
Journal of Computer and System Sciences 80 (2014) 1430–1447
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Tight bounds for parameterized complexity of Cluster Editing
with a small number of clusters ✩

Fedor V. Fomin a, Stefan Kratsch b, Marcin Pilipczuk c, Michał Pilipczuk a,∗,
Yngve Villanger a

a Department of Informatics, University of Bergen, Norway
b Technical University Berlin, Germany
c Institute of Informatics, University of Warsaw, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 May 2013
Received in revised form 3 January 2014
Accepted 8 April 2014
Available online 16 April 2014

Keywords:
Cluster editing
Correlation clustering
Parameterized complexity
Subexponential-time algorithms
Exponential-time hypothesis

In the Cluster Editing problem, also known as Correlation Clustering, we are given
an undirected n-vertex graph G and a positive integer k. The task is to decide if G
can be transformed into a cluster graph, i.e., a disjoint union of cliques, by changing at
most k adjacencies, i.e. by adding/deleting at most k edges. We give a subexponential-

time parameterized algorithm that in time 2O(
√

pk) + nO(1) decides whether G can be
transformed into a cluster graph with exactly p cliques by changing at most k adjacencies.
Our algorithmic findings are complemented by the following tight lower bound on the
asymptotic behavior of our algorithm. We show that unless ETH fails, for any constant 0 <

σ ≤ 1, there is p = Θ(kσ) such that there is no algorithm deciding in time 2o(
√

pk) · nO(1)

whether G can be transformed into a cluster graph with at most p cliques by changing at
most k adjacencies.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Cluster editing, also known as clustering with qualitative information or correlation clustering, is the problem to cluster
objects based only on the qualitative information concerning similarity between their pairs. For every pair of objects we have
a binary indication whether they are similar or not. The task is to find a partition of the objects into clusters minimizing
the number of similarities between different clusters and non-similarities inside of clusters. The problem was introduced
by Ben-Dor, Shamir, and Yakhini [6] motivated by problems from computational biology, and, independently, by Bansal,
Blum, and Chawla [5], motivated by machine learning problems concerning document clustering according to similarities.
The correlation version of clustering was studied intensively, including [1,3,4,15,16,29,39].

✩ A preliminary version of this work [26] has appeared in the Proceedings of the 30th International Symposium on Theoretical Aspects of Computer
Science, STACS 2013. The first and the fourth authors have received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 267959. This work has been done while the second author was at the Utrecht University,
the Netherlands, and supported by the Dutch Research Foundation (NWO). The third author is supported by the National Science Centre grant N206 567140
and the Foundation For Polish Science.

* Corresponding author.
E-mail addresses: fomin@ii.uib.no (F.V. Fomin), stefan.kratsch@tu-berlin.de (S. Kratsch), malcin@mimuw.edu.pl (M. Pilipczuk), michal.pilipczuk@ii.uib.no

(M. Pilipczuk), yngve.villanger@ii.uib.no (Y. Villanger).
http://dx.doi.org/10.1016/j.jcss.2014.04.015
0022-0000/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2014.04.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:fomin@ii.uib.no
mailto:stefan.kratsch@tu-berlin.de
mailto:malcin@mimuw.edu.pl
mailto:michal.pilipczuk@ii.uib.no
mailto:yngve.villanger@ii.uib.no
http://dx.doi.org/10.1016/j.jcss.2014.04.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2014.04.015&domain=pdf

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447 1431
The graph-theoretic formulation of the problem is the following. A graph K is a cluster graph if every connected com-
ponent of K is a complete graph. Let G = (V , E) be a graph; then F ⊆ V × V is called a cluster editing set for G if
G�F = (V , E�F) is a cluster graph. Here E�F is the symmetric difference between E and F . In the optimization ver-
sion of the problem the task is to find a cluster editing set of the minimum size. Constant factor approximation algorithms
for this problem were obtained in [1,5,15]. On the negative side, the problem is known to be NP-complete [39] and, as was
shown by Charikar, Guruswami, and Wirth [15], also APX-hard.

Giotis and Guruswami [29] initiated the study of clustering when the maximum number of clusters that we are allowed
to use is stipulated to be a fixed constant p. As observed by them, this type of clustering is well-motivated in settings where
the number of clusters might be an external constraint that has to be met. It appeared that p-clustering variants posed new
and non-trivial challenges. In particular, in spite of the APX-hardness of the general case, Giotis and Guruswami [29] gave a
PTAS for this version of the problem.

A cluster graph G is called a p-cluster graph if it has exactly p connected components or, equivalently, if it is a disjoint
union of exactly p cliques. Similarly, a set F is a p-cluster editing set of G , if G�F is a p-cluster graph. In parameterized
complexity, correlation clustering and its restriction to bounded number of clusters were studied under the names Cluster

Editing and p-Cluster Editing, respectively.

Cluster Editing Parameter: k.
Input: A graph G = (V , E) and a non-negative integer k.
Question: Is there a cluster editing set for G of size at most k?

p-Cluster Editing Parameters: p,k.
Input: A graph G = (V , E) and non-negative integers p and k.
Question: Is there a p-cluster editing set for G of size at most k?

The parameterized version of Cluster Editing, and variants of it, were studied intensively [7,9–12,18,22,30,32,33,35,38];
in particular, there is a recent survey of Böcker and Baumbach [8]. The problem is solvable in time O(1.62k + |V (G)| +
|E(G)|) [7] and it has a kernel with 2k vertices [14,17] (see Section 2 for the definition of a kernel). On the negative
side, Komusiewicz and Uhlmann [35] have shown that existence of a subexponential-time parameterized algorithm, i.e., with
running time 2o(k) · |V (G)|O(1) , would contradict the Exponential Time Hypothesis of Impagliazzo et al. [34].

As for the p-Cluster Editing problem, Shamir et al. [39] have shown that the problem is NP-complete for every fixed
p ≥ 2. A kernel with (p + 2)k + p vertices was given by Guo [31].

Our results A new and active direction in parameterized complexity is the pursuit of asymptotically tight bounds on the
complexity of problems. In several cases, it is possible to obtain a complete analysis by providing matching lower (com-
plexity) and upper (algorithmic) bounds. The most widely used complexity assumption for such tight lower bounds is the
Exponential Time Hypothesis (ETH), which posits that no subexponential-time algorithms for k-CNF-SAT or CNF-SAT exist [34].
For more information about this “optimality program”, we refer to a survey of Lokshtanov et al. [36] and to an appropriate
section of the recent survey of Marx [37].

The complexity class SUBEPT defined by Flum and Grohe [23, Chapter 16] comprises all parameterized problems that are
solvable in subexponential parameterized time, i.e., in time 2o(k) · nO(1) for inputs of length n and parameter k. Until very
recently, the only problems known to be in the class SUBEPT were the problems with additional constraints on the input,
like being a planar, H-minor-free, or tournament graph [2,19]. However, recent algorithmic developments indicate that the
structure of the class SUBEPT is much more interesting than expected. It appears that some parameterized problems related
to chordal graphs, like Minimum Fill-in or Chordal Graph Sandwich, are also in SUBEPT [28].

Based on the similarities with problems on tournaments, it had been conjectured by Cao and Chen [13] that Clus-

ter Editing also belongs to SUBEPT. Unfortunately, this conjecture has been recently disproved by Komusiewicz and
Uhlmann [35]: Cluster Editing does not admit a 2o(k) · |V (G)|O(1) algorithm unless ETH fails. We remark that in our
study we have obtained the same result independently. Our reduction is very similar in principles to the one given by
Komusiewicz and Uhlmann, however the graph in the obtained instance of Cluster Editing has maximum degree 5, instead
of 6 as is the case in [35]. Consequently, our reduction shows that Cluster Editing cannot be solved in subexponential time
even on graphs of maximum degree 5. We believe that this improvement is of minor importance, and hence we refrain
from presenting this result in order not to reiterate already published material. An interested reader is invited to the arXiv
version [25] of this work for details of our reduction.

It is therefore an interesting question whether stipulating the target number of clusters can lead to a better time com-
plexity, as was the case for the approximation viewpoint. In this work we answer this question in affirmative, and we
extend our study to show a tight multivariate analysis of the p-Cluster Editing problem. Our main algorithmic result is the
following.

1432 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447
Theorem 1. The p-Cluster Editing problem can be solved in time O(2O(
√

pk) + |V (G)| + |E(G)|).

By Theorem 1, if p = o(k) then p-Cluster Editing can be solved in 2o(k) · |V (G)|O(1) time, and thus it belongs to SUBEPT.
It is straightforward to modify our algorithm to work also in the following variants of the problem, where each edge and
non-edge is assigned some editing cost: either (i) all costs are at least one and k is the bound on the maximum total cost
of the solution, or (ii) we ask for a set of at most k edits of the minimum cost.

We would like to remark that p-Cluster Editing can be also solved in worse time complexity O((pk)O(
√

pk) + |V (G)| +
|E(G)|) using simple guessing arguments. One such algorithm is based on the following observation: Suppose that, for
some integer r, we know at least 2r + 1 vertices from each cluster. Then, if an unassigned vertex has at most r incident
modifications, we know precisely to which cluster it belongs: it is adjacent to at least r + 1 vertices already assigned to
its cluster and at most r assigned to any other cluster. On the other hand, there are at most 2k/r vertices with more than
r incident modifications. Thus (i) guessing 2r + 1 vertices from each cluster (or all of them, if there are less than 2r + 1),
and (ii) guessing all vertices with more than r incident modifications, together with their alignment to clusters, results in at
most |V (G)|(2r+1)p |V (G)|2k/r p2k/r subcases. By pipelining it with the kernelization of Guo [31] and with simple reduction
rules that ensure that p ≤ 6k (see Section 3.1 for details), we obtain the claimed time complexity for r ∼ √

k/p.
An approach via chromatic coding, introduced by Alon et al. [2], also leads to an algorithm with running time

O(2O(p
√

k log p) + |V (G)| + |E(G)|). However, one needs to develop new concepts to construct an algorithm for p-Cluster

Editing with complexity bound as promised in Theorem 1, and thus obtain a subexponential complexity for every sublin-
ear p.

The crucial observation for proving Theorem 1 is that a p-cluster graph, for p = O(k), has 2O(
√

pk) edge cuts of size
at most k (henceforth called k-cuts). As in a YES-instance to the p-Cluster Editing problem each k-cut is a 2k-cut of a
p-cluster graph, we infer a similar bound on the number of cuts if we are dealing with a YES-instance. This allows us to use
dynamic programming over the set of k-cuts. Pipelining this approach with a kernelization algorithm for p-Cluster Editing

proves Theorem 1.
We complement Theorem 1 with a lower bound based on the following technical Theorem 2, which shows that the

exponential time dependence of our algorithm is asymptotically tight for any choice of parameters p and k, where p =O(k).
As one can provide polynomial-time reduction rules that ensure that p ≤ 6k (see Section 3.1 for details), this provides a full
and tight picture of the multivariate parameterized complexity of p-Cluster Editing: we have asymptotically matching
upper and lower bounds on the whole interval between p being a constant and linear in k. To the best of our knowledge,
this is the first fully multivariate and tight complexity analysis of a parameterized problem.

