors from X . It is straightforward to
see that U(∅) = {u}. For X �= ∅, v ∈ U(X) if and only if v has a neighbor w ∈ NG(v)
such that {w, v} is colored by a color c ∈ X and w ∈ U(X\{c}). We consequently
construct the sets U(X) for X with 1, 2, . . . , k′ elements. We stop and return a YES-
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answer if u ∈ U(X) for some X of size at least k. Notice that the sets U(X) can be
constructed in time O(k′2k

′ ·m). Since we try all possibilities to select u, the running
time is O(k′2k

′ ·mn).

Now we observe that for any positive number p < 1, there is a constant cp such

that after running our randomized algorithm cpe
k′

times, we either get a YES-answer
or can claim that with probability p G has no directed circuit with at least k and at
most k′ arcs.

This algorithm can be derandomized by the technique proposed by Alon, Yuster,
and Zwick [1] using the k′-perfect hash functions constructed by Naor, Schulman,
and Srinivasan [21]. To do it, we replace random colorings by the family of at most
ek

′
klog k logn hash functions.

Since the depth-first search runs in linear time, we have that Long Circuit

can be solved in O(k(2e)2k · nm) expected time and in O((2e)2kkO(log k) · nm logn)
worst-case time.

5. Conclusions. In this paper, we provide a complete classification of the pa-
rameterized complexity of different Euler subgraph problems; see Table 1. It is natural
to ask whether it is possible to obtain better running times for the problems that are
shown to be FPT. For Long Circuit on directed graphs, we can observe that
by applying the representative set techniques proposed by Fomin, Lokshtanov, and
Saurabh [16] directly to the problem, i.e., without transforming an instance of Long
Circuit to the instance of Long Cycle for the line graph of the input graph using
Lemma 4.2, we can obtain a better dependence on the input size. For the undirected
case, we can solve the problem in time O∗(8k+o(k)). For Large Euler Subgraph,
the dependence of the running time of our algorithm on the parameter is huge. Is it
possible to solve the problem in single-exponential O∗(2O(k)) time?

In a related question, an induced Euler subgraph of maximum size can be found
in time O∗(2n) by a trivial brute-force algorithm trying all possible vertex subsets
and checking if the induced subgraph is Eulerian. Can brute force be avoided here?
In other words, is there time O∗((2− ε)n) algorithm for this problem?
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