Theorem 2. There is a polynomial-time algorithm that, given positive integers p and k and a 3-CNF formula Φ with n variables and
m clauses, such that k,n ≥ p and n,m ≤ √

pk, computes a graph G and integer k′ , such that k′ =O(k), |V (G)| =O(
√

pk), and

• if Φ is satisfiable then there is a 6p-cluster graph G0 with V (G) = V (G0) and |E(G)�E(G0)| ≤ k′;
• if there exists a p′-cluster graph G0 with p′ ≤ 6p, V (G) = V (G0) and |E(G)�E(G0)| ≤ k′ , then Φ is satisfiable.

As the statement of Theorem 2 may look technical, we gather its two main consequences in Theorems 3 and 4. We
state both corollaries in terms of an easier p≤-Cluster Editing problem, where the number of clusters has to be at most p
instead of precisely equal to p. Clearly, this version can be solved by an algorithm for p-Cluster Editing with an additional p
overhead in time complexity by trying all possible p′ ≤ p, so the lower bound holds also for the harder p-Cluster Editing

problem. However, we are not aware of any reduction in the opposite direction. In both corollaries we use the fact that
existence of a subexponential, in both the number of variables and clauses, algorithm for verifying satisfiability of 3-CNF
formulas would violate ETH [34].

Theorem 3. Unless ETH fails, for every 0 ≤ σ ≤ 1 there is a function p(k) ∈ Θ(kσ) such that p≤-Cluster Editing restricted to

instances where p = p(k) is not solvable in time 2o(
√

pk) · |V (G)|O(1) .

Proof. Assume we are given a 3-CNF formula Φ with n variables and m clauses. If n < m, then �(m − n)/2� times perform
the following operation: add three new variables x, y and z, and clause (x ∨ y ∨ z). In this way we preserve the satisfiability
of Φ , increase the size of Φ at most by a constant multiplicative factor, and ensure that n ≥ m.

Take now k = �n
2

1+σ � and p = �n
2σ

1+σ �. As n ≥ m and 0 ≤ σ ≤ 1, we have k,n ≥ p and n,m ≤ √
pk, but n + m = Ω(

√
pk).

Invoke Theorem 2 for the formula Φ and parameters p and k, obtaining a graph G and a parameter k′ = O(k). Note that
6p ∈ Θ(kσ). Apply the assumed algorithm for the p≤-Cluster Editing problem to the instance (G,6p,k′). In this way we

resolve the satisfiability of Φ in time 2o(
√

pk) · (n + m)O(1) = 2o(n+m) , which contradicts ETH. �
Theorem 4. Unless ETH fails, for every constant p ≥ 6 there is no algorithm solving p≤-Cluster Editing in time 2o(

√
k) · |V (G)|O(1)

or 2o(|V (G)|) .

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447 1433
Proof. We prove the theorem for p = 6; the claim for larger values of p can be proved easily by taking the graph obtained
in the reduction and introducing additional p − 6 cliques of its size.

Assume we are given a 3-CNF formula Φ with n variables and m clauses. Take k = max(n,m)2, invoke Theorem 2 for the
formula Φ and parameters 1 and k, obtaining a graph G and a parameter k′ = O(k). Note that |V (G)| = O(

√
k). Apply the

assumed algorithm for the p≤-Cluster Editing problem to the instance (G,6,k′). In this way we resolve the satisfiability

of Φ in time 2o(
√

k) · (n + m)O(1) = 2o(n+m) , contradicting ETH. �
Note that Theorems 2 and 3 are formally incomparable with the result of Komusiewicz and Uhlmann [35] that the

general Cluster Editing problem does not admit a subexponential-time parameterized algorithm. Clearly, by Theorem 1, the
reduction proving this statement must produce an instance where the number of clusters in any solution, if there exists
any, is Ω(k). Therefore, intuitively the hard instances of Cluster Editing are those where every cluster needs just a constant
number of adjacent edits to be extracted.

Organization of the paper In Section 2 we establish the notation and recall classic notions and results that will be used
throughout the paper. Section 3 contains the description of the subexponential algorithm for p-Cluster Editing, i.e., the
proof of Theorem 1. Section 4 is devoted to the multivariate lower bound, i.e., the proof of Theorem 2. In Section 5 we
gather some concluding remarks and propositions for further work.

2. Preliminaries

We denote by G = (V , E) a finite, undirected, and simple graph with vertex set V (G) = V and edge set E(G) = E . For
a nonempty subset W ⊆ V , the subgraph of G induced by W is denoted by G[W]. We say that a vertex set W ⊆ V is
connected if G[W] is connected. The open neighborhood of a vertex v is N(v) = {u ∈ V : uv ∈ E} and the closed neighborhood
is N[v] = N(v) ∪ {v}. For a vertex set W ⊆ V we put N(W) = ⋃

v∈W N(v) \ W and N[W] = N(W) ∪ W . For graphs G , H
with V (G) = V (H), by H(G, H) we denote the number of edge modifications needed to obtain H from G , i.e., H(G, H) =
|E(G)�E(H)|. By EG(X, Y) we denote the set of edges in G that have one endpoint in X and the second one in Y ; whenever
G is clear from the context, we drop the subscript.

By somehow abusing the notation, we will sometimes use notation uv both to denote edges and non-edges, that is,
uv is then simply an unordered pair of different vertices of the given graph. Moreover, for the sake of simplicity we will
often treat sets of ordered pairs as sets of unordered pairs. Thus, for instance, for vertex sets X , Y by X × Y we denote the
set of all xy such that x ∈ X and y ∈ Y . The formal meaning of these terms will be always clear from the context.

A parameterized problem Π is a subset of Γ ∗ ×N for some finite alphabet Γ . An instance of a parameterized problem
consists of (x,k), where x is the input and k is an integer parameter that is supposed to resemble the hardness of input x.
We say that a parameterized problem is fixed-parameter tractable (FPT) if it can be solved by an algorithm working in time
f (k) · |x|O(1) , where f is an arbitrary computable function of k. This framework can be naturally generalized to handle
multiple parameters instead of just one. We are usually interested in designing FPT algorithms that have as low dependency
of the running time on the parameter as possible. We refer to the book of Downey and Fellows [21] for further reading on
parameterized complexity.

A kernelization algorithm for a parameterized problem Π ⊆ Γ ∗ ×N is an algorithm that, given an instance (x,k) ∈ Γ ∗ ×N,
outputs in time polynomial in |x| + k a pair (x′,k′) ∈ Γ ∗ ×N, called a kernel, such that (x,k) ∈ Π if and only if (x′,k′) ∈ Π ,
and |x′|,k′ ≤ g(k) for some computable function g . In our algorithm we need the following result of Guo [31].

Theorem 5. (See [31].) p-Cluster Editing admits a kernel with (p + 2)k + p vertices. More precisely, there exists an algorithm that,
given an instance (G, p,k) of p-Cluster Editing, runs in time O(|V (G)| + |E(G)|) and outputs an equivalent instance (G ′, p′,k′) of
p-Cluster Editing such that k′ ≤ k, p′ ≤ p, and |V (G ′)| ≤ (p′ + 2)k′ + p′ .

We remark that Guo [31] does not mention explicitly that the algorithm can only decrease the values of p and k, but
this can be easily checked by examining the single reduction rule presented in [31].

The following lemma is used in our lower bound. Its proof is almost identical to the proof of Lemma 1 in [31], and we
provide it here for the reader’s convenience.

Lemma 6. Let G = (V , E) be an undirected graph and X ⊆ V be a set of vertices such that G[X] is a clique and each vertex in X has
the same set of neighbors outside X (i.e., NG [v] = NG [X] for each v ∈ X). Let F ⊆ V × V be a set such that G�F is a cluster graph
where the vertices of X are in at least two different clusters. Then there exists F ′ ⊆ V × V such that: (i) |F ′| < |F |, (ii) G�F ′ is a cluster
graph with no larger number of clusters than G�F , (iii) in G�F ′ the clique G[X] is contained in one cluster.

Proof. For a vertex v ∈ X , let F (v) = {u /∈ X : vu ∈ F }. Note that, since NG [v] = NG [X] for all v ∈ X , we have F (v) = F (w)

for every pair of vertices v, w ∈ X that belong to the same cluster in G�F .
Let Z be the vertex set of a cluster in G�F such that there exists v ∈ Z ∩ X with the smallest |F (v)|. Construct F ′ as

follows: take F , and for each w ∈ X replace all elements of F incident with w with {uw : u ∈ F (v)}. In other words, we

1434 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447
modify F by moving all vertices of X \ Z to the cluster Z . Clearly, G�F ′ is a cluster graph, X is contained in one cluster
in G�F ′ and G�F ′ contains no more clusters than G�F . To finish the proof, we need to show that |F ′| < |F |. The sets F
and F ′ contain the same set of elements not incident with X . As |F (v)| was minimum possible, for each w ∈ X we have
|F (w)| ≥ |F ′(w)|. As X was split between at least two connected components of G�F , F contains at least one edge of G[X],
whereas F ′ does not. We infer that |F ′| < |F | and the lemma is proven. �
3. A subexponential algorithm for p-CLUSTER EDITING

In this section we prove Theorem 1, that is, we show an O(2O(
√

pk) + |V (G)| + |E(G)|)-time algorithm for p-Cluster

Editing.

3.1. Reduction for large p

The first step of our algorithm is an application of the kernelization algorithm by Guo [31] (Theorem 5), followed by some
additional preprocessing rules that ensure that p ≤ 6k. These additional rules are encapsulated in the following lemma; the
rest of this subsection is devoted to its proof.

Lemma 7. There exists a polynomial time algorithm that, given an instance (G, p,k) of p-Cluster Editing, outputs an equivalent
instance (G ′, p′,k), where G ′ is an induced subgraph of G and p′ ≤ 6k.

Before we proceed to the formal argumentation, let us provide some intuition. The key idea behind Lemma 7 is the
observation that if p > 2k, then at least p − 2k clusters in the final cluster graph cannot be touched by the solution, hence
they must have been present already at the beginning as isolated cliques (i.e., connected components of the graph that are
cliques). Hence, if p > 6k then we have to already see p − 2k > 4k isolated cliques; otherwise, we may safely provide a
negative answer. Although these cliques may be still merged (to decrease the number of clusters) or split (to increase the
number of clusters), we can apply greedy arguments to identify a clique that may be safely assumed to be untouched by
the solution. Hence we can remove it from the graph and decrement p by one.

Although the greedy arguments seem very intuitive, their formal proofs turn out to be somewhat technical. In fact, the
techniques we employ to prove Lemma 7 are quite standard in the context of Cluster Editing, even though the proof itself
is lengthy. Therefore, at a first read we suggest skipping the remainder of this section and proceeding directly to Section 3.2,
where we begin to explain the core of our algorithm.

We now proceed to the formal proof of Lemma 7. Let us fix some optimal solution F , i.e., a subset of V × V of the
minimum cardinality such that G�F is a p-cluster graph.

Consider the case when p > 6k. Observe that only 2k out of p resulting clusters in G�F can be adjacent to any pair from
the set F . Hence at least p − 2k clusters must be already present in the graph G as connected components being cliques.
Therefore, if G contains less than p − 2k connected components that are cliques, then (G, p,k) is a NO-instance.

Rule 1. If G contains less than p − 2k connected components that are cliques, answer NO.

Since p > 6k, if Rule 1 was not triggered, then we have more than 4k connected components that are cliques. The goal
now is to apply greedy arguments to identify a component that can be safely assumed to be untouched. As a first step,
consider a situation when G contains more than 2k isolated vertices. Then at least one of these vertices is not incident to
an element of F , thus we may delete one isolated vertex and decrease p by one.

Rule 2. If G contains 2k + 1 isolated vertices, pick one of them, say v , and delete it from G . The new instance is (G \ v,

p − 1,k).

We are left with the case where G contains more than 2k connected components that are cliques, but not isolated
vertices. At least one of these cliques is untouched by F . Note that even though the number of cliques is large, some of
them may be merged with other cliques (to decrease the number of connected components), or split into more cliques
(to increase the number of connected components), and we have no a priori knowledge about which clique will be left
untouched. We argue that in both cases, we can greedily merge or split the smallest possible clique. Thus, without loss of
generality, we can assume that the largest connected component of G that is a clique is left untouched in G�F . We reduce
the input instance (G, p,k) by deleting this clique and decreasing p by one.

Rule 3. If G contains 2k + 1 isolated cliques that are not isolated vertices, pick a clique C of the largest size and delete it
from G . The new instance is (G \ C, p − 1,k).

We formally verify safeness of Rule 3 by proving the following lemma. Without loss of generality, we may assume that
the solution F , among all solutions of the minimum cardinality, has the minimum possible number of edits incident to the
connected components of G that are cliques of the largest size.

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447 1435
Lemma 8. Let D1, D2, . . . , D� be connected components of G that are cliques, but not isolated vertices. Assume that � ≥ 2k + 1. Then
there exists a component Di that has the largest size among D1, D2, . . . , D� and none of the pairs from F is incident to any vertex
of Di .

Proof. Let C1, C2, . . . , C p be clusters of G�F . We say that cluster Ci contains component D j if V (D j) ⊆ V (Ci), and com-
ponent D j contains cluster Ci if V (Ci) ⊆ V (D j). Moreover, we say that these containments are strict if V (D j) � V (Ci) or
V (Ci)� V (D j), respectively.

Claim 1. For every cluster Ci and component D j , either V (Ci) ∩ V (D j) = ∅, Ci contains D j or D j contains Ci .

Proof. We need to argue that the situation when sets V (Ci) ∩ V (D j), V (Ci) \ V (D j), V (D j) \ V (Ci) are simultaneously
nonempty is impossible. Assume otherwise, and without loss of generality assume further that |V (Ci) \ V (D j)| is the
largest possible. As V (D j) \ V (Ci) �= ∅, take some Ci′ �= Ci such that V (Ci′) ∩ V (D j) �= ∅. By the choice of Ci we have that
|V (Ci) \ V (D j)| ≥ |V (Ci′) \ V (D j)| (note that V (Ci′) \ V (D j) is possibly empty). Consider a new cluster graph H obtained
from G�F by moving V (Ci) ∩ V (D j) from the cluster Ci to the cluster Ci′ . Clearly, H still has p clusters as V (Ci) \ V (D j) is
nonempty. Moreover, the editing set F ′ that comprises edits that need to be applied to obtain H from G , differs from F as
follows: it additionally contains (V (Ci)∩ V (D j))× (V (Ci′) \ V (D j)), but does not contain (V (Ci)∩ V (D j))× (V (Ci) \ V (D j))

nor (V (Ci) ∩ V (D j)) × (V (Ci′) ∩ V (D j)). As |V (Ci) \ V (D j)| ≥ |V (Ci′) \ V (D j)|, we have that∣∣(V (Ci) ∩ V (D j)
) × (

V (Ci′) \ V (D j)
)∣∣ ≤ ∣∣(V (Ci) ∩ V (D j)

) × (
V (Ci) \ V (D j)

)∣∣
and ∣∣(V (Ci) ∩ V (D j)

) × (
V (Ci′) ∩ V (D j)

)∣∣ > 0.

Hence |F ′| < |F |, which is a contradiction with the minimality of F . This settles Claim 1. �
We say that a component D j is embedded if some cluster Ci strictly contains it. Moreover, we say that a component D j

is broken if it strictly contains some cluster; Claim 1 implies that then V (D j) is the union of vertex sets of the clusters it
strictly contains. Component D j is said to be untouched if none of the pairs from F is incident to a vertex from D j . Claim 1
proves that every cluster is either embedded, broken or untouched.

Claim 2. It is impossible that some component D j is broken and some other D j′ is embedded.

Proof. Assume, otherwise, that some component D j is broken and some other D j′ is embedded. Let Ci1 , Ci2 be any two
clusters contained in D j and let Ci′ be the cluster that strictly contains D j′ . Consider a new cluster graph H obtained
from G�F by merging clusters Ci1 , Ci2 and splitting cluster Ci′ into clusters on vertex sets V (Ci′) \ V (D j′) and V (D j′). As
V (Ci′) \ V (D j′) �= ∅, H is still a p-cluster graph. Moreover, the editing set F ′ that comprises edits that need to be applied
to obtain H from G , differs from F by not containing V (Ci1) × V (Ci2) and (V (Ci′) \ V (D j′)) × V (D j′). Both of these sets are
nonempty, so |F ′| < |F |, which is a contradiction with minimality of F . This settles Claim 2. �

Claim 2 implies that either none of the components is broken, or none is embedded. We firstly prove that in the first
case the lemma holds. Note that as � > 2k, at least one component D j is untouched.

Claim 3. If none of the components D1, D2, . . . , D� is broken, then there is an untouched component D j with the largest number of
vertices among D1, D2, . . . , D� .

Proof. Assume, otherwise, that all the components with the largest number of vertices are not untouched, hence they
are embedded. Take any such component D j and let D j′ be any untouched component; by the assumption we infer that
|V (D j)| > |V (D j′)|. Let Ci be the cluster that strictly contains D j and let Ci′ be the cluster corresponding to the (untouched)
component D j′ . Consider a cluster graph H obtained from G�F by exchanging sets V (D j) and V (D j′) between clusters Ci

and Ci′ . Observe that the editing set F ′ that comprises edits that need to be applied to obtain H from G , differs from F
by not containing (V (Ci) \ V (D j)) × V (D j) but containing (V (Ci) \ V (D j)) × V (D j′). However, |V (D j)| > |V (D j′)| and
|V (Ci) \ V (D j)| > 0, so |F ′| < |F |. This contradicts the minimality of F and settles Claim 3. �

We are left with the case when all the clusters are broken or untouched.

Claim 4. If none of the components D1, D2, . . . , D� is embedded, then there is an untouched component D j with the largest number
of vertices among D1, D2, . . . , D� .

Proof. Assume, otherwise, that all the components with the largest number of vertices are not untouched, hence they
are broken. Take any such component D j and let D j′ be any untouched component; by the assumption we infer that

1436 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447
|V (D j)| > |V (D j′)|. Assume that D j is broken into q + 1 clusters (q ≥ 1) of sizes a1,a2, . . . ,aq+1, where
∑q+1

i=1 ai = |V (D j)|.
The number of edits needed inside component D j is hence equal to

(|V (D j)|
2

)
−

q+1∑
i=1

(
ai

2

)
≥

(|V (D j)|
2

)
−

(|V (D j)| − q

2

)
− q

(
1

2

)

=
(|V (D j)|

2

)
−

(|V (D j)| − q

2

)
.

The inequality follows from the convexity of the function t → (t
2

)
. We now consider two cases.

Assume first that |V (D j′)| > q. Let us modify the editing set F into F ′ by altering edits inside components D j and D j′
as follows: instead of breaking D j into q + 1 components and leaving D j′ untouched, leave D j untouched and break D j′
into q + 1 components by creating q singleton clusters and one cluster of size |V (D j′)| − q. Similar calculations to the

ones presented in the paragraph above show that the editing cost inside components D j and D j′ is equal to
(|V (D j′)|

2

) −(|V (D j′)|−q
2

)
<

(|V (D j)|
2

) − (|V (D j)|−q
2

)
. Hence, we can obtain the same number of clusters with a strictly smaller editing set,

a contradiction with the minimality of F .
Assume now that |V (D j′)| ≤ q. Let us modify the editing set F into F ′ by altering edits inside components D j and D j′

as follows: instead of breaking D j into q + 1 components and leaving D j′ untouched, we break D j′ totally into |V (D j′)|
singleton clusters and break D j into q − |V (D j′)| + 1 singleton clusters and one of size |V (D j)| − q + |V (D j′)| − 1. Clearly,
we get the same number of clusters in this manner. Similar calculations as before show that the number of new edits

needed inside components D j and D j′ is equal to
(|V (D j′)|

2

) + (|V (D j)|
2

) − (|V (D j)|−q+|V (D j′)|−1
2

)
; it may be readily checked that

this value is always not larger than
(|V (D j)|

2

) − (|V (D j)|−q
2

)
for |V (D j′)| ≥ 1 and |V (D j)| ≥ q + 1. Recall now that components

D1, D2, . . . , D� are not independent vertices, so |V (D j′)| ≥ 2 and F ′ is obtained by removing from F some edits that were
incident to the vertex set of D j , and inserting at most the same number of edits, out of which at least one is incident
only to vertices of D j′ . Hence, we can obtain the same number of clusters using a not larger editing set that has a smaller
number of edits incident to components of G that are cliques of the largest size. This contradicts the choice of F .

We have obtained a contradiction in both cases, so Claim 4 follows. �
Claims 3 and 4 imply the thesis of the lemma. �
Clearly, an instance on which none of Rules 1–3 may be triggered, has p ≤ 6k. This proves Lemma 7.

3.2. Bounds on binomial coefficients

In the running time analysis we need some combinatorial bounds on binomial coefficients. More precisely, we use the
following inequality.

Lemma 9. If a, b are nonnegative integers, then
(a+b

a

) ≤ 22
√

ab.

We start with the following simple fact that can be also derived from the standard entropy lemma [24, Lemma 3.13]. For
convenience we provide a short self-contained proof.

Lemma 10. If a, b are positive integers, then
(a+b

a

) ≤ (a+b)a+b

aabb .

Proof. Consider the following random experiment. Take a universe U containing a + b elements, and select a random
subset X of U by including each element of U in X independently at random with probability a

a+b . Consider now the event
that |X | = a, and observe that

P
(|X | = a

) =
(

a + b

a

)
·
(

a

a + b

)a

·
(

b

a + b

)b

.

Since P(|X | = a) ≤ 1, we have that
(a+b

a

) · (a
a+b)a · (b

a+b)b ≤ 1, which is equivalent to the claim. �
We proceed to the proof of Lemma 9.

Proof of Lemma 9. Firstly, observe that the claim is trivial for a = 0 or b = 0; hence, we can assume that a,b > 0. Moreover,
without losing generality assume that a ≤ b. Let us denote

√
ab = � and a

b = t , then 0 < t ≤ 1. By Lemma 10 we have
that

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447 1437
(
a + b

a

)
≤ (a + b)a+b

aabb
=

(
1 + b

a

)a

·
(

1 + a

b

)b

=
[(

1 + 1

t

)√
t

1

·
(

1 + t

1

) 1√
t
]�

.

Let us denote g(x) = x ln(1 + x−2) + x−1 ln(1 + x2). As
(a+b

a

) ≤ e�·g(
√

t) , it suffices to prove that g(x) ≤ 2 ln 2 for all 0 < x ≤ 1.
Observe that

g′(x) = ln
(
1 + x−2) − x · 2x−3 · 1

1 + x−2
− x−2 ln

(
1 + x2) + x−1 · 2x · 1

1 + x2

= ln
(
1 + x−2) − 2

1 + x2
− x−2 ln

(
1 + x2) + 2

1 + x2

= ln
(
1 + x−2) − x−2 ln

(
1 + x2).

Let us now introduce h : (0,1] → R, h(y) = g′(√y) = ln(1 + y−1) − y−1 ln(1 + y). Then,

h′(y) = −y−2 · 1

1 + y−1
+ y−2 ln(1 + y) − y−1 · 1

1 + y

= y−2 ln(1 + y) − 2

y + y2
.

We claim that h′(y) ≤ 0 for all y ≤ 1. Indeed, from the inequality ln(1 + y) ≤ y we infer that

y−2 ln(1 + y) ≤ y−1 = 2

y + y
≤ 2

y + y2
.

Therefore, h′(y) ≤ 0 for y ∈ (0,1], so h(y) is non-increasing on this interval. As h(1) = 0, this implies that h(y) ≥ 0 for
y ∈ (0,1], so also g′(x) ≥ 0 for x ∈ (0,1]. This means that g(x) is non-decreasing on the interval (0,1], so g(x) ≤ g(1) =
2 ln 2. �
3.3. Small cuts

We now proceed to the algorithm itself. Let us introduce the key notion.

Definition 11. Let G = (V , E) be an undirected graph. A partition (V 1, V 2) of V is called a k-cut of G if |E(V 1, V 2)| ≤ k.

Lemma 12. k-Cuts of a graph G can be enumerated with polynomial-time delay.

Proof. We follow a standard branching strategy. During the branching procedure we maintain two disjoint sets A1, A2 ⊆
V (G) that represent partial decisions about the sides of a constructed k-cut (V 1, V 2). We say that a partition (V 1, V 2)

extends a pair (A1, A2) if A1 ⊆ V 1 and A2 ⊆ V 2. Note that for a given pair (A1, A2), it can be checked in polynomial
time whether there exists some k-cut extending it. We simply run a polynomial-time algorithm computing the minimum
edge cut between A1 and A2 in G . If this cut contains more than k edges, then there is no k-cut extending (A1, A2), and
otherwise the found cut actually is a k-cut extending (A1, A2).

Let us order V (G) arbitrarily as v1, v2, . . . , v |V (G)| . We start the branching procedure with A1 = A2 = ∅ and examine
consecutive vertices v1, v2, . . . , v |V (G)| . For each consecutive vertex vi we branch into two subcases: we put vi either into A1
or into A2. In each of the branches, we check whether there exists a k-cut of G that extends the current pair (A1, A2). If
this is not the case, we immediately terminate the branch since it cannot result in any k-cuts found. Otherwise we pursue
the branch further. Once the alignment of all the vertices is decided, we output (A1, A2) as the next constructed k-cut; note
that the last extension check verifies that the output partition of V (G) is indeed a k-cut. Since we pursue only branches for
which we are sure that they can be extended to some feasible k-cut, and all the constructed k-cuts are pairwise different,
we have that finding the next k-cut occurs within a polynomial number of steps. �

Intuitively, k-cuts of the graph G form the search space of the algorithm. Therefore, we would like to bound their number.
We do this by firstly bounding the number of cuts of a cluster graph, and then using the fact that a YES-instance is not
very far from some cluster graph.

Lemma 13. Let K be a cluster graph containing at most p clusters, where p ≤ 6k. Then the number of k-cuts of K is at most 28
√

pk.

Proof. By slightly abusing the notation, assume that K has exactly p clusters, some of which may be empty. Let
C1, C2, . . . , C p be these clusters and c1, c2, . . . , cp be their sizes, respectively. We first establish a bound on the number

1438 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447
of cuts (V 1, V 2) such that the cluster Ci contains xi vertices from V 1 and yi from V 2. Then we discuss how to bound the
number of ways of selecting pairs xi , yi summing up to ci for which the number of k-cuts is positive. Multiplying the
obtained two bounds gives us the claim.

Having fixed the numbers xi , yi , the number of ways in which the cluster Ci can be partitioned is equal to
(xi+yi

xi

)
. Note

that
(xi+yi

xi

) ≤ 22
√

xi yi by Lemma 9. Observe that there are xi yi edges between V 1 and V 2 inside the cluster Ci , so if (V 1, V 2)

is a k-cut, then
∑p

i=1 xi yi ≤ k. By applying the Cauchy–Schwarz inequality we infer that
∑p

i=1
√

xi yi ≤ √
p ·

√∑p
i=1 xi yi ≤√

pk. Therefore, the number of considered cuts is bounded by

p∏
i=1

(
xi + yi

xi

)
≤ 22

∑p
i=1

√
xi yi ≤ 22

√
pk.

Moreover, observe that min(xi, yi) ≤ √
xi yi ; hence,

∑p
i=1 min(xi, yi) ≤ √

pk. Thus, the choice of xi , yi can be modeled by

first choosing for each i, whether min(xi, yi) is equal to xi or to yi , and then expressing �√pk� as the sum of p + 1
nonnegative numbers: min(xi, yi) for 1 ≤ i ≤ p and the rest, �√pk� − ∑p

i=1 min(xi, yi). The number of choices in the first

step is equal to 2p ≤ 2
√

6pk , and in the second is equal to
(�√pk�+p

p

) ≤ 2
√

pk+√
6pk . Therefore, the number of possible choices

of xi , yi is bounded by 2(1+2
√

6)
√

pk ≤ 26
√

pk . Hence, the total number of k-cuts is bounded by 26
√

pk · 22
√

pk = 28
√

pk , as
claimed. �
Lemma 14. If (G, p,k) is a YES-instance of p-Cluster Editing with p ≤ 6k, then the number of k-cuts of G is bounded by 28

√
2pk.

Proof. Let K be a cluster graph with at most p clusters such that H(G, K) ≤ k. Observe that every k-cut of G is also a
2k-cut of K , as K differs from G by at most k edge modifications. The claim follows from Lemma 13. �
3.4. The algorithm

Proof of Theorem 1. Let (G, p,k) be the given p-Cluster Editing instance. By making use of Theorem 5, we can assume
that G has at most (p + 2)k + p vertices, thus all the factors polynomial in the size of G can be henceforth hidden within
the 2O(

√
pk) factor. Application of Theorem 5 gives the additional O(|V (G)| + |E(G)|) summand to the complexity. By

further usage of Lemma 7 we can also assume that p ≤ 6k. Note that application of Lemma 7 can spoil the bound |V (G)| ≤
(p + 2)k + p as p can decrease; however the number of vertices of the graph is still bounded in terms of the initial p and k.

We now enumerate k-cuts of G with polynomial time delay. If we exceed the bound 28
√

2pk given by Lemma 14, we
know that we can safely answer NO, so we immediately terminate the computation and give a negative answer. Therefore,
we can assume that we have computed the set N of all k-cuts of G and |N | ≤ 28

√
2pk .

Assume that (G, p,k) is a YES-instance and let K be a cluster graph with exactly p clusters such that H(G, K) ≤ k. Again,
let C1, C2, . . . , C p be the clusters of K . Observe that for every j ∈ {0,1,2, . . . , p}, the partition (

⋃ j
i=1 V (Ci),

⋃p
i= j+1 V (Ci))

has to be a k-cut in G , as otherwise there would be more than k edges that need to be deleted from G in order to obtain K .
This observation enables us to use a dynamic programming approach on the set of cuts.

We construct a directed graph D , whose vertex set is equal to N × {0,1,2, . . . , p} × {0,1,2, . . . ,k}; note that
|V (D)| = 2O(

√
pk) . We create arcs going from ((V 1, V 2), j, �) to ((V ′

1, V ′
2), j + 1, �′), where V 1 � V ′

1 (hence V 2 � V ′
2),

j ∈ {0,1,2, . . . , p − 1} and �′ = � + |E(V 1, V ′
1 \ V 1)| + |E(V ′

1 \ V 1, V ′
1 \ V 1)| ((V , E) is the complement of the graph G).

The arcs can be constructed in 2O(
√

pk) time by checking for all the pairs of vertices whether they should be connected.
We claim that the answer to the instance (G, p,k) is equivalent to reachability of any of the vertices of form ((V ,∅), p, �)

from the vertex ((∅, V),0,0).
In one direction, if there is a path from ((∅, V),0,0) to ((V ,∅), p, �) for some � ≤ k, then the consecutive sets V ′

1 \ V 1

along the path form clusters Ci of a cluster graph K , whose editing distance to G is accumulated on the last coordinate,
thus bounded by k. In the second direction, if there is a cluster graph K with clusters C1, C2, . . . , C p within editing distance
at most k from G , then vertices of the form((j⋃

i=1

V (Ci),

p⋃
i= j+1

V (Ci)

)
, j,H

(
G

[j⋃
i=1

V (Ci)

]
, K

[j⋃
i=1

V (Ci)

]))

constitute a path from ((∅, V),0,0) to ((V ,∅), p,H(G, K)). Note that all these triples are indeed vertices of the graph D ,
since (

⋃ j
i=1 V (Ci),

⋃p
i= j+1 V (Ci)) are k-cuts of G .

Reachability in a directed graph can be tested in linear time with respect to the number of vertices and arcs. We can now
apply this algorithm to the graph D and conclude solving the p-Cluster Editing instance in O(2O(

√
pk) + |V (G)| + |E(G)|)

time. �

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447 1439
4. A multivariate lower bound

This section contains the proof of Theorem 2. The proof consists of four parts. In Section 4.1 we preprocess the input
formula Φ to make it more regular. Section 4.2 contains the details of the construction of the graph G . In Section 4.3 we
show how to translate a satisfying assignment of Φ into a 6p-cluster graph G0 close to G , and we provide the reverse
implication in Section 4.4.

4.1. Preprocessing of the formula

We start with a step that regularizes the input formula Φ , while increasing its size only by a constant multiplicative
factor. The purpose of this step is to ensure that, when we translate a satisfying assignment of Φ into a cluster graph G0
in the completeness step, the clusters are of the same size, and therefore contain the minimum possible number of edges.
This property is used in the argumentation of the soundness step.

Lemma 15. There exists a polynomial-time algorithm that, given a 3-CNF formula Φ with n variables and m clauses and an integer p,
p ≤ n, constructs a 3-CNF formula Φ ′ with n′ variables and m′ clauses together with a partition of the variable set Vars(Φ ′) into p
parts Varsr , 1 ≤ r ≤ p, such that the following properties hold:

(a) Φ ′ is satisfiable iff Φ is;
(b) in Φ ′ every clause contains exactly three literals corresponding to different variables;
(c) in Φ ′ every variable appears exactly three times positively and exactly three times negatively;
(d) n′ is divisible by p and, for each 1 ≤ r ≤ p, |Varsr | = n′/p (i.e., the variables are split evenly between the parts Varsr);
(e) if Φ ′ is satisfiable, then there exists a satisfying assignment of Vars(Φ ′) with the property that in each part Varsr the numbers of

variables set to true and to false are equal;
(f) n′ + m′ =O(n + m).

Proof. We modify Φ while preserving satisfiability, consecutively ensuring that properties (b), (c), (d), and (e) are satisfied.
Satisfaction of (f) will follow directly from the constructions used.

First, delete every clause that contains two different literals corresponding to the same variable, as they are always
satisfied. Remove copies of the same literals inside clauses. Until all the clauses have at least two literals, remove every
clause containing one literal, set the value of this literal so that the clause is satisfied and propagate this knowledge to the
other clauses. At the end, create a new variable s and for every clause C that has two literals replace it with two clauses
C ∨ s and C ∨ ¬s. All these operations preserve satisfiability and at the end all the clauses consist of exactly three different
literals corresponding to different variables; hence property (b) is satisfied.

Second, duplicate each clause so that every variable appears an even number of times. Introduce two new variables
q, r. Take any variable x, and assume that x appears positively k+ times and negatively k− times. If k+ < k− , introduce
clauses (x ∨ q ∨ r) and (x ∨ ¬q ∨ ¬r), each k−−k+

2 times, otherwise introduce clauses (¬x ∨ q ∨ r) and (¬x ∨ ¬q ∨ ¬r), each
k+−k−

2 times. These operations preserve satisfiability (as the new clauses can be satisfied by setting q to true and r to
false) and, after the operation, every variable appears the same number of time positively as negatively (including the new
variables q, r). Note also that the total sum of the numbers k+ , k− through all the variables is bounded by O(m), and so
we introduce at most O(m) new clauses to the formula.

Third, copy each clause three times. For each variable x, replace all appearances of the variable x with a cycle of im-
plications in the following way. Assume that x appears 6d times (the number of appearances is divisible by six due to the
modifications in the previous paragraph and the copying step). Introduce new variables xi for 1 ≤ i ≤ 3d, yi for 1 ≤ i ≤ d and
clauses (¬xi ∨ xi+1 ∨ y�i/3�) and (¬xi ∨ xi+1 ∨ ¬y�i/3�) for 1 ≤ i ≤ 3d (with x3d+1 = x1). Moreover, replace each appearance
of the variable x with one of the variables xi in such a way that each variable xi is used once in a positive literal and once
in a negative one. In this manner each variable xi and yi is used exactly three times in a positive literal and three times
in a negative one. Moreover, the new clauses form an implication cycle x1 ⇒ x2 ⇒ . . . ⇒ x3d ⇒ x1, ensuring that all the
variables xi have equal value in any satisfying assignment of the formula. We have thus ensured that property (c) holds,
while property (b) is still satisfied.

Fourth, to make n′ divisible by p we first copy the entire formula three times, creating a new set of variables for each
copy. In this way we ensure that the number of variables is divisible by three. Then we add new variables in triples to make
the number of variables divisible by p; note that since the number of variables is divisible by 3, there exists a number b,
0 ≤ b < p, such that after introducing b triples of variables the total number of variables will be divisible by p. For each
triple x, y, z of new variables, we introduce six new clauses: all possible clauses that contain one literal for each variable x,
y and z except for (x ∨ y ∨ z) and (¬x ∨¬y ∨¬z). Note that the new clauses are easily satisfied by setting all new variables
to true, while all new variables appear exactly three times positively and three times negatively. Moreover, as initially p ≤ n,
this step increases the size of the formula only by a constant multiplicative factor.

Finally, to achieve (d) and (e) take Φ ′ = Φ ∧ Φ , where Φ is a copy of Φ on a disjoint copy of the variable set and with
all literals reversed, i.e., positive appearances are replaced by negative ones and vice versa. Of course, if Φ ′ is satisfiable

1440 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447
then Φ as well, while if Φ is satisfiable, then we can copy the assignment to the copies of variables and reverse it, thus
obtaining a satisfying assignment for Φ ′ . Recall that before this step the number of variables was divisible by p. We can
now partition the variable set into p parts, such that whenever we include a variable into one part, we include its copy in
the same part as well. In order to prove that the property (e) holds, take any satisfying assignment to Φ ′ , truncate it to
Vars(Φ) and copy it while reversing onto Vars(Φ). �
4.2. Construction

In this section we show how to compute the graph G and the integer k′ from the formula Φ ′ given by Lemma 15.
Recall that we need to have that k′ = O(k), |V (G)| = O(

√
pk), and that the satisfying assignment to Φ ′ translates back

and forth to a solution of the p-Cluster Editing instance (G,6p,k′) in the sense given in the statement of Theorem 2.
As Lemma 15 increases the size of the formula by a constant multiplicative factor, we have that n′,m′ = O(

√
pk) and

|Varsr | = n′/p = O(
√

k/p) for 1 ≤ r ≤ p. Since each variable of Φ ′ appears in exactly 6 clauses, and each clause contains 3
literals, it follows that m′ = 2n′ .

Let L = 1000 · (1 + n′
p) =O(

√
k/p). For each part Varsr , 1 ≤ r ≤ p, we create six cliques Q r

α , 1 ≤ α ≤ 6, each of size L.

In this manner we have 6p cliques. Intuitively, if we seek for a 6p-cluster graph close to G , then the cliques are large
enough so that merging two cliques is expensive – in the intended solution we have exactly one clique in each cluster. Let
Q be the set of all the vertices of all the cliques Q r

α .
For every variable x ∈ Varsr create six vertices wx

1,2, wx
2,3, . . . , wx

5,6, wx
6,1. Connect them into a cycle in this order; this

cycle is called a 6-cycle for the variable x. Moreover, for each 1 ≤ α ≤ 6 and v ∈ V (Q r
α), create edges v wx

α−1,α and v wx
α,α+1

(we assume that the indices behave cyclically, i.e., wx
6,7 = wx

6,1, Q r
7 = Q r

1 etc.). Let W be the set of all vertices wx
α,α+1 for

all variables x. Intuitively, the cheapest way to cut the 6-cycle for variable x is to assign the vertices wx
α,α+1, 1 ≤ α ≤ 6 all

either to the clusters with cliques with only odd indices or only with even indices. Choosing even indices corresponds to
setting x to false, while choosing odd ones corresponds to setting x to true.

Let r(x) be the index of the part that contains the variable x, that is, x ∈ Varsr(x) .
In each clause C we (arbitrarily) enumerate variables: for 1 ≤ η ≤ 3, let var(C, η) be the variable in the ηth literal of C ,

and sgn(C, η) = 0 if the ηth literal is negative and sgn(C, η) = 1 otherwise. Again, arithmetics over all the indices η in the
following will behave cyclically in a natural manner.

For every clause C create nine vertices: sC
β,ξ for 1 ≤ β, ξ ≤ 3. The edges incident to the vertex sC

β,ξ are defined as follows:

• for each 1 ≤ η ≤ 3 create an edge sC
β,ξ wvar(C,η)

2β+2η−3,2β+2η−2;

• if ξ = 1, then for each 1 ≤ η ≤ 3 connect sC
β,ξ to all the vertices of one of the cliques the vertex wvar(C,η)

2β+2η−3,2β+2η−2 is

adjacent to depending on the sign of the ηth literal in C , that is, the clique Q r(var(C,η))

2β+2η−2−sgn(C,η);

• if ξ > 1, then for each 1 ≤ η ≤ 3 connect sC
β,ξ to all the vertices of both cliques the vertex wvar(C,η)

2β+2η−3,2β+2η−2 is adjacent

to, that is, the cliques Q r(var(C,η))

2β+2η−3 and Q r(var(C,η))

2β+2η−2 .

Consider now a fixed vertex sC
β,ξ . Observe that the cliques that are made adjacent to sC

β,ξ in the construction above are
pairwise different, and they have pairwise different subscripts (but may have equal superscripts, i.e., belong to the same
part). See Fig. 1 for an illustration.

Let S be the set of all vertices sC
β,ξ for all clauses C . If we seek a 6p-cluster graph close to the graph G , it is reasonable

to put a vertex sC
β,ξ in a cluster together with one of the cliques this vertex is attached to. If sC

β,ξ is put in a cluster together

with one of the vertices wvar(C,η)

2β+2η−3,2β+2η−2 for 1 ≤ η ≤ 3, we do not need to cut the appropriate edge. The vertices sC
β,1

verify the assignment encoded by the variable vertices wx
α,α+1; the vertices sC

β,2 and sC
β,3 help us to make all clusters of

equal size (which is helpful in the soundness argument).
We note that |V (G)| = 6pL +O(n′ + m′) =O(

√
pk).

We now define the budget k′ for edge edits. To make the presentation more clear, we split this budget into few sum-
mands. Let

kQ–Q = 0, kQ–WS = (
6n′ + 36m′)L,

kall
WS–WS = 6p

(6n′+9m′
6p

2

)
, kexist

WS–WS = 6n′ + 27m′,

ksave
W–W = 3n′, ksave

W–S = 9m′,
and finally

k′ = kQ–Q + kQ–WS + kall
WS–WS + kexist

WS–WS − 2ksave
W–W − 2ksave

W–S .

Note that since p ≤ k, L =O(
√

k/p) and n′,m′ =O(
√

pk), we have k′ =O(k).

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447 1441
Fig. 1. A part of the graph G created for the clause C = (¬x ∨ ¬y ∨ z), with var(C,1) = x, var(C,2) = y and var(C,3) = z. Note that the parts r(x), r(y) and
r(z) may be not be pairwise distinct. However, due to the rotation index β , in any case for a fixed vertex sC

β,ξ the cliques this vertex is adjacent to on this
figure are pairwise distinct and have pairwise distinct subscripts.

The intuition behind this split is as follows. The intended solution for the p-Cluster Editing instance (G,6p,k′) creates
no edges between the cliques Q r

α , each clique is contained in its own cluster, and kQ–Q = 0. For each v ∈ W ∪ S , the
vertex v is assigned to a cluster with one clique v is adjacent to; kQ–WS accumulates the cost of removal of other edges in
E(Q,W ∪S). Finally, we count the edits in (W ∪S)× (W ∪S) in an indirect way. First we cut all edges of E(W ∪S,W ∪S)

(summand kexist
WS–WS). We group the vertices of W ∪ S into clusters and add edges between vertices in each cluster; the

summand kall
WS–WS corresponds to the cost of this operation when all the clusters are of the same size (and the number

of edges is minimum possible). Finally, in summands ksave
W–W and ksave

W–S we count how many edges are removed and then
added again in this process: ksave

W–W corresponds to saving three edges from each 6-cycle in E(W,W) and ksave
W–S corresponds

to saving one edge in E(W,S) per each vertex sC
β,ξ .

4.3. Completeness

We now show how to translate a satisfying assignment of the input formula Φ into a 6p-cluster graph close to G .

Lemma 16. If the input formula Φ is satisfiable, then there exists a 6p-cluster graph G0 on vertex set V (G) such that H(G, G0) = k′ .

Proof. Let φ′ be a satisfying assignment of the formula Φ ′ as guaranteed by Lemma 15. Recall that in each part Varsr , the
assignment φ′ sets the same number of variables to true as to false.

1442 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447
Fig. 2. Parts of clusters for variables x, y and z with φ′(x) = 1, φ′(y) = 0, φ′(z) = 1, and a clause C = (¬x ∨ ¬y ∨ z) with var(C,1) = x, var(C,2) = y,
var(C,3) = z and η(C) = 2 (note that both y and z satisfy C in the assignment φ′ , but y was chosen as a representative).

To simplify the presentation, we identify the range of φ′ with integers: φ′(x) = 0 if x is evaluated to false in φ′ and
φ′(x) = 1 otherwise. Moreover, for a clause C by η(C) we denote the index of an arbitrarily chosen literal that satisfies C in
the assignment φ′ .

We create 6p clusters K r
α , 1 ≤ r ≤ p, 1 ≤ α ≤ 6, as follows:

• Q r
α ⊆ K r

α for 1 ≤ r ≤ p, 1 ≤ α ≤ 6;

• for x ∈ Vars(Φ ′), if φ′(x) = 1 then wx
6,1, wx

1,2 ∈ K r(x)
1 , wx

2,3, wx
3,4 ∈ K r(x)

3 , wx
4,5, wx

5,6 ∈ K r(x)
5 ;

• for x ∈ Vars(Φ ′), if φ′(x) = 0 then wx
1,2, wx

2,3 ∈ K r(x)
2 , wx

3,4, wx
4,5 ∈ K r(x)

4 , wx
5,6, wx

6,1 ∈ K r(x)
6 ;

• for each clause C of Φ ′ and each 1 ≤ β, ξ ≤ 3, we assign the vertex sC
β,ξ to the cluster K r(var(C,η))

2β+2η−2−φ′(var(C,η))
, where

η = η(C) + ξ − 1.

Note that in this way sC
β,ξ belongs to the same cluster as its neighbor wvar(C,η)

2β+2η−3,2β+2η−2, where η = η(C)+ ξ − 1. See Fig. 2
for an illustration.

Let us now compute H(G, G0). We do not need to add nor delete any edges in G[Q]. We note that each vertex v ∈W∪S
is assigned to a cluster with one clique Q r

α it is adjacent to. Indeed, this is non-trivial only for vertices sC
β,1 for clauses C

and 1 ≤ β ≤ 3. Note, however, that sC is assigned to a cluster with the clique Q r(var(C,η(C)))
′ and is adjacent
β,1 2β+2η(C)−2−φ (var(C,η(C)))

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447 1443
to the clique Q r(var(C,η(C)))

2β+2η(C)−2−sgn(var(C,η(C))) . Since literal with variable var(C, η(C)) satisfies C in the assignment φ′ , it follows

that φ′(var(C, η(C))) = sgn(var(C, η(C))), and so sC
β,1 is assigned to a cluster together with a clique it is adjacent to.

Therefore we need to cut kQ–WS = (6n′ + 36m′)L edges in E(Q,W ∪ S): L edges adjacent to each vertex wx
α,α+1,

2L edges adjacent to each vertex sC
β,1, and 5L edges adjacent to each vertex sC

β,2 and sC
β,3. We do not add any new edges

between Q and W ∪ S .
To count the number of edits in G[W ∪ S], let us first verify that the clusters K r

α are of equal sizes. Fix a cluster K r
α ,

1 ≤ α ≤ 6, 1 ≤ r ≤ p. K r
α contains two vertices wx

α−1,α and wx
α,α+1 for each variable x with φ′(x) = α mod 2. Since φ′

evaluates the same number of variables in Varsr to true as to false, we infer that each cluster K r
α contains exactly n′/p

vertices from W , corresponding to n′/(2p) = |Varsr |/2 variables of Varsr .
Now we need to verify that each cluster K r

α contains the same number of vertices from S . Let f be a function that maps

the vertices of S to clusters they are belonging to. Recall that f (sC
β,ξ) = K r(var(C,η))

2β+2η−2−φ′(var(C,η))
, where η = η(C) + ξ − 1. We

claim the following.

Claim 5. Fix a part r, 1 ≤ r ≤ p, and an index α, 1 ≤ α ≤ 6. Then to each pair (x, C), where x is a variable with r(x) = r present in
a clause C , and φ′(x) = α mod 2, one can assign a pair of indices (β, ξ) with 1 ≤ β, ξ ≤ 3 such that f (sC

β,ξ) = K r
α . Moreover, this

assignment can be constructed in such a manner that for all pairs (x, C) the corresponding vertices sC
β,ξ are pairwise different.

Proof. Let η be such that x = var(C, η). Define indices (β, ξ) as follows:

ξ = η − η(C) + 1,

β = α + φ′(x)

2
− η + 1,

where the arithmetic operations are defined cyclically in a natural manner. Note that β is an integer since φ′(x) = α mod 2.
From these equalities it follows that:

η = η(C) + ξ − 1,

α = 2β + 2η − 2 − φ′(var(C, η)
)
,

and so f (sC
β,ξ) = K r

α . We are left with proving that triples (C, β, ξ) are pairwise different for different pairs (x, C). How-
ever, note that for different variables x appearing in C we have different indices η, and so the defined indices ξ will be
different. �

Observe that for a fixed part r and index α, there are exactly 3|Varsr | = 3n′/p pairs (x, C) satisfying the assumption in
Claim 5: there are |Varsr |/2 variables in Varsr that are evaluated to α mod 2 in φ′ , and each variable appears in 6 different
clauses. Thus, Claim 5 ensures that the preimage under f of each cluster is of cardinality at least 3n′/p. Since there are
6p clusters in total, we infer that the union of these preimages is of cardinality at least 18n′ = 9m′ (recall that m′ = 2n′).
However, we have that |S| = 9m′ . Consequently, it follows that the preimage under f of each cluster is of size exactly 3n′/p,
so each cluster contains the same number of vertices from S .

We now count the number of edits in G[W ∪ S] as sketched in the construction section. The subgraph G[W ∪ S]
contains 6n′ + 27m′ edges: one 6-cycle for each variable and three edges incident to each of the nine vertices sC

β,ξ for each

clause C . Each cluster K r
α contains n′/p vertices from W and 3m′

2p vertices from S . If we deleted all edges in G[W ∪ S]
and then added all the missing edges in the clusters, we would make kexist

WS–WS + kall
WS–WS edits, due to the clusters being

equal-sized. However, in this manner we sometimes delete an edge and then introduce it again; thus, for each edge of
G[W ∪ S] that is contained in one cluster K r

α , we should subtract 2 in this counting scheme.
For each variable x, exactly three edges of the form wx

α−1,α wx
α,α+1 are contained in one cluster; this gives a to-

tal of ksave
W–W = 3n′ saved edges. For each clause C each vertex sC

β,ξ is assigned to a cluster with one of the ver-

tices wvar(C,η)

2β+2η−3,2β+2η−2, 1 ≤ η ≤ 3, thus exactly one of the edges incident to sC
β,ξ is contained in one cluster. This

sums up to ksave
W–S = 9m′ saved edges, and we infer that the 6p-cluster graph G0 can be obtained from G by exactly

k′ = kQ–Q + kQ–WS + kexist
WS–WS + kall

WS–WS − 2ksave
W–W − 2ksave

W–S edits. �
4.4. Soundness

We need the following simple bound on the number of edges of a cluster graph.

Lemma 17. Let a, b be positive integers and H be a cluster graph with ab vertices and at most a clusters. Then |E(H)| ≥ a
(b

2

)
and

equality holds if and only if H is an a-cluster graph and each cluster of H has size exactly b.

1444 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447
Proof. It suffices to note that if not all clusters of H are of size b, then there is one of size at least b + 1 and one of size
at most b − 1 or the number of clusters is less than a. Then, moving a vertex from the largest cluster of H to a new or the
smallest cluster strictly decreases the number of edges of H . �

We are ready to show how to translate a p′-cluster graph G0 with p′ ≤ 6p and H(G0, G) ≤ k′ , into a satisfying assign-
ment of the input formula Φ .

Lemma 18. If there exists a p′-cluster graph G0 with V (G) = V (G0), p′ ≤ 6p, and H(G, G0) ≤ k′ , then the input formula Φ is
satisfiable.

Proof. By Lemma 6, we may assume that each clique Q r
α is contained in one cluster in G0. Let F = E(G0)�E(G) be the

editing set, |F | ≤ k′ .
Before we start, we present some intuition. The cluster graph G0 may differ from the one constructed in the complete-

ness step in two significant ways, both leading to some savings in the edges incident to W ∪ S that may not be included
in F . First, it may not be true that each cluster contains exactly one clique Q r

α . However, since the number of cliques is at
most 6p, this may happen only if some clusters contain more than one clique Q r

α , and we need to add L2 edges to merge
each pair of cliques that belong to the same cluster. Second, a vertex v ∈W ∪S may not be contained in a cluster together
with one of the cliques it is adjacent to. However, as each such vertex needs to be separated from all its adjacent cliques
(compared to all but one in the completeness step), this costs us additional L edges to remove. The large multiplicative
constant in the definition of L ensures us that in both these ways we pay more than we save on the edges incident with
W ∪ S . We now proceed to the formal argumentation.

We define the following quantities.

�Q–Q = ∣∣F ∩ (Q×Q)
∣∣,

�Q–WS = ∣∣F ∩ EG(Q,W ∪ S)
∣∣,

�all
WS–WS = ∣∣E

(
G0[W ∪ S])∣∣,

�save
W–W = ∣∣EG(W,W) ∩ EG0(W,W)

∣∣,
�save
W–S = ∣∣EG(W,S) ∩ EG0(W,S)

∣∣.
Recall that kexist

WS–WS = |E(G[W ∪ S])| = 6n′ + 27m′ . Similarly as in the completeness proof, we have that

|F | ≥ �Q–Q + �Q–WS + �all
WS–WS + kexist

WS–WS − 2�save
W–W − 2�save

W–S .

Indeed, �Q–Q and �Q–WS count (possibly not all) pairs of F that are incident to the vertices of Q. The edges of F ∩ ((W ∪
S) × (W ∪ S)) are counted in an indirect way: each edge of G[W ∪ S] is deleted (kexist

WS–WS) and each edge of G0[W ∪ S]
is added (�all

WS–WS). Then, the edges that are counted twice in this manner are subtracted (�save
W–W and �save

W–S).
We say that a cluster is crowded if it contains at least two cliques Q r

α and proper if it contains exactly one clique Q r
α .

A clique Q r
α that is contained in a crowded (proper) cluster is called a crowded (proper) clique.

Let a be the number of crowded cliques. Note that �Q–Q − kQ–Q = |F ∩ (Q × Q)| − 0 ≥ aL2/2, since each vertex in a
crowded clique needs to be connected to at least one other crowded clique.

We say that a vertex v ∈ W ∪ S is attached to a clique Q r
α , if it is adjacent to all vertices of the clique in G . Moreover,

we say that a vertex v ∈ W ∪ S is alone if it is contained in a cluster in G0 that does not contain any clique v is attached
to. Let nalone be the number of alone vertices.

Let us now count the number of vertices a fixed clique Q r
α is attached to. Recall that |Varsr | = n′/p. For each variable

x ∈ Varsr the clique Q r
α is attached to two vertices wx

α−1,α and wx
α,α+1. Moreover, each variable x ∈ Varsr appears in exactly

six clauses: three time positively and three times negatively. For each such clause C , Q r
α is attached to the vertex sC

β,2 for

exactly one choice of the value 1 ≤ β ≤ 3 and to the vertex sC
β,3 for exactly one choice of the value 1 ≤ β ≤ 3. Moreover, if

x appears in C positively and α is odd, or if x appears in C negatively and α is even, then Q r
α is attached to the vertex sC

β,1

for exactly one choice of the value 1 ≤ β ≤ 3. We infer that the clique Q r
α is attached to exactly fifteen vertices from S for

each variable x ∈ Varsr . Therefore, there are exactly 17|Varsr | = 17n′/p vertices of W ∪ S attached to Q r
α : 2n′/p from W

and 15n′/p from S .
Take an arbitrary vertex v ∈ W ∪ S and assume that v is attached to bv cliques, and av out of them are crowded.

As F needs to contain all edges of G that connect v with cliques that belong to a different cluster than v , we infer that
|F ∩ EG({v},Q)| ≥ (bv −max(1,av))L. Moreover, if v is alone, then |F ∩ EG({v},Q)| ≥ bv L ≥ 1 · L + (bv −max(1,av))L. Hence

�Q–WS = ∣∣F ∩ EG(Q,W ∪ S)
∣∣

≥ naloneL +
∑

v∈W∪S

(
bv − max(1,av)

)
L

≥ naloneL +
∑

(bv − 1)L −
∑

av L.
v∈W∪S v∈W∪S

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447 1445
Recall that
∑

v∈W∪S (bv − 1)L = kQ–WS . Therefore, using the fact that each clique is attached to exactly 17n′/p vertices
of W ∪ S , we obtain that

�Q–WS − kQ–WS = ∣∣F ∩ EG(Q,W ∪ S)
∣∣ − kQ–WS

≥ naloneL −
∑

v∈W∪S
av L = naloneL − 17aLn′/p.

In G0, the vertices of W ∪ S are split between p′ ≤ 6p clusters and there are 6n′ + 9m′ of them. By Lemma 17, the
minimum number of edges of G0[W ∪ S] is attained when all clusters are of equal size and the number of clusters is
maximum possible. We infer that �all

WS–WS ≥ kall
WS–WS .

We are left with bounding �save
W–W and �save

W–S . Recall that ksave
W–W counts three edges out of each 6-cycle constructed per

variable of Φ ′ , |ksave
W–W | = 3n′ , whereas ksave

W–S counts one edge per each vertex sC
β,ξ ∈ S , ksave

W–S = 9m′ = |S|.
Consider a crowded cluster K with c > 1 crowded cliques. We say that K interferes with a vertex v ∈ W ∪ S if v is

attached to a clique in K . As each clique is attached to exactly 17n′/p vertices of W ∪S , 2n′/p belonging to W and 15n′/p
to S , in total at most 2an′/p vertices of W and at most 15an′/p vertices of S interfere with a crowded cluster.

Fix a variable x ∈ Vars(Φ ′). If none of the vertices wx
α,α+1 ∈ W interferes with any crowded cluster K , then all the

cliques Q r(x)
α′ , 1 ≤ α′ ≤ 6, are proper cliques, each contained in a different cluster in G0. Moreover, if additionally no vertex

wx
α,α+1, 1 ≤ α ≤ 6, is alone, then in the 6-cycle constructed for the variable x at most three edges are not in F . On the

other hand, if some of the vertices wx
α,α+1 ∈ W interfere with a crowded cluster K , or at least one of them is alone, it

may happen that all six edges of this 6-cycle are contained in one cluster of G0. The total number of 6-cycles that contain
either alone vertices or vertices interfering with crowded clusters is bounded by nalone + an′/p, as every clique is attached
to exactly n′/p 6-cycles. In ksave

W–W we counted three edges per a 6-cycle, while in �save
W–W we counted at most three edges

per every 6-cycles except 6-cycles that either contain alone vertices or vertices attached to crowded cliques, for which we
counted at most six edges. Hence, we infer that

�save
W–W − ksave

W–W ≤ 3
(
nalone + an′/p

)
.

We claim that if a vertex sC
β,ξ ∈ S (i) is not alone, and (ii) is not attached to a crowded clique, and (iii) is not adjacent

to any alone vertex in W , then at most one edge from E({sC
β,ξ },W) may not be in F . Recall that sC

β,ξ has exactly three
neighbors in W , each of them attached to exactly two cliques and all these six cliques are pairwise distinct; moreover,
sC
β,ξ is attached only to these six cliques, if β = 2,3, or only to three out of these six, if β = 1. Observe that (i) and (ii)

imply that sC
β,ξ is in the same cluster as exactly one of the six cliques attached to his neighbors in W , so if it was in

the same cluster as two of his neighbors in W , then at least one of them would be alone, contradicting (iii). Therefore,
if conditions (i), (ii), and (iii) are satisfied, then at most one edge adjacent to sC

β,ξ may be not contained in F . However,

if at least one of (i), (ii) or (iii) is not satisfied, then all three edges incident to sC
β,ξ may be contained in one cluster. As

each vertex in W is adjacent to at most 18 vertices in S (at most 3 per every clause in which the variable is present),
there are at most 18nalone vertices sC

β,ξ that are alone or adjacent to an alone vertex in W . Note also that the number of
vertices of S interfering with crowded clusters is bounded by 15an′/p, as each of a crowded cliques has exactly 15n′/p
vertices of S attached. Thus, we are able to bound the number of vertices of S for which (i), (ii) or (iii) does not hold by
18nalone + 15an′/p. As in ksave

W–S we counted one edge per every vertex of S , while in �save
W–S we counted at most one edge

per every vertex of S except for vertices not satisfying (i), (ii), or (iii), for which we counted at most three edges, we infer
that

�save
W–S − ksave

W–S ≤ 2
(
18nalone + 15an′/p

)
.

Summing up all the bounds:

|F | − k′ ≥ (�Q–Q − kQ–Q) + (�Q–WS − kQ–WS) + (
�all
WS–WS − kall

WS–WS
) − 2

(
�save
W–W − ksave

W–W
)

− 2
(
�save
W–S − ksave

W–S
)

≥ aL2/2 + naloneL − 17aLn′/p + 0 − 6
(
nalone + an′/p

) − 4
(
18nalone + 15an′/p

)
= a · (L2/2 − 17Ln′/p − 66n′/p

) + nalone · (L − 78)

≥ a + nalone.

To see that the last inequality holds, observe that both the terms L2/2 − 17Ln′/p − 66n′/p and L − 78 are at least 1. This
follows from the choice of the value of L, L = 1000 · (1 + n′

p); note that in particular L ≥ 1000.
We infer that a = 0, that is, each clique Q r

α is contained in a different cluster of G0, and each cluster of G0 contains
exactly one such clique. Moreover, nalone = 0, that is, each vertex v ∈ W ∪ S is contained in a cluster with at least one

1446 F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447
clique v is attached to; as all cliques are proper, v is contained in a cluster with exactly one clique v is attached to and
�Q–WS = kQ–WS .

Recall that |F ∩ ((W ∪ S) × (W ∪ S))| = �all
WS–WS + kexist

WS–WS − 2�save
W–W − 2�save

W–S . As each clique is now proper and
no vertex is alone, for each variable x at most three edges out of the 6-cycle wx

α,α+1, 1 ≤ α ≤ 6, are not in F , that is,

�save
W–W ≤ ksave

W–W . Moreover, for each vertex sC
β,ξ ∈ S , the three neighbors of sC

β,ξ are contained in different clusters and at

most one edge incident to sC
β,ξ is not in F , that is, �save

W–S ≤ ksave
W–S . As |F | ≤ k′ and �all

WS–WS ≥ kall
WS–WS , these inequalities

are tight: exactly three edges out of each 6-cycle are not in F , and exactly one edge adjacent to a vertex in S is not in F .
Consider an assignment φ′ of Vars(Φ ′) that assigns φ′(x) = 1 if the vertices wx

α,α+1, 1 ≤ α ≤ 6 are contained in clusters

with cliques Q r(x)
1 , Q r(x)

3 , and Q r(x)
5 (i.e., the edges wx

6,1 wx
1,2, wx

2,3 wx
3,4 and wx

4,5 wx
5,6 are not in F), and φ′(x) = 0 otherwise

(i.e., if the vertices wx
α,α+1, 1 ≤ α ≤ 6 are contained in clusters with cliques Q r(x)

2 , Q r(x)
4 and Q r(x)

6) – a direct check shows
that these are the only ways to save 3 edges inside a 6-cycle. We claim that φ′ satisfies Φ ′ , which implies that Φ is also
satisfiable. Consider a clause C . The vertex sC

1,1 is contained in a cluster with one of the three cliques it is attached to (as

nalone = 0), say Q r
α′ , and with one of the three vertices of W it is adjacent to, say wx

α,α+1. Therefore r(x) = r, wx
α,α+1 is

contained in the same cluster as Q r
α′ , and it follows that the literal in C that contains x satisfies C in the assignment φ′ . �

5. Conclusion and open questions

In this work we have given an algorithm that solves p-Cluster Editing in time O(2O(
√

pk) + |V (G)| + |E(G)|) and
complemented it by a multivariate lower bound, which shows that the running time of our algorithm is asymptotically tight
for all p sublinear in k.

In our multivariate lower bound it is crucial that the cliques and clusters are arranged in groups of six. However, the
drawback of this construction is that Theorem 2 settles the time complexity of p-Cluster Editing problem only for p ≥ 6
(Theorem 4). It does not seem unreasonable that, for example, the 2-Cluster Editing problem, already NP-complete [39],
may have enough structure to allow an algorithm with running time 2o(

√
k) · |V (G)|O(1) . Can we construct such an algorithm

or refute its existence under ETH?
Secondly, we would like to point out an interesting link between the subexponential parameterized complexity of the

problem and its approximability. When the number of clusters drops from linear to sublinear in k, we obtain a phase
transition in parameterized complexity from exponential to subexponential. As far as approximation is concerned, we know
that bounding the number of clusters by a constant allows us to construct a PTAS [29], whereas the general problem is
APX-hard [15]. The mutual drop of the parameterized complexity of a problem – from exponential to subexponential –
and of approximability – from APX-hardness to admitting a PTAS – can be also observed for many hard problems when
the input is constrained by additional topological bounds, for instance excluding a fixed pattern as a minor [19,20,27]. It is
therefore an interesting question, whether p-Cluster Editing also admits a PTAS when the number of clusters is bounded
by a non-constant, yet sublinear function of k, for instance p = √

k.

Acknowledgments

We thank Christian Komusiewicz for pointing us to the recent results on Cluster Editing [7,35]. We also thank an anony-
mous referee for suggesting the current, elegant proof of Lemma 10. Moreover, we thank Pål Grønås Drange, M.S. Ramanujan
and Saket Saurabh for helpful discussions.

References

[1] Nir Ailon, Moses Charikar, Alantha Newman, Aggregating inconsistent information: ranking and clustering, J. ACM 55 (5) (2008), Article No. 23, 27 pp.
[2] Noga Alon, Daniel Lokshtanov, Saket Saurabh, Fast FAST, in: Proceedings of the 36th International Colloquium on Automata, Languages and Program-

ming, ICALP 2009, in: Lect. Notes Comput. Sci., vol. 5555, Springer, 2009, pp. 49–58.
[3] Noga Alon, Konstantin Makarychev, Yury Makarychev, Assaf Naor, Quadratic forms on graphs, in: Proceedings of the 37th ACM Symposium on Theory

of Computing, STOC 2005, ACM, 2005, pp. 486–493.
[4] Sanjeev Arora, Eli Berger, Elad Hazan, Guy Kindler, Muli Safra, On non-approximability for quadratic programs, in: Proceedings of the 46th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 2005, IEEE Computer Society, 2005, pp. 206–215.
[5] Nikhil Bansal, Avrim Blum, Shuchi Chawla, Correlation clustering, Mach. Learn. 56 (2004) 89–113.
[6] Amir Ben-Dor, Ron Shamir, Zohar Yakhini, Clustering gene expression patterns, J. Comput. Biol. 6 (3–4) (1999) 281–297.
[7] Sebastian Böcker, A golden ratio parameterized algorithm for cluster editing, J. Discrete Algorithms 16 (2012) 79–89.
[8] Sebastian Böcker, Jan Baumbach, Cluster Editing, in: CiE, in: Lect. Notes Comput. Sci., vol. 7921, Springer, 2013, pp. 33–44.
[9] Sebastian Böcker, Sebastian Briesemeister, Quang Bao, Anh Bui, Anke Truß, A fixed-parameter approach for weighted Cluster Editing, in: Proceedings

of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, in: Adv. Bioinform. Comput. Biol., vol. 6, 2008, pp. 211–220.
[10] Sebastian Böcker, Sebastian Briesemeister, Gunnar W. Klau, Exact algorithms for Cluster Editing: evaluation and experiments, Algorithmica 60 (2) (2011)

316–334.
[11] Sebastian Böcker, Peter Damaschke, Even faster parameterized Cluster Deletion and Cluster Editing, Inf. Process. Lett. 111 (14) (2011) 717–721.
[12] Hans L. Bodlaender, Michael R. Fellows, Pinar Heggernes, Federico Mancini, Charis Papadopoulos, Frances A. Rosamond, Clustering with partial infor-

mation, Theor. Comput. Sci. 411 (7–9) (2010) 1202–1211.
[13] Yixin Cao, Jianer Chen, Cluster editing: kernelization based on edge cuts, in: IPEC, in: Lect. Notes Comput. Sci., vol. 6478, Springer, 2010, pp. 60–71.

http://refhub.elsevier.com/S0022-0000(14)00059-2/bib41696C6F6E434E3038s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib416C6F6E4C533039s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib416C6F6E4C533039s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib416C6F6E4D4D4E3035s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib416C6F6E4D4D4E3035s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib41726F7261424B53483035s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib41726F7261424B53483035s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib42616E73616C3034s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib42656E2D446F7253593939s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib626F636B65723A69776F6361s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib426F636B6572423133s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib426F636B65724242543038s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib426F636B65724242543038s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib426F636B6572424B3131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib426F636B6572424B3131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib426F636B6572443131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib426F646C61656E64657246484D50523130s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib426F646C61656E64657246484D50523130s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib43616F4331302D636F6E66s1

F.V. Fomin et al. / Journal of Computer and System Sciences 80 (2014) 1430–1447 1447
[14] Yixin Cao, Jianer Chen, Cluster editing: kernelization based on edge cuts, Algorithmica 64 (1) (2012) 152–169.
[15] Moses Charikar, Venkatesan Guruswami, Anthony Wirth, Clustering with qualitative information, J. Comput. Syst. Sci. 71 (3) (2005) 360–383.
[16] Moses Charikar, Anthony Wirth, Maximizing quadratic programs: extending Grothendieck’s inequality, in: Proceedings of the 45th Symposium on

Foundations of Computer Science, FOCS 2004, IEEE Computer Society, 2004, pp. 54–60.
[17] Jianer Chen, Jie Meng, A 2k kernel for the Cluster Editing problem, J. Comput. Syst. Sci. 78 (1) (2012) 211–220.
[18] Peter Damaschke, Fixed-parameter enumerability of Cluster Editing and related problems, Theory Comput. Syst. 46 (2) (2010) 261–283.
[19] Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, Dimitrios M. Thilikos, Subexponential parameterized algorithms on graphs of bounded

genus and H-minor-free graphs, J. ACM 52 (6) (2005) 866–893.
[20] Erik D. Demaine, MohammadTaghi Hajiaghayi, Bidimensionality: new connections between FPT algorithms and PTASs, in: Proceedings of the 16th

Symposium on Discrete Algorithms, SODA 2005, 2005, pp. 590–601.
[21] Rodney G. Downey, Michael R. Fellows, Parameterized Complexity, Springer-Verlag, New York, 1999.
[22] Michael R. Fellows, Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, Johannes Uhlmann, Graph-based data clustering with overlaps, Discrete Optim.

8 (1) (2011) 2–17.
[23] Jörg Flum, Martin Grohe, Parameterized Complexity Theory, Texts Theor. Comp. Sci. EATCS Ser., Springer-Verlag, Berlin, 2006.
[24] Fedor V. Fomin, Dieter Kratsch, Exact Exponential Algorithms, Texts Theor. Comp. Sci. EATCS Ser., Springer, 2010.
[25] Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, Yngve Villanger, Subexponential fixed-parameter tractability of Cluster Editing,

CoRR, abs/1112.4419, 2011.
[26] Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, Yngve Villanger, Tight bounds for parameterized complexity of cluster editing, in:

STACS, in: LIPIcs, vol. 20, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2013, pp. 32–43.
[27] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, Bidimensionality and EPTAS, in: Proceedings of the 22nd Symposium on Discrete

Algorithms, SODA 2011, SIAM, 2011, pp. 748–759.
[28] Fedor V. Fomin, Yngve Villanger, Subexponential parameterized algorithm for Minimum Fill-in, in: Proceedings of the 23rd Symposium on Discrete

Algorithms, SODA 2012, SIAM, 2012, pp. 1737–1746.
[29] Ioannis Giotis, Venkatesan Guruswami, Correlation clustering with a fixed number of clusters, in: Proceedings of the 17th Symposium on Discrete

Algorithms, SODA 2006, ACM Press, 2006, pp. 1167–1176.
[30] Jens Gramm, Jiong Guo, Falk Hüffner, Rolf Niedermeier, Graph-modeled data clustering: exact algorithms for clique generation, Theory Comput. Syst.

38 (4) (2005) 373–392.
[31] Jiong Guo, A more effective linear kernelization for Cluster Editing, Theor. Comput. Sci. 410 (8–10) (2009) 718–726.
[32] Jiong Guo, Iyad A. Kanj, Christian Komusiewicz, Johannes Uhlmann, Editing graphs into disjoint unions of dense clusters, Algorithmica 61 (4) (2011)

949–970.
[33] Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, Johannes Uhlmann, A more relaxed model for graph-based data clustering: s-plex Cluster Editing,

SIAM J. Discrete Math. 24 (4) (2010) 1662–1683.
[34] Russell Impagliazzo, Ramamohan Paturi, Francis Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci. 63 (4) (2001)

512–530.
[35] Christian Komusiewicz, Johannes Uhlmann, Cluster Editing with locally bounded modifications, Discrete Appl. Math. 160 (15) (2012) 2259–2270.
[36] Daniel Lokshtanov, Dániel Marx, Saket Saurabh, Lower bounds based on the Exponential Time Hypothesis, Bull. Eur. Assoc. Theor. Comput. Sci. 105

(2011) 41–72.
[37] Dániel Marx, What’s next? Future directions in parameterized complexity, in: The Multivariate Algorithmic Revolution and Beyond, in: Lect. Notes

Comput. Sci., vol. 7370, Springer, 2012, pp. 469–496.
[38] Fábio Protti, Maise Dantas da Silva, Jayme Luiz Szwarcfiter, Applying modular decomposition to parameterized cluster editing problems, Theory Comput.

Syst. 44 (1) (2009) 91–104.
[39] Ron Shamir, Roded Sharan, Dekel Tsur, Cluster graph modification problems, Discrete Appl. Math. 144 (1–2) (2004) 173–182.

http://refhub.elsevier.com/S0022-0000(14)00059-2/bib43616F433130s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib43686172696B6172475730356As1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib43686172696B6172573034s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib43686172696B6172573034s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib4368656E4D3130s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib44616D617363686B653130s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib44656D61696E6546485430356A61636Ds1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib44656D61696E6546485430356A61636Ds1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib44656D61696E6548303561s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib44656D61696E6548303561s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib446F776E6579463939s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib46656C6C6F7773474B4E553131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib46656C6C6F7773474B4E553131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib466C756D47726F6865626F6F6Bs1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib466F6D696E3A323031306D6Fs1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib6162732D313131322D34343139s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib6162732D313131322D34343139s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib636C7573746572696E672D7374616373s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib636C7573746572696E672D7374616373s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib464C5253736F646132303131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib464C5253736F646132303131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib466F6D696E56313236736F6461s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib466F6D696E56313236736F6461s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib47696F746973473036s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib47696F746973473036s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib4772616D6D47484E3035s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib4772616D6D47484E3035s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib47756F3039s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib47756F4B4B553131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib47756F4B4B553131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib47756F4B4E553130s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib47756F4B4E553130s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib496D7061676C69617A7A6F505A3031s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib496D7061676C69617A7A6F505A3031s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib4B6F6D757369657769637A553132s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib4C6F6B736874616E6F764D533131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib4C6F6B736874616E6F764D533131s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib6D6172783A667574757265s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib6D6172783A667574757265s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib50726F74746953533039s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib50726F74746953533039s1
http://refhub.elsevier.com/S0022-0000(14)00059-2/bib5368616D697253543034s1

	Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters
	1 Introduction
	2 Preliminaries
	3 A subexponential algorithm for p-Cluster Editing
	3.1 Reduction for large p
	3.2 Bounds on binomial coefﬁcients
	3.3 Small cuts
	3.4 The algorithm

	4 A multivariate lower bound
	4.1 Preprocessing of the formula
	4.2 Construction
	4.3 Completeness
	4.4 Soundness

	5 Conclusion and open questions
	Acknowledgments
	References

